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Abstract 

Among environmental stressors, urban noise exposure has become a critical factor for 

building occupants’ health along with rapid urban population growth. The World Health 

Organization (WHO) has warned that high external noise levels can cause numerous health 

problems such as sleep disturbance, high blood pressure, and psycho-physiological 

symptoms. Road traffic noise, among other urban noise sources, has been regarded as the 

major constraint degrading the acoustical quality of urban environments. However, it was 

found that there is a conflict between ventilation performance and noise transmission in 

naturally-ventilated buildings in urban areas. Therefore, this research topic aims to explain 

the effect of shading louvers and compact silencers as noise barriers in ventilated buildings 

for indoor air quality and acoustical quality. 

This study is intended to investigate the multidimensional aspects needed to improve 

ventilation potentials and acoustical performance using a double skin facade (DSF) which is 

composed of an air cavity, two layers of glass, shading louvers, and air vents. This study 

employs a mixed-use research method composed of a preliminary simulation study and an 

experimental study. The preliminary simulation study focused on the ventilation performance 

of a DSF using computational fluid dynamics (CFD) software, and then an experimental 

study was designed to measure noise reduction of a DSF mock-up in a reverberation chamber 

based on shading louver orientation, type, and surface material, and the percentage of air vent 

open surface area of a DSF. 

Research findings suggest that shading louvers and compact silencers are effective in 

noise reduction of a DSF. It implies that integrated shading louvers with sound absorbing 

materials and compact silencers for air vents can reduce noise transmission through 

ventilation openings in naturally-ventilated buildings.
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CHAPTER 1: Introduction 

1.1 Research Background 

 Global urban population growth is expected to increase from approximately 3.8 to 6.3 

billion people between 2014 and 2050, due to an increase of economic concentration in the 

cities (U.N., 2014).  This socio-cultural and demographic phenomenon has brought about 

various impacts on built environments; for instance, vertical buildings for more efficient land 

use, airtight curtain wall systems for lightweight structural facades, increased energy demands 

on heating, ventilation and air conditioning (HVAC) systems, and higher urban traffic intensity.  

 To study the relationship among urban population growth, urban traffic noise intensity, 

and negative effects of urban noise, a study was carried out in Seoul, South Korea. It stated that 

Seoul, as one of the largest cities among the Organization for Economic Cooperation and 

Development (OECD), has been facing accelerated urbanization (OECD, 2014). World Bank 

data also shows that the number of motor vehicles, as the largest generator of urban noise, 

gradually increased by about 43.9% between 2000 and 2011. Under these environmental 

situations, another study on well-being indices for the physical and psychological health of 

high-rise building occupants in South Korea indicated that indoor ventilation performance and 

acoustical comfort are regarded as more important factors than daylight, views, and indoor 

temperature and humidity. (Lee et al., 2011). In addition, the case study found 64% of building 

occupants in six selected sites regarded outdoor traffic noise as the main obstacle for their 

office-work productivity. 

 Although the current non-bearing curtain wall systems are designed to reduce the 

possibility of noise transmission by minimizing air infiltration (Sanders, 2006) the lightweight 

glass-sealed envelopes, which are vulnerable to fluctuating outdoor climate conditions, are 

dependent on the intensive energy use of HVAC systems (Khan et al., 2008). On the other 



  

2 

 

hand, even though naturally-ventilated buildings can lower the concentration of indoor 

pollutants, they are prone to urban traffic noise transmission via ventilation windows (Ghiaus 

& Allard, 2005). In urban environments, the conflict between natural ventilation and noise 

transmission by ventilation openings has been a significant hurdle to achieving good indoor 

environmental quality (IEQ). Among the environmental stressors, urban noise exposure has 

become a critical factor for building occupant health (WHO, 1999; Ghiaus & Allard, 2005). In 

fact, the World Health Organization (WHO) has warned that high external noise levels can 

cause numerous health problems such as sleep disturbance, high blood pressure, and psycho-

physiological symptoms. Road traffic noise, among other urban noise sources, has been 

regarded as the major constraint degrading the acoustical quality of urban environments (WHO, 

1999; WHO, 2000; Ghiaus & Allard, 2005; Kang, 2007). 

 Therefore, this study explores not only the conflict between ventilation performance 

and noise transmission in naturally-ventilated buildings in urban areas, but also proposes the 

acoustical performance of shading louvers associated with ventilation openings. The reason for 

this is that indoor air quality (IAQ) and acoustic quality are directly and/or indirectly associated 

with building occupant health in the built environment. This study is intended to investigate 

the multidimensional aspects to improve ventilation potentials and acoustical performance 

using a double skin facade (DSF) which is composed of an air cavity, two layers of glass, 

shading louvers, and air vents.  

1.2 Problem Statement 

 First, the relationship between ventilation rate and noise transmission loss in urban 

areas is not only a critical requirement for building occupant health but also a conflict between 

indoor air quality and acoustic quality. The case study found that an annual traffic data analysis 

of six sites in Seoul exceeds the national environmental noise criteria of 65 dB (A). In addition, 

the supplemental questionnaire survey targeting 92 building occupants in the sites showed that 
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89% utilized mechanical ventilation air conditioning systems and 51% experienced Sick 

Building Syndrome (SBS), which is composed of related symptoms such as skin irritation, eye 

irritation, respiratory illness, and headache. Survey participants responded that 35% were 

deterred from opening windows due to outdoor traffic noise; 44% regarded outdoor traffic 

noise as a main obstacle to opening windows; and 64% agreed that urban traffic noise had a 

negative impact on indoor acoustic quality. These outcomes imply that there are adverse health 

effects by noise transmission via ventilation openings in high noise areas. This study requires 

an exploration of building façade design to meet a balance between the two environmental 

requirements of ventilation and noise. 

 The initial findings from literature review states that DSFs take advantage of their 

properties of air cavity and two layers of glass for the purpose of thermal insulation, visual 

connectivity to the outdoors, acoustical barrier, and building energy performance (Oesterle et 

al., 2001; Lee et al., 2002; Safer et al., 2004; Harris, 2005; Harris, 2006; Gratia & Herde, 2004; 

Gratia & Herde, 2007; Hasse et al., 2007; Chan et al., 2009; Baldinelli, 2009). Among the 

several environmental benefits of DSFs, this research aims to investigate ventilation 

performance and acoustical performance of air cavity, shading louvers, and air vents of DSFs. 

 A hypothetical scenario is assumed where traffic noise transmitted via vent openings of 

a DSF travels to each room horizontally and vertically when air vents open to bring in fresh 

outdoor air during mild seasons and/or to dissipate heat during hot seasons. Based on these 

problematic situations, this study is designed to address several key questions as follows: 

• How do DSFs work to meet both ventilation and acoustical performance? 

• How does orientation (e.g., tilted degree angle), type (e.g., vertical and horizontal), and 

surface material of shading louvers work to achieve ventilation and acoustical 

performance in DSFs? 
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• How do the percentage of vent open surface area and absorbing materials in air vents 

work to achieve both ventilation and acoustical performance in DSFs? 

1.3 Research Objective 

 The main objective of this study is to investigate the acoustical performance of shading 

louvers and air vents of a DSF under the hypothesis that noise transmission via ventilation 

openings can cause acoustical discomfort and/or adverse health effects. As described in Figure 

1.1, IEQ is the ultimate target as a long term strategy, and indoor air quality and acoustic quality 

are the sub-targets in relation to building occupants health and comfort. Even though there 

exists a number of techniques to increase ventilation performance, as well as to decrease noise 

transmission, individual techniques do not simultaneously meet the two environmental 

requirements of ventilation and noise. Even if an operable window is one cost-effective way to 

provide ventilation for good IAQ, the unpredictable wind patterns and transportation noise in 

urban areas provides considerable reasons that diminish the use of wind-driven ventilation 

strategy. 

 Instead, DSFs are considered multifunctional aspects of ventilation and acoustical 

performance using air cavities, shading louvers, and air vents. Generally speaking, they are 

composed of shading louvers to control direct solar radiation and daylight, and air vents to 

control micro-climate conditions inside DSF air cavities. In particular, an air cavity is utilized 

for ventilation purposes with shading louvers and air vents. Orientation and type of shading 

louvers, and percentage of air vent open surface area are associated with air temperature and 

air speed for ventilation performance. However, it has not been sufficiently determined that 

shading louvers and air vents in DSFs would be effective in reducing noise transmission via 

ventilation openings. Therefore, this study is designed to explore the acoustical performance 

of shading louvers and air vents of DSFs. 
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Figure 1.1  Research framework 

 



  

6 

 

1.4 Research Methods 

 Based on literature review, this study employed a mixed-use research method 

composed of a preliminary simulation study (see Chapter 3) and an experimental study (see 

Chapter 4). The preliminary simulation study aims to understand the relationship between 

ventilation potential and noise transmission loss through computational fluid dynamics (CFD) 

analysis. This simulation study was designed to predict ventilation performance in relation to 

air temperature, air velocity, and air patterns inside the air cavity. A hypothetically-designed 

DSF was modelled using the CFD software FloVENT, which generated air temperature and air 

velocity data based on shading louver orientation and type, and percentage of air vent open 

surface area. Initial findings from the simulation study were used in designing DSF mock-up 

tests on noise reduction based on several scenarios such as orientation, type, a surface material 

of shading louvers, and percentage of air vent open surface area. 

 However, existing acoustical software was limited in their ability to model and predict 

noise transmission loss of a DSF. The currently available acoustic software such as EASE, 

Insul, and SoundFLOW are not able to model the same scenarios that were possible with CFD 

simulation studies. In particular, the available acoustic software programs were limited in 

modelling and analyzing noise transmission loss by orientation, type, surface material of 

shading louvers, and the percentage of air vent open surface area of the DSF modelling.  Other 

commercial simulation software such as Odeon, SoundPLAN, and CADNA were not 

financially feasible for the research. 

 Therefore, supplemental DSF mock-up tests were carried out in the reverberation 

chamber of the University Of Kansas School Of Engineering’s Building Materials & 

Sustainable Environment Center (M2SEC).  
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1.5 Hypothesis 

 Preliminary simulation study of a DSF addressed the issue that ventilation performance 

is highly associated with orientation, type of shading louvers, and the percentage of air vent 

open surface area. Depending on orientation and type of shading louvers, air temperature and 

airflow inside a DSF air cavity showed noteworthy outcomes. It was found that a percentage 

of air vent open surface area contributes to air temperature inside DSF as one descriptor of 

ventilation performance. These preliminary findings are described in Chapter 3: Preliminary 

Study. 

 Based on a preliminary simulation study on ventilation performance and noise 

reduction via air vents in a DSF modelling, it was hypothesized that orientation, type, surface 

material of shading louvers, the percentage of air vent open surface area, and absorbing material 

of air vents are effective in noise reduction.  

• It is conjectured that cases with shading louvers tilted at a 90 degree angle, which 

parallels to two layers of glass wall, are effective in significant noise reduction.  

• It is conjectured that cases with horizontal shading louvers are effective in reducing 

transmitted noise via air vents than are cases with vertical shading louvers. 

• It is conjectured that higher percentage of air vent open surface area can reduce noise 

transmission significantly. 

1.6 Research Scope 

 The scope of this study is limited to the acoustical performance of shading louvers and 

air vents in naturally-ventilated buildings which are vulnerable to traffic noise transmission. 

DSF mock-up tests were designed under controlled conditions to understand the mechanism of 

sound propagation and/or sound transmission through a DSF. Even though there are a number 

of studies on DSF performance regarding ventilation and energy, an experimental study in 

Chapter 5 was aimed at noise reduction using orientation, type, and surface material of shading 



  

8 

 

louvers, and the percentage of air vent open surface area, according to the American Society 

for Testing Materials (ASTM).  

1.7 Research Significance 

 First, the major significance of this study is to investigate the mechanism between 

ventilation potentials and acoustical performance of the DSF, while achieving two 

environmental requirements including indoor air quality and acoustic quality.  

 Second, sustainable strategies of building façade design in naturally-ventilated 

buildings provide solutions designed to cope with a diversity of environmental requirements 

thermally, visually, and acoustically. Even if there are a number of studies on the impact of 

shading louvers on visual and thermal comfort and building energy performance, additional 

experimental investigations of acoustical performance for shading louvers are necessary in the 

field for the integrated design of building façades. 

 Third, experimental tests for sound-absorbing air vents are noteworthy contributions to 

improving the weakness of window ventilation in naturally-ventilated buildings in high noise 

areas. Development of sound-absorbing air vents can lead to the integrated applications of 

natural ventilation strategies for various building purposes.   
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CHAPTER 2: Literature Review 

2.1 Urbanization 

2.1.1 Urban Population in Asian Regions 

 The United Nations (UN) reports that world urban population growth is expected to 

increase from about 3.8 to 6.3 billion people between 2014 and 2050. Figure 2.1 shows that 

urbanization has been taking place in Europe, Northern America, and Asia (U.N., 2014). The 

2016 annual report by Demographia, as shown in Table 2.1, which contains population, land 

area, and population density, states that 55% of the world has been urbanized and 70% of the 

world’s population lives in the urban area. To be specific, a total number of urban populations 

in Asian regions as of 2014 accounts for approximately 53.1% of the total world urban 

population. This data indicates that Asian regions have been experiencing the greatest 

accelerated urbanization process.  

 

Table 2.1  Largest urban areas in the world (Source: Demographia) 

Rank Continent Geography Urban Area 
Population 

Estimate (A) 

Land Area: 

Km2 (B) 

Population 

Density 

(C=A/B) 

1 Asia Japan Tokyo-Yokohama 37,750,000 8,547 4,400 

2 Asia Indonesia Jakarta 31,320,000 3.225 9,700 

3 Asia India Delhi 25,735,000 2,163 11,900 

4 Asia South Korea Seoul-Incheon 23,575,000 2,590 9,100 

5 Asia Philippines Manila 22,930,000 1,632 14,100 

6 Asia India Mumbai 22,885,000 881 26,000 

7 Asia Pakistan Karachi 22,825,000 945 24,100 

8 Asia China Shanghai 22,685,000 3,885 5,800 

9 North America United States New York, 20,685,000 11,642 1,800 

10 South America Brazil Sao Paulo 20,605,000 2,707 7,600 

11 Asia China Beijing 20,390,000 3,937 5,200 

12 South America Mexico Mexico City 20,230,000 2,072 9,800 
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Figure 2.1 Urban and rural population as proportion of total population, by major areas 

(Source: 2014 UN report) 

 

 Figure 2.1 illustrates the percentage of population growth between urban areas and rural 

areas. As a result of rapid urban population growth, several environmental issues have been 

raised related to (i) the spread of vertical building structures with light-weight glass envelopes, 
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(ii) lack of natural ventilation potentials and  increased energy consumption of HVAC systems, 

and (iii) the adverse health effects of noise due to urban transportation noise. 

2.1.2 Vertical Buildings  

 High-rise buildings are a result of rapid urban population growth and industrialization. 

The development of construction and structure technologies for efficient land use also made 

possible the growth of vertical buildings. As one of the key elements of building facades, 

curtain wall systems make them possible not only to address the heavy load-bearing of modern 

building facades, but also to minimize air and water infiltration by equalizing the substantial 

wind pressures on high-rise buildings (Sanders, 2006). These tendencies in building facades, 

however, have driven a number of buildings over the past three decades to be equipped with 

mechanical ventilation systems for year-round climate control. The availability of outdoor air 

ventilation was driven toward the operation of HVAC systems (Godish, 2001).  

2.1.3 Airtight Glass-sealed Building Enclosure 

 Curtain wall systems, of which large glass and aluminum structures act as exterior wall 

systems, offer multiple benefits apart from non-load-bearing. To enhance natural lighting, high 

window-to-wall ratio (WWR) buildings are designed and constructed as building façade 

elements. However, Joseph and Francis (2009) point out that highly glazed curtain wall systems 

are subject to not only thermal discomfort but also visual discomfort. Solar heat gain in high 

WWR buildings provides a major cause for the use of dominant air-conditioning loads. Even 

though natural ventilation strategies produce a physical cooling effect, the glass-sealed building 

envelopes cause building occupants to the mechanically-driven environmental systems, such 

as HVAC systems, that can cause sick building syndrome (SBS) and a major portion of 

buildings’ energy consumption.  
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2.1.4 HVAC Systems and Energy Consumption 

 Urban buildings with high WWR and the indiscreet energy consumption of HVAC 

systems bring about greater building energy consumption. HVAC systems are an energy 

intensive assembly comprised of large fans, ductwork systems, and air-conditioning and 

heating units. Along with the rapid economic growth of China, its building energy consumption 

in 2011 was approximately 28% of the total national end use and will increase to about 35% in 

2020. This figure means that HVAC systems energy use will account for about 65% of the 

energy use in the building sector. In the U.S.A., its energy use accounts for about 50% of 

building energy consumption and 20% of total energy consumption (Pe´rez-Lombard et al., 

2008).  

 In contrast to active mechanical systems such as HAVC systems, passive design 

strategies are carefully designed to integrate with the local climate conditions for building 

occupant comfort. Although the feasibility of natural ventilation strategies is highly associated 

with outdoor air quality, local climate conditions, building layouts, and numerous factors, 

natural ventilation strategies may be one of the cost-effective methods for building energy 

savings and human comfort (Khan et al., 2008). Where natural ventilation is feasible, operable 

ventilation windows can offer fresh air flow without the need for energy input.  

However, urban traffic noise transmitted via ventilation windows deters building occupants 

from opening windows and justifies the use of mechanical ventilation systems (Nicol & 

Wilson, 2004; Ghiaus & Allard, 2005).  

2.1.5 Urban Transportation Noise 

 As the first consequence of urbanization, the number of motor vehicles such as cars, 

buses, and trucks has gradually increased in the cities. Transportation noise is the main source 

of environmental noise pollution including road, rail, and air traffic (WHO, 1999). The WHO 

reports that traffic-related noise has become the most health-threatening environmental stressor 
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in Europe. According to the 2011 WHO report, 33% of individuals had been annoyed during 

the daytime, and 20% of respondents experienced sleep disturbance during the night because 

of traffic noise (WHO, 2011). The Environmental Protection Agency (EPA) in 1981 estimated 

that 19.3 million people in the United States are exposed to a day-night average sound level 

(Ldn) greater than 65 dB from highway traffic. In Japan, road traffic noise was the most 

annoying source among other urban noise sources (Yano et al., 1996). In China, survey data 

(China EPA, 1995) shows that 71.4% of residents in cities with more than one-million in 

population are exposed to noise levels above 70 dB(A) due to the accelerated growth of the 

number of motor vehicles. In Egypt, 73.8% of respondents in a survey complain of noise 

annoyance by road traffic noise (Ali & Tamura, 2002).  

2.2 A Case Study on Urban Noise in South Korea 

2.2.1 Urbanization and Urban Transportation Noise 

 The UN reported that South Korea has been experiencing higher urban population 

growth compared to other Asian countries. The proportion of the urban population as of 2014 

accounted for roughly 82% which is higher by about 37.5% than that of other Asian countries 

and of other countries world-wide. The estimated urban population growth rate of South Korea 

might gradually reach about 88% in 2050 (U.N., 2014). This accelerated urban population 

growth is concurrent with the growth of traffic density in cities.  

 The Traffic Monitoring System of Korea (TMSK) provides the Average Daily Traffic 

(ADT) which represents the average number of vehicles passing a specific point in a 24-hour 

period. According to the ADT data in South Korea between 1998 and 2012, the ADT during 

warm and hot periods is higher than that of the cold periods, as shown in Figure 2.2a. Also the 

ADT during the daytime (07:00~18:00) is greater than the night time (19:00~06:00), as shown 

in Figure 2.2b.  When it comes to seasonal and daily traffic volume, a study stated that noise 

annoyance is greater in summer than in winter (Recuero et al., 1996), and that the effects of 

http://en.wikipedia.org/wiki/Automobile
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noise are greater in the evening and at the beginning of the night period (Vallet et al., 1996). 

For these reasons, TMSK’s ADT data suggests that road traffic volume highly affects natural 

ventilation availability and ventilation behavior to improve IAQ and thermal comfort mostly 

during the spring and fall periods. In addition, building occupants in workplaces are exposed 

to urban traffic noise transmission during working hours when the value of ADT becomes high.  

 Another study on noise annoyance in Seoul demonstrated that the daytime and night-

time equivalent sound levels (Leq) are higher during the spring season than in winter. It was 

found that the value of Traffic Noise Index (TNI) is also higher during the fall than the winter 

(Ryu et al., 2012). These outcomes imply that there is a conflict between natural ventilation 

availability and noise transmission via ventilation openings in naturally-ventilated buildings. 
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Figure 2.2  Average Daily Traffic by month (a) and hour (b)                                     

(Source: The World Bank Data) 

2.3 Natural Ventilation 

2.3.1 Significance of Natural Ventilation 

 The IAQ of urban buildings is highly related to the concentration of harmful 

contaminants from human activities and building materials, which emit a variety of 

compounds. The WHO reported that indoor air pollution to overall human exposure is often 

higher than outdoor concentrations, and the main reason for the concentration of indoor air 

pollutants in developed European countries is a result of low ventilation rates (Air Quality 

Guidelines, 2000). The U.S. Environmental Protection Agency reported that most Americans 

spend up to 87% of their time indoors as working hours in an office environment (U.S. EPA, 

1997). Smith stated that human exposure to indoor particulate pollutants in urban environments 

is seven times higher than in rural environments (1994). Thus, natural ventilation is one of the 

noteworthy techniques for improving building occupants’ health and comfort because a lack of 

ventilation rate can cause excessive humidity, overheating, and concentration of indoor 

pollutants (Khan et al., 2008).  
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 Considering the relationship between natural ventilation and the building occupants’ 

health, it is postulated that natural ventilation highly affects human health and comfort 

including respiratory allergies and task performance. A number of studies demonstrate that 

naturally-ventilated buildings have more advantages to reduce the prevalence of SBS 

symptoms than do mechanically ventilated buildings. Fisk et al. stated that 16~37 million cases 

of colds and flu, which are equivalent to $6–$14 billion annual savings in the United States, 

could be avoided by improving indoor environmental quality. They assumed that SBS 

symptoms might be reduced approximately 20% to 50% through natural ventilation strategies 

(Fisk et al., 2002). 

 When it comes to the relationship between IAQ and productivity, Seppänen and Fisk 

(2002) indicated that HVAC systems should be properly designed, installed, and maintained to 

avoid poor IAQ. They studied the relationship between natural ventilation and task 

performance in office workplaces, and found that the increased outdoor air ventilation rate of 

10 l/s per person is effective in improving about 1% to 3% of work performance. Wargocki et 

al. (2000) found a significant improvement in typical office tasks of typing as well as in creative 

thinking at a ventilation rate of 10 liters per second per person compared to a ventilation rate 

of 3 liters per second per person. Other similar experimental studies performed at schools, call 

centers, and hospitals showed that ventilation rate leads to a positive effect on a significant 

improvement in work performance. 

2.3.2. Natural Ventilation Techniques 

 Natural ventilation strategies utilize natural forces such as wind and thermal buoyancy 

force to bring outdoor air into the indoor space through building envelope openings. Many 

studies introduced common devices for natural ventilation such as operable windows, louvers, 

vents, stack ducts, wind catchers, and double skin facades. 
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           Windows 

 Santamouris and Georgakis (2006) described that occupants use windows not only for 

IAQ control through ventilation rate but also for thermal comfort. However, window 

ventilation is very dependent on weather conditions such as outside temperature, wind, and rain 

infiltration.  

 Cho et al. (2008) categorized the number of window types based on a survey of 114 

high-rise buildings in South Korea. Based on this simulation study on the opening ways of 

windows, they found that pull-down and casement-in windows are better than project-out 

windows for the ventilation effect. They concluded that the opening direction of windows is a 

more important factor than the opening size of them for wind-induced natural ventilation. 

However, they mainly stated the opening direction of windows for natural ventilation in high-

rise buildings without taking into consideration noise transmission in urban environments. 

 Allard and Ghiaus (2005) stated that side-hung casement windows allow a full opening. 

Hinge windows are good at driving rain protection and bottom-hung windows offer good 

ventilation potential by removing the heated air because the largest openings are high to the 

ceiling. Horizontal pivot-hung-windows offer good ventilation by the stack effect. Double 

sliding windows are effective in controlling the airflow rate of air velocity by adjusting the 

positions of the two opposite window panes. 

            Vents 

 The appropriate air inlets provide a controlled airflow rate and refrain from the 

infiltration of rain, dust, insects and urban noise. To be specific, external noise transmission 

into the indoor space in high noise areas is one of the reasons for the preference of mechanical 

ventilation use instead of natural ventilation use. Santamouris and Georgakis (2006) tested that 

vent light positioned at 1.8-meter above the floor level is most effective because airflow works 

well at the height by the stack effect over a wide range of temperature.  
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 Inlet grilles 

 Santamouris and Georgakis (2006) showed that IAQ control can be achieved by 

manually controlled inlets. Typical sizes of the trickle vent’s ventilation opening are in the 

range of 15~40 cm2 and that of grilles are 15~40 cm2. These devices were developed for 

reducing noise transmission and air pollution infiltration, and sound attenuated inlets feature a 

sound reduction up to 25 dB(A). There are different types of inlets such as active air, humidity-

controlled, and pollutant-controlled inlets. 

            Atrium 

 An atrium is a space with glazed roofs; typically, in the middle of a deep plan building, 

offering daylight and natural ventilation through the stack effect. Operable windows of atriums 

are designed for an air supply path to get rid of the heated air.  

 These devices are used to induce outdoor air into buildings or to extract contaminated 

air from rooms, which is enhanced by the use of wind catchers or fans. Usually, individual 

ducts are preferred against noise, pollution and fire. Prajongsan and Sharples (2012) studied a 

ventilation shaft located at the rear of a room, increasing the average air velocity across the 

room. The use of this technique achieved thermal comfort hours during the summer by up to 

56% in the test room compared to 38% in the reference room. They also concluded that the 

ventilation shaft using cross-ventilation technique is an effective wind-induced ventilation 

system allowing enhancement of thermal comfort. 

            Wind scoops and catchers 

 Kleiven (2003) stated that wind scoops catch omni-directional wind and direct fresh air 

into the buildings. But, the drawback of this technique is that the airflow rate is dependent on 

wind speed. Wind catchers on top of buildings take advantage of higher wind velocity in windy 

areas. This system can be supplied with co-axial fans to assist mechanically during extreme 

weather conditions. 
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            Double Skin Facade 

 Shading louvers are used to avoid overheating inside air cavity. Kleiven stated that DSF 

takes advantage of protecting against wind and outdoor noise as well as air supply path (2003). 

Details on elements, functions, and advantages of DSFs are described in Sub-Chapter 2.5 

Building Façade. Among the several techniques from literature review, noteworthy findings 

are that vents, inlet grilles, and double skin façades work concurrently for natural ventilation 

performance and noise transmission loss.  

2.4 Outdoor Noise 

2.4.1 Outdoor Noise and Adverse Health Effects 

 Noise is generally defined as an unwanted sound whose effect can register 

physiologically and psychologically, such as noise annoyance (Kang, 2007; Muzet, 2007). 

Several studies on acoustical quality in urban environments mentioned the adverse health 

effects of noise, which can be characterized as any temporary or long-term deterioration in 

physical, psychological, or social functions associated with noise exposure (Kang, 2007).  

 

Table 2.2  Adverse health effects of noise 

Kinds of effect Symptoms 

Physical effects Noise-induced hearing loss, hearing impairment, threshold shift 

Physiological effects Startle and defense reaction leading to potential increase of 

blood pressure 

Sensory effects Aural pain, ear discomfort, tinnitus 

Interference with speech 

communications 

Reduction in intelligibility of conversation, radio, music, 

television and others 

Sleep disturbance Difficulty in falling asleep, alterations in sleep rhythm, 

awakening 

Psychological effects Headaches, fatigue, irritability 

Performance effects Task performance, distraction, productivity 

Annoyance Feeling of displeasure; tolerances vary enormously; noise 

impulses more annoying than a steady noise 

 

Among the adverse health effects of noise, several symptoms are described as shown 

in Table 2.2 (WHO, 1999). These health effects, in turn, can lead to social handicaps, reduced 
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productivity, decreased performance in learning, absenteeism in the workplace and school, 

increased drug use, and accidents (Berglund et al., 1999). Transportation noise causes specific 

non-auditory stress effects such as changes in  physiological systems (e.g., high blood 

pressure), cognitive degradation in memory, sleep disturbances, modifications of social 

behavior, psychosocial stress-related symptoms, and emotional effects, such as annoyance 

(Stansfeld et al., 2005). Table 2.3 describes several consequences of sleep disturbance. 

 

Table 2.3  Consequences of sleep disturbances 

Type Short-term Long-term 

Behavioural 
Sleepiness, Mood changes, 

Nervousness 
Depression, Mania violence 

Cognitive Impairment of function 

Difficulty in leering new skills, Short-term 

memory problems, Difficulty with complex 

tasks 

Neurological 
Mild and quickly reversible 

effects 

Cerebellar ataxia, Slurred speech, Increased 

sensitivity to pain 

Biochemical 
Increased metabolic rate, Insulin 

resistance 
Diabetes, Obesity 

Others 
Hypothermia, Immune function 

impairment 
Susceptibility to viral illness 

 

 Regarding sleep disturbance, epidemiological data suggests that habitually short sleep 

(defined as less than 6 hours sleep per night) or too much sleep is associated with mortality. 

Kripke et al. (2002) found the lowest mortality risk between respondents sleeping 7 hours per 

night according to a questionnaire analysis targeting 1.1 million men and women ranging from 

30 to 102 years of age.  

 Sleep disturbance may also contribute to the impairment of cognitive tasks and overall 

task productivity during the day following the disturbance with tiredness, lack of energy, and 

difficulty concentrating (Stansfeld & Matheson, 2003). A study targeting about 100 Belgian 

school children ages 9 to 12 years old showed that those with poor sleep (insomnia) achieved 

poorer school performances than good sleepers. It was found that children subjected to noisy 

environments not only showed decreased attention spans but also lowered task performance on 
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cognitive assignments compared to children in quiet environments (Hygge et al., 2003; Shield 

and Dockrell, 2003). Ljung et al. (2009) also discovered that traffic noise significantly 

diminishes reading and comprehension ability as well as basic mathematical performance in 

children. These psychological and physiological effects due to noise could lead to decreased 

task productivity. 

 Chronic noise exposure can also cause permanent loss of hearing at specific frequency 

ranges. The number of people experiencing Noise Induced Hearing Loss (NIHL) as a result of 

exposure to continuous or intermittent loud noise was estimated at 10 million adults and 5.2 

million children in the United States and 250 million people worldwide. It was stated that 

continuous exposure to sounds greater than 85 dB for 8 hours can lead to NIHL (Seidman & 

Standring, 2010). 

 A cohort study on the relationship between long-term exposure to road traffic noise and 

incident diabetes discovered that the 50,000 people exposed to residential road traffic noise had 

a higher risk of diabetes. Exposure to a 10 dB higher level of average road traffic noise during 

the five years was associated with an increased rise of incident diabetes (Sørensen et al., 2013). 

 In looking at the relationship between transportation noise and cardiovascular risk, 

epidemiological studies suggested a higher risk of cardiovascular diseases including high blood 

pressure is related to high levels of transportation noise. For noise levels greater than 60 dB 

(A), myocardial infarction (MI) risks increased continuously. It is stated that approximately 

6,000 MI cases per year were attributed to road traffic noise (Babisch, 2006). Figure 2.3 shows 

a noise effects reaction scheme that simplifies the cause-effect chain. The mechanisms of 

‘direct’ and ‘indirect’ indicates the nervous interactions and cognitive perception of sound, 

respectively. The objective noise exposure (sound pressure level) and the subjective noise 

exposure (annoyance) serve independently with the relationship between noise and health. 
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Figure 2.3  Noise effects reaction scheme (Source: Babisch, 2002)  

 

 

2.4.2 Environmental Noise Regulations 

 In 1999, the WHO Regional Office for Europe established noise guidelines to protect 

the majority of people from being seriously annoyed as the adverse health effects of noise is 

dependent on its physical characteristics, including the Sound Pressure Level (SPL), spectral 

characteristics, and variations of properties with time (WHO, 1999). Table 2.4 shows the 

critical health effects based on the A-weighted Equivalent Continuous Sound Level (LAeq) and 

noise exposure time at specific environments.  

Regulatory standards have been employed at the municipal, regional, national, and 

international levels because the adverse health effects of noise are critically related to physical, 

psychological, or social functions. Noise annoyance is highly related to SPL and exposure time 

(Kang, 2007). Tables 2.4 to 2.7 show regulatory standards of noise by country. South Korea 

established noise level standards on the Basic Act for Environmental Policy based on district 
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and time periods as shown in Table 2.5. The recommended SPL of a roadside district is 65 dB 

(A) during daytime (06:00-22:00) and 55 dB (A) during night time (022:00-06:00) respectively. 

 

Table 2.4  WHO noise guideline for community noise 

Specific environment Critical health effect 
LAeq 

(dB(A)) 

Time-

base(h) 

LAmax 

(dB(A)) 

Outdoor living area 

Serous annoyance, daytime and 

evening 

Moderate annoyance, daytime and 

evening 

55 

50 

16 

16 

- 

- 

Dwelling, indoors 
Speech intelligibility and moderate 

annoyance, daytime and evening 
35 16 - 

Inside bedrooms Sleep disturbance, night-time 30 8 45 

Outside bedrooms 
Sleep disturbance, window open 

(outdoor values) 
45 8 60 

Hospitals, wardrooms, 

Indoors 

Sleep disturbance, night-time 

Sleep disturbance, daytime and 

evening 

30 

30 

8 

16 

40 

- 

Industrial, commercial, 

shopping and traffic areas, 

indoors and outdoors 

Hearing impairment 70 24 110 

Ceremonies, festivals and 

entertainment events 
Hearing impairment 100 4 110 

 

Table 2.5  Regulatory standards of noise in United Kingdom 

Planning Policy Guidance Note 24 for noise exposure categories for new dwellings        unit: dB(A) 

Noise source Time periods Category A  Category B  Category C  Category D  

Road traffic 
07:00 – 23:00 <55 55-63 63-72 >72 

23:00 – 07:00 <45 45-57 57-66 >66 

 

Table 2.6  Regulatory standards of noise in Italy 

Emission limits, Immission limits and Quality target                                                         unit: dB(A)                                                                       

Category of land use 

Daytime (06:00-22:00) Night time (22:00-06:00) 

Emi-

ssion 

Immi-

ssion 

Quality 

target 

Emi-

ssion 

Immi-

ssion 

Quality 

target 

I: Noise sensitive premises 45 50 47 35 40 37 

II: Residential areas 50 55 52 40 45 42 

III: Mixed areas 55 62 57 45 50 47 

IV: Intense activity areas 60 65 62 50 55 52 

V: Industrial areas and low 

density of residential buildings 
65 70 67 55 60 57 

VI: Industrial areas only 65 70 70 65 70 70 
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Table 2.7  Regulatory standards of noise in South Korea 

Noise level standards on the Basic Act for Environmental Policy                                      unit: dB(A)                                                                                 

Category of land use  Ga1 Na2 Da3 Ra4 

General district 
Daytime (06:00-22:00) 50 55 65 70 

Night time (22:00-06:00) 40 45 55 65 

Roadside district 
Daytime (06:00-22:00) 65 70 75 

Night time (22:00-06:00) 55 60 70 

1. Residential area, area within 50-meters from hospitals and schools 

2. Semi-residential areas 

3. Commercial areas 

4. Industrial areas 

 

2.4.3 Noise Annoyance Descriptors 

 Noise annoyance, among the adverse health effect of noise, sound pressure level (SPL) 

in decibel (dB), is a significant descriptor even though sound type (e.g., continuous, 

intermittent, impulsive), sound intensity, sound frequency, sound spectrum and sound internal 

(e.g., duration, regularity, or expected) can affect noise annoyance and sleep disturbances in 

different ways (Kang, 2007). The U.S. EPA studied the relationship between sleep disturbance 

and noise exposure level, and a significant correlation was discovered, as shown in Figure 2.4 

(1981). Another study discovered that nocturnal awakenings usually occur with noise levels 

greater than 55 dB (A) (Muzet, 2007).  

 

Figure 2.4 Probability of noise induced awakening                                                        

(Source: U.S Environmental Protection Agency) 
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 The evaluation of acoustical discomfort is a highly complicated matter, pertaining to 

acoustics, physiology, and psychology. For the numerical evaluations of road traffic noise, 

Equivalent Continuous Sound Level (Leq), Noise Pollution Level (LNP), and Traffic Noise 

Index (TNI) have been widely used. The Leq is used to describe sound level (dB) and to measure 

continuing sounds such as road traffic noise that varies considerably over the period of time 

resulting in a single decibel. (Kang, 2007; Ryu et al., 2012). A-weighted Equivalent Continuous 

Sound Level LAeq used as dB (A) is a measurement parameter similar to the response of the 

human ear at the lower levels of noise annoyance.  

            Leq = L50 + (L10 - L90)/56                                                                                           (2.1) 

 The TNI is an index that takes noise variability with respect to L10 into consideration. 

The L10 is a useful descriptor of road traffic noise because it correlates with noise annoyance 

because the A-weighted level (exceeded for 10% of the time of the measurement 

duration) takes into account any annoying peaks of noise. The L90 or the L95 is taken to be the 

ambient or background noise level (Kang, 2007; Marathe, 2012). For instance, if the value of 

TNI is over 74, it indicates that more than 50% of residents are annoyed acoustically (Kang, 

2007; Ryu et al., 2012). 

            TNI = 4(L10 - L90) + L90 - 30 dB (A)                                                                         (2.2) 

 The LNP is a new parameter to measure noise annoyance because Equivalent 

Continuous Sound Level (Leq) based on an energy basis is not a sufficient measurement 

indicator to explain the degree of annoyance caused by fluctuating noise (Ryu et al., 2012; 

Marathe, 2012). 

             LNP = Leq + (L10 - L90)                                                                                            (2.3) 

2.4.4 Relationship Between Noise Annoyance and Decibel (dB) 

 Noise annoyance, among the adverse health effects of noise, is dependent on its 

physical characteristics, including SPL, spectral characteristics, and variations of properties 
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with time (WHO, 1999). Therefore, defining noise annoyance needs a complex mechanism 

related to a number of disciplines such as acoustics, physiology, sociology, psychology, and 

statistics. According to a study on factors of noise annoyance, the gender, income, education 

level, and family size are insignificant factors for noise annoyance. By contrast, cultural 

heritage, construction methods, lifestyle, weather, behavior, and habits are related to noise 

annoyance (Kang 2007). In addition, Kang (2007) indicated that noise annoyance is affected 

by several factors including a multiplication of the acoustic events, regularity of the acoustic 

events, maximum sound level, periods of occasional events, and spectral distribution of sound 

energy. 

 When it comes to the relationship between the adverse health effect of noise and SPL, 

Lambert et al. (1984) quantified the degree of noise annoyance based on SPL. They tested the 

noise annoyance of three groups based on SPL exposure. The first group, which was exposed 

to SPL lower than 55 dB(A) felt less noise annoyance, second group which was exposed to 

SPL between 55 and 60 dB(A) felt some noise annoyance, and the third group which was 

exposed to SPL higher than 65 dB(A) felt noise annoyance for sure.  

2.4.5 Noise Control Strategies 

            Building configurations/barriers 

 According to the noise control manual in Vancouver, building orientation and 

configuration has effectiveness in noise shielding. Noise barriers take the forms of walls, earth 

berms, or berm/wall combinations where are created outside of buildings. When the barriers 

are higher, its effectiveness increases by roughly 1.5 dB per extra meter of height. However, 

the noise barriers have limitations in that they cannot stand high enough to effectively shield 

the upper floors of multi-storey buildings.  
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            Building forms 

 Large and hard building envelops can effectively reflect sound energy, and it is possible 

to arrange buildings so that reflections can be directed to less sensitive areas. Also, building 

forms can be designed to be self-protective from external noise. For example, the podium for 

commercial use functions as a noise barrier for main buildings for residential area. Van 

Renterghem, et al. (2013) stated that green envelops of roofs and walls benefit noise reduction, 

and on certain roof shapes, it attenuated noise levels by up to 7.5 dB. 

            Acoustical use of glass facade 

 The acoustic benefits particularly conflict with window openings of naturally-ventilated 

buildings in high noise areas. With a single skin facade, windows can reduce sound insulation 

performance dramatically from excessive levels of noise intrusion such as road traffic and 

aircraft. For these reasons, the outer glass of DSFs enhances the sound insulation performance 

significantly, allowing natural ventilation. The sound insulation performance of DSFs is highly 

related to glass properties, the size of opening, and the depth of air cavity between two layers 

of glass.  

 The sound attenuation of glass relies on its mass and stiffness. With regard to a single 

glass pane, the only effective way to enhance its acoustical performance is to increase the 

thickness of the glass. Thicker glass tends to provide greater sound reduction in spite of sound 

transmission at specific frequencies. And it is proven that a laminated glass can attenuate sound 

transmission more than a monolithic glass of the same mass. A combination of thickness 

between two different panes and wide air space distance provides the maximum noise 

attenuation.  

            Vegetation 

 According to a study by Parry et al. (1993), tall vegetation is effective in reducing sound 

transmission compared to open fields. For instance, Egan (1988) studied matured vegetation 
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wider than 7-meters which provides a modest attenuation of 2 up to 4 dB(A), and dense trees 

with a depth of 15-meters up to 40-meters show the effectiveness of sound attenuation of 6 to 

8 dB(A) (Kang, 2007). Kang and Oldham (2003) stated that vegetation is more effective in 

urban areas such as in a street canyon or in a square through three mechanisms such as sound 

absorption, sound diffusion, and sound reduction.  

            Acoustic enclosures 

 Kang (2007) stated that porous materials as acoustic enclosures take advantage of sound 

absorption, but they do not effectively prevent its transmission. Therefore, proper materials of 

acoustic enclosure should be solid with sufficient mass, and sealed airtight around the edges. 

Also, a solid enclosure lined with porous absorbers is more effective for SPL reduction rather 

than without lining because sound a sound absorber reduce the reflected sound energy. 

            Silencers for ventilation openings 

 An effective way of reducing noise transmission through ventilation openings is to use 

silencers which are classified into an absorptive or reactive type. The former type is a porous 

material for noise reduction in higher frequency, and the latter is a chamber to attenuate the 

incident of sound energy. For example, Maillard and Guigou-Cater (2000) used a combination 

of passive and active treatment to reduce noise at mid-high frequency with porous materials 

and at low frequency with a single-channel active control system (Kang, 2007). 

            Acoustic windows 

 Window ventilation in noisy urban environments should be controlled with care to 

avoid noise transmission loss via ventilation openings. Kang (2007) stated in his book that 

Mohajeri (1998) proposed the ‘intelligent’ window system which opens and closes depending 

on the type of sound being monitored. Jones and Evans (1994) investigated the ‘interactive’ 

window system with a baffle, positioned outside the window opening for noise reduction. In 

addition, simple methods to reduce noise transmission through operable windows include 
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sealing the windows and using a silencer within the window aperture. Cotana (1999) found out 

that a window system equipped with porous materials shows the effectiveness of sound 

reduction. Kang and Li (2007) investigated the effects of window opening size, air gap, and 

louvers for noise transmission loss, and it was found that the external and internal opening sizes 

and the air gap width influences  the SPL difference by about 2 dB. 

            Window design  

 The sound insulation offered by any type of window is limited to STC 10 to 15, 

reducing outdoor sounds by roughly 10 to 15 dB(A). For instance, in order to meet acceptable 

indoor noise levels for bedrooms, 35 dB (A), the outdoor noise environment should not exceed 

45 to 50 dB (A). To obtain STC values more than about 15, windows must be closed. As 

additional sound absorbing layers for windows, acoustic baffles can also work as a noise screen 

as well as an obstacle of sight from ventilation windows to noise sources. There are two 

possible acoustic baffle designs such as double hung vertically and hinged horizontally around 

ventilation openings of building facades. 

            Lintel, canopy, and louver 

 Lintels and louvers barely achieve acoustical performance, but a significant acoustical 

improvement can occur with an absorbent surface.  Cheng et al. (2000) studied a horizontal 

canopy over windows as noise barriers, and they found out that noise attenuation by a 

horizontal canopy is most effective when they are tilted at a 15 to 45 degree angle. Cheng 

(2000) studied window lintels with reflective surface as noise barriers which can reduce noise 

by an average of 3 to 5 dB. De Salis et al. (2002) suggested that louvers as noise barriers for 

ventilation openings are proven to reduce noise by screening the direct sound path using angled 

blades. Absorptive materials applied to underside of blades attenuated the indirect reflected 

path. They indicated that the noise reduction of louvers is effective at the higher frequencies 

rather than at the low frequencies due to sound diffraction.  
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            Balconies 

 In the case of high-rise buildings with balconies, noise exposure on high-rise balconies 

and indoor spaces can be reduced by increasing the height of railings, hanging heavy curtains 

across the glass doors, and applying sound absorption materials to the underside of balconies 

and inside solid railings. Kim (2007) studied balconies fitted with windows as buffer zones 

against noise transmission. They indicated that double windows of balconies with a width of 

1.0 to 1.5-meters have effectiveness in noise reduction at the 1000 and 2000Hz octave band 

center frequency. Cheng (2000) investigated the acoustical performance of balconies in 

residential buildings, and found they achieved noise reduction by 5 dB in canyon streets. Naish 

et al. (2012) investigated the impact of noise annoyance on the potential fiscal benefits using 

acoustical treatments on a balcony with the use of parapet and sound absorbing materials. They 

concluded that acoustical treatments on a balcony allowed significant health-related cost 

savings by eliminating noise annoyance of building occupants. 

2.4.6 Conclusions 

 Even though naturally-ventilated buildings enable building occupants to lower the 

concentration of indoor pollutants by the ventilation rate, they are vulnerable to urban traffic 

noise transmission via ventilation windows (Nicol & Wilson, 2004). A number of natural 

ventilation techniques are working for ventilation performance in their own methods as 

mentioned above, however, one of the significant limitations in urban areas is noise 

transmission via ventilation openings.  

 Therefore, the building façade of naturally-ventilated buildings needs to be carefully 

designed to minimize the conflict between natural ventilation potentials and noise transmission 

loss via ventilation openings. From literature review, the key strategies for natural ventilation 

and noise transmission control are summarized as follows: 
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 First, window ventilation strategy is one of several cost- effective ways to control the 

ventilation rate which contributes IAQ. Depending on glass properties, opening ways, and 

window size, the degree of noise reduction varies. However a single pane window has 

vulnerability to efficiently meet outdoor climate conditions and noise transmission loss.  

 Second, air vents and inlet grilles are the suitable ventilation opening design not only 

to control the airflow rate inside buildings but also to screen unacceptable noise transmission. 

In particular, air vents and inlet grilles would be appropriate ventilation strategies for air 

tightened high-rise buildings due to unpredictable wind patterns and noise transmission. 

 Third, structural elements and shading devices around ventilation windows such as 

lintels, louvers, and balconies can be used as an effective façade design to absorb and reflect 

sound paths by their orientations, thickness, and surface materials. The direct sound path can 

be blocked and/or absorbed to reduce noise transmission by a certain degree angle of louvers.  

 Fourth, an effective means of reducing noise transmission through ventilation opening 

is to use sound absorptive materials such as silencers. Sound absorptive materials are effective 

in reducing SPL at the higher frequencies rather than at the low frequencies due to sound 

diffraction. 

 Finally, DSFs have the dual functions of natural ventilation performance and acoustical 

barrier using a ventilation air cavity and shading louvers. An air cavity is used not only as a 

ventilation channel by the stack effect but also as an acoustical buffer zone. In addition, shading 

louvers inside air cavity enable control of airflow rate and sound path, and air vents can make 

micro-climate conditions inside air cavity depending on outdoor climate conditions.   

2.5 Building Facade 

2.5.1 Introduction 

 Among the several environmental requirements of thermal, visual, and acoustical 

demands, ventilation opening and/or windows as environmentally vulnerable envelopes of 
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buildings should be constructed with proper ventilation strategies and sound insulation. 

However, urban buildings with a high window-to-wall (ratio) are vulnerable to improper 

control of indoor environmental quality (IEQ). As shown in Figure 2.5, air temperature, solar 

radiation, humidity, wind velocity, noise, and any other outdoor obstacles should be controlled 

properly for thermal, visual, and acoustical comfort (Aksamija, 2013).  Among the outdoor 

obstacles, noise is the major factor limiting natural ventilation applications because building 

occupants prefer the use of mechanical ventilating and air-conditioning systems to natural 

ventilation strategies in order to avoid unwanted noise transmission through operable windows.  

 In this chapter, the concept of DSFs is investigated as a case study to satisfy the 

conflicting aspects by air cavity, shading louvers, and air vents, which are used for natural 

ventilation and noise transmission loss.  

 

 
      

Figure 2.5 Conflicts among thermal, visual, and acoustical comfort                               

(Source: Aksamija, 2013) 
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2.5.2 Double Skin Façade 

 Generally speaking, the building envelopes which divide indoor and outdoor 

environments of buildings should fundamentally serve to maintain the satisfactory indoor 

environment against solar radiation, noise transmission, and unpredictable outdoor climate 

changes. The DFSs, as one of sustainable building facades, are comprised of elements: (i) air 

cavity and air vents between the two layers of glass to create micro-climate conditions 

depending on outdoor climate conditions and (ii) adjustable shading louvers to avoid direct 

solar radiation as thermal barriers. Also, (iii) air cavity volume acts as noise barriers against 

the outdoor noise transmission and (iv) the curtain wall glazing systems offer wide visual 

accessibility to the outdoor environments (Oesterle et al., 2001; Lee et al., 2002; Safer et al., 

2004; Ghiaus & Allard, 2005; Harris, 2005; Harris, 2006; Gratia & Herde, 2004; Gratia & 

Herde, 2007; Hasse et al., 2007; Chan et al., 2009; Baldinelli, 2009).  

 Lee et al. (2002) suggested that a minimum distance of 15-centimeters between the 

shading louvers and the external glazing should be maintained for proper ventilation efficiency 

without overheating. Safer et al. (2004) found that horizontal shading louvers should be situated 

close to the internal glazing to minimize overheating of the external channel through a higher 

air velocity because the divided space of a DSF cavity by a horizontal blind affects air velocity. 

Oesterle et al. (2001) stated that adding outer glass alone to a DSF reduces a minimum of 10% 

of solar radiation while louver blinds inside a DSF air cavity achieve a further reduction of 

solar radiation by around 50% to 60% compared to a case of indoor blinds. Baldinelli (2009) 

also developed a new DSF design with the external glazing made of movable integrated glass-

shading devices, and it works by decreasing cooling loads during warm periods. 

 Hasse et al. (2007) introduced the modified application of a DSF to hot and humid 

weather conditions in European countries, and they concluded the airflow inside a DSF air 

cavity is a significant factor to reduce energy consumption. Chan et al. (2009) found out that 
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roughly 26% of the annual cooling energy in Hong Kong is saved in a DSF with the internal 

single clear glazing and external double reflective glazing compared to a conventional single 

glazed façade. Gratia and Herde (2007) achieved approximately 23% of cooling energy saving 

during the summer in consideration of blind position, blind size, and ventilation opening of a 

DSF. 

2.5.3 Types of DSF 

            Box-window ventilated double façade (see Figure 2.6a) 

 One-story height facade modules, of which the air cavity is divided horizontally and 

vertically at the level of each facade module, and each box window element require their own 

air-intake and extracts openings. This type is suitable for lowering sound propagation by 

vertical fins inside air cavity. 

            Shaft-box ventilated double façade (see Figure 2.6b) 

 Vertical ventilation ducts are set up inside air cavity. Each façade module is connected 

to one of these vertical ducts, which improves the stack effect supplying air naturally drawn 

into the ventilation duct and then evacuated via the outlets. This type takes advantage of 

blocking noise propagation transmitted via air vents by vertical fins inside air cavity. 

            Corridor ventilated double façade (see Figure 2.6c) 

 The multi-story ventilated DSFs are not partitioned vertically. Metal floor slates are 

installed at the level of each story in order to access for cleaning and maintenance. Transmitted 

noise via air vents may travel to indoor areas horizontally and vertically. 

            Multi-story ventilated double façade (see Figure 2.6d) 

 The multi-story ventilated DSFs are characterized by an air cavity which is not 

partitioned either horizontally or vertically and an air cavity between two layers of glass forms 

one large volume. This air cavity has a wide access for cleaning and can be naturally ventilated. 

However, transmitted noise via air vents may travel to indoor areas horizontally and vertically. 
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Figure 2.6 Types of DSF (Source: Hong et al., 2013) 

 

 The path of air and sound inside a DSF air cavity is highly related to each other as 

shown in Figure 2.7. Especially during the hot seasons when ventilation grilles open to dissipate 

the heat inside air cavity, DSFs are weak at the sound insulation of an air cavity because of 

transmitted noise through ventilation grilles. Therefore, sound absorbing materials in air cavity 

is recommended.  

 

                     

Figure 2.7 Ventilation modes by season (Source: IIT Building Science Blog) 

 

2.5.4 Acoustical Performance of DSF 

 Another significant benefit associated with DSFs is improved sound insulation 

performance using air cavities and glass properties in noisy urban locations. Even though 
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traditional single pane windows or operable windows can reduce sound insulation 

performance, the application of a second external layer of glass enhances sound insulation 

performance significantly, allowing natural ventilation. In general, better insulation 

performance of DSFs can be achieved through the use of heavier glass and a deeper air cavity. 

Figure 2.8 shows noise reduction based on thickness of glass and depth of air cavity at mid- 

and high-octave band center frequency. Therefore, DSF air cavities for ventilation performance 

and maintenance access can work as acoustical buffer zones against outdoor urban traffic noise. 

 

 

Figure 2.8  Sound attenuation across the frequency range by glazing types             

(Source: College of Santa Fe Auditory Theory, http://www.feilding.net/sfuad/musi3012) 

 

 Table 2.8 summarizes the major advantages and disadvantages in relation to the 

ventilation and acoustical performance of DSFs. However, ventilation openings such as air 

vents may affect noise transmission or noise intrusion depending on ventilation seasons 

because transmitted noise via air vents travels to each room horizontally and acoustically. That 

is the reason that DSFs have advantages and disadvantages regarding acoustic insulation. 

 

http://www.feilding.net/sfuad/musi3012
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Table 2.8  A summary of advantages and disadvantages of DSFs 
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Acoustic insulation P P P  P P 

Thermal insulation during the winter  P P P P  

Thermal insulation during the summer  P P P P  

Night time ventilation P  P P P  

Natural ventilation P  P P P P 

Better protection of the shading devices   P P P P 

Transparency-Architectural design P P   P  

Thermal comfort-temperature of the internal 

wall 
P P P 

P P  

Low U-Value and g-value P P  P   

      

D
is

ad
v
an

ta
g
e Overheating problem  N N N  N 

Increased airflow speed       

Daylight  N N    

Acoustic insulation  N N   N 

Higher construction costs N N N   N 

Additional maintenance and operation costs  N N   N 

                                                                                                               P: Positive, N: negative 

  

From literature review on ventilation and acoustical performance of DSFs, a 

preliminary simulation study and an experimental study are designed to find the effect of 

control variables concerning ventilation and acoustical performance of DSFs as follows: 

 

• What is the relationship between ventilation potential inside the air cavity and noise 

transmission via air vents based on the percentage of air vent open surface area? 

• What is the relationship between ventilation potential inside the air cavity and noise 

transmission via air vents based on orientation, type, and material of shading louvers? 

• What is the relationship between ventilation potential inside the air cavity and noise 

transmission via air vents based on air cavity volume ratios? 
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CHAPTER 3: Research Methodology 

3.1 Research Framework 

First, literature review showed that natural ventilation potential and acoustical 

performance of DSFs are dependent upon DSF air cavity properties, vent openings, shading 

louver orientation, and shading louver surface material. To understand the influence of vent 

openings and shading louver orientation on ventilation performance and noise reduction, a 

preliminary simulation study was framed to investigate the air temperature, air velocity, airflow 

patterns, and noise transmission loss of a DSF. 

Second, for the preliminary simulation study, CFD was used to study a DSF’s air cavity, 

shading louvers, and air vents based on the DSF of the Forum at Marvin Hall on the campus of 

the University of Kansas as shown in Figure 3.1.  

Finally, a full scale DSF mock-up was used to experimentally study the impact of vent 

openings, shading louver orientation, louver surface material, and compact silencers on noise 

reduction. The study was conducted under highly controlled laboratory settings. 

 

         
        

Figure 3.1  The Forum at Marvin Hall designed and constructed by Studio 804 
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The research framework as shown in Figure 3.2 is made up of two major parts: (i) a 

ventilation performance analysis of a DSF using CFD simulation and (ii) noise reduction 

analysis of a DSF by a mock-up test at the reverberation chamber. Ventilation performance 

was aimed to investigate air temperature, air velocity, and airflow patterns based on percentage 

of air vent open surface area, orientation and type of shading louvers, and air cavity volume 

ratios. An experimental study was then driven from a preliminary simulation study in order to 

obtain the empirical data of noise transmission loss based on percentage of air vent open surface 

area, orientation and type of shading louvers, shading louvers’ surface materials and an 

application of compact silencers. Numerical data on A-weighted equivalent continuous sound 

levels and NIC were analyzed based on several test cases, and the detailed information on 

laboratory measurement settings are described in Chapter 5. 

 

    
         

Figure 3.2  Preliminary and core study framework 
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3.2 Preliminary Study 

3.2.1 Simulation Study 

The CFD simulations were conducted using the software FloVENT developed by 

Mentor Graphics. FloVENT is a widely used CFD simulation program used to predict three- 

dimensional flow of liquids, heat transfer, contamination distribution, and comfort indices in 

and around buildings. 

3.2.2 Limitations of  Acoustic Simulation Software 

The existing acoustic simulation programs are aimed at stimulating and measuring 

indoor acoustics. Acoustic simulation software mostly employs ray-based and wave-based 

modelling. Ray-based techniques approximate sound waves through particles and acoustic 

energy to determine the virtual sound field, whereas wave-based techniques make a more 

physically correct wave-based sound propagation model based on time domain finite difference 

meshes. The ray-based techniques are usually employed for lower frequency, while the wave-

oriented techniques are used for the middle and higher frequencies. (Niklas et al., 2007). 

During the last decade, ray-based modelling simulation software in three-dimensional 

space has been approximated to that of light and calculated to diffuse reflection. Image-source 

and beam tracing methods have been widely used with graphics processing techniques in 

rendering animation (Niklas et al., 2007). However, in rooms such as open plan offices 

designed with some surfaces with high absorption coefficients such as the ceiling, acoustic 

simulation could neglect diffraction phenomena and noticeably change the simulation results 

(Nicolas, 2010). In general, ray-based modelling simulation is not adequate to model 

diffraction effects, as they are low-frequency related. The simulations using wave-oriented 

techniques have some drawbacks which are a direction-dependent dispersion error and a finite 

mesh resolution to model a more complex boundary behavior. In addition, the preliminary 
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simulation study showed limitations of modelling DSFs, collecting actual urban traffic noise, 

updating DSF materials, and applying compact silencers in place of DSF air vents 

In addition, the existing acoustic simulation software has the limitation of modelling 

and predicting noise reduction based on shading louver orientation, shading louver surface 

materials, and the percentage of air vent open surface area as shown in Figure 3.3. 

 

 

Figure 3.3 Acoustic simulation software 
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CHAPTER 4: Preliminary Study 

4.1 Introduction 

The main scope of this preliminary study was to evaluate the relationship between 

natural ventilation efficiency and noise reduction of a DSF building using CFD and acoustic 

simulation software. This study primarily focused on ventilation performance based on 

perforation percentage of air vents, shading louvers orientation and material.  

4.2 Preliminary Simulation Study 

4.2.1 Percentage of Air Vent Open Surface Area of Double Skin Façade 

    Summary 

The main purpose of this study was to evaluate the correlation between natural 

ventilation efficiency and noise reduction based on a percentage of air vent open surface area. 

The airflow volume, air speed, air temperature, and sound pressure level (SPL) inside a DSF 

air cavity were numerically simulated. Computational fluid dynamics (CFD) simulation 

outcomes indicated that the degree of air vent open surface area has a proportional relationship 

to airflow volume and mean SPL in a DSF air cavity. It was found that the highest values of 

airflow volume and mean SPL applied to vents with 50% of air vent open surface area. 

However, the cases with 10% and 20% of air vent open surface area are recommended for 

maintaining a balance between airflow volume and average SPL. 

    Research Objective 

The objective of this portion of the study was to evaluate the feasibility of a DSF to 

provide ventilation while reducing outdoor noise transmission in high traffic noise areas. Even 

though a DSF’s air cavity can dissipate heat by stack effect, there’s a smaller body of research 

that has investigated a DSF air cavity as an acoustical buffer zone.  
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    Methodology  

A corridor type DSF with no horizontal or vertical partitioning within the air cavity was 

modelled for this study. The DSF’s air cavity measured 16-meters in length, 8-meters in width, 

and 4-meters in height.  FloVENT was used to simulate airflow within the DSF air cavity.  This 

CFD program was used to obtain numerical data of airflow volume, air speed, and air 

temperature in the DSF air cavity. Table 4.1 shows the boundary conditions used for the 

simulations. 

 

Table 4.1  CFD and acoustical simulation model boundary conditions 

Classification Parameters (unit) FloVENT 

Ambient 

outdoor 

conditions 

Temperature (°C)1 26 

Relative humidity (%) 50 

Noise level (dB) N/A 

Size and  

materials 

External glazing thickness(mm) 10 

Internal glazing thickness(mm) 10 

Cavity width (mm) 1,000 

Cavity space volume (m3) 64 
1) Average ambient air temperature in June for Lawrence, KS 

 

To examine the effects of percentage of air vent open surface area on ventilation and 

acoustic performances of a DSF, six different percentage of air vent open surface area were 

studied as shown in Table 4.2. 

 

Table 4.2  Simulation cases based on percentage of air vent open surface area 

Vent 

location 

Percentage of air vent open surface area 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Top and 

bottom 
5%  each 10% each 20% each 30% each 40% each 50% each 
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Conclusions 

Figure 4.1 shows the CFD findings for airflow volume (m3/s), air speed (m/s), and air 

temperature (°C) in the DSF air cavity. Both airflow volume (see Figure 4.1a) and air speed 

(see Figure 4.1b) increase along with the growth of percentage of air vent open surface area. 

Figure 4.1c illustrates a large mean air temperature difference between Case 1 through Case 6. 

It was found that the smaller percentage of air vent open surface area in Case 1 impedes the 

airflow needed to effectively dissipate the heat from the cavity.  

 

 

Figure 4.1  CFD data for airflow volume (a), air speed (b), and air temperature (c) 

 

The simulation data indicated that airflow patterns of cases with 5% and 10% of air 

vent open surface area respectively resulted in circular convection currents causing heat 

stagnation inside the air cavity. On the other hand, airflow patterns of cases with 40% and 50% 

of air vent open surface area showed vertical convection currents allowing more effective heat 

dissipation as illustrated in Figure 4.2. 
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Figure 4.2  Airflow pattern by percentage of air vent open surface area 

 

For noise reduction by vent perforation percentage, calculations were made based on 

the equation shown in equation 4.1. Approximate numerical data of noise reduction was 

obtained from measured traffic sound over the entire octave band center frequency. 

 TLw - TLo =10 log [(1-p) + p10 0.1(TLw – TLp)]                                                 (4.1)       

where TLw - TLo is the transmission loss of a wall (in dB) caused by the presence of an opening 

in the wall, TLw is transmission loss of the wall (dB), TLp is transmission loss of opening and 

p is the area of opening divided by the total area of wall-opening assembly. 

As shown in Figure 4.3, calculations indicate a mean noise reduction of 10 dB and 7 

dB for 5% and 10% of air vent open surface area respectively compared to the measured traffic 

noise. However, this study has an uncertainty of outcomes for noise reduction of DSFs because 

the opening size of air vents was theoretically calculated based on equations without 

considering sound characteristics and surrounding geometry.  
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Figure 4.3  Sound pressure level (SPL) of 1/3 octave band center frequency for each case 

 

4.2.2 Shading Louver Orientation of Double Skin Façade 

    Summary 

A number of studies have shown that DSF shading louvers are able to minimize direct 

solar heat radiation, but only few a studies have tested the acoustical performance of shading 

louvers as noise barriers. This study was aimed to test the effect of configurations of shading 

louvers affecting airflow patterns, air velocity, air temperature, and noise transmission loss in 

DSF cavities. Research is assumed that appropriate orientations of shading louvers in a DSF 

can contribute to not only the efficient ventilation performance by the stack effect but also 

noise transmission loss inside a DSF air cavity.  

    Research Objective 

The objective of this study is to evaluate the correlation between ventilation efficiency 

and noise reduction based on seven cases of orientation and thickness of vertical shading 

louvers in a DSF air cavity. The findings indicated vertical shading louvers oriented between a 

0 degree angle (which is parallel to the outer glass) and a 15 degree angle (which is 
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perpendicular to the outer glass) is considered to balance the need for ventilation efficiency and 

noise transmission loss. 

    Methodology 

Using the same CFD model as described in the section 4.2.1 vertical shading louvers 

measuring 25-centimeters in width, 1-centimeter in thickness, and 4-meters in height were 

equally spaced inside the DSF air cavity as shown in Figure 4.4. 

 

 

Figure 4. 4 South elevation (a), west elevation (b), and section details (c) 

 

FloVENT was used to simulate airflow within the DSF air cavity and sound 

transmission was simulated using the acoustic software SoundFlow. These two programs 

provided numerical data on air temperature, air speed, and sound transmission loss in the DSF 

air cavity. Table 4.3 shows the boundary conditions for the simulations. 

 

Table 4.3  CFD and acoustical simulation model boundary conditions 

Classification Parameters (unit) FloVENT(material) SoundFlow(material) 

Ambient outdoor 

conditions 

Temperature (°C)1 26 26 

Relative humidity (%) 50 50 

Size and  materials 

External glazing thickness(mm) 10 (glass) 10 (glass) 

Internal glazing thickness(mm) 10 (glass) 10 (glass) 

Vertical shading louver 

thickness(mm) 
10 (wood) 10 (wood) 

Cavity width (mm) 1,000 (air) 1,000 (air) 
1) Average ambient air temperature in June for Lawrence, KS 
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To explore the effects of vertical shading louver orientation and thickness on air 

temperature, air speed, and sound transmission loss, seven cases of orientation and thickness 

were studied. Table 4.4 shows the different test cases ranging from 0 to 90 degree angles as 

well as from 0-milimeter (no shading louvers) up to 40-milimeters in thickness. 

 

Table 4.4  CFD simulation cases for ventilation efficiency and sound transmission loss 

Vertical shading louvers Cases of orientation (degree) and thickness at 0 degree angle (mm) 

Orientation (degree) 
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

0  15 30 45 60  75  90  

Thickness 

at 0 degree angle (mm) 

Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14 

0 5 10 15 20 30 40 

 

    Conclusions 

Figure 4.5 shows the CFD findings for air temperatures in the interior facing side (see 

Figure 4.5a) and exterior facing side of the vertical shading louvers (see Figure 4.5b). The air 

temperature in the exterior side drastically decreased at monitoring points V2 (+2.0m: 2-meters 

high from the air cavity bottom) and V3 (+3.5m: 3.5-meters high from the air cavity bottom) 

relative to an increase in shading louver orientation angle. When vertical shading louvers were 

oriented to 0 degree (closed position), air temperature in the exterior side of the shading louvers 

was the highest. When they were tilted at a 90 degree angle (open position), air temperature 

was the lowest. 
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Figure 4.5  CFD data for air temperature of interior (a) and exterior facing side of shading 

louvers (b) 

 

Figure 4.6 shows CFD findings for vertical air velocities in the interior facing (see 

Figure 4.6a) and exterior facing sides of the vertical shading louvers (see Figure 4.6b). The air 

velocity in the exterior facing side was greater than the air velocity in an interior facing side of 

the shading louvers.  

 

Figure 4.6  CFD data for vertical air speed of interior (a) and exterior facing sides of shading 

louvers (b) 

 

Figure 4.7 shows the CFD findings for air speed in plan (see Figure 4.7a) and airflow 

patterns in section (see Figure 4.7b). When shading louvers were oriented at a 0 degree angle, 

parallel to a glass wall as shown in Case 1, higher air speed distribution and linear airflow 
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patterns were observed. On the other hand, when the shading louvers were tilted at a 90 degree 

angle, perpendicular to glass wall as shown in Case 7, higher air speed distribution was divided 

into two sides in the center of the louvers and an eddy formed around the louvers.  

This change implies that ventilation performance by stack effect is dependent on the 

orientation of vertical shading louvers. To be specific, it was found that vertical shading louvers 

tilted at a 0 degree angle in the middle of DSF air cavity can achieve increased ventilation 

performance compared to louvers at 90 degrees. 

 

     

Figure 4.7  Air speed in horizontal (a) and airflow in vertical section (b) 

 

Figure 4.8 shows the CFD results for air temperature in the horizontal (see Figure 4.8a) 

and vertical planes (see Figure 4.8b). When vertical shading louvers were oriented at a 0 degree 

angle as shown in Case 1, it was found that air temperature increased near the outer glass rather 

than the inner glass inside the DSF air cavity because the solar radiation was blocked by the 

louvers. On the other hand, when the louvers were oriented at a 90 degree angle as shown in 

Case 7, there was an increase in air temperature near the inner glass side of the DSF air cavity. 
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Figure 4.8  Air temperature distribution in DSF: horizontal (a) and vertical (b) 

 

In terms of acoustical performance, Figure 4.9 shows sound transmission loss relative 

to an increase in the thickness of vertical shading louvers at a 0 degree angle, closed position 

parallel to glass wall. When there are no shading louvers inside a DSF cavity as shown in Case 

8, sound transmission loss at the mid and high frequency ranges was the lowest compared to 

other cases. 

However, this study has an uncertainty of outcomes for the acoustical performance of 

the DSF because shading louver thickness was simulated with acoustical simulation software 

without consideration of sound characteristics and shading louver orientation. Therefore to 

address the limitations of the simulation, it is necessary to experimentally study the degree of 

noise reduction caused by the materiality and orientations of the shading louvers. 
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Figure 4.9  Transmission loss based on shading louver thickness 

 

4.2.3 Air Cavity Volume Ratio of Double Skin Façade  

 Summary 

The CFD simulation test cases were designed based on different volume ratios of the 

DSF air cavity partitioned by vertical glass fins, affecting changes in air temperature and 

airflow inside the air cavity.  The simulations showed that volume ratios of DSF air cavity 

influenced the efficiency of heat dissipation inside DSF air cavities. It was observed that air 

temperature in Case 4, which has the ratio of 8-meters in length to 1-meter in depth of a DSF 

air cavity, has a higher potential of overheating inside air cavity than that of Case 1 (1-meter 

in length to 1-meter in depth) and Case 2 (2-meters in length to 1-meter in depth). Case 1 and 

Case 2 showed relatively lower mean air temperature inside the DSF air cavities caused by 

efficient heat dissipation. In addition, it was found that the thicker the vertical glass fins are, 

the higher the Sound Transmission Loss (STL) values. 

    Research Objective 

This preliminary simulation study demonstrated that the DSF air vent openings resulted 

in decreased acoustical performance because airborne noise transmitted via the air vent 

openings travels both horizontally and vertically. This study examined the effects of DSF air 
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cavity volume ratios determining ventilation performance as well as reducing noise 

transmission via air vent openings. Vertical glass fins inside the DSF air cavities were tested 

for reducing noise propagation, while zoning DSF air cavity volume.  

    Methodology 

A box-window type DSF with vertical shading louvers and vertical glass fins inside the 

air cavity was modelled for the simulation. Ventilation inlet grilles with 40% perforation were 

applied to the top and bottom of the DSF air cavity for ventilation and heat dissipation. The 

total spatial volume of the DSF air cavity was 16-meters in length, 4-meters in height, and 1-

meter in depth as shown in Figure 4.10.  

The glass fins were situated at distances of 4-, 5-, 6-, and 10-meters to create the 

different air cavity volumes as shown in Figure 4.10b. Monitoring points to measure air 

temperature and air velocity were placed at the height of 0.5(P1), 2.0(P2), and 3.5-meters (P3) 

inside the air cavity as shown in Figure 4.10b. To examine the air temperature distribution 

inside the air cavity, the CFD visual analysis planes were positioned at distances of 0.1-, 0.3-, 

0.55-, 0.7-, and 0.9-meters along the depth of the DSF as shown in Figure 4.10b.   

The aim of the different cases as shown in Table 4.5 was to see the impact of air cavity 

volume ratio on air temperature and sound transmission loss caused by the glass fin thickness. 

The CFD simulation software FloVENT was used to simulate air temperature and air velocity 

inside the DSF air cavity. The simulation model boundary conditions are shown in Table 4.5. 
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Figure 4.10  DSF perspective (a) and air cavity details (b) for CFD simulation 

  

Acoustic software SoundFlow simulated sound transmission loss based on the thickness 

of the vertical glass fins. The surrounding buildings, outdoor temperature, relative humidity, 

and actual traffic sound sources were not considered in this part of the study. 

  

Table 4.5   CFD and acoustic simulation cases 

Classification Cases 

Air temperature, 

Air velocity 
DSF air cavity 

[Length (m) : Depth (m)] 
Case 1 Case 2 Case 3 Case 4 

1:1 2:1 4:1 8:1 

Sound transmission 

loss 

Glass fin thickness 

(mm) 

Case 5 Case 6 Case 7 Case 8 

5 10 15 20 

 

 

Table 4.6  CFD and acoustic simulation model boundary conditions 

Classification Parameters (unit) FloVENT SoundFlow 

Ambient outdoor 

conditions 

Air temperature (°C) 29 29 

Relative humidity (%) 50 50 

Size and materials 

External glazing thickness(mm) 10 N/A 

Internal glazing thickness(mm) 10 N/A 

DSF air cavity depth (mm) 1,000 N/A 

Glass fin thickness (mm) 10 see Table 4.5 
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Outcomes 

Figures 4.11a and 4.11c illustrate the air temperature distributions within the DSF. The 

highest air temperature was observed in Case 4 with shading louvers tilted at 90 degrees, 

parallel to the glass wall. It implies that ventilation performance for heat dissipation by stack 

effect was better in Cases 1 and 2 than Case 4. 

 

  

  

        

Figure 4.11   Distributions of air temperature and air velocity at 0 degree angle (a, b) and 

90 degree angle (c, d) 

 

With regard to air temperature distributions, Figures 4.12a and 4.12c show that the 

highest air temperatures were in Case 4 compared to other cases when the shading louvers were 
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in the closed position at 90 degrees. The DSF’s air cavity length to depth ratios of Case 1 (1-

meter in length to 1-meter in depth) and Case 2 (2-meters in length to 1-meter in depth) are 

recommended over Case 4 (8-meters in length to 1-meter in depth) for efficient heat dissipation 

during the summer period.  

 

  

    
 

Figure 4. 12  Air temperature and air velocity when louvers are at 0 degree angle (a, b) 

and 90 degree angle (c, d) 
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Regarding the differences in mean air temperature at the highest monitoring points, P3 

(H: +3.5-meters, 3.5-meters high above the air cavity bottom) , it was found that cases with 

louvers at 90 degrees resulted in higher mean air temperature by 1.1 to 1.5 degree Celsius than 

that of cases with louvers at 0 degree (see Figures 4.13a and 4.13c). This outcome implies that 

Case 4 (air cavity ratio of 8-meters in length to 1-meter in depth) is not as effective as the other 

cases in dissipating heat during the summer period. 

 

  

  

    

Figure 4. 13 Mean air temperature (a, c) and mean air velocity (b, d) at 0 and 90 degree 

angle. 

 

In terms of the acoustical performance of glass fins as shown in Figure 4.14, SoundFlow 

data found that Case 8 showed a higher STC value compared to Case 5, which implies that an 

increase of glass fin thickness is more effective in sound transmission loss across the entire 
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octave band center frequency (Hz) range. However, the difference of STC or sound 

transmission loss based on the four cases was slight. 

 

 

Case         Case 5 (5mm in thickness, STC 30)      Case 6 (10mm in thickness, STC 32) 

STC 

Graph 

  

   

Case        Case 7 (15mm in thickness, STC 33)        Case 8 (20mm in thickness, STC 34) 

STC 

Graph 

  

 

 

 

Finally, the CFD simulation results suggested that box-window type DSF air cavity 

with a 1 to 1 or 2 to 1 (length to depth) ratios are recommended for achieving efficient heat 

dissipation through ventilation. It was found that thicker glass fins can achieve higher STC 

values that in turn decrease noise transmission to indoor spaces via air ventilation openings.  

This preliminary simulation study implies box-window DSFs with air cavity ratios of 1 to 1 or 

2 to 1 (length to depth) is appropriate for designing a DSF mock-up for an experimental study.  

Figure 4.14  STC values by glass fin thickness 
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CHAPTER 5: Experimental Study 

5.1 Introduction 

First, a series of findings from literature review suggest noise transmission by the use 

of window ventilation in high noise areas is a significant environmental problem causing 

adverse health effects. Among a number of techniques for ventilation performance and noise 

transmission loss, the use of grilles or louvers at the inlet vent helps control ventilation rate and 

noise transmission loss. It is also noteworthy that shading louvers around ventilation windows 

are effective in blocking the sound path. In addition, it was found that the air cavity, shading 

louvers, and air vents of a DSF can become control variables for a balance between ventilation 

performance and noise transmission loss. 

Second, in the preliminary simulation study described in the preceding chapter, airflow 

and acoustic simulations were conducted to predict a conflict between ventilation performance 

and noise transmission loss in a DSF. CFD simulation was aimed to collect quantitative data 

concerning the effects of percentage of air vent open surface area, orientation and type of 

shading louvers, and air cavity volume ratio on ventilation performance. Acoustic simulation 

was designed to estimate noise transmission loss based on vent opening size and shading louver 

thickness. 

As discussed in the preliminary study, the available acoustics simulation programs such 

as EASE, Insul, and SoundFlow are limited in their abilities to properly model and simulate a 

DSF with louvers. Therefore it was necessary to conduct an experiment using a full scale mock-

up of a DSF set in a reverberation chamber to properly study the effects of shading louvers and 

ventilation openings on noise reduction.  The next few sections of this chapter define several 

terminologies such as Noise Reduction (NR), Transmission Loss (TL),  Noise Isolation Class 

(NIC), Sound Transmission Class (STC), Outdoor and Indoor Transmission Class (OITC), and 
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Noise Criteria (NC) used in the experiment along with measurement standards, equipment, and 

other experimental settings. 

5.1.1 Noise Reduction (NR) and Transmission Loss (TL) 

Sound is the propagation of mechanical energy in the form of pressure variations. When 

sound transfers from a certain component of a building to another component, it is conveyed 

in the form of air-borne transmission, structure-borne transmission, and flanking transmission 

as shown in Figure 5.1. Most sounds generated by human conversation, musical instruments, 

and mechanical equipment in a building are air-borne sounds that travel form one room to 

another room through the medium of air (Mehta et al., 1998). Also, outdoor air-borne sounds 

such as urban traffic noise are transmitted through ventilation openings into a building. These 

involve the relationship among sound sending source, building medium, and sound receiving 

destination. 

                          
      

Figure 5.1  Sound paths between rooms (Source: Pennsylvania state university) 

 

Noise reduction in a broad definition can be described by three aspects: (i) reduction of 

noise generation by the proper installation of equipment as sound sending source, (ii) reduction 
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of noise transmission by proper construction materials as building medium, and (iii) reduction 

of noise by acoustical treatment of the space as sound receiving destination (Stein et al., 2014). 

Therefore, the NR can be understood as the difference in sound pressure level from one side of 

a partition (e.g., wall, floor, ceiling assembly, etc.) to the other side, typically measured in the 

field. Simply, the NR is the loss in SPL that occurs when sound energy passes including the 

effects of sound absorption in the sound receiving room and sound transmitted via flanking 

paths around the partition. The NR through the building façade component and this numerical 

number in decibels is obtained from a controlled laboratory test.  

The value regarded as more significant is the actual NR between two rooms separated 

by a barrier. This NR is defined as the difference between the SPL levels in adjacent rooms as 

seen in the equation 5.1, 

NR = Sound Pressure Level 1 – Sound Pressure Level 2                                         (5.1) 

NR can also be formulated in relation to the TL of as a barrier shown in the equation 5.2,      

 NR = TL – 10 log (S/AR)                                                                                         (5.2) 

where NR is noise reduction in dB, the TL is barrier transmission loss in dB, S is area of the 

barrier in m2, and AR is a total sound abortion of the receiving room in sabins. 

In contrast, with air-borne sound transmission between adjacent rooms through a 

barrier, the transmitted sound level is dependent not only on the transmission loss of the barrier 

itself but also on the sound absorption of area of the barrier and the receiving room (Stein et 

al., 2014). However, the definition of the TL contains only sound transmission between spaces 

excluding the effects of sound absorption in the sound receiving room and sound transmitted 

via flanking paths around the partition. Therefore, the TL is expressed as the log ratio of the 

incident sound energy to the transmitted energy as seen in equation 5.3,  

TL = NR + 10 log (S/AR)                                                                                       (5.3) 
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where TL is transmission loss, NR is noise reduction in dB, S is area of the barrier in m2, and 

AR is a total sound abortion of the receiving room in sabins. In the mock-up test, it is assumed 

that the value of 10 log (S/AR) in the sound receiving room is insignificant and the definition 

of NR is substituted with the definition of TL. 

5.1.2 NIC, STC,  OITC,  and NC 

The measured NR data can determine the Noise Isolation Class (NIC) which is a single 

number rating. The rating provides an evaluation of the sound isolation between two enclosed 

spaces that are acoustically connected by one or more paths. The NIC measurement is carried 

out according to the ASTM E-413 and ASTM E-336 between 125 and 4,000Hz. 

In contrast, TL data determines the Sound Transmission Class (STC) rating, which is 

typically applied to building partitions exposed to speech, television, radio, and office 

equipment in accordance with the ASTM E413-10. It is determined by comparing the set of 

TL across all 1/3 octave band center frequency ranging from 125 to 4000 Hz to a set of standard 

contours as described in Figure 5.2.  The TL curve must fit the standard contour in such a way 

that will allow no more than 32 deficiencies below the appropriate contour. The maximum 

deficiency at any given frequency shall not exceed 8 decibels.  

The STL is a single number rating for interior building partitions from speech, 

television, radio, and office equipment over the frequency range of 125 Hz to 4000 Hz. Higher 

values of the STC indicate better acoustical performance against noise transmission. Subjective 

hearing quality based on the STC values is described in Table 5.1. 
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Table 5.1 Subjective perception of STC values 

STC Subjective description 

30 Most sentences can be clearly understood 

40 Speech can be heard with some effort, Individual words and occasional phrases 

heard. 

50 Loud speech can be heard with some effort. Music easily heard. 

60 Loud speech essentially inaudible. Music heard faintly; bass not disturbing 

70 Loud music heard faintly, which could be a problem if the adjoining space is 

highly 

75 and above  Most noises effectively blocked sensitive to sound intrusion such as a recording 

studio, concert hall, etc. 

  

The STC and NIC ratings are similar. The NIC is determined using the NR data and it 

relates to field performance. By contrast, the STC is determined using the TL data and it relates 

to laboratory performance. Typically, the field NIC ratings are lower than laboratory STC 

ratings by 7 to 10 dB. The STC is the STL value at 500 Hz on the STC contour which consists 

of the three straight line parts with different scope over the frequency range of 125 Hz to 4000 

Hz as shown in Figure 5.2. 

 
       

Figure 5.2  STC rating by the standard contours to the measured TL values 
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The Outdoor to Indoor Sound Transmission Class (OITC) rating is typically applied to 

façades and façade elements such as windows and doors exposed to transportation noises in 

accordance with the ASTM E1332. The OITC rating is determined by using the same measured 

TL data as is used for STC, except that the OITC includes data that extends from 80 Hz to 4000 

Hz because the transportation noise is rich in the low frequency range. The OITC rating can be 

applied to elements tested in either the laboratory or in the field. Therefore, the OITC is 

recognized as a better single number rating of building envelop elements than STC (Mehta et 

al., 1998). 

Another difference between the STC (ASTM E413-10) and OITC (E1332-10a) is that 

the former is used to test building façade elements in a laboratory and the latter is used in a 

laboratory or the field. The STC test does not take into account façade openings and gaps where 

sound travels, whereas the OITC test encompasses an entire assembly such as exterior walls, 

windows, and doors. The STC rating has its limitation as stated in the ASTM E413-10 and 

these single number ratings correlate with subjective impressions of sound transmission for 

speech, radio, and television. This classification method is not appropriate for sound sources 

including machinery, industrial processes, bowling alleys and power transformers (ASTM 

E413-10, 1970). Table 5.2 summarizes a comparison between the STC and OITC. 

 

Table 5.2 Comparison between STC and OITC 

Test method Summary 

STC 

(Sound 

Transmission Loss) 

- Calculated in accordance with the ASTM E 413 (Published 1970) 

- Create a single number rating for interior building partitions that are 

subjected to noises from speech, television, radio and office equipment 

- Should not be used to evaluate partitions exposed to machinery, 

industrial and transportation nose such as motor vehicles, aircraft and 

trains 

- Calculated over the frequency range of 125 Hz to 4000 Hz 

OITC 

(Outdoor and Indoor 

Transmission Class) 

- Calculated in accordance with the ASTM E 1332 (Published 1990) 

- Create a single number rating for facades and façade elements that are 

subjected to transportation noise 

- Calculated over the frequency range of 80 Hz to 4000 Hz 
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The Noise Criteria (NC) is a standard that describes indoor ambient noise levels, as 

produced by HVAC systems and other continuous noise sources.  The NC rating of a spectrum 

is designated as the value of the lowest NC curve above the measured 1/3 octave band center 

frequencies ranging from 63 to 8000 Hz as shown in Figure 5.3. The criteria curves define the 

limits of octave band spectra that must not be exceeded to meet the occupant’s acceptance in 

certain spaces. 

         
       

Figure 5.3  Noise Criteria curves 

  

Table 5.3 shows that the recommended NC levels by space should not exceed the NC 

limits in different types of rooms. For instance, recommended NC levels range between 25 and 

30 in the case of lecture hall and classrooms in schools. The lower NC values are, the less noise 

annoyance is required for the space. 
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Table 5.3 Recommended Noise Criteria by space 

Type of building Type of room 
Recommended  

NC level 

Equivalent Sound 

Level (dB(A) 

Residential buildings 
Apartment Houses 25-35 35-45 

Private Homes, urban 20-30 30-38 

Hotels 
Individual room  25-35 35-45 

 Halls, corridors, lobbies 35-40 50-55 

Offices 
Conference rooms  25-30 35-40 

Open-plan areas 35-40 45-50 

Hospital 
Private rooms  25-30 35-40 

Laboratories 35-40 45-50 

Schools 
Lecture and classroom 25-30 35-40 

Open-plan classrooms 35-40 45-50 

 

5.1.3 Measurement Standards 

Regarding measurement methods of TL (or NR), the International Standard EN ISO 

140-5 standard defines two types of measurement methods, the element method and global 

method. The former is used to estimate the STL of a façade element such as a window using a 

loudspeaker, whereas the latter aims to estimate the OITC which measures the outdoor and 

indoor sound level differences under actual traffic conditions or artificial sound sources (ISO, 

1998; Burmistrova, 2012). The TL (or NR) values based on the ASTM E90-02 standard are 

used to calculate the STC and OITC ratings in accordance with the ASTM E413 and ASTM E 

1322 standards respectively as shown in Table 5.4.  

The DSF mock-up tests were designed to measure the TL (or NR) in the reverberation 

chamber based on the ASTM E90-02 (Standard Test Method for Laboratory Measurement of  

Air-borne Sound Transmission Loss of Building Partitions and Elements). The standard was 

designed to measure the TL (or NR) of a partition in a laboratory over a frequency range of 

speech from 125 to 4000 Hz. 
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Table 5.4 Acoustic standards for acoustic rating methods 

Standards Code Field of application 

ASTM 

C423 
Test Method for Sound Absorption and Sound Absorption Coefficients 

by the Reverberation Room Method 

C634 Terminology Relating to Building and Environmental Acoustics 

E336 
Test Method for Measurement of Air-borne Sound Attenuation between 

Rooms in Buildings 

E90-02 
Standard Test Method for Laboratory Measurement of Air-borne Sound 

Transmission Loss of Building Partitions and Elements 

E413 Classification for Rating Sound Insulation 

E492 
Test Method for Laboratory Measurement of Impact Sound Transmission 

Through Floor-Ceiling Assemblies Using the Tapping Machine 

E966 
Guide for Field Measurements of Air-borne Sound Attenuation of 

Building Facades and Facade Elements 

E1007 

Test Method for Field Measurement of Tapping Machine Impact Sound 

Transmission Through Floor-Ceiling Assemblies and Associated Support 

Structures 

E1289 Specification for Reference Specimen for Sound Transmission Loss 

E1332 Classification for Rating Outdoor-Indoor Sound Attenuation 

ISO 
ISO 140 Measurement of sound insulation in buildings and of building elements 

ISO 717 Rating of Sound Insulation for Dwellings3 

ANSI 
S1.6-1984 

(R2006) 

American National Standard Preferred Frequencies, Frequency Levels, 

and Band Numbers for Acoustical Measurement 
 

5.2 Measurement Methods 

5.2.1 ASTM E90-02 

The results of the DSF mock-up test are presented as NR which is defined as the 

difference of the average SPL through the specimen between two adjacent reverberation rooms. 

Table 5.5 shows the basic requirements for the ASTM E90-02 test settings including test room, 

specimens, sound source, equipment, and test equation. The test setting of the DSF mock-up 

was modified based on the ASTM E90-02 due to limitations of available measurement 

equipment. Detailed test settings are described in section 5.2.3 Mock-up Set-up. 
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Table 5.5 Requirements for ASTM E90-02 

Test setting Requirements 

Test room 

- The minimum volume of each room is 80 m3  

- The sound absorption of the room should be no greater than A=V2/3/3 

(V= the room volume, m3 and A =  the sound absorption of the room, 

m2) 

- The average temperatures shall be in the range 22 ± 5°C and the 

average relative humidity shall be at least 30 % 

Test specimens 

- Include all the essential construction elements in normal size of actual 

use 

- The minimum dimension (excluding thickness) shall be 2.4m 

- Being installed in a manner similar to actual construction 

Test sound sources 

- The sound signals shall be random noise having a continuous 

spectrum within each test frequency  

- Sound sources shall consist of one or more loudspeakers 

Test equipment 

- A single microphone for several measurement positions in sequence or 

several microphones for simultaneous measurements 

- A 13-mm (0.5-in.) random-incidence condenser microphone is 

recommended 

- Calibration checks of the entire measurement system 

Test equation 

- TL(f) = LS(f) – Lr(f)  + 10 logS/AR(f)  

where: TL(f) = transmission loss, dB,  

LS(f) = average sound pressure level in the source room, dB, LR(f) = 

average sound pressure level in the receiving room, dB,  

S = area of test specimen that is exposed in the receiving room, m2 

AR(f) = sound absorption of the receiving room with the test specimen 

in place, m2 

Test setting 

 

For conceptual arrangement of a wall STC setting, the room on the right 

has fixed microphones to measure average sound pressure level and the 

room on the left has a continuously moving microphone to measure 

average sound pressure levels ranging 100 to 5000 Hz 
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5.2.2 Measurement Equipment 

The major measurement devices used for the DSF mock-up tests are shown in Table 

5.6. The Larson 831 sound level meter features various measurement parameters such as 

multiple time weightings (Slow, Fast & Impulsive) and frequency weightings (A, C & Z). 

 

Table 5.6 DSF mock-up measurement equipment 

Tools Details 

 

Sound lever meter: Larson 831 

- The various measurement parameters available 

 

Condenser microphone: 377B02 1/2” 

- Free-field pre-polarized microphone with 16 to 140 dB 

measurement range 

 

Dodecahedron loudspeaker 

- Full-range loudspeaker providing uniform sound radiation 

 

Pink noise generator 

- Frequency Range: 20 Hz - 20 kHz  

 

Mixing console 

 

A condenser microphone was used to obtain the average SPL at four measurement 

positions in each room. It can measure SPL ranging from 16 to 140 dB. The dodecahedron 

loudspeaker has a full-range loudspeaker mounted in each of the 12 sides, providing uniform 

sound radiation. The output power level is up to 120 dB for a pink noise signal. A mixing 

http://langeloudspeakers.com/en/product-range/181160/dodecahedron-loudspeaker-d12a
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console and a pink noise generator produce pink noise, of which each octave carries an equal 

amount of noise energy. It is substituted for the actual traffic noise in urban areas.    

5.2.3 Mock-up Set-up 

    Reverberation Chamber Plan 

Figure 5.4 shows the reverberation chamber located in the Measurement, Materials and 

& Sustainable Environment Center (M2SEC) includes two adjacent, acoustically reverberant 

rooms with a 1.22-meter (4-feet) wide by 2.44-meter (8-feet) high opening between two rooms.  

 

 

Figure 5.4  Reverberation chamber plan 

 

The space is designed to measure the TL (or NR) and to evaluate the NR qualities of 

new materials and/or new noise reduction schemes. The difference in the measured SPL is 

described as the TL (or NR) on which the panel the STC or NIC rating is based. 

https://en.wikipedia.org/wiki/Octave_(electronics)
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     DSF Mock-up Construction 

The DSF mock-up is a hypothetically-designed box-window air cavity which is suitable 

for noisy environments. Figure 5.5 shows that the basic structures are made of 6.35-centimeter 

(2.5-inch) thick wood frames, and each element is connected with bolts. Two pieces of 0.635-

centimeter (0.25-inch) thick glass were installed as the inner and outer glass layers which 

formed the air cavity of the DSF. Duct sealant and glass fiber were used to fill joint gaps to 

minimize sound leakage. The shading louvers are heat-treated pine fir measuring 22.86-

centimeter (9-inch) wide and 6.35-centimeter (2.5-inch) thick. Five louvers were installed for 

testing in the vertical orientation and 10 louvers for testing in the horizontal orientation. 

 

 

Figure 5.5  DSF mock-up construction of structure (a), glass (b), and shading louvers (c) 

 

    Shading Louvers and Air Vents 

Figure 5.6 shows test cases of vertical and horizontal shading louvers tilted at a 90 

degree angle, in closed position. Depending on test cases, they are also designed to be tilted at 
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0, 30, and 60 degree angles. Three air vents used for the DSF mock-up are about 60% of free 

area perforated steel louvers with 25 (10-inch) centimeters by 25-centimeters (10-inch). 

 

 

Figure 5.6  Vertical (a) and horizontal (b) shading louvers tilted at a 90 degree angle 

 

Figure 5.7 shows test cases of vertical and horizontal solid wood shading louvers 

covered with 1.6-milimeter (0.0625-inch) fabric which can be oriented at a 0 degree angle 

which are perpendicular to inner and outer glass. This fabric is commercially named for 

Guilford of Maine Basketweave Fabric was produced by Acoustical Solutions. Its Noise 

Reduction Coefficient (NRC), which is an index of the amount of sound energy absorbed upon 

striking a particular surface, is 0.005. 

https://en.wikipedia.org/wiki/Sound_energy
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Figure 5.7  Vertical (a) and horizontal shading louvers (b) wrapped with fabric tilted at a  

0 degree angle 

 

5.2.4 DSF Mock-up Test Settings 

     Phase I 

The experimental measurement was conducted according to the ASTM E90-02. Figure 

5.8 shows the locations of the air vents and shading louvers. The dodecahedron loudspeaker 

and condenser microphones were situated at 1.5-meter (4.92-feet) above the floor in the sound 

sending and sound receiving rooms. The average of A-weighted continuous sound levels in dB 

(A) of each case was obtained from four measurements of 30 seconds each at four different 

locations. 

http://langeloudspeakers.com/en/product-range/181160/dodecahedron-loudspeaker-d12a


  

74 

 

       

Figure 5.8  DSF mock-up setting for shading louvers as noise barriers 

 

The DSF mock-up settings of Phase I as shown in Figure 5.9 were aimed to evaluate 

the relationship between the percentage of air vent open surface area and NR based on shading 

louver orientation. It was designed to investigate the NR values under the conditions of 100% 

and 40% of air vent open surface area and 0, 30, 60, and 90 degree angle of shading louvers. 

 

   
       

Figure 5.9  DSF mock-up setting of the sound sending (a,b) and receiving room (c) 
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    Phase II 

Phase II was also performed in accordance with the ASTM E90-2. Compact silencers, 

which are typically used in high volume fans and air handling units, were applied to the outer 

and inner glasses of the DSF. The testing and measurement set up was the same as those used 

in Phase I. 

 
      

Figure 5.10  DSF mock-up setting for compact silencers as ventilation openings and    

acoustic barriers 

 

The aim of this DSF mock-up setting as shown in Figure 5.11 was to test the acoustic 

performance of the compact silencers which replaced the existing DSF air vents. The 

ventilation openings were situated at the bottom of the outer glass and the top of the inner glass.  

Three ventilation cases were tested, 100% open surface area, 0% open surface area (closed), 

and compact silencers. 
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Figure 5.11  Vent types on inner glass (a) and outer glass (b) 

 

5.2.5 Test Case 

    Shading louver orientation as noise barriers 

Phase I was comprised of 36 cases which studied the relationship of the following 

variables on noise reduction: open surface area of air vent and the orientation and surface 

material of the shading louvers.  

Table 5.7 shows the 18 cases for vertical shading louvers. The objective was not only 

to compare the NR between open with grilles and without grilles, but also to evaluate the 

acoustic performance of the DSF based on the orientation and surface materials of the shading 

louvers as a noise barrier in relation to the NR values. Table 5.8 shows 18 cases for horizontal 

shading louvers. The reason for comparing the NR between vertical and horizontal shading 

louvers was because the preliminary CFD simulation study on ventilation performance showed 

different outcomes for air temperature, air velocity, and airflow caused by the horizontal and 

vertical shading louvers. 
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Table 5.7 Test cases for vertical shading louvers 

Test case 
Air vents Vertical shading louvers 

Grille application Orientation Surface material 

Case 1   

Open with grilles 

No shading louvers 

Case 2 0 degree angle  

Case 3 30 degree angle 38 mm (1.5") thick 

timber Case 4 60 degree angle 

Case 5   90 degree angle   

Case 6 0 degree angle  

Case 7 30 degree angle 1.6 mm (0.625") thick 
Fabric Case 8 60 degree angle 

Case 9 90 degree angle  

Case 10 
 

 

 

  
Open without grilles 

No shading louvers 

Case 11 0 degree angle  

Case 12 30 degree angle 38 mm (1.5") thick 

timber Case 13 60 degree angle 

Case 14   90 degree angle   

Case 15 0 degree angle  

Case 16 30 degree angle 1.6 mm (0.625") thick 
Fabric Case 17 60 degree angle 

Case 18 90 degree angle  

 

 

Table 5.8 Test cases for horizontal shading louvers 

Test case 
Air vents Horizontal shading louvers 

Grille application Orientation Surface material 

Case 19  

 

 

 
Open with grilles 

No shading louvers 

Case 20 0 degree angle  

Case 21 30 degree angle 38 mm (1.5") thick 

timber Case 22 60 degree angle 

Case 23   90 degree angle   

Case 24 0 degree angle  

Case 25 30 degree angle 1.6 mm (0.625") thick 
Fabri

c 
Case 26 60 degree angle 

Case 27 90 degree angle  

Case 28 
 

 

 

 

 
Open without grilles 

No shading louvers 

Case 29 0 degree angle  

Case 30 30 degree angle 38 mm (1.5") thick 

timber Case 31 60 degree angle 

Case 32   90 degree angle   

Case 33 0 degree angle  

Case 34 30 degree angle 1.6 mm (0.625") thick 

fabric Case 35 60 degree angle 

Case 36 90 degree angle  



  

78 

 

    Compact silencers as ventilation openings and acoustic barriers 

The scenarios of Phase II as shown in Table 5.9 are comprised of 12 cases.  The tested 

ventilation cases were 100% open, compact silencer, and 0% open depending on seasonal 

methods of operating a DSF. The DSF settings for Case 1 through Case 8 were designed to 

represent ventilation performance during hot and intermediate seasons. In contrast, settings for 

Case 9 to Case 12 were designed to represent the cold season. 

Compact silencers are typically used for noise control in air duct systems, but for this 

study they were applied to the ventilation openings of a building enclosure. In terms of shading 

louver orientation, only a 0 degree angle (open mode) and 90 degree angle (close mode) were 

tested because it was found there was only a slight significance in the relationship between the 

TL (or NR) and shading louver orientation by 30 and 60 degree angle according to the outcomes 

of the mock-up Phase I.  

 

Table 5.9 Test cases by vent combinations 

Test case 
Air vent position 

Shading louver Outer glass side Inner glass side Orientation 

Case 1 

 Open  Open 

0 degree angle 

Case 2 90 degree angle 

Case 3 

 Open  Compact silencer 

0 degree angle 

Case 4 90 degree angle 

Case 5 

  Compact silencer  Open 

0 degree angle 

Case 6 90 degree angle 

Case 7 

 Compact silencer      Compact silencer 

0 degree angle 

Case 8 90 degree angle 

Case 9 

 Closed  Open 

0 degree angle 

Case 10 90 degree angle 

Case 11 

 Closed  Compact silencer 

0 degree angle 

Case 12 90 degree angle 
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5.3 Results and Discussions 

5.3.1 Shading Louvers Orientation as Noise Barriers 

The graphs in Figure 5.12 show the SPL values for the sound sending and receiving 

rooms and the NR values for the first 18 cases. The NR simply refers to the difference in SPL 

between the sound sending room and receiving room. The experimental data of Phase I implied 

the DSF mock-up itself achieved the overall NR value across the entire octave band center 

frequency by 33 to 37 dB(A) when sending sound source with a pink noise spectrum is 89 

dB(A). When shading louvers were oriented at a 90 degree angle such as Cases 5, 9, 14, 18, 

23, 27, 32, and 36, the overall NR was 3 to 4 dB(A) across 1/1 octave band center frequency 

than at 0 degree angle such as Cases 2, 6, 11, 15, 20, 24, 29, and 33. In particular, it was found 

that the horizontal shading louver achieved higher level of NR by 4 to 9 dB (A) at high 

frequency (4000 Hz) compared to low frequency (125 Hz). In Cases 5, 9, 14 and 18 with 

shading louvers tilted at a 90 degree angle, the maximum difference of the NR values between 

125Hz and 4000Hz was 9, 8, 8, and 8 dB(A) respectively. 
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Case 1 (no shading louvers) Case 2 (w/grilles, solid, 0 degree angle) 

  

Case 3 (w/grilles, solid, 30 degree angle) Case 4 (w/grilles, solid, 60 degree angle) 

  

Case 5 (w/grilles, solid, 90 degree angle) Case 6 (w/grilles, fabric, 0 degree angle) 
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Case 7 (w/grilles, fabric, 30 degree angle) Case 8 (w/grilles, fabric, 60 degree angle) 

  

Case 9 (w/grilles, fabric, 90 degree angle) Case 10 (no shading louvers) 

  

Case 11 (w/o grilles, solid, 0 degree angle) Case 12 (w/o grilles, solid, 30 degree angle) 
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Case 13 (w/o grilles, solid, 60 degree angle) Case 14 (w/o grilles, solid, 90 degree angle) 

  

Case 15 (w/o grilles, fabric, 0 degree angle) Case 16 (w/o grilles, fabric, 30 degree angle) 

  

Case 17 (w/o grilles, fabric, 60 degree angle) Case 18 (w/o grilles, fabric, 90 degree angle) 

  

 

Figure 5.12  NR values based on air vent and vertical shading louver orientation 
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The graphs in Figure 5.13 show the SPL values for the sound sending and receiving 

rooms and the NR values for the remaining 18 cases. The DSF mock-up tests with horizontal 

shading louvers also achieved NR of 33 to 37 dB (A) when sending sound source with a pink 

noise spectrum is 89 dB (A). When vertical shading louvers are oriented at a 90 degree angle 

such as Cases 23, 27, 32 and 36, the overall NR was 3 to 4 dB(A) across 1/1 octave band center 

frequency compared to cases tilted at 0 degree angle. In particular, it was observed that the 

horizontal shading louver achieved higher level of NR by 4 to 9 dB (A) at high frequency (4000 

Hz) compared to low frequency (125 Hz). In Cases 23, 27, 32 and 36 with shading louvers 

tilted at a 90 degree angle, the maximum difference of NR values between 125Hz and 4000Hz 

was 7, 8, 7, and 8 dB(A) respectively. 

 

Case 19 (no shading louvers) Case 20 (w/ grilles, solid, 0 degree angle) 

 

 
 

Case 21 (w/ grilles, solid, 30 degree angle) Case 22 (w/ grilles, solid, 60 degree angle) 
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Case 23 (w/ grilles, solid, 90 degree angle) Case 24 (w/ grilles, fabric, 0 degree angle) 

  

Case 25 (w/ grilles, fabric, 30 degree angle) Case 26 (w/ grilles, fabric, 60 degree angle) 

  

Case 27 (w/ grilles, fabric, 90 degree angle) Case 28 (no shading louvers) 
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Case 29 (w/o grilles, solid, 0 degree angle) Case 30 (w/o grilles, solid, 30 degree angle) 

  

Case 31 (w/o grilles, solid, 60 degree angle) Case 32 (w/o grilles, solid, 90 degree angle) 

  

Case 33 (w/o grilles, fabric, 0 degree angle) Case 34 (w/o grilles, fabric, 30 degree angle) 
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Case 35 (w/o grilles, fabric, 60 degree angle) Case 36 (w/o grilles, fabric, 90 degree angle) 

  

 

Figure 5.13  NR values based on air vent and horizontal shading louver orientation 

 

Figures 5.14 and 5.15 show the SPL differences between open with grilles (a) and 

without grilles (b) with vertical shading louvers.  No difference was found in NR regardless of 

percentage of air vent open surface area even though the porosity of air vents affected air 

temperature, air velocity, and airflow patterns inside DSFs as shown in the preliminary 

simulation study of Chapter 4. 

Figure 5.16 shows NR values across 1/1 octave band center frequency. When shading 

louvers are oriented at a 90 degree angle which is closed position, NR values at mid- and high-

frequency was high by 3 to 6 dB (A). However, there is no significant effect of NR in low- 

frequency which is associated with noise annoyance by traffic noise at 125 Hz.  
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Air vent open 

surface area 
Sound Pressure Level  

Open with grilles 

 

Open without 

grilles 

 

 

      

Figure 5.14  SPL and NR for vertical shading louver cases with open with grilles (a) and 

without grilles (b) 
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Air vent open 

surface area 
Sound Pressure Level  

Open with grilles 

 

Open without 

grilles 

 

 
 

 

Figure 5.15  SPL and NR for open with grilles (a) and without grilles (b) for horizontal 

shading louvers 
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Figure 5.16 NR values across 1/1 octave band center frequency 

 

 

Table 5.10 shows the NR values across the entire octave band center frequency based 

on percentage of air vent open surface area, shading louvers covered with fabrics, and shading 

louver orientation. This data shows that there is no significant difference in the NR between 

cases of “open with grilles,” which are Cases 1 through 9 and Cases 19 through 27, and cases 

of “open without grilles,” which include Cases 10 to 18 and Cases 28 to 36.  In addition, 

applying fabrics to solid wood shading louvers as with Cases 6 to 9, Cases 15 to 18, Cases 27 

through 30, and Cases 33 through 36 achieved the NR by 1 dB(A). The fabric applied to the 
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shading louvers did not achieve significant noise reduction. It implies that shading louvers 

should be built with sound absorbing materials to achieve sufficient NR values.  

 

Table 5.10  NR across 1/1 octave band center frequency 

 Case NR dB(A) 
  NR values (1/1 octave band center frequency (Hz))  

 NC 
63 125 250 500 1000 2000 4000 8000 

Case 1 33 27   30 33 33 33 33 34 31 50 

Case 2 33 26   28 32 34 33 34 35 31 49 

Case 3 33 26   30 32 34 33 34 36 31 49 

Case 4 34 26   31 31 34 33 35 36 31 49 

Case 5 36 26   28 33 37 36 38 37 31 47 

Case 6 33 27   29 32 33 33 34 36 31 50 

Case 7 34 27   30 33 34 34 35 36 31 49 

Case 8 34 27   30 32 35 34 35 37 31 48 

Case 9 37 26   30 34 38 37 39 38 31 46 

Case 10 33 27   30 33 33 33 33 34 31 50 

Case 11 33 26   29 32 34 33 33 35 31 49 

Case 12 33 26   31 32 34 33 34 35 31 49 

Case 13 34 26   31 31 34 33 34 36 31 49 

Case 14 36 26   29 32 36 36 38 37 31 48 

Case 15 33 27   28 32 33 33 34 36 31 50 

Case 16 33 27   29 32 33 33 34 36 31 50 

Case 17 34 27   31 32 35 33 35 36 31 49 

Case 18 37 26   30 33 38 37 39 38 31 47 

Case 19 33 27   30 33 33 33 33 34 31 50 

Case 20 34 24   29 32 33 34 36 37 31 50 

Case 21 34 16   29 32 34 34 36 37 31 49 

Case 22 34 14   27 31 34 33 35 37 31 49 

Case 23 36 13   28 31 36 36 39 38 31 49 

Case 24 34 26   31 33 34 34 35 37 31 49 

Case 25 35 26   31 33 35 34 35 37 31   48 

Case 26 34 25   30 32    36 34 35 37 31   48 

Case 27 37 27   30 33 37 36 38 38 31   47 

Case 28 33 27   30 33 33 33 33 34 31   50 

Case 29 34 22   29 32 33 33 35 37 31   50 

Case 30 34 14   28 32 34 34 35 37 31   49 

Case 31 33 13   27 31 33 33 35 37 31   50 

Case 32 35 13   27 31 36 36 39 38 31   49 

Case 33 34 26   30 33 34 34 35 36 31   49 

Case 34 34 26   31 33 35 34 34 37 31   48 

Case 35 34 26   30 32 35 34 35 37 31   48 

Case 36 36 26   30 33 37 36 38 38 31   47 

 

In Table 5.10, it was observed that NC values ranged from 46 to 50 depending on the 

shading louver’s orientation. When shading louvers were oriented at a 90 degree angle (closed 
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position), NC values were the lowest compared to cases with a 0 degree angle (open position) 

and without shading louvers. Each NC graph was generated as shown in Figure 5.17 and 5.18.  

 

Case 1 (no shading louvers, NC 50) Case 2 (w/ grilles, solid, 0 degree, NC 49) 

  

Case 3 (w/ grilles, solid, 30 degree, NC 49) Case 4 (w/ grilles, solid, 60 degree, NC 50) 

  

Case 5 (w/ grilles, solid, 0 degree, NC 47) Case 6 (w/ grilles, fabric, 0 degree, NC 50) 
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Case 7 (w/ grilles, fabric, 30 degree, NC 49) Case 8 (w/ grilles, fabric, 60 degree, NC 48) 

  

Case 9 (w grilles, fabric, 90 degree, NC 46) Case 10 (no shading louvers, NC 50) 

  

Case 11 (w/o grilles, solid, 0 degree, NC 49) Case 12 (w/o grilles, solid, 30 degree, NC 49) 

  

Case 13 (w/o grilles, solid, 60 degree, NC 50) Case 14 (w/o grilles, solid, 90 degree, NC 48) 
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Case 15 (w/o grilles, fabric, 0 degree, NC 50) Case 16 (w/o grilles, fabric, 30 degree, NC 50) 

  

Case 17 (w/o grilles, fabric, 60 degree, NC 49) Case 18 (w/o grilles, fabric, 90 degree, NC 47) 

  

 

Figure 5.17  NC values based on air vent and vertical shading louver orientation 

 
 

Case 19 (no shading louvers, NC 50) Case 20 (w/ grilles, solid, 0 degree, NC 50) 
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Case 21 (w/ grilles, solid, 30 degree, NC 49) Case 22 (w/ grilles, solid, 60 degree, NC 50) 

  

Case 23 (w/ grilles, solid, 90 degree, NC 50) Case 24 (w/ grilles, fabric, 0 degree, NC 49) 

  

Case 25 (w/ grilles, fabric, 30 degree, NC 49) Case 26 (w/ grilles, fabric, 60 degree, NC 48) 

  

Case 27 (w/ grilles, fabric, 90 degree, NC 50) Case 28 (no shading louvers, NC 50) 
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Figure 5. 18  NC values based on air vent and horizontal shading louver orientation 

 

Case 29 (w/o grilles, solid, 0 degree, NC 50) Case 30 (w/o grilles, solid, 30 degree, NC 49) 

  
Case 31 (w/o grilles, solid, 60 degree, NC 50) Case 32 (w/o grilles, solid, 90 degree, NC 50) 

  
Case 33 (w/o grilles, fabric, 0 degree, NC 49) Case 34 (w/o grilles, fabric, 30 degree, NC 48) 

  
Case 35 (w/o grilles, fabric, 60 degree, NC 48) Case 36 (w/o grilles, fabric, 90 degree, NC 47) 
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In Cases 5, 9, 14, and 18 with shading louvers tilted at 90 degree angle, each NC value 

is 47, 46, 48, and 47 respectively compare to cases of NC 50 (e.g., no shading louvers) as shown 

in Figure 5.19. In Cases 24, 28, 32, and 36 with shading louvers tilted at a 90 degree angle, 

each NC value is 49, 47, 49, and 47 respectively compared to cases of NC 50 as shown in 

Figure 5.19 19.   

 

  
                                             

Figure 5.19  NC values by cases 

 

5.3.2 Compact Silencers as Noise Barriers 

The experimental data of Phase II resulted in a DSF mock-up  achieving noise reduction 

by 20 up to 37 dB(A), depending on various combinations of ventilation openings when 

sending sound source with a pink noise spectrum is 89 dB(A) as shown in Figure 5.20. When 

air vents in each glass of a DFS mock-up were opened, the overall NR value across the entire 

octave band center frequency was estimated by 20 dB(A) as shown in Case 1, which is the 

reference case. When compact silencers were applied to an outer and inner glass of a DFS 
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mock-up, the overall NR value across the entire octave band center frequency was achieved by 

28 dB(A) as shown in Case 7. When an air vent in an outer glass was closed and a compact 

silencer was applied to the  inner glass during the cold season, the overall NR value across the 

entire octave band center frequency accounted for 34 dB(A) as shown in Case 11. It was 

assumed that shading louvers are oriented at a 90 degree angle rather than 0 degree angle, the 

additional NR value was obtained by 2 to 3 dB(A) as shown in Case 2, 8, and 12.  

 

    

Case 1 (Open, Open, 0 degree, reference case) Case 2 (Open, Open, 90 degree) 

  

Case 3  (Open, Compact silencer, 0 degree) Case 4 (Open, Compact silencer, 90 degree) 
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Case 5 (Compact silencer, Open, 0 degree) Case 6 (Compact silencer, Open, 90 degree) 

  

Case 7  (Both compact silencers, 0 degree) Case 8 (Both compact silencers, 90 degree) 

  

Case 9 (Closed, Open, 0 degree) Case 10 (Closed, Open, 90 degree) 
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Case 11 (Closed, Compact silencer, 0 degree) Case 12 (Closed, Compact silencer, 90 degree) 

  

 

Figure 5.16  SPL and NR based on air vent and shading louver orientation 

 

It was found that compact silencers applied to each glass of a DSF mock-up achieved 

an additional noise reduction by 8 dB (A) when compared to vent openings without compact 

silencers. Most notably, when a compact silencer was applied to either side of a glass, the 

overall NR values across the entire octave band center frequency ranged between 5 and 7 at 

125 Hz dB(A), between 7 and 13 dB(A) at 1000 Hz, and between 12 and 18 dB(A) at 2000 Hz. 

In addition, when compact silencers were applied to both sides of the inner and outer glass, the 

overall NR values across the entire octave band center frequency ranged between 8 and 9 at 

125 Hz dB (A), between 14 and 18 dB (A) at 1000 Hz, and between 23 and 25 dB (A) at 2000 

Hz as shown in Figure 21 and 22. It implies that the application of compact silencers is 

significantly effective in noise reduction at low-, mid- and high-frequency bands. 
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Figure 5.17  SPL and NR measured at the sound sending and sound receiving room 

 

 

 
    

Figure 5.22 NR values across 1/3 octave band center frequency 

 

In summary, Table 5.11 shows the overall NR across the entire octave band center 

frequency depending on the different combinations of ventilation openings. According to Cases 

1 and 2, which are 100% open type ventilation grilles in each glass, a DSF mock-up itself 

achieved the overall NR across the entire octave band center frequency by 20 and 22 dB(A) 

when vertical shading louvers are tilted at 0 and 90 degree angle, respectively. In Cases 3 and 
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4, a compact silencer applied to a vent opening of an inner glass obtained the additional NR 

values by 4 up to 5 dB (A) when compared to Cases 1 and 2. In Cases 5 and 6, a compact 

silencer applied to a vent opening of an outer glass can achieve the additional noise reduction 

by 5 dB (A) when compared to Cases 1 and 2. In Cases 7 and 8, two compact silencers were 

applied to the vent openings of an outer and inner glass of a DSF mock-up achieved the 

additional noise reduction by when compared to Cases 1 and 2. 

In Cases 9 and 10, with an air vent closed in an outer glass and an opening applied to 

an inner glass, the additional noise reduction can be achieved by 10 dB(A). In Cases 11 and 

12, with an air vent closed in an outer glass and a compact silencer applied to an inner glass, 

the additional noise reduction can be achieved by 14 and 15 dB(A) respectively. 

 

                       Table 5.11  NR across 1/3 octave band center frequency  

Case 
NR 

dB(A) 
NR values 1/3 octave band center frequency (Hz)    NIC 

125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000  

Case 1  20 13 20 23 22 17 20 22 18 20 20 20 21 21 21 21 22 20 

Case 2 22 16 17 16 16 18 23 23 23 25 26 26 28 28 26 26 26 25 

Case 3 25 18 22 26 24 19 23 25 22 24 27 29 32 33 33 34 35 28 

Case 4 26 20 19 18 19 21 27 26 26 27 32 34 37 37 36 37 36 30 

Case 5 25 17 22 26 22 20 24 24 23 25 27 30 33 35 34 35 35 28 

Case 6 27 19 19 19 20 22 26 25 27 30 33 35 37 39 37 38 37 31 

Case 7 28 21 24 28 24 22 26 28 26 29 34 38 42 44 40 42 38 32 

Case 8 30 22 21 21 23 24 30 29 30 34 38 42 45 46 40 43 38 34 

Case 9 30 24 25 31 28 27 31 30 28 29 29 29 30 33 33 33 34 31 

Case 10 32 24 24 26 27 29 34 31 32 33 33 33 36 37 36 37 36 34 

Case 11 34 26 27 33 30 28 33 33 31 33 36 38 40 43 39 42 38 36 

Case 12 37 27 28 30 32 35 38 35 35 37 40 42 44 45 40 42 38 39 

 

Figure 23 shows the NIC values measured from the NR data of each case. Cases 1 

through 4 were designed with open air vents in an outer glass and Cases 5 through 8 were 

applied with compact silencers in the outer glass, considering ventilation by the stack effect. 

Cases 9 through 12 were designed with closed air vents, assuming cold outdoor climate 

conditions. It was shown that the NIC values are the highest in Case 12 and lowest in Case 1 
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depending on air vent open conditions. The NIC values of cases, which are applied with a 

compact silencer, are higher than cases with open air vents from 3 to 8 points. Cases with 

compact silencers show relatively lower NIC values from 3 to 5 points than cases with closed 

air vents. 

 

Case 1 (Open, Open, 0 degree, reference case) Case 2 (Open, Open, 90 degree) 

  

Case 3  (Open, Compact silencer, 0 degree) Case 4 (Open, Compact silencer, 90 degree) 

  

Case 5 (Compact silencer, Open, 0 degree) Case 6 (Compact silencer, Open, 90 degree) 
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Case 7  (Both compact silencers, 0 degree) Case 8 (Both compact silencers, 90 degree) 

  
Case 9 (Closed, Open, 0 degree) Case 10 (Closed, Open, 90 degree) 

  
Case 11 (Closed, Compact silencer, 0 degree) Case 12 (Closed, Compact silencer, 90 degree) 

  

 

Figure 5.18  NIC based on air vent and shading louver orientation 

 

In summary, Figure 5.24 shows the NIC values of each case. In comparisons among 

Case 1 (open air vents), Case 5 (compact silencer), and Case 9 (closed air vent), each NIC value 

is 20, 28, and 31 respectively. Therefore, each NIC difference between two sequential cases is 

6 and 3 points, respectively. 
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In comparison among Case 2 (open air vents), Case 6 (compact silencer), and Case 10 

(closed air vent), each NIC is 25, 31, and 34 respectively. Therefore, each NIC difference 

between two sequential cases is 6 and 3 points, respectively. 

In comparison among Case 3 (open air vents), Case 7 (compact silencer), and Case 11 

(closed air vent), each NIC is 28, 32, and 36 respectively. Therefore, each NIC difference 

between two sequential cases is 4 and 4 points, respectively. 

In comparison among Case 4 (open air vents), Case 8 (compact silencer), and Case 12 

(closed air vent), each NIC is 30, 34, and 39 respectively. Therefore, each NIC difference 

between two sequential cases is 4 and 5 points, respectively. 

It is implied that compact silencers are significantly effective in the NR, particularly 

when air vents are open in naturally-ventilated buildings. In addition, it was found that compact 

silencers work efficiently to reduce noise transmission at low-, mid-, and high-frequency band. 

When noise exposure which is similar to low-frequency band from traffic noise is associated 

with hypertension, compact silencers can achieve noise reduction by 125 Hz. 

 

 

Figure 5.19 NIC values by cases 
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CHAPTER 6: Conclusions and Future work 

6.1 Conclusions 

6.1.1 Summary of Phase I  

• DSF is fairly effective in overall noise reduction by 33 dB (A) when sending sound 

source with a pink noise spectrum is 89 dB (A). 

• There is noise reduction of 3 to 4 dB (A) when shading louvers are at a 90 degree 

angle (closed position) compared to 0 degrees (open position). 

• There is no significance in noise reduction cases without shading louvers and cases 

with shading louvers tilted from 0 to 30 degree angles. 

• There is no significance in noise reduction by 1 or 2 dB (A) drop between types of 

vertical and horizontal louvers. 

• There is no significance in noise reduction between 40% open grilles and 100% open 

grilles. However, there is significance in air temperature, air speed, and airflow 

patterns based on percentage of air vent open surface area, according to the CFD 

analysis. 

• There is no significance in noise reduction by 1 dB (A) drop when 1-milimeter (1/16 

inch) polyester fabrics cover solid wooden shading louvers. 

• NC values ranges from 46 to 50 depending on the use of shading louvers and 

orientation of shading louvers.  There were no significant differences between cases 
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of “open with grilles” and cases of “open without grilles.” In addition there is no 

significant difference in NC based on shading louver type. 

• It is expected that integrated shading louvers with sound absorbing materials can 

reduce noise transmission through ventilation openings in naturally-ventilated 

buildings. 

6.1.2 Summary of Phase II  

• There is overall noise reduction from 20 up to 32 dB (A) when sending sound source 

with a pink noise spectrum is 89 dB (A). 

• There is slight noise reduction from  2 to 4 dB (A) when shading louvers are at a 90 

degree angle (closed position) with 100% open vents in the inner and outer glass. 

• Compared to the reference case, overall NR values across the entire octave band 

center frequency range between 5 to 7 dB (A) when 100% open vents of the inner or 

outer glass is replaced with a compact silencer. 

• Compared to the reference case, overall NR values across the entire octave band 

center frequency range between 10 and 12 dB (A) depending on shading louver 

orientation when closed vent in the outer glass and 100% open vent in the inner glass. 

• Compared to the reference case, overall NR values across the entire octave band 

center frequency range between 14 and 17 dB(A) depending on shading louver 

orientation when closed vent in the outer glass and a compact silencer in the inner 

glass. 

• Compared to the reference case, the overall NR values across the entire octave band 

center frequency ranged between 5 and 7 at 125 Hz dB (A), between 7 and 13 dB (A) 
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at 1000 Hz, and between 12 and 18 dB (A) at 2000 Hz when a compact silencer was 

applied to either side of a glass. 

• Compared to the reference case, the overall NR values across the entire octave band 

center frequency ranged between 8 and 9 at 125 Hz dB (A), between 14 and 18 dB 

(A) at 1000 Hz, and between 23 and 25 dB (A) at 2000 Hz. when compact silencers 

were applied to both sides of the inner and outer glass, It implies that the application 

of compact silencers is significantly effective in noise reduction at low-, mid- and 

high-frequency bands. 

• The NIC values for cases, which are applied with compact silencers, are higher by 3 

up to 8 points than cases with no compact silencers.  

• It is expected that sound absorbing materials (e.g., compact silencers) to ventilation 

openings are effective in reducing noise transmission in high noise areas. 

6.2 Future Work 

6.2.1 Integrated shading louvers with windows for IEQ 

Based on the outcomes of a mixed-use study, future work might propose multi-

functional shading louvers for thermal, visual, and acoustical performance of building facades. 

The ultimate objective of this research is to investigate the multi-controls of integrated shading 

louvers with window openings in naturally-ventilated building facades for improved IEQ and 

building performance in urban environments. 

A preliminary simulation study showed the proportional relationship between airflow 

volume and percentage of air vent open surface area in the DSF cavity. An initial experimental 

study on a DSF mock-up demonstrated the high potentials of noise transmission loss by the 

configuration of shading louvers and the application of compact silencers. However, material 
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developments and design applications still need to be investigated to reach successful design 

solutions to naturally ventilated building facades for improved IEQ and building performance. 

The future development of the noise screening shading louvers and ventilation openings 

is designed to evaluate the concurrent thermal, visual, acoustical, and ventilation performance 

of shading louvers and ventilation windows. To that end, two types of louvers are proposed: (i) 

layered shading louvers composed of a perforated aluminum skin and a sound absorbing core 

and (ii) translucent honeycomb panels. First, two prototypes will be developed, designed, 

tested, and manufactured for thermal, visual, acoustical, and ventilation performance of 

shading louvers and ventilation openings. Second, developed noise screening shading louvers 

and window openings will be upgraded to sensor-operated shading louvers, responding to the 

outdoor temperature, illuminance levels, and noise levels. The orientation of each shading 

louver will mimic the diaphragm of a camera lens, which not only controls the amount of 

airflow and illuminance levels but also screens noise transmission.  

The future research project proposes that the design of shading louvers and ventilation 

openings, previously validated in this research, will have applications in retrofit situations and 

new buildings; it will transform the current building façade design industries further towards 

sustainability. Therefore, it is expected that the development of the noise screening shading 

louvers and ventilation openings will promote natural ventilation performance in high noise 

urban areas to reduce the use of HVAC systems, which consume 25% to 30% of the energy in 

a typical commercial building in the U.S.A. 
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6.2.2 Proposed mock-up settings 

Table 6.1 Proposed prototype test cases 

Mock-up 

setting 

Ventilation window opening size: 36”(W) x 36”(H) 

Shading louver size per each : 12”(W) x 36”(H) 

Reference 

case: 

Solid wood 

shading 

louvers 

 

Presentation of ventilation opening area 

Case 1: 100% 

36”(W) x 36”(H) 

Case 2: 66% 

24”(W) x 36”(H) 

Case 3: 44% 

24”(W) x 24”(H) 

  

       Used Material 

Prototype 1: 

layered 

shading 

louvers 

composed of a 

perforated 

aluminum skin 

and a sound 

absorbing core  

Presentation of ventilation opening area 

Case 4: 100% 

36”(W) x 36”(H) 

Case 5: 66% 

24”(W) x 36”(H) 

Case 6: 44% 

24”(W) x 24”(H) 

 
        Used Material  

Prototype 2: 

translucent 

honeycomb 

shading 

louvers 

 

 

 

 

 

 

Presentation of ventilation opening area 

Case 7: 100% 

36”(W) x 36”(H) 

Case 8: 66% 

24”(W) x 36”(H) 

Case 9: 44% 

24”(W) x 24”(H) 

 

    Used Material 
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6.2.3 Expectation 

The future research project aims not only to improve human comfort and health, but 

also to promote the sustainability of naturally-ventilated buildings, where shading louvers and 

ventilation windows are applied to building facades.  

The integrated façade designs using shading louvers and ventilation openings 

encourage passive design strategies that can minimize the use of HVAC systems which 

consequently reduce building energy consumption. In contrast to active mechanical systems, 

passive design strategies are carefully considered for integration with the local climate 

conditions resulting in building occupant comfort. Natural ventilation is one cost effective and 

energy saving strategy, where natural ventilation is feasible, operable ventilation windows can 

offer fresh airflow without the need for energy input. In addition to the multiple advantages of 

shading louvers to control solar radiation, noise screening shading louvers that allow for natural 

ventilation will provide a significant benefit to indoor air quality and acoustical comfort for 

building occupants.  

The integrated façade designs using shading louvers and ventilation openings 

encourage passive design strategies that minimize environmental energy demands and thus lead 

to reduced carbon dioxide emission. The optimum controls of shading louvers have several 

environmental benefits such as reducing cooling energy loads during outdoor hot weather 

conditions and improved daylight harvesting during potentially sunny days. In addition to the 

thermal and visual performance of shading louvers, integrated photovoltaic systems with 

shading louvers can not only minimize the use of fossil fuels but also maximize the use of 

renewable energy.  
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