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Abstract 

          Development of Bisamides as Kappa Opioid Receptor Agonists. The structure-activity 

relationship (SAR) expansion was carried out on bisamides KOR agonists. Previous four-step 

linear synthetic route was replaced by Ugi multicomponent reaction, affording final compound in 

one step. Parallel synthesis was adopted using Bohdan MiniBlock synthesis platform in 

combination with subsequent purification with MS-directed HPLC. A total of 80 analogues with 

diverse substitutions were prepared, including three pairs of enantiomers obtained by chiral HPLC 

separation of racemic precursors. All of the final compounds were tested in [35S]GTPγS functional 

assay. Enantiopure analogues were also accessed by arrestin2 imaging assay. Several analogues 

with improved potency and bias toward G-protein signaling were obtained. A useful SAR was 

established based on the biological results obtained, which would direct the study of this 

chemotype in future. 

          Potency Enhancement of Sulfonamide-based Kappa Opioid Receptor Antagonists. 

Structural modification on a sulfonamide-based KOR antagonists was accomplished. A total of 34 

analogues were prepared through linker replacement, constraint manipulation, and substitution 

introduction. All of the final compounds were assayed using a DiscoveRx PathHunter -arrestin 

assay platform. One compound with four-fold increase of potency (IC50 = 18.9 ± 4 nM) was 

obtained, compared with the lead compound (IC50 = 83.5 ± 20.3 nM). A putative binding mode of 

sulfonamide analogues with the KOR were generated based on the data obtained previously and 

this study. The enriched SAR and putative binding mode provide insights into the interactions 

between sulfonamide analogues and the KOR which will direct further study on this chemotype. 
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          Asymmetric Acyl Transfer Reactions Catalyzed by a Cyclic Peptide. Kinetic resolution 

of secondary alcohols by a cyclic peptide was described. The cyclic peptide was designed as a 

modified version of Miller’s peptide catalyst, which was synthesized in five steps. Single crystal 

X-ray experiments demonstrated that it adopted a conformation close to type II -turn. Selectivity 

of this proposed catalyst was examined on five secondary alcohols, with best selectivity factor as 

about 24.  

   

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Acknowledgments 

          First and foremost, I would like to express my sincere gratitude to my advisor Professor 

Jeffrey Aubé for his great mentorship and continued support over the past years. The 

encouragement and advice I received from Jeff helped grow both professionally and personally. 

His excellence of research and presentation inspire me as a student. I am truly grateful for having 

the opportunity to work in the Aubé lab. Any success I may achieve in future should arise from 

the training I received from the Aubé lab. 

          I want to thank Professors Tom Prisinzano, Apurba Dutta, Ryan Altman, and Michael Clift 

for their time and efforts to serve as members of dissertation committees. I also want to thank 

Professors Michael Rafferty and Jon Tunge for serving as committees of my comprehensive oral 

exams. I would like to thank other faculty members from the Department of Medicinal Chemistry 

and the Department of Chemistry for their teaching. 

          I would like to thank Professor Kevin Frankowski for his kind help and great discussions 

about the kappa opioid receptor projects. I also want to thank Professor Sarah Scarry and Dr. 

Aubrie Harland for their kind help and valuable suggestions on projects and dissertation writing. I 

would like to thank all the Aubé group members whom I have opportunities to work with.  

          I want to thank Professor Laura Bohn and her research group members for the wonderful 

collaboration on the kappa opioid receptor projects. I want to thank Professor Phil Mosier for 

generating the putative binding mode for sulfonamide analogues with the kappa opioid receptor. 

          I would like to thank Dr. Victor Day and Dr. Peter White for the X-ray diffraction 

experiments they did for me. I also want to thank Ben Neuenswander for the MS-directed HPLC 



vi 
 

purification and analysis. I want to thank Dr. Justin Douglas for the NMR experiments and 

discussion. 

          Lastly, I want to express the deepest gratitude to my family. I am deeply grateful to my 

parents for their unconditional love and support. I am always in debt to them. I feel so lucky to 

have my son and the happiness he bring to me. I want to express my deepest thanks to my wife for 

her love and support over years. This dissertation is dedicated in her honor. 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Table of Contents 

Abstract                                                                                                                                                        ⅲ 

Acknowledgments                                                                                                                              ⅴ 

Table of Contents                                                                                                                               ⅶ 

List of Figures                                                                                                                                   ⅸ 

List of Schemes                                                                                                                                   ⅺ     

List of Tables                                                                                                                                    ⅻ 

Chapter 1 Development of Bisamides as Kappa Opioid Receptor Agonists                                      1                    

  1.1 Introduction                                                                                                                                1 

          A Brief History of Opium and Opioid                                                                                         1  

          Opioid Receptor Subtypes                                                                                                      2 

          Pain Management and KOR as a Target for Pain Treatments                                                 3 

          KOR Potential for the Treatment of Pruritus/Uremic Pruritus                                                6 

          KOR Potential for the Treatment of Depression                                                                           8 

          KOR Agonists                                                                                                                              11 

          Discovery and Synthesis of Bisamide KOR Agonists                                                             14 

  1.2 Results and Discussion                                                                                                          15 

          Design and synthesis of analogues                                                                                      15 

          In Vitro Assay Studies                                                                                                           21 

  1.3 Conclusions                                                                                                                             31 

  1.4 References                                                                                                                                32 

 



viii 
 

Chapter 2 Potency Enhancement of Sulfonamide-based Kappa Opioid Receptor Antagonists        45 

  2.1 Introduction                                                                                                                              45 

          KOR Antagonists                                                                                                                     45 

          Sulfonamide KOR Antagonists                                                                                             48 

  2.2 Results and Discussion                                                                                                                52 

          Design and Synthesis of Analogues                                                                                          52 

          In Vitro Assay Studies                                                                                                               63 

  2.3 Putative Binding Mode                                                                                                                  69 

  2.4 Conclusions                                                                                                                                   72 

  2.5 References                                                                                                                                     73 

Chapter 3 Asymmetric Acyl Transfer Reactions Catalyzed by a Cyclic Peptide                                      79 

  3.1 Introduction                                                                                                                                     79 

  3.2 Results and Discussion                                                                                                                  83 

  3.3 Conclusions                                                                                                                                     88 

  2.4 References                                                                                                                                     89 

Experimental Section                                                                                                                           93 

  Procedure for Chapter 1                                                                                                                       94 

  Procedure for Chapter 2                                                                                                                      149 

  Procedure for Chapter 3                                                                                                                       219 

Appendices                                                                                                                                         235 

                

 



ix 
 

 

List of Figures 

Figure 1.1. Morphine and codeine                                                                                                          1 

Figure 1.2. Representatives of synthetic opioids                                                                                   2 

Figure 1.3. Representatives of NSAID                                                                                                4 

Figure 1.4. ICI199,441, spiradoline, and nalbuphine                                                                              5 

Figure 1.5. Loratadine and nalfurafine                                                                                                7   

Figure 1.6. Representatives of major subclasses of antidepressants                                                                  9 

Figure 1.7. Structure of nor-BNI                                                                                                                                      10 

Figure 1.8. Representatives of KOR agonists                                                                                       12 

Figure 1.9. Representative compounds illustrating validated KOR agonists from HTS                       14 

Figure 1.10 Quenching and purification survey                                                                                        17 

Figure 1.11. Building blocks and setup of first library                                                                                           18 

Figure 1.12. Building blocks employed in the second set                                                                                     19 

Figure 1.13. Structures of one-off set                                                                                              20 

Figure 1.14. Enantiopure bisamide analogues                                                                                                           21 

Figure 1.15. SAR summary of the bisamide chemotype KOR agonists                                                        31 

Figure 2.1. Representatives of morphine-derived KOR antagonists                                                      46 

Figure 2.2. JDTic, zyklophin, PF-04455242, and LY2456302                                                       46 

Figure 2.3. Representative compounds illustrating validated KOR antagonists from HTS                 49 

Figure 2.4. Sulfonamide analogues with various N-alkylation                                                                          50 

Figure 2.5. Two directions of constraint introduction                                                                                            51   



x 
 

Figure 2.6. Structures of simplified sulfonamide analogues                                                                               53 

Figure 2.7. Structures of sulfonamide analogues with amide and urea linkers                                           53 

Figure 2.8. Design of constrained compound 2.8                                                                                                    55 

Figure 2.9. JDTic inspired sulfonamide analogues                                                                                    57 

Figure 2.10. Structures of compound 2.19 to 2.29                                                                                                   61 

Figure 2.11. Pathhunter -arrestin assay principle                                                                                                 63 

Figure 2.12. Putative binding mode of 2.1 with the KOR                                                                                    71 

Figure 2.13. SAR summary                                                                                                                         72 

Figure 3.1. Kinetic resolution                                                                                                                79 

Figure 3.2. Representatives of oligopeptide catalysts                                                                                           80 

Figure 3.3.  Illustration of KR by Miller's catalysts                                                                                       81 

Figure 3.4. Representatives of Qu's tetrapeptide catalysts                                                                                  82 

Figure 3.5. Design of cyclic peptide 3.13                                                                                                         83 

Figure 3.6. Retrosynthetic analysis of 3.13                                                                                                           84 

Figure 3.7. X-ray crystal structure and conformation analysis of 3.13                                                          86 

 

 

 

 

 

 

 



xi 
 

List of Schemes 

Scheme 1.1. Representative Synthesis of Bisamide Chemotype                                                                     15 

Scheme 2.1. General Synthetic Route of Sulfonamide Analogues                                                                 50 

Scheme 2.2. Synthesis of Lead Compound 2.1                                                                                           52 

Scheme 2.3. Synthesis of Analogues with Amide and Urea Linker                                                                54 

Scheme 2.4. Synthesis of Compound 2.7                                                                                                     55 

Scheme 2.5. Synthesis of Constrained Compound 2.8                                                                                         56 

Scheme 2.6.  Initial Synthetic Route of Sulfonamide with Alkyl Substituted Diamine Linker         58 

Scheme 2.7. Two Reductive Amination Approaches to Boc-diamine Linker  

                      With Alkyl Substitution                                                                                                                    58 

Scheme 2.8. Synthesis of JDTic Inspired Sulfonamide-Group 1                                                          59                                            

Scheme 2.9. Synthesis of JDTic Inspired Sulfonamide-Group 2                                                            60 

Scheme 2.10. Synthesis of Compound 2.19 to 2.29                                                                                 62 

Scheme 2.11. Synthesis of Compound 2.30 to 2.32                                                                                         62 

Scheme 3.1. Kinetic Resolution of (±)-3.1 Reported by Sharpless                                                     80 

Scheme 3.2. Macrolactamization Synthetic Route of Cyclic Peptide 3.13                                                  84 

Scheme 3.3. Synthesis of Compound 3.19                                                                                                              85 

Scheme 3.4. Synthesis of Cyclic Peptide 3.13                                                                                                    86 

 

 

 

 



xii 
 

List of Tables 

Table 1.1. Bioactivities of the First Set of Bisamide Library                                                                             22 

Table 1.2. Bioactivities of the Second Set of Bisamide Library                                                                       25   

Table 1.3. Bioactivities of One-Off Bisamide Series                                                                                  27 

Table 1.4. Bioactivities of Enantiopure bisamide Series                                                                             30 

Table 2.1. KOR Antagonist Activity of Simplified Series                                                                                    64 

Table 2.2. KOR Antagonist Activity of Amide and Urea Linker Bearing Analogues                           64 

Table 2.3. KOR Antagonist Activity of 2.7 and 2.8                                                                                                65 

Table 2.4. KOR Antagonist Activity of JDTic Inspired Series-Group 1                                                      65 

Table 2.5. KOR Antagonist Activity of JDTic Inspired Series-Group 2                                                     66 

Table 2.6. KOR Antagonist Activity of Compound 2.19 to 2.29                                                                    67 

Table 2.7. KOR Antagonist Activity of Miscellaneous Series                                                                 68 

Table 3.1. Kinetic Resolutions with Cyclic Peptide 3.13                                                                                   87 

 



1 
 

Chapter 1 

Development of Bisamides as Kappa Opioid Receptor Agonists. 

Introduction 

A Brief History of Opium and Opioid 

          Opioid receptors are important targets for the treatment of pain. Clinically used analgesics 

like morphine (Figure 1.1), which was isolated originally from opium, act primarily through the 

mu opioid receptor (MOR) and remain the gold standard for the treatment of severe pain. Humans 

have been utilizing opium for religious or therapeutic purposes for a long time.1 It is believed that 

the Sumerians, inhabiting what is presently Iraq, cultivated poppies and isolated opium from their 

seed capsules at the end of the third millennium B.C. 

They called opium “gil,” the word for joy, and the 

poppy “hul gil,” plant for joy. It is suggested that 

opium originated from Sumeria then spread to the 

other parts of the old world. Opium was brought to India2 and China3 as early as the eighth century 

A.D., and then spread to all parts of Europe from Anatolia. Originally opium may have been 

ingested, taken by mouth or inhaled from heated vessel, at religious rituals.1 It was also used along 

with hemlock to help people die quickly and painlessly, owning to its known euphoric effect after 

administration. In addition, it was even used as a remedy to prevent excessive crying of children, 

in a cautious manner.4 Nevertheless, opioid drug abuse and tolerance were described in 

manuscripts in Turkey, Egypt, Germany, and England starting from 16th century. Nowhere was 

the problem of addiction greater than in China, where smoking opium became popular during the 
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mid of 17th century.3 Unfortunately, the reason and mechanism causing tolerance and dependence 

were completely unknown at that time.  

 

          It was not until 1806 that the active ingredient was isolated from opium by Sertürner and 

named morphine, after the Greek god of dreams, Morpheus.4 Shortly after its discovery, morphine 

was used for minor surgical procedures, postoperatives and chronic pain. In addition to morphine, 

a number of morphine related compounds were identified from opium, including codeine (Figure 

1.1) which is a methylated version of morphine used for pain management. Thereafter, medicinal 

chemistry efforts in the search for non-addictive analgesics yielded thousands of morphine 

analogues and structurally distinct opioids, including oxycodone, hydrocodone, pethidine, and 

fentanyl (Figure 1.2). These opioids are all MOR agonists and remain the most prescribed 

analgesics for the management of pain presently, though high abuse potential remains a concern.  

 

Opioid Receptor Subtypes 

          Opioid receptors belong to the G protein-coupled receptor superfamily. There are four 

subtypes of opioid receptors, including mu (), kappa (), delta (DOR), and 

nociceptin (NOP) opioid receptors. In 1973, three independent teams demonstrated the existence 

of opioid receptors in the nervous system. Pert and Snyder showed that tritiated naloxone 

https://en.wikipedia.org/wiki/Friedrich_Sert%C3%BCrner
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specifically bound to opioid receptors in both mammalian brain and guinea pig intestine, which 

supported that the opioid receptor was expressed in the nervous system, although at that time it 

was unknown which subtype.5 Soon after that, Simon and coworkers reported the stereospecific 

binding of tritiated etorphine to rat-brain homogenate.6 Additionally, Terenius and coworkers 

reported the stereospecific interaction between tritiated dihydromorphine and synaptic plasma 

membrane fraction of rat cerebral cortex.7 These three reports collectively lent strong support to 

the existence of a specific opioid receptor. A few years later, three distinct opioid receptor types 

were identified based on physiological observations.8-9 Each receptor was named after the drug or 

assay system with which it was characterized:  for morphine, KOR for ketocyclazocine, and 

the DOR for the mouse vas deferens. However, the opioid receptors were solely classified 

according to the physiology response until the first DOR was cloned in 1992.10 Though all 

subtypes of opioid receptors belong to GPCR family and share similar signaling pathways, their 

outcomes upon agonist binding are different. Activation of the MOR lead to a series of 

physiological responses including pain relief, euphoria, respiratory depression, immune 

suppression, and constipation.11-13 Similarly, activation of the KOR by endogenous ligands 

dynorphin, typically dynorphin A, could also lead to pain relief and anti-pruritus effect, but 

dysphoria is another negative effect of its activation.13-16 The  activation of the DOR by its 

endogenous ligands called enkephalins leads to analgesia, immune stimulation, and respiratory 

depression,13,17,18 while the most recently discovered nociceptin receptor regulates a wide range of 

physiological functions including sensations of pain, food intake, and memory processes.19-22 

 

Pain Management and KOR as a Target for Pain Treatments 
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          Pain is usually associated with a wide range of injuries and diseases, and can be considered 

a disease itself. Acute pain is usually a normal sensation triggered in the nervous system to alert 

people of possible injury. In other words, acute pain is a necessary and helpful pain and prevents 

people from further injury.23 However, chronic pain persists and keeps firing signals in the nervous 

system for a longer than useful or helpful duration of time.24 Pain is such a universal response that 

millions of American people suffer from acute or chronic pain annually.25 Chronic unrelieved pain 

often results in longer hospital stays, rehospitalization, and increased outpatient visits. As a result, 

approximately $635 billion are cost due to pain related problems besides low work productivity. 

Currently, the analgesics used to alleviate pain can be categorized into two general classes: 

nonsteroidal anti-inflammatory drugs (NSAIDs) and opioids. 

 

          NSAIDs, represented by aspirin and ibuprofen (Figure 1.3), are amongst the most commonly 

used drugs for the treatment of pain associated with inflammation. The target of NSAIDs was 

identified as the cyclooxygenase (COX) enzyme that was essential in the synthesis of 

prostaglandin.26 Thus far, two isoforms of COX are identified in human, which are COX-1 and 

COX-2.27,28 Interestingly, COX-1 is expressed constitutively while COX-2 is found in low levels 

under normal conditions but overexpressed during inflammation.29 Thus, non-selective inhibition 

of COX-1/2 for a prolonged period with traditional NSAIDs like aspirin or ibuprofen, is not 
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preferred and could result in ulcers due to the reduced production of protective prostaglandin found 

in the stomach lining.30 COX-2-selective NSAIDs, represented by celecoxib (Figure 1.3), are 

favored in terms of minimal gastrointestinal side effects. 

 

 

          The opioid class of analgesics has been used for the treatment of pain since the discovery of 

morphine, and remains the “gold standard” for pain management. However, the use of most opioid 

analgesics is limited by side effects including addiction potentials, respiratory depression, and 

constipation.31 Moreover, use of opioid analgesics leads to development of tolerance and 

dependence after patients are exposed to these drugs for a long period of time. In the past several 

decades, tremendous efforts have been spent toward the understanding and development of opioid 

analgesics with less side effects.32-36 KOR agonists are of great interest in terms of development 

of pain-relief treatment without addiction potential, since they do not activate the dopamine reward 

pathway. KOR agonists alleviated pain with good potency in a wide variety of visceral pain models 

in which rank order of analgesic potencies were consistent with the results from cloned 

receptors.37-39 Furthermore, the analgesic effects of KOR agonists could be blocked by peripherally 

restricted KOR antagonists, indicating that these KOR agonists exert analgesic effects through 

periphery neuronal system.40-43 However, KOR agonists produced side effects like dysphoria, 
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sedation, and diuresis, which led to the discontinuation of several clinical trials (ICI199441, 

spiradoline, Figure 1.4.).44-46 Thereafter, research focus shifted to investigation of peripherally 

selective KOR agonists that would avoid side effects like sedation and dysphoria by not crossing 

the blood brain barrier.44 Another attempt to develop analgesics with an ideal pharmacological 

profile was the development of mixed-efficacy KOR/MOR agonists, which could produce strong 

analgesic effects devoid of side effects like euphoria and dysphoria. For instance, nalbuphine 

(Figure 1.4), a mixed-efficacy KOR/MOR agonist, exhibited significant analgesic effects when 

compared with placebo in a female patient group.47 However, the difference of analgesic effects 

between nalbuphine and placebo were not dose dependent in the male group. Furthermore, in this 

experiment, greater analgesic effects of nalbuphine were observed in female group compared with 

the male group at all dose levels. Nalbuphine is indicated for the moderate to severe pain, and is 

the treatment of choice especially in obstetrical analgesia during labor and delivery. Overall, the 

KOR remains an attractive target in terms of the development of effective analgesic with less side 

effects, especially less addiction potential. 

 

KOR Potential for the Treatment of Pruritus/Uremic Pruritus 

          Pruritus is defined as an unpleasant sensation that provokes the desire to scratch, which is 

the predominant symptom of skin disease and can be caused by a variety of dermatological 

conditions or systemic disorders like uremia, chronic hepatic obstruction, and haematological 

disorders, etc.48-49 However, the pathophysiology of pruritus is still poorly understood, there is no 

universally accepted therapy and the development of new effective treatment for pruritus is 

challenging. Uremic pruritus is a common complication of end-stage renal disease (ESRD), which 
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is observed in about one-third of dialysis patients. The pathogenesis of uremic pruritus is 

multifaceted and may include uremia-related abnormalities (particularly involving calcium, and 

phosphorus levels and parathyroid hormone metabolism), accumulation of uremic toxins, systemic 

inflammation, cutaneous xerosis, and common co-morbidities, such as diabetes mellitus and viral 

hepatitis. Though the understanding about pathophysiology of uremic pruritus is still not complete, 

topical and systemic agents, as well as broadband ultraviolet phototherapy, are proven to be 

beneficial.50  

          The use of antihistamines as systemic agents, especially H1-receptor antagonists, are 

supported by an old trial for the treatment of uremic pruritus.51 However, no significant difference 

was found between H1-receptor inverse agonist loratadine and placebo.52 In clinical setting, 

antihistamines are still used as first-line therapy for uremic pruritus though frustrating results are 

often observed and further clinical trials are needed to confirm the effectiveness of this class of 

drugs.49  

 

          A relatively new hypothesis that has received increased attention is that balance between 

MOR and KOR can regulate pruritus. This hypothesis was developed based on two main 

phenomena: (a) itch was induced by central MOR in mice experiments by injecting morphine;54 

(b) dynorphin suppressed itch by binding and activating KOR. In addition, naltrexone as a MOR 
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antagonist is proven to be effective for the treatment of cholestatic pruritus.15 In an attempt to 

develop new analgesics, a synthetic opioid called nalfurafine (Figure 1.5) was discovered.55-56 In 

Phase II clinical trials of treating patients of postoperative surgery, nalfurafine possessed sufficient 

analgesic effect but an insufficient safety margin.55 However, nalfurafine was shown to suppress 

the histamine-induced scratching behavior in mice.56-57 Moreover, this compound was proven to 

be effective in treating morphine induced scratching behavior in mice, which was resistant to the 

treatment of antihistamine drugs.58 Taken together, it is suggested that nalfurafine is more effective 

than antihistamines at treating opioid-derived pruritus. Thus, nalfurafine was moved to clinical 

trials aiming at the development of antipruritus agent, followed by confirmation on various animal 

itching models. It was reported that nalfurafine is significantly effective than placebo in the 

treatment of uremic pruritus. In addition, only mild to moderate adverse drug reactions (e.g. 

insomnia) were observed in a Phase III clinical trial, which were transient and readily resolved. 

Thus, nalfurafine was considered as effective and safe in the treatment of uremic pruritus. A one-

year open-label study about nalfurafine hydrochloride was carried out, during which neither 

tolerance or dependence was observed. In 2009, nalfurafine was approved for clinical use in Japan 

and have become the first KOR agonist on the market for the treatment of pruritus. In conclusion, 

the KOR is steadily rising as target for the treatment of uremic pruritus. Further research and 

investigations are needed for a complete understanding of role of the KOR and KOR agonist in 

pruritus. 

 

KOR Potential for the Treatment of Depression 
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          Depression is a mood disorder that causes a persistent feeling of sadness and loss of interest. 

Depression can be classified into several subcategories including major depression, persistent 

depressive disorder, seasonal affective disorder, and perinatal depression, and psychotic 

depression. According to World Health Organization, more than 300 million people worldwide 

suffer from depression.59 National Institute of Mental Health estimated that approximately 16 

million adults in United States had at least one major depressive episode in 2012.60 Currently, most 

prescribed antidepressants (Figure 1.6) are divided into subclasses including tricyclics 

antidepressants (TCAs, e.g. imipramine), monoamine inhibitors (MOAIs, e.g. selegiline), selective 

serotonin reuptake inhibitors (SSRIs, e.g. fluoxetine), and serotonin–norepinephrine reuptake 

inhibitors (SNRIs, e.g. venlafaxine). Despite the availability of antidepressants, it is still 

challenging to treat depression and avoid relapse. Unfortunately, stress is a prominent trigger in 

depression relapse and is one of the most common experiences in daily life. In fact, the rate of 

depression relapse is about 80%.61 

 

 

          The opioid system modulates dopaminergic signaling in the brain. Opposing effects on 

mesolimbic dopamine system were observed via activation of MOR and KOR, with MOR agonists 

increasing dopamine levels while KOR agonists decreasing levels of dopamine.62 In addition, 
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activation of  the MOR produced euphoria, whereas KOR activation led to dysphoria and 

psychotomimetic effects in human.63 Furthermore, anhedonia-, dysphoria-, and anxiety-like 

effects were observed in rodents upon activation of the KOR.64-65 The location of KOR and 

distribution of dynorphin in the brain are critical for the physiological response of KOR 

activation.66-68  

          KOR activation by acute stress can facilitate the motivation to escape from threats. However, 

sustained KOR activation resulting from chronic stress can have adverse effects such as increased 

risk of depression, increased propensity to participate in drug-seeking behaviors, and increased 

drug-craving.65 These adverse effects are believed to occur via a mechanism involving increased 

levels of dynorphin.69 Cyclic adenosine monophosphate (cAMP) response element binding protein 

(CREB) function in the nucleus accumbens (NAc) could be increased by rewarding and stressful 

stimuli.70 In addition, subsequently increased dynorphin level resulting from activation of CREB 

after stress stimuli could contribute to symptoms of emotional numbing.71 Furthermore, elevated 

CREB function in NAc elicited the equivalent signs of major depression in rodents according to 

several studies.72-73 Stress as a trigger for addictive as well as depressive disorders, was shown to 

activate CREB in the NAc.73 In contrast, antidepressant-like effects indistinguishable from 

standard antidepressants was observed by disruption of CREB function in NAc.70 In summation, 

activation of CREB in NAc mediates aversive or depressive-like symptoms. 

          The profound influence on behavior by the KOR agonists are 

thought to reflect motivational and emotional states in animal 

models of depression and anxiety, which lead to interest in use of 

selective KOR antagonists as potential therapies for treating mood 

disorders.75-76 KOR antagonist nor-BNI (Figure 1.7) produced 
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antidepressant-like effects in the forced-swim tests (FST) in rats, which was followed up by other 

studies with similar findings.69 In addition, KOR antagonists inhibited stress-induced, but not 

cocaine-primed, reinstatement of cocaine-associated conditioned place preference (CCP) in 

mice.77-78 Furthermore, this stress-induced reinstatement of CPP in mice was abolished by genetic 

deletion of the KOR or prodynorphin.80 Overall, KOR antagonists were demonstrated to be 

potential therapies of stress-induced depression and stress triggered relapse of drug addiction.  

 

KOR Agonists 

          Numerous of KOR agonists have been reported to date, which can be roughly classified in 

several categories. The first category is morphine-derived KOR agonists, which feature a 

morphinan scaffold, like 6´-guanidinonaltrindole (6´-GNTI, Figure 1.8) or nalfurafine (discussed 

above). Compound 6´-GNTI, as a DOR-KOR heteromer-selective agonist,79 produced a prolonged 

antinociceptive response in a rat behavioral model of thermal allodynia.80 In addition, 6´-GNTI 

was a potent partial agonist at the KOR for G-protein activation (EC50 = 1.6 ± 1.3 nM,  Emax = 64 

± 6%) while it did not recruit arrestin to the KOR.81 Considering arrestin recruitment is an essential 

step in GPCR downregulation (responsible for tolerance) and induction of an array of kinase 

activation and signaling (believed to be responsible for side effects), 6´-GNTI is an attractive 

candidate to undergo further investigation as a KOR agonist.  

          The second scaffold category consists of arylacetamides, including U-50,488, U69,593 

(Figure 1.8), and, as previously described, spiradoline. U69,593 was originally prepared as 

[3H]U69,593 for the in vitro studies as a standard in 1985 as no tritiated ligand selective for KOR 

was available prior to its discovery.82 This tritiated ligand was active on the mouse  tail flick test 
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with an ED50 of 3.6 mg/kg, which was close to its analogue U50,488 and morphine (ED50 = 2.7 

and 1.6 mg/kg, respectively). In cross-tolerance studies, the EC50 of U69,693 was lightly increased 

to 7.0 mg/kg by chronic administration of morphine. In comparison the EC50 of U69,693 was 

increased from 3.6 to 50 mg/kg, by chronic dosing of U50,488, indicating U69,693  exerted its 

analgesic effects through KOR rather than MOR.82 The binding affinity of U69,693 to the KOR 

was much higher than that with MOR and DOR (approximately 100- and 2830-fold, 

respectively).83 Thus, this compound has been predominantly used as a tool compound in research 

owning to its high selectivity for the KOR over the MOR and DOR. In addition, this compound 

produced analgesic effect in animal models using rhesus monkeys. However, U69,593 suppressed 

respiration of rhesus monkeys in a dose-related manner.83 Despite the good selectivity for KOR 

and effectiveness in analgesic studies using animals, the development of U69,593 as analgesic 

therapy was hindered by its side effects.  

 

          The third scaffold category is neoclerodane diterpenes isolated from the ethnomedical plant 

Salvia divinorum. As a representative in this category, salvinorin A was the first reported 

nonnitrogenous opioid receptor agonist, demonstrated to be a powerful hallucinogen in humans.84 

Salvinorin A is unique from several aspects: (a) it is the first plant-derived KOR agonist with high 
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selectivity over the MOR and DOR; (b) it has no structural resemblance to any previously known 

KOR agonist; (c) the hallucination effect is not mediated by 5-HT2A like typical hallucinogen. 

Salvinorin A was shown to be highly selective for the KOR (Ki = 4.3 nM) over the MOR and DOR 

(both Ki > 5,000 nM) in radioligand binding assays.85 Sedative-like and locomotor-decreasing 

effects were observed in rodent and non-human primate models after admiministration of 

salvinorin A. In addition, the effects of salvinorin A in humans could be blocked by naltrexone, 

confirming the hallucination effect was mediated by the KOR.86 Besides hallucination, salvinorin 

A suffers from a very short duration of action. Thus, efforts were carried out to improve 

pharmacological profile and phamarcokinetics of salvinorin A.87-88 

          The last scaffold category is peptide-derived analogues. Peptides are interesting in terms of 

their high hydrophilicity, which intrinsically prohibit them from crossing biological membranes 

passively.89 Thus, it is believed that peptides possess the potential to be developed as peripherally 

selective KOR agonist to avoid side effects caused by activation of KOR in CNS. A tetrapeptide 

named CR665 (Figure 1.8), identified as a KOR agonist, consist of all D-amino acids.89-90 

Interestingly, this peptide is not structurally related to KOR endogenous ligands. CR665 was 

shown to be highly selective for the KOR (Ki = 0.24 nM) over the MOR and DOR (approximately 

17,000- and 85,000-fold, respectively) in radioligand binding assays. In addition, high potency and 

efficacy (EC50 = 0.03 nM, Emax = 130%) was demonstrated in [35S]GTPS binding assays.  More 

importantly, higher doses of this compound were required to induce centrally-mediated effects in 

the rotarod assay (548-fold higher dose), and antinociception determined in the mouse tail-flick 

assay (>1429-fold higher dose) after peripheral administration, indicating its peripheral selectivity. 

With the satisfying results of preclinical studies, CR665 was tested in Phase I clinical trials.91 This 

peptide significantly increased the pain rating threshold to esophageal distension (a type of visceral 
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pain model), but reduced the pain tolerance threshold to skin pinching. The side effect was mainly 

limited to mild pruritus at the site of administration and to mild facial tingling which was believed 

to be associated with KOR activation. Further updates about this peptide in clinical trials are not 

currently available. 

 

Discovery and Synthesis of Bisamide KOR Agonists 

          To search for novel KOR modulators with novel scaffold and therapeutic potential, a high 

throughput screening (HTS) campaign was initiated by collaborative efforts of Specialized 

Chemistry Center (the University of Kansas) and Sanford-Burnham Medical Research Center 

(California). In this HTS campaign, the bisamide class (chemotype I) KOR agonists was 

discovered, along with three other new classes of KOR agonists (Figure 1.9). 92 

 

          ML139 is attractive in terms of: (a) good selectivity for the KOR over the MOR and DOR, 

and no measurable affinity for other 41 CNS-relevant targets; (b) a novel scaffold without any 

resemblance to previously known opioid modulators; (c) modular structure allowing for selective 

improvement of unfavorable properties while retaining the positive attributes. Thus, bisamide class 
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was prioritized for optimization toward probe molecule nomination. The probe discovery efforts 

were carried out with a four-step linear synthetic route (Scheme 1.1). For instance, the synthesis 

of hit molecule ML139 began with DCC-promoted amide coupling between N-boc amino acid and 

cyclohexylamine, which afforded an N-boc amino amide intermediate. Then, the boc group was 

removed with a 1:1 mix of TFA and DCM, yielding a free amine. Then, the free amine was 

alkylated by reductive amination with thiophene-2-carboxaldehyde, followed by acylation to 

afford the desired compound. By using this route, 10 analogues were prepared. However, none of 

them possess higher potency than ML139. In addition, the purity profiles are not obtained for 

majority of these analogues.92 Thus, it is not convincing to draw a structure activity relationship 

(SAR) based on the preliminary studies on this class until enough analogues with decent purity 

would be available. 

 

 

Results and Discussion 

Design and synthesis of analogues 
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          In the preliminary study on this bisamide class of KOR agonists, a four-step linear synthetic 

route was established which afforded 10 analogues. My goal on this project is to streamline the 

synthesis of the bisamide class of KOR agonists and provide analogues with new structural 

elements to expand the SAR.   

          Multicomponent reactions (MCRs) are one pot reactions in which more than two starting 

materials react to form a final product.93-94 This convergent transformation is attractive in terms of 

atom economy that the majority if not all of the atoms of starting materials are incorporated in the 

product. In addition, MCRs are efficient, since it takes one step to install multicomponent into one 

molecule rather than several steps. The efficient and easy access to biologically relevant 

compounds by MCRs makes them useful in drug discovery. With this concept in mind, we noticed 

the scaffold of bisamide class of KOR agonists can be accessed by Ugi multicomponent reaction 

which use ketone, amine, carboxylic acid, and isocyanide as starting materials.95 To fully take 

advantage of this one-step transformation and make the analogue synthesis more efficient, the 

reaction conditions were modified for parallel synthesis on the Bohdan MiniBlock synthesis 

platform, followed by MS-directed HPLC purification. Then quenching methods (TFA vs 

Amberlyst 15) and purification methods were briefly surveyed based on a model reaction. (Figure 

1.10). Both methods were efficient enough to quench the uncomsumed isocyanide and remove its 

unpleasant smell. However, TFA was chosen as the reagent to quench the reaction, since it gave 

higher yield and was easier to handle than Amberlyst 15. 
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          Once the reaction condition and workup method were finalized, the first set of analogues 

was proposed with diverse building blocks (Figure 1.11). Cyclohexanone and cyclopentanone 

were chosen as ketone components to briefly survey how a 5- vs 6-membered ring ketone impacts 

the biological activity.  Four amines were selected as amine components, with furfurylamine and 

benzylamine as bioisosterie of 2-thiophenemethylamine to probe their influence on bioactivity and 

to potentially bypass metabolic liability issues associated thiophene moiety, with 

tetrahydrofurfurylamine, cyclohexanemethylamine as saturated version of furfurylamine and 

benzylamine for comparison and to evaluate if there would be pi interactions between ligand and 

receptor. Three carboxylic acid components were chosen including picolinic acid, nicotinic acid, 

and isonicotinic acid in order to survey the influence on the bioactivity by the position of nitrogen 

atom on pyridine ring. Lastly, cyclohexyl isocyanide and 2,6-dimethylphenyl isocyanide were 

nominated as isocyanide components to compare impacts by aromatic ring and aliphatic ring on 
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bioactivity. By every possible combination, 48 reactions were set up using two Bohdan 

MiniBlocks, each one accommodating 24 reaction tubes. The reactions were run at room 

temperature for 24 h in methanol with agitation from a shaker station. Then each reaction was 

quenched with TFA, followed by 30 min of shaking on the shaker station. Mixtures of each 

reaction was concentrated under N2 and was then submitted for purification by MS-directed HPLC. 

A total of 47 analogues (Figure 1.12) were obtained with high purity (43 analogues with 95% and 

above purity, 4 analogues with 90%-94% purity), which were suitable for biological assays. The 

only failed reaction was due to the leaking of the reaction tube. 

  

          With the success of synthesis and purification of first set of analogues, a second set was 

proposed to explore the ketone/aldehyde scope, by fixing the carboxylic acid, amine and 

isocyanide while using a different ketone or aldehyde component (Figure 1.12) for each reaction. 

The setup of reaction and subsequent purification were the same with that of the first set. A total 
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of 13 compounds out of 22 reactions 

were obtained from the second set with 

satisfying purity (see experimental 

section). However, products were not 

isolated from reactions using sterically 

hindered ketones (Q, U, and V), 1,1,1-

trifluoroacetone (T), and aliphatic 

aldehydes (R and S) due to the low 

percentage of product in the crude 

sample. Two products were obtained in 

reaction with ketone G. In contrast, only 

one product was isolated from each 

reaction (using ketones B, C, D, E, F) 

although two products were expected. 

The reason causing this phenomena was not quite understood.  It may be caused by 

diastereoselectivity or one of the products was lost during MS-directed HPLC purification. After 

obtaining some interesting bioassay results of this set of analogues, four reactions (using ketones 

C, E, F, and G) were revisited on relatively larger scale, which all afforded two diastereomeric 

products after challenging but successful chromatography separations. The relative 

stereochemistry of each of the four pairs of diastereomers were determined by single crystal X-ray 

diffraction experiments.  

          Nine one-off analogues were designed and synthesized separately in flasks rather than 

Bohdan MiniBlocks (Figure 1.14). The first two analogues (1.60 and 1.61) in this set were 
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designed to replace the thiophene or furan ring by a metabolically more stable 2-fluorophenyl ring 

while another two analogues (1.62 and 1.63) contained an n-butyl group on the spiro amide 

nitrogen to compare the effects of aliphatic chain with that of aromatic or aliphatic rings used 

previously. The next four analogous (1.64 to 1.67) were designed to see the effects of chain length 

between the phenyl ring and nitrogen atom. Another two analogues (1.68 and 1.69) were designed 

to further explore the ketone component. The last analogue (1.70) was obtained as a hydrolyzed 

byproduct formed during the purification of its precursor (1.69) by reverse-phase flash column 

chromatography. 
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          When using a non-symmetric ketone as starting material, a stereogenic center is formed at 

the amino acid carbon. To explore how the absolute configuration of this stereogenic center would 

influence the bioactivity, three pairs of 

enantiomers were designed as a set 

(Figure 1.14). By gradually increasing the 

size of R1 while fixing R2 as methyl 

group, the difference of biological 

activities between the two enantiomers (eudismic ratio) would be explored.   The three racemic 

compounds was synthesized using Ugi reaction, each of which was then separated with chiral 

HPLC to afford a pair of enantiomers. Then, one enantiomer from each pair was randomly selected 

for single crystal X-ray experiments. The absolute configuration was unambiguously determined 

by anomalous scattering of Cu X-rays by the bromine atoms. The activity and eudismic ratio will 

be discussed in the biological assay section. 

 

In Vitro Assay Studies 

          To assess the biological activity of bisamide compounds (1.1 to 1.73), two assay methods 

were employed, with [35S]GTPbinding assays as the primary screening method and arrestin2 

imaging assays as the secondary method for specific interesting compounds. In [35S]GTPbinding 

assays, cellular membranes expressed with KOR receptor were collected, then treated with drug 

molecules in the presence of radioactive non-hydrolyzable [35S]GTP. Membranes were washed 

to remove the non-bound [35S]GTP, then radioactivity of membranes were measured to determine 

the KOR activation as a function of [35S]GTPbinding. The arrestin2 imaging assays were run 
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in 384 well plates. The U2OS-hKOR-arrestin2-GFP cells were expressed the KOR and GFP-

tagged arrestin2 which upon recruitment to the receptor will form small fluorescent aggregates 

(spots). The spot count per cell was determined and used as a measure of the KOR activation. 

          In the first set of bisamide library, 47 compounds (1.1 to 1.47) were synthesized using two 

Bohdan MiniBlocks, in which compound 1.1 which was made previously during the previous SAR 

study and used as starting point in this set. All of the bioactivity data from this set are listed in the 

Table 1.1. When the 2-pyridyl group of 1.1 is replaced with a 3- or 4-pyridyl group, the resulting 

compound were completely inactive (1.3 and 1.5). Bioactivity was also lost when replacing 2-

pyridyl group on 1.2 with 3- or 4-pyridyl group (1.4 and 1.6). This trend was observed again in 

another subset (1.36, 1.38, and 1.40), suggesting the nitrogen atom on 2-pyridyl group was 

interacting with receptor. When the furan group on 1.1 was replaced with an aromatic phenyl group, 

decreased potency was observed (1.36, EC50 = 140.4 ± 35.7 nM). However, aliphatic rings 

(cyclohexyl group) replacement of furan were not tolerated (1.42). Similar phenomena were 

observed in another subset (1.2, 1.7, and 1.43), indicating that the furan could be involved in pi 

interactions with the receptor which could not be established by aliphatic rings. Replacing the left 

cyclohexyl group on 1.1 by an aromatic 2,6-dimethylphenyl group led to decreased activity (about 

3-fold). The ketone effects on bioactivity were mild, which somehow were dependent on other 

components (1.1 vs 1.2, 1.12 vs 1.13, and 1.36 vs 1.37).  

              Table 1.1. Bioactivities of the First Set of Bisamide Library 

cmpd. 

# 
 

KOR ([35S]GTP) 

R1 R2 R3 
aEC50 ± SEM 

(nM) 
Emax± SEM 
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1.1 

 

2-furyl 2-pyridyl 
55 ± 10 

(n = 3) 
97 ± 1 

1.3 2-furyl 3-pyridyl 11210 77 

1.5 2-furyl 4-pyridyl NC  

1.8 2-tetrahydrofuryl 3-pyridyl NC  

1.10 2-tetrahydrofuryl 4-pyridyl NC  

1.12 

 

phenyl 2-pyridyl 
480 ± 104 

(n = 4) 
96 ± 2 

1.14 phenyl 3-pyridyl NC  

1.16 phenyl 4-pyridyl NC  

1.18 cyclohexyl 2-pyridyl 15120 84 

1.20 cyclohexyl 3-pyridyl NC  

1.22 cyclohexyl 4-pyridyl NC  

1.24 2-furyl 2-pyridyl 
153 ± 29 

(n = 4) 
97 ± 0 

1.26 2-furyl 3-pyridyl NC  

1.28 2-furyl 4-pyridyl NC  

1.30 2-tetrahydrofuryl 2-pyridyl NC  

1.32 2-tetrahydrofuryl 3-pyridyl NC  

1.34 2-tetrahydrofuryl 4-pyridyl NC  

1.36 

 

phenyl 2-pyridyl 
140 ± 36 

(n = 3) 
98 ± 1 

1.38 phenyl 3-pyridyl NC  

1.40 phenyl 4-pyridyl NC  

1.42 cyclohexyl 2-pyridyl >10000  

1.44 cyclohexyl 3-pyridyl NC  

1.46 cyclohexyl 4-pyridyl NC  

cmpd. 

# 
 

KOR ([35S]GTP) 

R1 R2 R3 
aEC50 ± SEM 

(nM) 
Emax± SEM 

1.2 

 

2-furyl 2-pyridyl 
58 ± 15 

(n = 3) 
99 ± 1 

1.4 2-furyl 3-pyridyl bNC  

1.6 2-furyl 4-pyridyl bNC  
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1.7 2-tetrahydrofuryl 2-pyridyl 12410 106 

1.9 2-tetrahydrofuryl 3-pyridyl bNC  

1.11 

 

2-tetrahydrofuryl 4-pyridyl bNC  

1.13 phenyl 2-pyridyl 
281 ± 51 

(n = 4) 
95 ± 2 

1.15 phenyl 3-pyridyl bNC  

1.17 phenyl 4-pyridyl bNC  

1.19 cyclohexyl 2-pyridyl bNC  

1.21 cyclohexyl 3-pyridyl bNC  

1.23 cyclohexyl 4-pyridyl bNC  

1.25 2-furyl 2-pyridyl 
150 ± 21 

(n = 3) 
95 ± 0 

1.27 2-furyl 3-pyridyl bNC  

1.29 2-furyl 4-pyridyl bNC  

1.31 2-tetrahydrofuryl 2-pyridyl bNC  

1.33 2-tetrahydrofuryl 3-pyridyl bNC  

1.35 2-tetrahydrofuryl 4-pyridyl bNC  

1.37 

 

phenyl 2-pyridyl 
67 ± 7 

(n = 4) 
98 ± 1 

1.39 phenyl 3-pyridyl bNC  

1.41 phenyl 4-pyridyl bNC  

1.43 cyclohexyl 2-pyridyl bNC  

1.45 cyclohexyl 3-pyridyl bNC  

1.47 cyclohexyl 4-pyridyl bNC  

a [35S]GTP functional assay (Membrane G protein Signaling) with n = 1 unless noted, 

compared to U69,693 (EC50 = 35 ± 4 nM); bNC: non-convergent curve caused by 

insignificant potency. 
 

 

          In the second set of bisamide library, 16 compounds (1.48 to 1.59, including four pairs of 

diastereomers) were synthesized, in order to expand the ketone scope of the reaction and explore 

their effects on bioactivity (Table 1.2). The first compound 1.48 was a methylated version of 

compound 1.2 (from first set). However, the relative stereochemistry was not assigned and a 
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decreased bioactivity (about 2-fold) was observed by this methylation. Effects of substituents on 

cyclohexanone moiety of 1.1 were explored by compounds 1.49 to 1.54. Two diastereomeric 

compounds (trans-1.49 and cis-1.49) were methylated version of 1.1 at the C-2 position, 

demonstrating increased bioactivity with trans-methylation (trans-1.49, relative to spiro amide 

nitrogen on C-1 positon) and decreased bioactivity with cis-methylation (cis-1.49). Similarly, 

methylations at the C-4 position of ketone moiety of 1.1 resulted in 5-fold increase of potency for 

trans-1.51 and 2-fold decrease of potency for cis-1.51. By increasing the size of substituents at C-

4 position, trans-tert-butyl group and trans-phenyl groups led to decreased bioactivity compared 

with cis-methylation (trans-1.51 vs trans-1.52, trans-1.51 vs trans-1.53). Not surprisingly, the 

cis-tert-butyl group and cis-phenyl group were not favored (cis-1.52 and cis-1.53) compared with 

the corresponding trans-diastereomers (trans-1.52 and trans-1.53). The methylation at C-3 

position (1.51) resulted in much lower bioactivity (16-fold) compared with 1.1, whose 

stereochemistry was not assigned. Tetramethylation at 3- and 5-position (1.54) was detrimental to 

the bioactivity. Expanding of the ring size of ketone moiety to 7-member (1.55) led to a slightly 

increased bioactivity (2-fold). But further expanding the ring size to 8-member (1.56) resulted in 

an equally potent compound compared with 1.1. Heterocycle replacements afforded 3 compounds 

(1.57 to 1.59), with slightly increased bioactivity for 1.57 and decreased bioactivity for 1.58 and 

1.59. 

                  Table 1.2. Bioactivities of the Second Set of Bisamide Library 

Cmpd.# 

 

KOR ([35S]GTP) 

R1 R2 
aEC50 ± SEM 

(nM) 
Emax± SEM 
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1.48 

 

112 98 

trans-1.49 

 

9 ± 4 

(n = 2) 
99 ± 1 

cis-1.49 

 

224 132 

1.50 

 

806 95 

trans-1.51 

 

10 ± 5 

(n = 2) 
95 ± 1 

cis-1.51 

 

113 102 

trans-1.52 

 

44 106 

cis-1.52 

 

119 88 

trans-1.53 

 

45 95 

cis-1.53 

 

371 ± 126 

(n = 2) 
94 ± 0 

1.54 

 
5476 84.7 

1.55 

 

24.4 ± 7.7 

(n = 3) 
98 ± 1 

1.56 

 

49.0 99 

1.57 

 

32.4 ± 8.9 

(n = 2) 
100 ± 1 
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1.58 

 

197.2 ± 56.1 

(n = 2) 
99 ± 0 

1.59 

 

87 ± 9 

(n = 3) 
96 ± 1 

a [35S]GTP functional assay (membrane G protein signaling) with n = 1 unless noted, 

compared to U69,693 (EC50 = 35 ± 4 nM). 

 
 

          A total of 11 compounds in the one-off set were prepared, with their bioactivity data listed 

in the Table 1.3. The replacement of the furan ring on 1.1 with a 2-fluorophenyl group was shown 

to benefit the bioactivity (1.60, 2-fold increase). Not surprisingly, replacing 2-pyridyl of 1.60 by 

4-pyridyl was shown to be detrimental to bioactivity. Similarly, the next two analogues (1.62 and 

1.63) were not active, containing 3- and 4-pyridyl groups, respectively. The compounds 1.64 was 

designed with increased length (two carbon away) between the aromatic ring and nitrogen atom, 

which turned out to be detrimental to bioactivity. Not surprisingly, replacing 2-pyridyl of 1.64 with 

3- or 4-pyridyl (1.65 and 1.66) did not restore the bioactivity. In contrast, compound 1.67 was 

designed by attach the phenyl ring directly on the nitrogen atom, which resulted in complete loss 

of bioactivity. Another two analogues (1.68 and 1.69) were designed to further explore the ketone 

component, both of which possessed much lower activity compared with a similar compound 1.1. 

Lastly, compound 1.70, the byproduct obtained during the preparation of 1.69, was shown to had 

similar activity as its precursor.  

 

                        Table 1.3. Bioactivities of One-Off Bisamide Series 

cmpd.# Structure 

KOR ([35S]GTP) 
aEC50 ± SEM 

(nM) 
Emax± SEM 
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1.60 

 

26 102 

1.61 

 

bNC  

1.62 

 

bNC  

1.63 

 

bNC  

1.64 

 

bNC  

1.65 

 

bNC  

1.66 

 

bNC  

1.67 

 

bNC  
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1.68 

 

1089 81 

1.69 

 

919 81 

1.70 

 

1189 85 

a[35S]GTP functional assay (membrane G protein signaling) with n = 1, 

compared to U69,693 (EC50 = 35 ± 4 nM); bNC: non-convergent curve 

caused by insignificant activity. 

 

          A total of three pairs of enantiomers were prepared in this set, which were all screened in 

both [35S]GTP binding assay (membrane G protein signaling) and arrestin2 imaging assay 

(Table 1.4). All of these compounds have two alkyl substitution at the stereogenic center, which 

are a methyl group and a larger one. Interestingly, there was a general trend that the compound 

with R-configuration was more potent than its corresponding enantiomer which possessed S-

configuration ((R)-1.71 vs (S)-1.71, (R)-1.72 vs (S)-1.72, and (R)-1.73 vs (S)-1.73). In addition, 

eudismic ratio (potency difference between two enantiomers) was dependent on the differences of 

the size of two alkyl substitutions on the stereogenic center. Furthermore, it appeared that 

compound with smaller substitutions ((R)-1.71 vs (S)-1.71) were more potent in the biological 
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assay. Compared to the canonical KOR agonist U69,693, this set of bisamide compounds 

demonstrated biased activity toward G-protein signaling. It has been proposed that the 

physiological effects of KOR activation result from different signaling cascades, with analgesia 

being G protein-mediated and dysphoria being mediated through βarrestin2 recruitment.96 Thus, 

these enantiopure bisamide analogues are promising in terms of the development of analgesics 

with little dysphoric effect. 

Table 1.4. Bioactivities of Enantiopure bisamide Series 

Comp.# 

 

KOR 

cBias factor 

R1 R2 

[35S]GTP Arrestin 

aEC50 ± SEM 

(nM) 
Emax± SEM 

bEC50 ± SEM 

(nM) 
Emax± SEM 

(S)-1.71 Et Me 11 ± 1 95 ± 3 252 ± 78 73 ± 16 4 

(R)-1.71 Me Et 10 ± 1 98 ± 2 219 ± 49 64 ± 20 5 

(S)-1.72 iso-Bu Me 
165 ± 32 

(n = 4) 
95 ± 1 

16705 ± 

10553 

(n = 5) 

33 ± 17 16 

(R)-1.72 Me iso-Bu 
21 ± 4 

(n = 4) 
97 ± 1 

1307 ± 324 

(n = 5) 
53 ± 6 13 

(S)-1.73 n-Bu Me 
170 ± 26 

(n = 4) 
93 ± 1 

10136 ± 

3197 

(n = 3) 

20 ± 3 18 

(R)-1.73 Me n-Bu 57 ± 13 95 ± 3 2172 ± 561 65 ± 18 8 

a[35S]GTP functional assay (membrane G protein signaling) with n = 3 unless otherwise noted, compared to 

U69,693 (EC50 = 35 ± 4 nM); bArrestin2 imaging assay with n = 2 unless otherwise noted, compared to 

U69,693 (EC50 = 1.2 ± 0.2 nM); cBias factor obtained by method in reference 96 
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Conclusions 

          In this study, the original four-step synthetic route for bisamide chemotype KOR agonists 

was replaced by a one-step Ugi multicomponent reaction, which streamlined the SAR study of this 

chemotype. In addition, parallel synthesis was employed using Bohdan MiniBlock synthesis 

platform in combination with subsequent MS-directed HPLC purification, which further facilitated 

the generation of bisamide KOR agonists. A total of 80 bisamide compounds were synthesized, 

which had diverse substitutions on the bisamide scaffold. All of the bisamide compounds were 

tested in [35S]GTPγS functional assay, and a useful SAR was obtained (Figure 1.15).  
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Chapter 2 

Potency Enhancement of Sulfonamide-based Kappa Opioid Receptor Antagonists 

Introduction 

KOR Antagonists 

          Selective KOR antagonists, initially developed as tools for studying properties of KOR 

agonists in the 1980s, are receiving increased attention as potential pharmacotherapies for 

treatment of mood disorders and drug addictions.1-2 The first KOR antagonist named TENA 

(Figure 2.1), was reported by Portoghese and co-workers in 1982.3 However, the selectivity of 

TENA for the KOR over the MOR and DOR was about 4- and 2.5-fold, respectively. Thus, it was 

not developed into a very useful compound for studying the KOR. In 1987, nor-BNI (Figure 2.1) 

was reported by Portoghese and co-workers as a potent and selective KOR antagonist in animal 

studies, which featured a slow onset and long duration (28 days).4-9 Another KOR antagonist, 

GNTI (Figure 2.1), reported by Portoghese and co-workers, showed higher selectivity and better 

potency.10-13 Like nor-BNI, however, GNTI also suffers a slow onset and long duration of action 

as demonstrated in studies with rhesus monkeys.12 Moreover, GNTI was not active when 

administered systemically, which was attributed to its basic guanidine moiety.14 In addition to the 

KOR antagonists mentioned above, there are numerous  morphine-derived compounds developed 

in the 1980s and 1990s. Collectively, these ligands demonstrated the therapeutic potentials of 

antagonizing the KOR, and also suggested needs for seeking novel antagonists with better 

pharmacological profiles.2 
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          In efforts to seek non-morphine-derived KOR antagonists, a series of N-substituted trans-

3,4-dimethyl-4 (3-hydroxyphenyl)-piperidines were identified as KOR antagonists.15 As a 

representative of this series, JDTic (Figure 2.2) was reported by Carroll and co-workers in 2001, 

and shown to be a 

selective and potent KOR 

antagonist.16 JDTic 

entered into Phase Ι 

clinical trials for the 

treatment of cocaine 

abuse, but was 

discontinued due to 

ventricular tachycardia.17 

In 2012, an X-ray 

crystallographic study of 

the human KOR complexed with JDTic was reported by Raymond and collaborators. Thiswhich 

was made possible by the high affinity between this ligand and receptor.18  
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          In addition to small molecules, peptides have also been KOR antagonists. For example, 

zyklophin (Figure 2.2) is a dynorphin A-based peptide KOR antagonist, reported by Aldrich and 

co-workers in 2005.19 Zyklophin is highly selective for the KOR over the MOR and DOR (Ki = 

30.3, 5880, and > 10000 nM, respectively). More importantly, It was shown that zyklophin was 

able to antagonize the nociception induced by the selective KOR agonist U50,488 in C57BL/6J 

mice tested in the 55 °C warm water tail withdrawal assay in a dose-dependent manner.20 

Additionally, this peptide showed no effect on antinociception mediated by morphine or SNC-80 

(a DOR agonist), implying its selectivity for the KOR over the MOR and DOR in vivo. Lastly, 

there have been other cyclic peptide small molecules identified as novel KOR antagonist by 

different groups.21-22 

          Several antagonists, including JDTic as mentioned previously, have entered clinical trials. 

PF-04455242 (Figure 2.2) was reported to have Ki values of 3 and 65 nM in radioligand binding 

assay using CHO cell membranes expressing human KOR and MOR, respectively.23 This 

compound antagonized the effects of U50,488 and morphine with AD50 values of 0.67 and  12.03 

mg/kg, respectively.24 In addition, PF-04455242 proved to be effective in a series of animal models 

including the rat tail-flick test, social deficit stress assay, and cocaine CPP experiments.23 Thus, 

clinical trials of PF-04455242 were initiated for the treatment of bipolar disorder, depression and 

substance abuse. However, the clinical trials were halted due to toxicity demonstrated in animals 

after three months of drug exposure in 2010.25 Another KOR antagonist that entered clinical trials 

is LY2456302 (Figure 2.2) from Eli Lilly. This primary amide-bearing compound had a Ki value 

of 0.949 nM at the KOR and modest selectivity over the MOR and DOR (24- and 175-fold, 

respectively). In addition, decreased ethanol consumption was observed after administration of 

LY2456302 in an ethanol-drinking maintenance test using female P rat. LY2456302 also reduced 
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immobility of experiment mice at 10 mg/kg, po, in Porsolt forced swimming test.26 This compound 

was further pursued in Phase II clinical trials (under the new developmental code name of CERC-

501) for nicotine withdrawal. Hence are still ongoing as of this writing.27 

 

Sulfonamide KOR Antagonists 

          The sulfonamide chemotype KOR antagonist was originally discovered via a high 

throughput screening (HTS) campaign, along with three other new classes of KOR antagonists 

(Figure 2.3).28 In this HTS campaign, 290,000 compounds were evaluated on KOR activity and 

selectivity: the KOR DiscoveRx β-arrestin PathHunter assay and an imaging based β-arrestin 

translocation assay for confirmatory and selectivity assays. The sulfonamide compound ML140 

was deemed due to its little structural similarity relative to known opioid ligands. Although modest 

at potency (IC50 = 0.91 M) at the KOR, ML140 had good selectivity over MOR and DOR (IC50 > 

24 and > 32 M, respectively).  
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          Initial SAR studies were carried out via a modular synthetic route, which involved the 

preparation of carboxylic acid intermediate and diamine intermediates (Scheme 2.1). The synthesis 

of the carboxylic acid intermediate began with the coupling between a sulfonyl chloride and an 

ester-bearing amine, which afforded a sulfonamide ester. Subsequent hydrolysis of the ester 

afforded the carboxylic acid intermediate. The diamine synthesis began with reductive amination 

followed by a nucleophilic substitution reaction with chloroacetonitrile. Reduction with LiAlH4 

provided the diamine intermediate. With both intermediates in hand, the carboxylic acid was 

converted to the corresponding acyl chloride (with SOCl2), which was then coupled with diamine 

to afford the final sulfonamide compound. 
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          Initial SAR studies focused on the diamine portion of the molecule by varying the 

substitutions on, and introducing constraint to, the basic nitrogen. It appeared that bulkier aliphatic 

substitution was preferred on this basic nitrogen (t-Bu > iPr > Et), while aromatic benzyl group 

was not tolerated (Figure 

2.4). Several constraints (five 

and six member ring) on the 

basic nitrogen were 

introduced, all of which turned out to be detrimental to bioactivity (Figure 2.5). Additional efforts 

were directed toward the modification of the central phenyl fragment of sulfonamide antagonists. 

Employing the constraint strategy again, a tetrahydroisoquinoline core was introduced as a tethered 

phenyl ring, resulting in further potency enhancement (Figure 2.5). Through combining the tert-
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butyl and tetrahydroisoquinoline modification, a number of analogues with single digit nanomolar 

IC50 were obtained based on the [35S]GTPγS functional assay which measures the level of G 

protein activation following agonist occupation of a GPCR by determining the binding of the non-

hydrolyzable analog [35S]GTPγS to G alpha subunits.).  

 

          Through the SAR studies described above, compound 2.1 (IC50 = 1.6 ± 0.47 nM in 

GTPassay, IC50 = 83.5 ± 20.3 nM in DiscoveRx Pathhunter -Arrestin assay) was chosen as lead 

compound for further optimization and SAR study. The synthesis of 2.1 employed same sequence 

as the general synthetic route, except switching SOCl2 to HATU at the last step (Scheme 2.2). 
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Results and Discussion 

Design and Synthesis of Analogues 

          Our initial goal on optimization of analogue 2.1 is to reduce unnecessary portions of the 

molecule to simpler structures with retention of biological action, with the idea that 

pharmacophore which is responsible for drug-target interaction could be a small portion of the 

molecule.29 Thus, it was interesting to test if the carboxylic acid or diamine portions of analogue 

2.1 were part of the pharmacophore and thus essential for the biological effect. To address this 

question, analogues 2.2, 2.3 and 2.4 were designed, replacing acid or diamine moiety of 2.1 with 

a simple and smaller chemical group (Figure 2.6). The synthesis of these three analogues employed 
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common intermediates (either acid or diamine) to couple with a simple amide coupling partner 

(see Experimental Section).  

 

          Linker modification is common in medicinal chemistry, which help extend SAR and give 

useful information about ligand receptor interactions. At this stage, none of the analogues made 

by us contained linkers other than the sulfonamide bond. Thus, to determine whether this 

sulfonamide moiety is replaceable or not, we made analogues without sulfonamide linker. 

 

          Analogue 2.5 and its urea derivative 2.6 (Figure 2.7) were proposed to probe the necessity 

of sulfonamide linker. The synthesis of compound 2.5 followed a route similar to that used in the 

sulfonamide series except a minor difference in the preparation of carboxylic acid intermediate 

(Scheme 2.3).  To form the amide bond containing acid intermediate 2.5.1, p-toluoyl chloride was 

reacted with tetrahydroisoquinoline core fragment followed by ester hydrolysis. Then HATU 

promoted amide coupling between 2.5.1 and 2.1.5 afforded the final compound 2.5.  The 
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preparation of analogue 2.6 started with the reaction between p-tolyl isocynate and the 

tetrahydroisoquinoline core, which followed by hydrolysis to afford the intermediate 2.6.1. With 

urea linker intermediate 2.6.1, HATU promoted amide coupling with diamine 2.1.5 afforded the 

final compound 2.6 smoothly. 

      

          Introducing constraint has proven to be an effective strategy to improve potency in medicinal 

chemistry. Though the tetrahydroisoquinoline core was originally introduced as a constraint to the 

molecule that enhanced potency, the possible effect of a hydrophobic contribution to potency 

warranted further investigation. Thus compound 2.7 was designed as an analogue could involve 

similar hydrophobic interaction to the tetrahydroisoquinoline moiety. The synthesis of this 

analogue started with sulfonamide coupling between sulfonyl chloride and ester-bearing amine to 

afford intermediate 2.7.1. Subsequent hydrolysis by aqueous NaOH gave acid intermediate 2.7.2. 

HATU promoted amide coupling between this acid intermediate 2.7.2 and diamine 2.1.5 afforded 

compound 2.7 (Scheme 2.4).  
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           As discussed previously, introduction of central tetrahydroisoquinoline resulted in potency 

enhancement. Following the same strategy, compound 2.8 was proposed in which another 

tetrahydroisoquinoline moiety was introduced as a new constraint on compound 2.1, to explore 

this class (Figure 2.8).  The synthesis of compound 2.8 started with Fischer esterification of (R)-

1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, 

which afforded compound 2.8.1. (Scheme 2.5) 

Subsequent reductive amination installed the 

isopropyl group on nitrogen atom, yielding 

compound 2.8.2. Then transamination in aqueous 

NH3 at 60 °C and 90 °C for 1 h respectively, yielded 

the amide intermediate 2.8.3. However, the stereogenic carbon on tetrahydroisoquinoline 

racemized under these conditions, which was shown by chiral HPLC (see experiment part). Then 

this racemate was reduced to a primary amine 2.8.4 with LiAlH4. Subsequent HATU promoted 

amide coupling between obtained primary amine 2.8.4 and acid intermediate 2.1.2 afforded the 

final product 2.8 as a racemate, which was used in the bioassay without chiral resolution.  
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          As mentioned previously, JDTic discovered by F. Ivy Carroll and his colleagues, is a 

selective and potent KOR antagonist.16 Our sulfonamide opioids and JDTic share some common 

features. First, they both possess a diamine moiety in which the two nitrogen atom are separated 

by an ethylene fragment. Secondly, they both contain aromatic rings at either end of molecule. In 

previous work, we have not explored substitutions on the diamine linker (like isopropyl on JDTic) 

nor introduced a hydroxyl substituent on the two aromatic rings. Thus, two groups of analogues 

having these substitutions were proposed (Figure 2.9).  
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          However, the first group of analogues could not be synthesized via the general route above. 

To prepare this group of analogues, a synthetic strategy similar to that utilized in the preparation 

of JDTic and its related analogues was first attempted.30 This route started with amide coupling 

between Boc-protected amino acid and amine, which was followed by reduction of amide by BH3 

to afford Boc-protected diamine intermediate. Then Boc deprotection followed by amide synthesis 

would yield the final product (Scheme 2.6). The first step of this synthetic route failed when 

coupling between Boc-L-valine and intermediate 2.1.3 was attempted using a number of coupling 

reagents (HATU, CDI, PyBOP, etc.) at varied temperatures. The sluggishness of this 

transformation was possibly caused by the steric hindrance of the two reactants.  
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          In light of this failure, two reductive amination approaches were examined (Scheme 2.7), 

given the idea that an electronic aldehyde would be much smaller and easier accessed by amine, 

compared with the activated ester as electrophile in amide coupling.31 Satisfyingly, one approach 

(with aliphatic aldehyde) offered the desired product. The other approch (with aromatic aldehyde) 

failed, which could be potentially caused by the relatively low reactivity of 4-chlorobenzyldehyde. 

After the success of reductive amination with most steric hindered reactants in this series, all other 

Boc-diamine linkers were prepared via this method (Scheme 2.8). Once this intermediate was 

obtained, Boc-deprotection with TFA and subsequent HATU promoted amide coupling with acid 
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2.1.2, afforded the final sulfonamide product (Scheme 2.8). 

 

The synthesis of second group of analogues followed the same sequence discovered during the 

preparation of first group, except employing different building blocks as needed (Scheme 2.9). 

The hydroxyl-bearing analogue was prepared by BBr3 demethylation of methoxy-bearing 

analogues. 
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          Eleven compounds (2.19 to 2.29) were proposed to explore the effects of substitutions on 

the right phenyl ring as well as replacement of this phenyl ring with pyridine (Figure 2.10). 

Methylthio, dimethylamino, methoxymethyl, hydroxymethyl, acetamido, and ethyl group (2.19 to 

2.22, 2.25, and 2.26) were chosen to be incorporated into the para-position of phenyl ring, as direct 



61 
 

comparison with 2.1 and 2.14. Dioxine and dioxole moiety were introduced as constrained oxygen-

bearing substitutions on the phenyl ring (2.23 and 2.24). Pyridine was a common moiety found in 

drug molecules, and often employed at early stage of drug discovery to adjust cLogP of small 

molecule. Thus three compounds (2.27, 2.28, and 2.29) with pyridine substitutions were proposed, 

which possess much lower cLogP (~ 4) compared compound 2.1 (5.8). It is worth noting that 

protonation of pyridine containing compounds under physiological condition would result in even 

lower cLogD and better solubility in aqueous meida. 

 

The successive reductive amination strategy was again employed to prepare this set (Scheme 2.10). 

Two successive reductive amination afforded the Boc-diamine intermediate. Then, deprotection 

of Boc-diamine, followed by amide bond formation promoted by HATU, afforded the final product. 

For the pyridine containing compounds, the two successive reductive aminations were carried out 

in one pot with only one workup and one purification to yield stable Boc-diamine intermediates 

(2.27.2, 2.28.2, and 2.29.2), in comparable overall yield with two-step procedure. 
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          Finally, a new diamine with bigger alkyl substitution on nitrogen was prepared to test the 

role of overall hydrophobicity at this position. This diamine was incorporated into final analogues 

containing three different bioisosteries (Scheme 2.11).  
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In Vitro Assay Studies 

          The sulfonamide final compounds were assayed using a DiscoveRx PathHunter® -arrestin 

GPCR assay platform.32 This in vitro assay method uses U2OS cells expressing human KOR in an 

enzyme complementation system designed for detecting recruitment of β-arrestin to the KOR. In this 

system, KOR is fused in frame with the small 42 amino acid fragment of -galactosidase (-gal) called 

Pro-linkTM and co-expressed with cells stably expressing a fusion protein of -arrestin and the larger, 

N-terminal deletion mutant of -gal (called enzyme acceptor or EA). Upon the activation of KOR, 

-arrestin binds to the receptor which promotes the complementation of two enzyme fragments, 

resulting in active -gal enzyme. This leads to an increase of enzyme activity which is measured by 

chemiluminescent reagent (Figure 2.11). Briefly, plates loaded with U2OS cells were incubated at 

37 °C overnight, and then treated with increasing concentrations of antagonists in the presence of 1 

M U69,593 for 1 h and 30 min at 37 °C. Detection reagent was added for 1 h and luminescent counts 

were obtained using a Spectramax M5e. 
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          Compound 2.2 and 2.3, designed by replacement of acid fragment of compound 2.1 with acetyl 

and benzoyl moieties, turned out to be inactive as KOR antagonists (Table 2.1). Similarly, the 

replacement of diamine fragment of 2.1 with an isopropyl group, as in 2.4, resulted in complete loss of 

KOR antagonist activity (Table 2.1). Together, these attempts offer a message that both fragments of 

lead compound 2.1 are critical.  

Table 2.1. KOR Antagonist Activity of Simplified Series 

 

Entry Compound aIC50 (nM) ± SEM Imax (%) ± SEM 

1 2.1 83.5 ± 20.3 101.2 ± 4.9 

2 2.2 NCb 12.4 ± 3.4 

3 2.3 > 10,000 60.5 ± 1.5 

4 2.4 NCb -4.9 ± 2.2 
a DiscoveRx Pathhunter -arrestin assay with n = 3 unless noted, compared to NorBNI (IC50 = 2.0 ± 0.1 nM); b 

NC: non-convergent curve caused by insignificant activity  
 

          Replacement of sulfonamide linker by amide or urea, turned out to be detrimental for KOR 

antagonist activity (2.5 and 2.6, Table 2.2).  

Table 2.2. KOR Antagonist Activity of Amide and Urea Linker Bearing Analogues 

 

Entry Compound aIC50 (nM) ± SEM Imax (%) ± SEM 

1 2.5 > 10,000 41.1 ± 2.8 

2 2.6 > 10,000 66.1 ± 3.4 
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a DiscoveRx Pathhunter -arrestin assay with n = 3 unless noted, compared to NorBNI (IC50 = 2.0 ± 0.1 nM) 
 

          Central fragment modification resulted in complete loss of KOR antagonist activity (2.7, 

Figure 2.3). Similarly, the introduction of another tetrahydroisoquinoline as a constraint on the 

right fragment led to dramatic decrease of KOR antagonist activity (2.8, IC50 = 1126.0 ± 193.8 nM). 

Table 2.3. KOR Antagonist Activity of 2.7 and 2.8 

 

Entry Compound aIC50 (nM) ± SEM Imax (%) ± SEM 

1 2.7 NCb 12.6 ± 4.0 

2 2.8 1126.0 ± 193.8 106.6 ± 1.1 
a DiscoveRx Pathhunter -arrestin assay with n = 3 unless noted, compared to NorBNI (IC50 = 2.0 ± 0.1 nM); b 

NC: non-convergent curve caused by insignificant activity 

 

          Alkyl substitution on diamine linker of 2.1 (Me or iPr), of either S or R configuration, are 

not tolerated ((S)- and (R)-2.10, (S)- and (R)-2.11). Though (S)-2.10 demonstrated marginal 

antagonist activity at the KOR (IC50 = 6945.0 ± 3244.0 nM), it was about 80-fold less potent than 

2.1. By switching the tert-butyl group of (S)-2.10 to an iPr group, bioactivity was slightly regained 

((S)-2.9, IC50 = 3887.0 ± 945.8 nM). However, the enantiomer of (S)-2.9 was completely inactive 

((R)-2.9, Table 2.4). Thus, alkyl substitutions on the alpha-carbon of amide nitrogen are not 

tolerated.  

Table 2.4. KOR Antagonist Activity of JDTic Inspired Series-Group 1 
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Entry Compound R1 R2 aIC50 (nM) ± SEM Imax (%) ± SEM 

1 (S)-2.9 (S)-Me iPr 3887.0 ± 945.8 73.2 ± 2.2 

2 (R)-2.9 (R)-Me iPr NCb 25.5 ± 12.3 

3 (S)-2.10 (S)-Me t-Bu 6945.0 ± 3244.0 70.4 ± 0.9 

4 (R)-2.10 (R)-Me t-Bu > 10,000 39.9 ± 2.7 

5 (S)-2.11 (S)- iPr t-Bu > 10,000 16.0 ± 4.7 

6 (R)-2.11 (R)- iPr t-Bu NCb -3.1 ± 8.6 
a DiscoveRx Pathhunter -arrestin assay with n = 3 unless noted, compared to NorBNI (IC50 = 2.0 ± 0.1 nM); 
b NC: non-convergent curve caused by insignificant activity 

 

Replacement of 4-methyl group on the left phenyl ring of 2.1 with p-hydroxyl group reduced 

potency (2.18, IC50 = 391.5 ± 89.9 nM) by about 5-fold, whereas moving the hydroxyl group to the 

m-position afforded compound 2.17 with comparable potency (IC50 = 361.6 ± 71.1 nM). Similarly, 

replacement of p-methyl group of 2.1 with methoxy group resulted in drastic decrease of potency 

(2.16, IC50 = 9417.0 ± 2720.0 nM). However, moving the methoxy group to m-position regained 

the bioactivity a bit (2.15, IC50 = 614.8 ± 280.3 nM). Interestingly, further replacement of p-chlorine 

on the right phenyl ring of 2.16 with methoxy group rescued the potency by about 14-fold (2.12, 

IC50 = 42.2 ± 2.9 nM), resulting in a compound with slightly better activity than 2.1. By retaining 

the right p-methoxy group and switching the left m-methoxy group back to original p-methyl group, 

the obtained compound 2.14 had even better potency (IC50 = 18.9 ± 4.4 nM). In contrast, one single 

change of 2.14 by moving p-methoxy group to the m-position led to drastically decreased potency 

(2.13, IC50 = 216.8 ± 64.3 nM). 

Table 2.5. KOR Antagonist Activity of JDTic Inspired Series-Group 2 
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Entry Compound R3 R4 aIC50 (nM) ± SEM Imax (%) ± SEM 

1 2.12 m-OMe p-OMe 42.2 ± 2.9 100.6 ± 0.3 

2 2.13 p-Me m-OMe 216.8 ± 64.3 102.5 ± 0.6 

3 2.14 p-Me p-OMe 18.9 ± 4.4 104.0 ± 2.4 

4 2.15 m-OMe p-Cl 614.8 ± 280.3 104.5 ± 5.8 

5 2.16 p-OMe p-Cl 9417.0 ± 2720.0 91.2 ± 3.3 

6 2.17 m-OH p-Cl 361.6 ± 71.1 102.8 ± 1.2 

7 2.18 p-OH p-Cl 391.5 ± 89.9 90.5 ± 4.7 
a DiscoveRx Pathhunter -arrestin assay with n = 3 unless noted, compared to NorBNI (IC50 = 2.0 ± 0.1 

nM)  
 

          The bioisosterie replacement of the methoxy group on 2.14 with methylthio group and 

dimethylamino group, led to mild reduction of activity (2.19 and 2.20). Methoxylmethyl group 

(2.21) were tolerated, while hydroxymethyl group led to 7-fold reduction of activity (2.22). 

Dioxine and dioxole introduced as constrained oxygen-bearing group, could not increase potency 

but were well tolerated (2.23 and 2.24). Acetoamido and ethyl introduction led to reduction of 

potency (4-fold and 8-fold, respectively). Moving from various substituted phenyl ring to pyridine-

containing analogues led to drop in potency. Compounds with 2-pyridyl and 3-pyridyl group (2.27 

and 2.28) were 7-fold less potent than 2.14. Unfortunately, when 4-pyridyl group was employed, 

the potency decreased dramatically (2.29, IC50 = 1521.0 ± 308.0 nM). 

Table 2.6. KOR Antagonist Activity of Compound 2.19 to 2.29 
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Entry Compound R aIC50 (nM) ± SEM Imax (%) ± SEM 

1 2.19 
   

142.0 ± 4.2 107.5 ± 4.8 

2 2.20 
   

56.1 ± 10.9 108.8 ± 5.6 

3 2.21 
   

45.8 ± 5.4 108.1 ± 6.4 

4 2.22  
   

131.7 ± 27.6 105.2 ± 2.9 

5 2.23 
   

56.0 ± 10.1 105.7 ± 4.5 

6 2.24 
   

34.0 ± 1.8 108.6 ± 7.7 

7 2.25 
   

80.3 ± 15.2 106.0 ± 3.8 

8 2.26 
   

150.8 ± 16.0 100 ± 1.5 

9 2.27 
   

138.4 ± 26.7 102.5 ± 2.7 

10 2.28 
   

137.7 ± 19.9 100.2 ± 1.9 

11 2.29 
   

1521.0 ± 308.0 102.7 ± 1.6 

a DiscoveRx Pathhunter -arrestin assay with n = 3 unless noted, compared to NorBNI (IC50 = 2.0 ± 0.1 

nM)  
 

Table 2.7. KOR Antagonist Activity of Miscellaneous Series 

 

Entry Compound aIC50 (nM) ± SEM Imax (%) ± SEM 

1 2.30 NCb 5.4 ± 1.1 

2 2.31 NCb -2.3 ± 2.5 

3 2.32 NCb 23.6 ± 2.6 
a DiscoveRx Pathhunter -arrestin assay with n = 3 unless noted, compared to NorBNI (IC50 = 2.0 ± 0.1 nM); b 

NC: non-convergent curve caused by insignificant activity 
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          Replacement of tert-butyl group of 2.1 with neopentyl group, resulted in complete loss of 

bioactivity (2.30). It is interesting that a carbon extension had such a detrimental effect, suggesting 

there is not enough room in the receptor to accommodate this further elongation of alkyl 

substitution. Lastly, switching the sulfonamide linker of 2.30 to urea or amide (2.31 and 2.32) 

could not restore the activity. 

 

Putative Binding Mode 

          Based on bioactivity data of analogues made previously and new data we obtained in this 

round of SAR exploration, modeling studies were carried out by Professor Phil Mosier from 

Virginia Commonwealth University.  

          Sulfonamide analogues were sketched using SYBYL-X 2.1.1 (Certara USA, Inc., Princeton, 

NJ) and energy minimization was carried out with the Tripos Force Field (TFF; Gasteiger–Hückel 

charges, distance-dependent dielectric constant ε = 4D/Å, nonbonded interaction cut-off = 8 Å, 

energy gradient termination = 0.05 kcal/(mol×Å) or 100,000 iterations). The KOR−JDTic co-

crystal structure (PDB: 4DJH)18 was prepared for docking through a series of process including 

extraction of the “B” chain (KOR protein only), removal of the JDTic ligand and addition of 

hydrogen atoms. Other crystal structures were prepared in an analogous fashion (vide infra). 

Additionally, to mitigate the bias imposed by the “imprint” caused by the original ligand and to 

explore alternative receptor conformational states, MODELLER 9.1633 was used to create a 

population of 100 KOR homology models for each of three different KOR and MOR templates: 

1) the antagonist-bound KOR–JDTic co-crystal structure (PDB: 4DJH; B chain), 2) the antagonist-

bound MOR–β-FNA co-crystal structure (PDB: 4DKL; A chain)34, and 3) the nanobody-stabilized 
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agonist-bound MOR–BU72 co-crystal structure (PDB: 5C1M; A chain).35 To facilitate 

comparison of ligand binding modes, each homology model was spatially aligned to its crystal 

structure template. 

          Ligands were flexibly docked to the KOR crystal structure (PDB: 4DJH) and to each 

member of the three KOR homology model populations with GOLD Suite 5.2 (Cambridge 

Crystallographic Data Centre, Cambridge, UK)36 in order to generate candidate binding modes. In 

each case, the Goldscore fitness function was employed, and cavity detection was enabled. In 

addition, the ligand binding site was defined to include all receptor amino acid residues within 15 

Å of the gamma carbon atom of D138(3.32), encompassing all amino acids within the orthosteric 

binding site. Free ring corners and pyrimidal nitrogens were allowed to flip. To facilitate the 

interactions between the cationic ligands and D138(3.32), a constraint was introduced that 

disfavored solutions in which the ligand did not form a hydrogen bond with either oxygen of the 

D138 side chain carboxylate group (fitness function lowered by 10 Goldscore units). 

          An in-house clustering algorithm37 was employed to facilitate the identification of common 

and disparate binding modes for the ligands. Briefly, each ligands was flexibly docked ten times 

into each of the spatially aligned homology models generated above. Then, the top scoring solution 

for each ligand at each receptor model was selected, which were subsequently clustered at a cutoff 

RMSD value of 2.0 Å to identify different binding modes for each ligand. The highest-scoring 

solution from each cluster (binding mode) was selected to represent that particular binding mode 

and referred to as the exemplar. All exemplars for all ligands were then combined and clustered 

based on the RMSD of their common scaffold structure to identify common binding modes among 

the series of compounds. The common binding modes were then manually evaluated for 

stereoelectronic complementarity and consistency with experimentally derived ligand SAR. A 
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commonly-shared binding mode among the ML140 analogues was identified in the KOR 

homology model population derived from the antagonist-bound MOR–β-FNA co-crystal structure 

(PDB: 4DKL); these solutions were selected for further refinement and analysis. In a few cases, 

manual modification of KOR side chains and ligand torsion angles were performed after 

completion of the automated docking routines to further optimize the proposed receptor–ligand 

interactions. The resulting receptor−ligand complexes were then energy-minimized in SYBYL-X 

2.1.1 using the Tripos Force Field (TFF; Gasteiger–Hückel charges, distance-dependent dielectric 

constant ε = 4D/Å, nonbonded interaction cut-off = 8 Å, energy gradient termination = 0.05 

kcal/(mol×Å) or 500 iterations). 

 

  
Figure 2.12. Putative binding mode of 2.1 with the KOR 

 

          Compound 2.1 was used to elucidate the putative binding mode between this chemotype and 

receptor (Figure 2.11). The western phenyl ring engages tight hydrophobic interactions with V2.63 

and edge-face aromatic interactions with Y2.64. This tight binding site explains why bulk or multi-

substitution on this phenyl ring decrease the potency. One oxygen in sulfonamide linker is involved 

in a hydrogen bond with the proton on an amide nitrogen of the backbone. The proton on central 
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amide moiety, together with protonated nitrogen on diamine fragment, is involved in two hydrogen 

bonds with side chain of D3.32, respectively.  This explains why the methylation of amide nitrogen 

lead to complete loss of activity. In addition, the tert-butyl group has hydrophobic interactions 

with Y3.33 and I6.55. The phenyl ring on the diamine fragment is sandwiched between W6.48 and 

Y7.43 via pi-stacking interactions. Lastly, the 2-carbon linker on isoquinoline rigidifies the ML140 

scaffold, which enhances the interactions mentioned previously. 

 

Conclusions 

          Structural modification centered on compound 2.1 afforded a total of 34 new analogues, 

which further enriched the SAR of sulfonamide 

chemotype (Figure 2.13). Compared with 

compound 2.1, several analogues with better 

potency were obtained. By collaborative efforts, a 

putative binding mode of this chemotype with the 

KOR were proposed (Figure 2.12), which would be 

used to guide the further optimization of lead 

compound.  
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Chapter  3 

Asymmetric Acyl Transfer Reactions Catalyzed by a Cyclic Peptide 

Introduction 

          Kinetic resolution (KR), according to IUPAC’s 1996 recommendation, is “the achievement 

of partial or complete resolution by virtue of unequal rates of reaction of enantiomers in racemate 

with a chiral agent (reagent, catalyst, solvent, etc.)”.1 KR relies on the differences in reactivity 

between enantiomers in the presence of a chiral agent. In the simplest case, two competing 

diastereomeric transition states are generated by the interactions between the substrate enantiomers 

via interacting with a chiral agent respectively, and these two transition states possess different 

activation energies which govern the rate constants for the conversion of the enantiomers. Lastly, 

the product distribution is controlled by the ratio of rate constant kfast/kslow (equal to krel or 

enantioselectivity s), which describes how selective a KR is. With high krel and enough percentage 

of conversion, the majority of the fast-reacting enantiomer would be converted to product while 

slow-reacting enantiomer could be isolated in enantiopure form after the reaction (Figure 3.1).2  

 

          The earliest phenomenon of KR, observed in 1858 by Pasteur, was that the dextrorotatory 

isomer of racemic ammonium tartrate was selectively destroyed during the fermentation with 

penicillium glaucum.2 Though the structural basis was not yet known, Pasteur understood that the 

reactive and unreactive isomers were mirror image forms to one another. The first non-enzymatic 

KR was reported by Marckwald and Mckenzie. In this work, racemic mandelic acid was 
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enantioselectively esterified by 

(–)-menthol upon heating the 

reactants, with small amount of 

L-mandelic acid recovered 

after recrystallization.4 In 

1981, a milestone paper about 

KR of allylic alcohol substrates 

was reported by Sharpless and co-workers.5 In one of the best examples in this report, allylic 

alcohol (S)-3.1 was converted to epoxide products much faster than (R)-3.1 (s = 104). The 

unreacted alcohol was recovered with high ee (>96%), while the epoxy alcohol product with good 

erythro/threo ratio (97:3).  This significant work stimulated the development of chiral supports for 

HPLC and GC assays that could precisely measure enantiomeric ratios with 96–99.9% ee. 

          Synthetic oligopeptides as mimics of enzyme have been increasingly investigated as catalyst 

for asymmetric transformation in the past several decades.6-14 However, synthetic oligopeptides 

with high efficiency and low molecular weight are still in great demand. It is believed that the 

conformational rigidity is critical for a chiral 

inducing agent, which is also true for 

oligopeptide catalysts. Usually cyclic peptides 

possess reduced freedom of rotation, and are 

accordingly more rigid compared with liner peptides. For example, cyclic dipeptide 3.4 (Figure 

3.2), reported by Inoue and co-workers, catalyzed asymmetric hydrocyanation of benzaldehyde 

with 90% ee.15 In contrast, linear poly-L-alanine 3.5 (Figure 3.2) is a catalyst of the Julia-Colonna 
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epoxidation but can only afford excellent asymmetric induction when it is longer than 10-mer and 

form the stable -helix structure.16  

 

          Synthetic oligopeptides have been exploited as catalyst for KR. Starting from 1998, Miller’s 

research group reported a series of oligopeptides as catalysts for asymmetric acyl-transfer 

reactions.17-20 These oligopeptides contain a -turn motif, including an intra-main-chain hydrogen 

bond between carbonyl of residue i and NH of residue i + 3 (Figure 3.3). Tripeptide 3.6, reported 

in 1998, was the first in this series.17 As the described in this report, 3.6 (Figure 3.3) was shown to 

catalyze the acetylation of (S,S)-3.7 faster than (R,R)-3.7 (s = 13). Optimization of reaction 

conditions revealed that selectivity was enhanced with solvents which do not interrupt hydrogen 

bonding. For example, optimum selectivities were obtained with toluene while decreased 

selectivities were observed by using DCM, CHCl3, or CHCl3–t-BuOH (1:1) as solvent. 

Optimization of 3.6 afforded several oligopeptide catalysts with enhanced selectivities, including 

a tetrapeptide (3.8) and an octapeptide (3.9), which promoted the same reaction with s values of 
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28 and 51, respectively.18  Kinetic studies indicated the order of substrate (3.7) and catalyst (3.9) 

were each 1 under conditions of high dilution.  

 

          In 2011, a series of tetrapeptides were reported by Qu’s research group (Figure 3.4), which 

were designed by backbone modification of Miller’s catalyst 3.8.21 Thioamide replacement of 

amide at the i+1 residue (3.10) afforded a peptide capable of acylating (±)-3.7 with an s value of 

20. This could be increased to a value of 63 by adding 0.2 equiv of N,N-diisopropylethylamine 

(DIPEA) to the reaction. It was believed the thioamide could reinforce the intermolecular hydrogen 

bond between the catalyst and the substrate while the DIPEA could absorb the proton generated in 

the reaction and maintain the imidazole in a neutral status which was critical for the catalysis. The 

replacement of the Boc group on the i residue with a tosyl group afforded catalyst 3.11 which 

acylated (±)-3.7 with an s value of 40. This could be modestly elevated to a value of 44 by adding 

0.2 equiv of DIPEA in the reaction. It was believed that the introduction of tosyl group made the 

proton of NH on i residue more acidic, which resulted in a strengthened intramolecular hydrogen 

bond and a more rigid conformation for the catalyst. By introducing the thioamide and tosyl group 

at the same time, a tetrapeptide 3.12 that afforded the best selectivities (s = 109 on substrate (±)-

3.7) in this series was obtained. 
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Results and Discussion  

          Employment of 6-aminocaproic acid (Aca) as a dipeptide linker was reported by Woody and 

Scheraga, who demonstrated that such macrocycles adopted a -turn around the dipeptide unit 

(Figure 3.5).22-23 They also pointed out that the conformation adopted by such macrocycles was 

quite dependent on the amino acid stereochemistry. In general, type I -turn was preferred by 

macrocycles derived from L,L-dipeptides, whereas type II subtype was favored by L,D-dieptides. 

Our research lab also observed this phenomena by employing similar linkers (Figure 3.5)24-25.  

 

          We proposed to replace the hydrogen bond between i and i +3 amino-acid residues of 3.8 

with an Aca linker, which afforded a cyclic peptide 3.13 (Figure 3.5). This Aca linker could 

possibly bring some degree of restriction rather than distortion of -turn conformation, which 

hopefully would be beneficial for the selectivity. 
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          Proposed catalyst 3.13 consists of two amino acid residues plus the Aca linker. We first 

attempted the synthesis of 3.13 with a macrolactamization route (Scheme 3.2). However, this route 

failed at the macrolactamization step, despite examining several coupling reagents (HATU, 

PyBOP, and DMAP) for this transformation. This difficult transformation may be caused by ring 

strain of the product.  

 

          To overcome the ring strain, a ring closing metathesis (RCM) strategy was conceived 

(Figure 3.6). The building block 3.19 was prepared in 6 steps (Scheme 3.2). Reaction between (R)-

4-benzyloxazolidinone and bromoacetyl bromide afforded 3.14, which was converted to 3.15 by 
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an Arbuzov reaction. Subsequent Horner-Wadsworth-Emmons reaction converted 3.15 to the 

alkene intermediate 3.16, which was readily hydrogenated to give intermediate 3.17. Then Evans 

chiral auxiliary reaction installed the allyl group to yield 3.18. Subsequent hydrolysis of 3.18 

removed the oxazolidinone moiety and afford compound 3.19.  

 

          With compound 3.19 in hand, the synthesis of cyclic peptide 3.1 was carried out in five steps 

(Scheme 3.4). HATU promoted amide coupling between 2-(Boc-amino)isobutyric acid and 

allylamine afforded 3.20. Subsequent Boc deprotection of 3.20 followed by amide coupling with 

Boc-L-proline gave intermediate 3.21. Then Boc-deprotection of 3.21 and amide coupling with 

3.19 provide diene 3.22 as its TFA salt after reverse phase flash column chromatography 

purification (0-100% CH3CN/0.5% TFA in H2O). RCM reaction of 3.22 catalyzed by Hoveyda-

Grubbs 2 catalyst afforded 3.23 as an inseparable mixture of cis/trans isomers. Subsequent 

hydrogenation of 3.23 merged the mixture into one product 3.13.  
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          The single crystal X-ray structure of 3.13 was obtained for the analysis of its conformation 

(Figure 3.7).  Though 3.13 is not an acyclic peptide and consists of 3 amino-acid residues, the 

crystal structure clearly displayed its conformation is very close to type II -turn (ϕi+1 =  ̶̵ 67.8°, 

ψi+1 = +116.9°,  ϕi+2 = +59.8°, ψi+1 = +26.5°). The distance between carbonyl and NH of i residue 

is 2.12 Å, which indicates a strong hydrogen bond.  

 

 

 

 

 

  
Figure 3.7. X-ray crystal structure and conformation analysis of 3.13 
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          The substrate scope of the asymmetric acyl-transfer reaction using the cyclic peptide 3.13 

were examined (Table 3.1). The reactions were run under conditions of high dilution (0.128 mmol 

of substrate in 12.8 mL of toluene) with 2.5 mol % of catalyst, 0.2 equiv of DIPEA, and 8.3 equiv 

of Ac2O at 25 °C. After quench with CH3OH (10 mL), products and starting materials were isolated 

with reverse phase flash column chromatography. Then chiral HPLC was employed to obtain the 

ee (enantiomeric excess of staring material) and ee´ (enantiomeric excess of product). Conversion 

percentage (C) and s were obtained via the equations described by Kagan ( 
𝑒𝑒

𝑒𝑒′
=  

𝐶

1−𝐶
 , s = 

ln[1 − 𝐶(1 + 𝑒𝑒′)]

ln[1 − 𝐶(1 − 𝑒𝑒′)]
).26 

          Cyclic peptide 3.13 was shown to have slightly lower selectivity for six-membered-ring 

trans cyclic acetamide-functionalized alcohol (3.7) than Miller’s catalyst 3.8 which gave an s value 

of 28. The selectivity of 3.13 on seven-membered-ring functionalized alcohol (3.24) was higher 

than 3.8 which gave an s value of 17. For substrate 3.25, an eight-membered-ring functionalized 

alcohol, the selectivity was much lower compared with six- and seven-membered substrates. For 

substrate 3.26, the enantioselectivity of cyclic peptide catalyst was lower than six- and seven-

membered-ring substrates but higher than the eight-membered-ring one. For the last substrate 3.27, 

an acyclic functionalized alcohol, the catalyst demonstrated a negligible selectivity (s = 1.3). 

Table 3.1. Kinetic Resolutions with Cyclic Peptide 3.13 

 

cmpd. # substrates time eea
. ee´a Cb sb 

3.7 
 

2.5 h 70.3% 82.6% 46.0% 21.9 

3.24 
 

2.5 h 58.6% 86.1% 40.5% 24.3 

3.25 
 

3 h 57.9% 43.9% 56.9% 4.4 
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3.26 
 

2 h 28.9% 73.3% 28.3% 8.6 

3.27 
 

5 h 3.8% 11.4% 25.1% 1.3 

       
a Determined by chiral HPLC; b Obtained via calculation according to equations described by 

Kagan27 

 

 

Conclusions 

          Cyclic peptide 3.13 was synthesized in five steps, followed by the analysis of conformation 

and assessment of selectivities on five substrates. Cyclic peptide adopt a conformation close to 

type II -turn. The selectivities of this catalyst is comparable to Miller’s catalyst 3.8 (slightly 

higher on substrate 3.24, slightly lower on substrate 3.7) while it is less selective compared with 

Qu’s catalyst 3.12. Much work is still needed in terms of the optimization of structure of the cyclic 

peptide and conditions. In summary, we demonstrated that the cyclic peptide could be used as 

catalyst for the KR of functionalized alcohols. 
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Experimental Section 

General Information. All reactions were performed in glassware dried in an oven at 120 ºC 

overnight and cooled under a stream of argon. The stainless steel needles used for handling 

anhydrous solvents and reagents were oven dried and flushed with dry argon prior to use. Plastic 

syringes were flushed with dry argon before use. Methanol and THF were dried by passage through 

neutral alumina columns using a commercial solvent purification system prior to use. Anhydrous 

methylene chloride and anhydrous toluene were purchased from Sigma-Aldrich and used as 

received. All chemicals were used as received from commercial source without further purification. 

Reactions and chromatography was monitored by thin-layer chromatography (TLC) on 0.25 mm 

Analtech GHLF silica gel plates and visualized by UV light (254 nm) or Seebach’s stain by heating. 

Purification was achieved by flash chromatography on a CombiFlash Rf (automated flash 

chromatography) system. MS-directed HPLC purification was carried out by mass-directed 

fractionation (MDF) with gradient elution (a narrow CH3CN gradient was chosen based on the 

retention time of the target from LCMS analysis of the crude sample) on an Agilent 1200 

instrument with photodiode array detector, an Agilent 6120 quadrupole mass spectrometer, and a 

HTPAL LEAP autosampler. HPLC/MS analysis was carried out with gradient elution (5% CH3CN 

to 100% CH3CN) on an Agilent 1200 RRLC with a photodiode array UV detector (214 nm) and 

an Agilent 6224 TOF mass spectrometer (also used to produce high resolution mass spectra). 1H 

and 13C NMR spectra were acquired on a 600 MHz Bruker AVIII spectrometer equipped with a 

cryogenically-cooled carbon observe probe, or a 500 MHz Bruker AVIII spectrometer equipped 

with a cryogenically-cooled carbon observe probe, or a 400 MHz Bruker AVIIIHD spectrometer, 

or a 400 MHz Varian 400MR spectrometer. HRMS data were collected with a LCT Premier time-
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of-flight mass spectrometer and an electrospray ion source. IR spectra were acquired on a 

PerkinElmer Spectrum 100 FT-IR spectrometer or a Bruker Alpha FT-IR spectrometer.  

Procedure for Chapter 1 

General Procedure for the Ugi Multicomponent Reactoin in Bisamide Library Synthesis. On 

a 24-position Bohdan MiniBlock, reaction tubes were installed. Each reaction tube was charged 

with a suspension of carboxylic acid (0.4 mmol), amine (0.4 mmol), and ketone/aldehyde (0.4 

mmol) in methanol (0.5 mL), was added isocyanide (0.4 mmol) at room temperature. The Bohdan 

MiniBlock was agitated for 24 h on the shaker station. To each reaction tube, was added TFA (0.14 

mL) prior to 30 min of shaking at room temperature. Each reaction mixture was transferred to a 

CCT tube then concentrated under N2. The crude sample was purified via MS-directed HPLC to 

afford the title compound. 

 

 

          N-(1-(Cyclohexylcarbamoyl)cyclohexyl)-N-(furan-2-ylmethyl)picolinamide. Prepared 

according to the general procedure for Ugi multicomponent reaction, the title compound was 

obtained as a white solid (0.086 mg, 0.210 mmol, 52% yield, 93.1% purity). Mp = 88–92 ºC; IR 

(neat) 2929, 1655 (v br) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.58 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H), 

7.80 (t, J = 7.6 Hz, 1H), 7.66–7.57 (m, 1H), 7.45–7.33 (m, 1H), 7.25 (dd, J = 1.8, 0.8 Hz, 1H), 

7.04 (d, J = 9.8 Hz, 1H), 6.20 (dd, J = 3.3, 1.8 Hz, 1H), 5.95 (dd, J = 3.2, 0.9 Hz, 1H), 4.78 (s, 2H), 
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3.71–3.58 (m, 1H), 2.23–2.11 (m, 3H), 1.78 (ddt, J = 19.3, 12.5, 7.0 Hz, 5H), 1.71–1.42 (m, 8H), 

1.40–1.05 (m, 6H); 13C NMR (151 MHz, CDCl3) δ 173.1, 172.0, 155.3, 151.4, 148.2, 141.9, 137.3, 

124.8, 124.3, 110.8, 108.3, 66.5, 47.9, 43.0, 33.0, 32.8, 25.9, 25.8, 24.8, 22.5; HRMS (ESI) m/z 

calcd for C24H32N3O3 [M + H]+ 410.2438, found 410.2472. 

 

 

          N-(1-(Cyclohexylcarbamoyl)cyclopentyl)-N-(furan-2-ylmethyl)picolinamide. Prepared 

according to the general procedure for Ugi multicomponent reaction, the title compound was 

obtained as yellow solid (0.022 mg, 0.056 mmol, 14% yield, ≥ 99% purity). Mp = 126–130 ºC; IR 

(neat) 2931, 1655 (v br), 1514 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.55 (ddd, J = 4.9, 1.8, 1.0 Hz, 

1H), 7.76 (td, J = 7.7, 1.7 Hz, 1H), 7.54 (dt, J = 7.8, 1.1 Hz, 1H), 7.33 (ddd, J = 7.6, 4.9, 1.2 Hz, 

1H), 7.24 (dd, J = 1.9, 0.8 Hz, 1H), 6.89 (br, 1H), 6.21 (dd, J = 3.3, 1.8 Hz, 1H), 5.96 (d, J = 3.2 

Hz, 1H), 4.82 (s, 2H), 3.65 (tdt, J = 10.2, 7.9, 3.9 Hz, 1H), 2.57 (dd, J = 12.4, 7.3 Hz, 2H), 2.05–

1.95 (m, 2H), 1.90–1.85 (m, 1H), 1.84–1.62 (m, 8H), 1.60–1.51 (m, 1H), 1.39–1.27 (m, 2H), 1.26–

1.01 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 172.7, 171.0, 155.1, 151.4, 148.0, 141.9, 137.3, 

124.8, 124.2, 110.8, 108.3, 73.9, 48.0, 44.0, 36.4, 33.0, 25.8, 24.8, 23.9; HRMS (ESI) calcd for 

C23H30N3O3 [M + H]+ 396.2282, found 396.2288. 
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          N-(1-(Cyclohexylcarbamoyl)cyclohexyl)-N-(furan-2-ylmethyl)nicotinamide. Prepared 

according to the general procedure for Ugi multicomponent reaction, the title compound was 

obtained as a yellow solid (0.109 g, 0.266 mmol, 67% yield, 98.6% purity). Mp = 136–139 ºC; IR 

(neat) 2929, 1652 (v br), 1520 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.77 (d, J = 2.2, 0.9 Hz, 1H), 

8.66 (dd, J = 4.9, 1.7 Hz, 1H), 7.85 (dt, J = 7.9, 2.0 Hz, 1H), 7.38 (ddd, J = 7.8, 4.9, 0.9 Hz, 1H), 

7.30 (dd, J = 1.9, 0.8 Hz, 1H), 7.08–7.02 (m, 1H), 6.26 (dd, J = 3.3, 1.8 Hz, 1H), 6.06 (dd, J = 3.2, 

0.9 Hz, 1H), 4.54 (d, J = 0.9 Hz, 2H), 3.63–3.52 (m, 1H), 2.35–2.27 (m, 2H), 2.16–2.07 (m, 2H), 

1.83–1.62 (m, 6H), 1.60–1.05 (m, 10H); 13C NMR (126 MHz, CDCl3) δ 172.7, 172.4, 150.7, 150.1, 

147.9, 142.4, 135.8, 133.9, 123.8, 111.0, 108.9, 66.4, 48.0, 44.3, 32.9, 32.5, 25.8, 25.6, 24.7, 22.4; 

HRMS (ESI) m/z calcd for C24H32N3O3 [M + H]+ 410.2438, found 410.2433. 

 

 

          N-(1-(Cyclohexylcarbamoyl)cyclopentyl)-N-(furan-2-ylmethyl)nicotinamide. Prepared 

according to the general procedure for Ugi multicomponent reaction, the title compound was 

obtained as a white solid (0.064 g, 0.162 mmol, 40% yield, 98.9% purity). Mp = 105–108 ºC; IR 

(neat) 2932, 1646 (v br), 1524 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.72 – 8.62 (m, 2H), 7.79 (dt, 
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J = 1.91, 7.85 Hz, 1H), 7.39 – 7.32 (m, 2H), 6.70 (d, J = 7.97 Hz, 1H), 6.31 (dd, J = 1.86, 3.28 Hz, 

1H), 6.09 (dd, J = 0.91, 3.31 Hz, 1H), 4.55 (s, 2H), 3.69–3.62 (m, 1H), 2.66–2.62 (m, 2H), 2.04–

1.94 (m, 2H), 1.87–1.63 (m, 8H), 1.62–1.53 (m, 1H), 1.41–1.29 (m, 2H), 1.23–1.06 (m, 3H); 13C 

NMR (126 MHz, CDCl3) δ 172.3, 171.4, 150.5, 150.3, 147.2, 142.4, 135.4, 133.5, 123.7, 111.1, 

108.6, 73.8, 48.1, 45.7, 36.3, 33.0, 25.8, 24.8, 23.6; HRMS (ESI) m/z calcd for C23H30N3O3 [M + 

H]+ 396.2282, found 396.2280. 

 

 

          N-(1-(Cyclohexylcarbamoyl)cyclohexyl)-N-(furan-2-ylmethyl)isonicotinamide. 

Prepared according to the general procedure for ugi multicomponent reaction, the title compound 

was obtained as a white solid (0.100 g, 0.244 mmol, 61% yield, 98.9% purity). Mp = 98–100 ºC;  

IR (neat) 2932, 1648 (v br), 1537 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.71–8.65 (m, 2H), 7.37–

7.34 (m, 2H), 7.33 (dd, J = 1.9, 0.8 Hz, 1H), 6.82–6.77 (m, 1H), 6.29 (dd, J = 3.3, 1.9 Hz, 1H), 

6.09 (dd, J = 3.3, 0.9 Hz, 1H), 4.49 (s, 2H), 3.63 – 3.58 (m, 1H), 2.23–2.14 (m, 4H), 1.84–1.61 (m, 

6H), 1.53 (qt, J = 14.0, 4.0 Hz, 5H), 1.40–1.28 (m, 2H), 1.25–1.08 (m, 3H); 13C NMR (126 MHz, 

CDCl3) δ 172.4, 172.2, 150.2, 150.1, 145.4, 142.3, 121.4, 111.0, 108.8, 66.3, 48.0, 43.9, 32.9, 32.4, 

25.8, 25.6, 24.7, 22.6; HRMS (ESI) m/z calcd for C24H32N3O3 [M + H]+ 410.2438, found 410.2439. 

 



98 
 

 

          N-(1-(Cyclohexylcarbamoyl)cyclopentyl)-N-(furan-2-ylmethyl)isonicotinamide. 

Prepared according to the general procedure for Ugi multicomponent reaction, the title compound 

was obtained as a yellow solid (0.111 g, 70% yield, 98.6% purity). Mp = 138–141 ºC; IR (neat) 

2927, 1658, 1624 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.67 (d, J = 4.8 Hz, 2H), 7.44–7.34 (m, 3H), 

6.57–6.43 (m, 1H), 6.34 (dd, J = 3.3, 1.8 Hz, 1H), 6.12 (dd, J = 3.1, 0.9 Hz, 1H), 4.50 (s, 2H), 

3.74–3.62 (m, 1H), 2.66–2.55 (m, 3H), 2.05–1.94 (m, 2H), 1.89–1.53 (m, 9H), 1.43–1.30 (m, 2H), 

1.29–1.04 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 172.1, 171.1, 150.4, 149.3, 145.8, 142.4, 121.5, 

111.2, 108.7, 73.7, 48.2, 45.4, 36.2, 33.1, 25.8, 24.8, 23.6; HRMS (ESI) m/z calcd for C23H30N3O3 

[M + H]+ 396.2282, found 396.2281. 

 

 

          (±)-N-(1-(Cyclohexylcarbamoyl)cyclopentyl)-N-((tetrahydrofuran-2-

yl)methyl)picolinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a colorless film (0.009 g, 0.023 mmol, 6% yield, 96.0% 

purity). IR (neat) 2926, 1649 (v br)  cm-1; 1H NMR (500 MHz, CDCl3) δ 8.52 (ddd, J = 4.9, 1.8, 

0.9 Hz, 1H), 7.78 (td, J = 7.7, 1.8 Hz, 1H), 7.64–7.60 (m, 1H), 7.56 (dt, J = 7.9, 1.1 Hz, 1H), 7.29 
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(ddd, J = 7.6, 4.9, 1.3 Hz, 0H), 3.98 (p, J = 6.7, 5.3 Hz, 1H), 3.85–3.72 (m, 2H), 3.65 (d, J = 16.1 

Hz, 1H), 3.56 (dt, J = 8.4, 6.9 Hz, 1H), 3.40–3.27 (m, 1H), 2.64 (d, J = 25.9 Hz, 1H), 2.43 (d, J = 

10.3 Hz, 1H), 2.12–2.01 (m, 1H), 2.01–1.06 (m, 18H); 13C NMR (126 MHz, CDCl3) δ 173.7, 170.4, 

156.2, 147.7, 137.0, 124.8, 124.1, 73.5, 67.7, 50.4, 48.2, 37.5, 36.1, 33.1, 33.0, 29.1, 25.9, 25.8, 

24.9, 24.6, 24.3; HRMS (ESI) m/z calcd for C23H34N3O3 [M + H]+ 400.2595, found 400.2616. 

 

 

          (±)-N-(1-(Cyclohexylcarbamoyl)cyclohexyl)-N-((tetrahydrofuran-2-

yl)methyl)nicotinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a colorless film (0.033 g, 0.080 mmol, 20% yield, ≥ 

99% purity). IR (neat) 2927, 1641 (v br) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.65 (dd, J = 2.3, 0.9 

Hz, 1H), 8.62 (dd, J = 4.9, 1.7 Hz, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.75 (dt, J = 7.8, 1.9 Hz, 1H), 

7.34 (ddd, J = 7.8, 4.9, 0.9 Hz, 1H), 3.99–3.90 (m, 1H), 3.81–3.70 (m, 1H), 3.59 (dt, J = 8.2, 6.6 

Hz, 1H), 3.50–3.34 (m, 3H), 2.77–2.69 (m, 1H), 2.19–2.05 (m, 2H), 1.99–1.61 (m, 10H), 1.60–

1.30 (m, 7H), 1.29–1.15 (m, 3H), 1.15–1.05 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 173.9, 173.0, 

150.6, 148.7, 135.9, 134.6, 123.5, 76.6, 67.7, 65.8, 52.2, 48.1, 32.8, 32.6, 32.5, 32.2, 29.2, 25.9, 

25.6, 24.7, 22.3, 22.3; HRMS (ESI) m/z calcd for C24H36N3O3 [M + H]+ 414.2751, found 414.2769. 
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          (±)-N-(1-(Cyclohexylcarbamoyl)cyclopentyl)-N-((tetrahydrofuran-2-

yl)methyl)nicotinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a white solid (0.084 g, 0.210 mmol, 53% yield, ≥ 99% 

purity). Mp = 148–151 ºC;  IR (neat) 2929, 1637 (v br) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.62 

(dd, J = 4.9, 1.7 Hz, 1H), 8.59 (dd, J = 2.2, 0.9 Hz, 1H), 7.71 (dt, J = 7.8, 1.9 Hz, 1H), 7.65 (d, J 

= 8.0 Hz, 1H), 7.38 (ddd, J = 7.8, 4.9, 0.9 Hz, 1H), 4.09–4.01 (m, 1H), 3.81–3.72 (m, 1H), 3.69–

3.61 (m, 1H), 3.58–3.50 (m, 1H), 3.47–3.33 (m, 2H), 2.83–2.75 (m, 1H), 2.45–2.35 (m, 1H), 2.08–

1.98 (m, 1H), 1.97–1.75 (m, 7H), 1.76–1.64 (m, 4H), 1.63–1.51 (m, 2H), 1.45–1.31 (m, 2H), 1.26–

1.13 (m, 4H); 13C NMR (126 MHz, CDCl3) δ 173.1, 170.9, 149.3, 147.4, 135.9, 134.6, 123.6, 76.7, 

73.3, 67.9, 52.2, 48.3, 37.7, 36.1, 33.0, 32.9, 29.1, 25.9, 25.9, 24.9, 24.8, 24.2, 23.9; HRMS (ESI) 

m/z calcd for C23H34N3O3 [M + H]+ 400.2595, found 400.2608. 

 

 

           (±)-N-(1-(Cyclohexylcarbamoyl)cyclohexyl)-N-((tetrahydrofuran-2-

yl)methyl)isonicotinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a colorless film (0.051 g, 0.123 mmol, 31% yield, ≥ 
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99% purity). IR (neat) 2927, 1638 (v br) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.69 (d, J = 3.4 Hz, 

2H), 7.75 (d, J = 8.4 Hz, 1H), 7.36–7.31 (m, 2H), 3.99–3.93 (m, 1H), 3.81–3.73 (m, 1H), 3.63 

(ddd, J = 8.2, 7.1, 6.2 Hz, 1H), 3.56–3.49 (m, 1H), 3.43 (dd, J = 15.3, 2.9 Hz, 1H), 3.30 (dd, J = 

15.4, 9.9 Hz, 1H), 2.19 (ddd, J = 14.6, 10.6, 3.8 Hz, 2H), 2.10–1.96 (m, 2H), 1.93–1.68 (m, 8H), 

1.67–1.53 (m, 3H), 1.52–1.32 (m, 5H), 1.23 (dddd, J = 19.3, 12.6, 10.2, 3.6 Hz, 3H), 1.15–1.07 

(m, 1H); 13C NMR (126 MHz, CDCl3) δ 173.5, 172.5, 149.5, 147.1, 122.3, 76.6, 67.8, 66.0, 51.9, 

48.2, 32.9, 32.7, 32.6, 32.3, 29.3, 25.9, 25.9, 25.6, 24.8, 22.5; HRMS (ESI) m/z calcd for 

C24H36N3O3 [M + H]+ 414.2751, found 414.2740. 

 

 

          (±)-N-(1-((2,6-Dimethylphenyl)carbamoyl)cyclopentyl)-N-((tetrahydrofuran-2-

yl)methyl)isonicotinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a colorless film (0.037 g, 0.088 mmol, 22% yield, ≥ 

99% purity). IR (neat) 2958, 1677, 1639 cm-1; 1H NMR (500 MHz, CDCl3) δ 9.02 (s, 1H), 8.71–

8.65 (m, 2H), 7.25–7.21 (m, 2H), 7.06 (s, 3H), 4.16 (br s, 1H), 3.68–3.53 (m, 2H), 3.48 (dd, J = 

15.4, 2.9 Hz, 1H), 3.40 (dd, J = 15.4, 10.4 Hz, 1H), 2.96 (br s, 1H), 2.51 (br s, 1H), 2.29 (s, 6H), 

2.19-2.06 (m, 2H), 2.00–1.84 (m, 4H), 1.84–1.69 (m, 3H), 1.65–1.49 (m, 1H), 1.22 (ddq, J = 12.4, 

8.1, 6.9 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 172.0, 171.0, 150.2, 145.6, 135.5, 134.9, 128.2, 

126.6, 121.3, 73.7, 68.3, 51.8, 41.1, 37.6, 36.2, 29.2, 25.9, 24.4, 24.0, 18.7; HRMS (ESI) m/z calcd 

for C25H32N3O3 [M + H]+ 422.2438, found 422.2450. 
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          N-Benzyl-N-(1-((2,6-dimethylphenyl)carbamoyl)cyclohexyl)picolinamide. Prepared 

according to the general procedure for Ugi multicomponent reaction, the title compound was 

obtained as a white solid (0.102 g, 0.231 mmol, 58% yield, ≥ 99% purity). Mp = 144–146 ºC; IR 

(neat) 2929, 1676, 1637 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.58 (br, 1H), 8.53 (ddd, J = 4.8, 1.8, 

0.9 Hz, 1H), 7.68 (td, J = 7.7, 1.7 Hz, 1H), 7.46 (dt, J = 7.9, 1.1 Hz, 1H), 7.31–7.13 (m, 6H), 7.11–

7.01 (m, 3H), 4.87 (s, 2H), 2.50–2.41 (m, 2H), 2.28–2.16 (m, 8H), 1.89–1.77 (m, 2H), 1.76–1.66 

(m, 2H), 1.63–1.52 (m, 1H), 1.48–1.37 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 172.3, 171.8, 

155.5, 148.2, 139.0, 137.2, 135.2, 134.5, 128.7, 128.3, 127.6, 127.4, 126.7, 124.7, 123.9, 67.7, 

50.5, 33.5, 25.7, 22.8, 19.1; HRMS (ESI) m/z calcd for C28H32N3O2 [M + H]+ 442.2489, found 

442.2480. 

 

 

          N-Benzyl-N-(1-((2,6-dimethylphenyl)carbamoyl)cyclopentyl)picolinamide. Prepared 

according to the general procedure for Ugi multicomponent reaction, the title compound was 

obtained as a white solid (0.042 g, 0.098 mmol, 25% yield, 98.2% purity). Mp = 148–150 ºC; IR 
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(neat) 2959, 1672, 1636 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.50 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H), 

7.71 (td, J = 7.8, 1.7 Hz, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.33–7.16 (m, 6H), 7.11–7.02 (m, 3H), 

4.91 (s, 2H), 2.86–2.67 (br s, 2H), 2.20 (s, 6H), 2.13–1.99 (m, 2H), 1.86–1.64 (m, 4H); 13C NMR 

(126 MHz, CDCl3) δ 171.8, 171.5, 155.2, 148.1, 138.9, 137.3, 135.4, 134.4, 128.7, 128.3, 127.3, 

127.2, 126.9, 124.7, 123.8, 74.9, 52.0, 36.8, 23.6, 18.7; HRMS (ESI) m/z calcd for C27H30N3O2 [M 

+ H]+ 428.2333, found 428.2348. 

 

 

          N-Benzyl-N-(1-((2,6-dimethylphenyl)carbamoyl)cyclohexyl)nicotinamide. Prepared 

according to the general procedure for Ugi multicomponent reaction, the title compound was 

obtained as a white solid (0.066 g, 0.149 mmol, 37% yield, 97.6% purity). Mp = 200–203 ºC; IR 

(neat) 2936, 1668, 1634 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.80 – 8.75 (m, 1H), 8.62 (s, 1H), 

8.53 (dd, J = 5.1, 1.7 Hz, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.28 (ddd, J = 7.8, 5.0, 0.8 Hz, 1H), 7.23–

7.16 (m, 3H), 7.15–7.03 (m, 5H), 4.74 (s, 2H), 2.54–2.45 (m, 2H), 2.43–2.34 (m, 2H), 2.21 (s, 6H), 

1.87–1.79 (m, 2H), 1.73–1.64 (m, 2H), 1.63–1.57 (m, 1H), 1.57–1.52 (m, 1H); 13C NMR (126 

MHz, CDCl3) δ 172.0, 171.4, 149.4, 146.3, 138.1, 136.3, 134.9, 134.6, 134.5, 129.0, 128.5, 127.8, 

127.4, 126.8, 124.1, 67.7, 51.6, 33.2, 25.5, 22.9, 19.2; HRMS (ESI) m/z calcd for C28H32N3O2 [M 

+ H]+ 442.2489, found 442.2497. 
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          N-Benzyl-N-(1-((2,6-dimethylphenyl)carbamoyl)cyclopentyl)nicotinamide. Prepared 

according to the general procedure for Ugi multicomponent reaction, the title compound was 

obtained as a white solid (0.066 g, 0.154 mmol, 39% yield, 98.9% purity). Mp = 190–193 ºC; IR 

(neat) 2961, 1664, 1636 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.69 (dd, J = 2.2, 0.9 Hz, 1H), 8.54 

(dd, J = 5.0, 1.7 Hz, 1H), 8.07 (s, 1H), 7.71 (dt, J = 8.0, 1.9 Hz, 1H), 7.32 (dd, J = 8.1, 6.7 Hz, 2H), 

7.29–7.18 (m, 4H), 7.14–7.03 (m, 3H), 4.75 (s, 2H), 2.86 (dd, J = 13.0, 5.7 Hz, 2H), 2.27 (s, 6H), 

2.24–2.12 (m, 2H), 1.84 (dtd, J = 10.3, 5.9, 2.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 171.7, 

171.7, 149.4, 146.2, 138.6, 135.6, 135.3, 134.2, 133.8, 129.1, 128.4, 127.7, 127.2, 126.4, 123.8, 

74.7, 53.2, 36.8, 23.8, 18.8; HRMS (ESI) m/z calcd for C27H30N3O2 [M + H]+ 428.2333, found 

428.2347. 

 

 

          N-Benzyl-N-(1-((2,6-dimethylphenyl)carbamoyl)cyclohexyl)isonicotinamide. Prepared 

according to the general procedure for Ugi multicomponent reaction, the title compound was 

obtained as a white solid (0.123 g, 0.279 mmol, 70% yield, 94.0% purity). Mp = 191–193 ºC; IR 

(neat) 2932, 1681, 1639 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.61–8.52 (m, 2H), 8.20 (s, 1H), 



105 
 

7.31–7.28 (m, 2H), 7.29–7.20 (m, 3H), 7.20–7.14 (m, 2H), 7.11–7.04 (m, 3H), 4.68 (s, 2H), 2.70–

2.50 (m, 2H), 2.35–2.16 (m, 8H), 1.89–1.77 (m, 2H), 1.77–1.59 (m, 3H), 1.54–1.39 (m, 1H); 13C 

NMR (126 MHz, CDCl3) δ 171.8, 170.9, 148.7, 146.6, 138.0, 134.8, 134.2, 129.0, 128.4, 127.7, 

126.9, 126.8, 121.2, 67.5, 50.9, 33.1, 25.3, 23.0, 19.1; HRMS (ESI) m/z calcd for C28H32N3O2 [M 

+ H]+ 442.2489, found 442.2495. 

 

 

          N-Benzyl-N-(1-((2,6-dimethylphenyl)carbamoyl)cyclopentyl)isonicotinamide. 

Prepared according to the general procedure for Ugi multicomponent reaction, the title compound 

was obtained as a colorless film (0.078 g, 0.182 mmol, 46% yield, 98.5% purity). IR (neat) 2963, 

1690, 1617 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.59 – 8.50 (m, 2H), 7.80 (s, 1H), 7.34 (dd, J = 

8.2, 6.7 Hz, 2H), 7.31–7.27 (m, 3H), 7.24–7.19 (m, 2H), 7.14–7.06 (m, 3H), 4.67 (s, 2H), 2.95–

2.78 (m, 2H), 2.28 (s, 6H), 2.25–1.60 (m, 6H); 13C NMR (126 MHz, CDCl3) δ 171.7, 148.8, 146.1, 

138.5, 135.4, 134.0, 129.2, 128.5, 127.8, 127.3, 126.2, 121.1, 74.6, 52.9, 36.7, 23.8, 18.8; HRMS 

(ESI) m/z calcd for C27H30N3O2 [M + H]+ 428.2333, found 428.2349. 
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          N-(Cyclohexylmethyl)-N-(1-((2,6-dimethylphenyl)carbamoyl)cyclohexyl)picolinamide. 

Prepared according to the general procedure for Ugi multicomponent reaction, the title compound 

was obtained as a white foam (0.030 g, 0.067 mmol, 17% yield, 98.4% purity). Mp = 68–71 ºC; 

IR (neat) 2926, 1681, 1637 cm-1; 1H NMR (500 MHz, CDCl3) δ 9.74–9.70 (br, 1H), 8.61 (ddd, J 

= 4.9, 1.7, 0.9 Hz, 1H), 7.82 (td, J = 7.7, 1.7 Hz, 1H), 7.61 (dt, J = 7.8, 1.1 Hz, 1H), 7.36 (ddd, J 

= 7.7, 4.8, 1.2 Hz, 1H), 7.06 (s, 3H), 3.46 (d, J = 6.3 Hz, 2H), 2.53 (br, 2H), 2.30 (m, 7H), 1.89–

1.76 (m, 2H), 1.73–1.58 (m, 7H), 1.57–1.47 (m, 4H), 1.19–1.06 (m, 2H), 1.00–0.87 (m, 1H), 0.57–

0.45 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 173.5, 172.8, 155.9, 148.6, 137.2, 135.0, 134.8, 

128.3, 126.5, 124.8, 124.8, 66.6, 54.1, 37.5, 33.0, 31.1, 26.2, 25.8, 25.5, 22.6, 19.3; HRMS (ESI) 

m/z calcd for C28H38N3O2 [M + H]+ 448.2959, found 448.2981. 

 

 

          N-(Cyclohexylmethyl)-N-(1-((2,6-

dimethylphenyl)carbamoyl)cyclopentyl)picolinamide. Prepared according to the general 

procedure for Ugi multicomponent reaction, the title compound was obtained as a white solid 

(0.027 g, 0.062 mmol, 16% yield, 98.9% purity). Mp = 101–103 ºC; IR (neat) 2924, 1678, 1633 

cm-1; 1H NMR (500 MHz, CDCl3) δ 9.38 (br, 1H), 8.57 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H), 7.82 (td, J 

= 7.7, 1.7 Hz, 1H), 7.60 (dt, J = 7.8, 1.1 Hz, 1H), 7.36 (ddd, J = 7.7, 4.9, 1.2 Hz, 1H), 7.06 (s, 3H), 

5.29 (s, 1H), 3.53 (d, J = 6.3 Hz, 2H), 2.84 (br s, 2H), 2.27 (s, 6H), 2.19–2.09 (m, 2H), 1.92–1.78 

(m, 4H), 1.72–1.59 (m, 3H), 1.58–1.47 (m, 3H), 1.11 (qt, J = 12.9, 3.4 Hz, 2H), 1.00–0.87 (m, 1H), 
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0.56–0.44 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 172.2, 172.0, 155.6, 148.3, 137.4, 135.0, 134.8, 

128.3, 126.6, 124.7, 124.6, 74.2, 54.8, 37.6, 36.4, 31.0, 26.2, 25.6, 23.1, 19.0; HRMS (ESI) m/z 

calcd for C27H36N3O2 [M + H]+ 434.2802, found 434.2802. 

 

 

          N-(Cyclohexylmethyl)-N-(1-((2,6-dimethylphenyl)carbamoyl)cyclohexyl)nicotinamide. 

Prepared according to the general procedure for Ugi multicomponent reaction, the title compound 

was obtained as a white solid (0.017 g, 0.038 mmol, 9% yield, ≥ 99% purity). Mp = 119–121 ºC; 

IR (neat) 2925, 1678, 1617 cm-1; 1H NMR (500 MHz, CDCl3) δ 9.99 (s, 1H), 8.77–8.68 (m, 2H), 

7.83 (dt, J = 7.8, 1.9 Hz, 1H), 7.41 (ddd, J = 7.9, 4.9, 0.9 Hz, 1H), 7.07 (s, 3H), 3.36 (d, J = 6.0 

Hz, 2H), 2.71 (br s, 2H), 2.32 (s, 6H), 2.17–2.07 (m, 2H), 1.85–1.60 (m, 8H), 1.58–1.42 (m, 3H), 

1.19–1.06 (m, 2H), 1.01–0.87 (m, 1H), 0.62–0.50 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 173.7, 

172.7, 151.4, 149.3, 136.4, 135.0, 134.3, 134.0, 128.4, 126.4, 123.8, 66.5, 55.7, 37.2, 32.7, 31.1, 

26.1, 25.5, 25.3, 22.6, 19.4; HRMS (ESI) m/z calcd for C28H38N3O2 [M + H]+ 448.2959, found 

448.2970. 
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          N-(Cyclohexylmethyl)-N-(1-((2,6-

dimethylphenyl)carbamoyl)cyclopentyl)nicotinamide. Prepared according to the general 

procedure for Ugi multicomponent reaction, the title compound was obtained as a colorless film 

(0.035 g, 0.079 mmol, 20% yield, 98.9% purity). IR (neat) 2925, 1687, 1665 cm-1; 1H NMR (500 

MHz, CDCl3) δ 9.55 (s, 1H), 8.82–8.60 (m, 2H), 7.86 (d, J = 7.9 Hz, 1H), 7.48 (dd, J = 7.7, 5.1 

Hz, 1H), 7.07 (s, 3H), 3.35 (d, J = 6.6 Hz, 2H), 2.82 (br s, 2H), 2.30 (s, 6H), 2.17 (q, J = 8.3 Hz, 

2H), 1.97–1.81 (m, 4H), 1.81–1.44 (m, 6H), 1.19–1.05 (m, 2H), 1.01–0.86 (m, 1H), 0.51 (q, J = 

12.0 Hz, 2H); 13C NMR (126 MHz, CDCl3) δ 171.8, 171.2, 149.4, 147.1, 137.2, 134.8, 134.6, 

134.4, 128.5, 126.7, 124.3, 74.3, 56.5, 37.3, 36.4, 31.0, 26.1, 25.5, 22.7, 19.0; HRMS (ESI) m/z 

calcd for C27H36N3O2 [M + H]+ 434.2802, found 434.2819. 

 

 

          N-(Cyclohexylmethyl)-N-(1-((2,6-

dimethylphenyl)carbamoyl)cyclohexyl)isonicotinamide. Prepared according to the general 

procedure for Ugi multicomponent reaction, the title compound was obtained as a colorless film 

(0.034 g, 0.076 mmol, 19% yield, 95.6% purity). IR (neat) 2921, 1681, 1630 cm-1; 1H NMR (600 

MHz, CDCl3) δ 9.66 (s, 1H), 8.75 (br s, 2H), 7.38 (d, J = 5.4 Hz, 2H), 7.07 (s, 3H), 3.29 (d, J = 

6.1 Hz, 2H), 2.63 (br s, 1H), 2.31 (s, 6H), 2.25–2.15 (m, 2H), 1.88–1.77 (m, 2H), 1.75–1.61 (m, 

4H), 1.60–1.47 (m, 6H), 1.18–1.08 (m, 2H), 1.02–0.92 (m, 1H), 0.91–0.80 (m, 1H), 0.63–0.49 (m, 

2H); 13C NMR (151 MHz, CDCl3) δ 173.3, 172.2, 150.1, 146.3, 134.9, 134.4, 128.5, 126.6, 122.6, 
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66.6, 55.3, 37.4, 32.8, 31.1, 26.1, 25.5, 25.4, 22.8, 19.4; 34 mg, HRMS (ESI) m/z calcd for 

C28H38N3O2 [M + H]+ 448.2959, found 448.2975. 

 

 

          N-(Cyclohexylmethyl)-N-(1-((2,6-

dimethylphenyl)carbamoyl)cyclopentyl)isonicotinamide.  Prepared according to the general 

procedure for Ugi multicomponent reaction, the title compound was obtained as a white solid 

(0.029 g, 0.065 mmol, 17% yield, 97.7% purity). Mp = 189–191 ºC; IR (neat) 2926, 1656, 1635, 

1506 cm-1;  1H NMR (500 MHz, CDCl3) δ 9.16 (s, 1H), 8.73 (d, J = 5.9 Hz, 2H), 7.39 (d, J = 5.9 

Hz, 2H), 7.08 (s, 3H), 3.26 (d, J = 6.6 Hz, 2H), 2.81 (br s, 1H), 2.30 (s, 6H), 2.22–2.07 (m, 3H), 

1.97–1.79 (m, 4H), 1.78–1.45 (m, 6H), 1.19–1.05 (m, 2H), 1.02–0.90 (m, 1H), 0.53 (q, J = 11.7 

Hz, 2H); 13C NMR (126 MHz, CDCl3) δ 171.6, 171.1, 148.7, 147.2, 134.7, 134.6, 128.5, 126.9, 

122.5, 74.2, 56.0, 37.4, 36.4, 31.0, 26.1, 25.5, 22.8, 19.0; HRMS (ESI) m/z calcd for C27H36N3O2 

[M + H]+ 434.2802, found 434.2794. 
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          N-(1-((2,6-Dimethylphenyl)carbamoyl)cyclohexyl)-N-(furan-2-ylmethyl)picolinamide. 

Prepared according to the general procedure for Ugi multicomponent reaction, the title compound 

was obtained as a yellow solid (0.106 g, 0.246 mmol, 61% yield, ≥ 99% purity). Mp = 75–78 ºC; 

IR (neat) 2930, 1656 (v br) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.59–8.52 (m, 2H), 7.74 (td, J = 

7.7, 1.7 Hz, 1H), 7.54 (dt, J = 7.8, 1.1 Hz, 1H), 7.33 (ddd, J = 7.7, 4.8, 1.2 Hz, 1H), 7.19 (dd, J = 

1.9, 0.8 Hz, 1H), 7.07–6.99 (m, 3H), 6.15 (dd, J = 3.3, 1.9 Hz, 1H), 5.89 (d, J = 3.2 Hz, 1H), 4.93 

(s, 2H), 2.42–2.29 (m, 4H), 2.19 (s, 6H), 1.91– 1.80 (m, 2H), 1.74–1.62 (m, 2H), 1.59–1.50 (m, 

2H); 13C NMR (126 MHz, CDCl3) δ 172.0, 171.9, 155.1, 151.4, 148.1, 142.0, 137.2, 135.4, 134.5, 

128.1, 126.6, 124.8, 124.1, 110.9, 108.2, 67.1, 43.0, 32.9, 25.7, 22.6, 18.8; HRMS (ESI) m/z calcd 

for C26H30N3O3 [M + H]+ 432.2282, found 432.2280. 

 

 

          N-(1-((2,6-Dimethylphenyl)carbamoyl)cyclopentyl)-N-(furan-2-

ylmethyl)picolinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a yellow solid (0.067 g, 0.160 mmol, 40% yield, 96.8% 

purity). Mp = 158–161 ºC; IR (neat) 2958, 1661 (v br) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.54 

(ddd, J = 4.9, 1.6, 0.9 Hz, 1H), 8.44 (br s, 1H), 7.77 (td, J = 7.7, 1.7 Hz, 1H), 7.57 (dt, J = 7.9, 1.0 

Hz, 1H), 7.34 (ddd, J = 7.6, 4.9, 1.2 Hz, 1H), 7.22 (dd, J = 1.8, 0.7 Hz, 1H), 7.10–6.98 (m, 3H), 

6.20 (dd, J = 3.2, 1.9 Hz, 1H), 6.01 (d, J = 2.9 Hz, 1H), 4.92 (s, 2H), 4.84 (br s, 1H), 2.76 (br s, 

2H), 2.18 (s, 6H), 2.15–2.10 (m, 2H), 1.93–1.65 (m, 4H). 13C NMR (126 MHz, CDCl3) δ 171.8, 
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171.0, 154.8, 151.4, 148.0, 142.1, 137.4, 135.5, 134.4, 128.1, 126.8, 124.9, 124.1, 110.9, 108.3, 

74.4, 44.1, 36.5, 23.9, 18.6; HRMS (ESI) m/z calcd for C25H28N3O3 [M + H]+ 418.2125, found 

418.2141. 

 

 

          N-(1-((2,6-Dimethylphenyl)carbamoyl)cyclohexyl)-N-(furan-2-ylmethyl)nicotinamide. 

Prepared according to the general procedure for Ugi multicomponent reaction, the title compound 

was obtained as a white solid (68 mg, 0.158 mmol, 39% yield, ≥ 99% purity). Mp = 180–183 ºC; 

IR (neat) 2930, 1659, 1643 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.89 (s, 1H), 8.64 (s, 1H), 8.57 (d, 

J = 5.2 Hz, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.45–7.39 (m, 1H), 7.27 (dd, J = 1.9, 0.8 Hz, 1H), 7.09–

7.00 (m, 3H), 6.23 (dd, J = 3.3, 1.9 Hz, 1H), 6.07–6.02 (m, 1H), 4.68 (s, 2H), 2.46–2.29 (m, 4H), 

2.19 (s, 6H), 1.90–1.81 (m, 2H), 1.70–1.48 (m, 4H); 13C NMR (126 MHz, CDCl3) δ 171.4, 171.2, 

150.1, 149.1, 146.3, 142.4, 136.7, 135.1, 134.4, 134.2, 128.2, 126.6, 124.2, 111.1, 108.8, 67.1, 

44.5, 32.7, 25.4, 22.6, 18.8; HRMS (ESI) m/z calcd for C26H30N3O3 [M + H]+ 432.2282, found 

432.2280. 
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          N-(1-((2,6-Dimethylphenyl)carbamoyl)cyclopentyl)-N-(furan-2-

ylmethyl)nicotinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a white solid (0.042 g, 0.101 mmol, 25% yield, 97.0% 

purity). Mp = 206–208 ºC; IR (neat) 2954, 1656, 1640 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.87 

(br s, 1H), 8.60 (dd, J = 5.1, 1.6 Hz, 1H), 8.25 (s, 1H), 7.94 (d, J = 7.9 Hz, 1H), 7.49–7.42 (m, 1H), 

7.34 (dd, J = 1.9, 0.8 Hz, 1H), 7.10–7.02 (m, 3H), 6.31 (dd, J = 3.3, 1.8 Hz, 1H), 6.13 (dd, J = 3.3, 

1.0 Hz, 1H), 4.66 (s, 2H), 2.92–2.76 (m, 2H), 2.21 (s, 6H), 2.17–2.10 (m, 2H), 1.92–1.73 (m, 4H); 

13C NMR (126 MHz, CDCl3) δ 171.2, 170.7, 150.4, 148.4, 145.7, 142.7, 137.2, 135.5, 134.3, 134.1, 

128.4, 127.1, 124.4, 111.3, 108.7, 74.4, 46.0, 36.5, 23.8, 18.7; HRMS (ESI) m/z calcd for 

C25H28N3O3 [M + H]+ 418.2125, found 418.2117. 

 

 

 

          N-(1-((2,6-Dimethylphenyl)carbamoyl)cyclohexyl)-N-(furan-2-

ylmethyl)isonicotinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a yellow solid (0.070 g, 0.162 mmol, 41 yield, ≥ 99% 

purity). Mp = 194–197 ºC; IR (neat) 2932, 1662, 1642, 1493 cm-1; 1H NMR (500 MHz, CDCl3) δ 

8.70–8.65 (m, 2H), 8.31 (s, 1H), 7.42–7.37 (m, 2H), 7.30 (dd, J = 1.9, 0.8 Hz, 1H), 7.11–7.01 (m, 

3H), 6.28 (dd, J = 3.3, 1.9 Hz, 1H), 6.07 (dd, J = 3.3, 0.9 Hz, 1H), 4.62 (s, 2H), 2.45–2.36 (m, 2H), 
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2.34–2.25 (m, 2H), 2.19 (s, 6H), 1.92–1.81 (m, 2H), 1.69–1.48 (m, 4H); HRMS (ESI) m/z calcd 

for C26H30N3O3 [M + H]+ 432.2282, found 432.2288. 

 

 

          N-(1-((2,6-Dimethylphenyl)carbamoyl)cyclopentyl)-N-(furan-2-

ylmethyl)isonicotinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a white solid (0.046 g, 0.110 mmol, 28% yield, 97.9% 

purity). Mp = 178–180 ºC; IR (neat) 2962, 1663, 1635 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.69–

8.64 (m, 2H), 8.02 (s, 1H), 7.39–7.32 (m, 3H), 7.13–7.02 (m, 3H), 6.33 (dd, J = 3.3, 1.9 Hz, 1H), 

6.14 (dd, J = 3.3, 1.0 Hz, 1H), 4.58 (s, 2H), 2.84–2.75 (m, 2H), 2.21 (s, 6H), 2.19–2.12 (m, 2H), 

1.93–1.74 (m, 4H); 13C NMR (126 MHz, CDCl3) δ 171.5, 171.2, 150.6, 150.0, 145.0, 142.6, 135.4, 

134.2, 128.4, 127.1, 121.1, 111.3, 108.5, 74.2, 45.5, 36.5, 23.9, 18.7; HRMS (ESI) m/z calcd for 

C25H28N3O3 [M + H]+ 418.2125, found 418.2135. 
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          (±)-N-(1-((2,6-Dimethylphenyl)carbamoyl)cyclohexyl)-N-((tetrahydrofuran-2-

yl)methyl)picolinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a light yellow film (0.026 g, 0.060 mmol, 15% yield, 

94.4% purity). IR (neat) 2927, 1679, 1640 cm-1; 1H NMR (500 MHz, CDCl3) δ 9.31 (s, 1H), 8.56 

(ddd, J = 4.9, 1.7, 0.9 Hz, 1H), 7.79 (td, J = 7.7, 1.7 Hz, 1H), 7.63 (dt, J = 7.9, 1.1 Hz, 1H), 7.31 

(ddd, J = 7.6, 4.9, 1.2 Hz, 1H), 7.05 (s, 3H), 4.17–3.69 (m, 3H), 3.55 (dt, J = 8.2, 6.6 Hz, 1H), 3.42 

(br s, 1H), 2.58 (br s, 1H), 2.47–2.37 (m, 1H), 2.31 (s, 6H), 2.29–2.23 (m, 1H), 2.20–2.11 (m, 3H), 

1.97–1.87 (m, 1H), 1.81–1.46 (m, 6H), 1.29–1.18 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 173.1 

(2 carbonyl), 156.1, 148.0, 137.1, 135.6, 135.2, 128.2, 126.4, 124.9, 124.3, 77.9, 67.9, 66.5, 50.4, 

33.4, 32.4, 31.1, 29.3, 25.8, 25.7, 22.8, 22.6, 18.9; HRMS (ESI) m/z calcd for C26H34N3O3 [M + 

H]+ 436.2595, found 436.2610. 

 

 

          (±)-N-(1-((2,6-Dimethylphenyl)carbamoyl)cyclopentyl)-N-((tetrahydrofuran-2-

yl)methyl)picolinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a yellow film (0.016 g, 0.038 mmol, 9% yield, 95.7% 

purity). IR (neat) 2961, 1677, 1638 cm-1; 1H NMR (500 MHz, CDCl3) δ 9.05 (br, 1H), 8.55 (ddd, 

J = 4.9, 1.7, 0.9 Hz, 1H), 7.80 (td, J = 7.7, 1.8 Hz, 1H), 7.62 (dt, J = 7.9, 1.1 Hz, 1H), 7.31 (ddd, J 

= 7.6, 4.9, 1.2 Hz, 1H), 7.05 (s, 3H), 4.23–2.48 (m, 6H), 2.37–2.19 (m, 7H), 2.15–1.67 (m, 8H), 

1.59–1.19 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 172.6 (2 Carbonyl), 155.9, 147.8, 137.2, 135.6, 



115 
 

135.2, 128.1, 126.5, 124.8, 124.2, 74.0, 68.1, 56.1, 50.3, 37.6, 36.2, 29.1, 25.8, 24.7, 24.3, 18.8; 

HRMS (ESI) m/z calcd for C25H32N3O3 [M + H]+ 422.2438, found 422.2454. 

 

 

          (±)-N-(1-((2,6-Dimethylphenyl)carbamoyl)cyclohexyl)-N-((tetrahydrofuran-2-

yl)methyl)nicotinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a white solid (0.110 g, 0.253 mmol, 63% yield, 96.4% 

purity). Mp = 115–118 ºC; IR (neat) 2929, 1677, 1637 cm-1; 1H NMR (500 MHz, CDCl3) δ 9.48 

(br, 1H), 8.69 (dd, J = 2.2, 0.9 Hz, 1H), 8.64 (dd, J = 4.9, 1.7 Hz, 1H), 7.77 (dt, J = 7.9, 1.9 Hz, 

1H), 7.37 (ddd, J = 7.8, 4.8, 0.9 Hz, 1H), 7.05 (s, 3H), 4.14–4.04 (m, 1H), 3.63–3.41 (m, 4H), 2.87 

(br s, 1H), 2.35–2.24 (m, 7H), 2.23–2.18 (m, 1H), 1.95–1.63 (m, 6H), 1.59–1.44 (m, 4H), 1.22–

1.11 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 172.6 (2 carbonyl), 150.6, 148.5, 135.7, 135.3, 135.0, 

134.4, 128.2, 126.5, 123.5, 76.9, 68.0, 66.2, 52.3, 32.8, 32.5, 29.3, 25.8, 25.5, 22.7, 22.5, 18.8; 

HRMS (ESI) m/z calcd for C26H34N3O3 [M + H]+ 436.2595, found 436.2601. 
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         (±)-N-(1-((2,6-Dimethylphenyl)carbamoyl)cyclopentyl)-N-((tetrahydrofuran-2-

yl)methyl)nicotinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a colorless film (0.049 g, 0.116 mmol, 29% yield, 

98.1% purity). IR (neat) 2948, 1678, 1630 cm-1; 1H NMR (500 MHz, CDCl3) δ 9.10 (s, 1H), 8.71 

– 8.59 (m, 2H), 7.80 (dt, J = 7.7, 1.6 Hz, 1H), 7.44 (dd, J = 7.7, 5.0 Hz, 1H), 7.06 (s, 3H), 4.19 (br 

s, 1H), 3.71–3.41 (m, 4H), 3.01 (br s, 1H), 2.61–2.47 (m, 1H), 2.29 (s, 6H), 2.20–2.05 (m, 2H), 

2.01–1.87 (m, 3H), 1.85–1.70 (m, 3H), 1.64–1.49 (m, 1H), 1.30–1.15 (m, 1H); 13C NMR (126 

MHz, CDCl3) δ 171.9, 170.7, 148.9, 146.7, 136.4, 135.4, 134.9, 134.7, 128.3, 126.7, 124.0, 73.8, 

68.3, 57.9, 52.3, 37.7, 36.3, 29.2, 25.9, 24.3, 23.9, 18.8; HRMS (ESI) m/z calcd for C25H32N3O3 

[M + H]+ 422.2438, found 422.2464. 

 

 

         (±)-N-(1-((2,6-Dimethylphenyl)carbamoyl)cyclohexyl)-N-((tetrahydrofuran-2-

yl)methyl)isonicotinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a white solid (0.090 g, 0.207 mmol, 52% yield, ≥ 99% 

purity). Mp = 56–59 ºC; IR (neat) 2928, 1680, 1639 cm-1; 1H NMR (500 MHz, CDCl3) δ 9.15 (s, 

1H), 8.77–8.72 (m, 2H), 7.55–7.50 (m, 2H), 7.07 (s, 3H), 4.14–4.08 (m, 1H), 3.67–3.58 (m, 2H), 

3.54–3.46 (m, 1H), 3.39–3.30 (m, 1H), 2.81–2.77 (m, 1H), 2.40–2.23 (m, 8H), 2.17–2.10 (m, 1H), 

1.95–1.72 (m, 4H), 1.72–1.44 (m, 5H), 1.21–1.10 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 171.9, 
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171.3, 156.3, 147.0, 135.2, 134.8, 128.4, 126.8, 123.2, 68.1, 66.6, 52.1, 36.8, 32.8, 32.7, 29.4, 26.0, 

25.5, 22.9, 22.7, 18.9; HRMS (ESI) m/z calcd for C26H34N3O3 [M + H]+ 436.2595, found 436.2596. 

 

 

          (±)-N-(1-(Cyclohexylcarbamoyl)cyclopentyl)-N-((tetrahydrofuran-2-

yl)methyl)isonicotinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a white solid (0.086 g, 0.215 mmol 54% yield, 96.1% 

purity). Mp = 137–140 ºC; IR (neat) 2929, 1645 (v br) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.68–

8.59 (m, 2H), 7.53 (d, J = 6.9 Hz, 1H), 7.23–7.12 (m, 2H), 4.08–3.95 (m, 1H), 3.79–3.69 (m, 1H), 

3.69–3.60 (m, 1H), 3.60–3.50 (m, 1H), 3.41–3.25 (m, 2H), 2.75 (br s, 1H), 2.15–2.11 (m, 1H), 

2.04–1.49 (m, 14H), 1.41–1.27 (m, 2H), 1.24–1.02 (m, 4H); 13C NMR (126 MHz, CDCl3) δ 173.0, 

170.8, 150.0, 145.7, 121.4, 76.6, 73.1, 67.9, 51.6, 48.2, 37.4, 35.9, 32.9, 32.9, 29.0, 25.8, 25.8, 

24.8, 24.7, 24.3, 24.0; HRMS (ESI) m/z calcd for C23H34N3O3 [M + H]+ 400.2595, found 400.2611. 

 

 



118 
 

          N-Benzyl-N-(1-(cyclohexylcarbamoyl)cyclohexyl)picolinamide. Prepared according to 

the general procedure for Ugi multicomponent reaction, the title compound was obtained as a white 

solid (0.121 g, 0.288 mmol, 72% yield, 96.3% purity). Mp = 104–107 ºC; IR (neat) 2927, 1652, 

1628 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.57 – 8.50 (m, 1H), 7.65 (tt, J = 7.7, 1.4 Hz, 1H), 7.43 

(dd, J = 7.9, 1.1 Hz, 1H), 7.28 – 7.13 (m, 6H), 7.06 (s, 1H), 4.72 (s, 2H), 3.73–3.61 (m, 1H), 2.27–

2.17 (m, 2H), 2.14–2.05 (m, 2H), 1.89–1.81 (m, 2H), 1.75–1.45 (m, 8H), 1.42–1.27 (m, 3H), 1.26–

1.11 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 172.7, 172.2, 155.5, 148.4, 138.7, 137.0, 128.4, 

127.5, 127.2, 124.5, 123.7, 66.8, 50.3, 48.1, 33.1, 32.9, 25.8, 25.7, 24.8, 22.6; HRMS (ESI) m/z 

calcd for C26H34N3O2 [M + H]+ 420.2646, found 420.2667. 

 

 

          N-Benzyl-N-(1-(cyclohexylcarbamoyl)cyclopentyl)picolinamide. Prepared according to 

the general procedure for Ugi multicomponent reaction, the title compound was obtained as a white 

solid (0.077 g, 0.190 mmol, 47% yield, 90.8% purity). Mp = 126–129 ºC; IR (neat) 2929, 1650 (v 

br) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.51 (dt, J = 4.8, 1.2 Hz, 1H), 7.69 (td, J = 7.6, 1.6 Hz, 

2H), 7.45 (d, J = 7.9 Hz, 1H), 7.30 (dd, J = 8.0, 5.1 Hz, 1H), 7.25–7.14 (m, 5H), 4.79 (s, 2H), 

3.76–3.67 (m, 1H), 2.57 (br s, 2H), 1.97 (br s, 2H), 1.90–1.83 (m, 2H), 1.75–1.51 (m, 7H), 1.43–

1.30 (m, 2H), 1.28–1.12 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 172.7, 171.2, 155.1, 147.6, 138.8, 

137.6, 128.5, 127.3, 127.3, 124.8, 124.0, 74.5, 52.1, 48.3, 36.6, 33.0, 25.8, 24.9, 23.5; HRMS (ESI) 

m/z calcd for C25H32N3O2 [M + H]+ 406.2489, found 406.2491. 
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          N-Benzyl-N-(1-(cyclohexylcarbamoyl)cyclohexyl)nicotinamide. Prepared according to 

the general procedure for Ugi multicomponent reaction, the title compound was obtained as a white 

solid (0.103 g, 0.245 mmol, 61% yield, ≥ 99% purity). Mp = 50–53 ºC; IR (neat) 2929, 1653, 1624 

cm-1; 1H NMR (500 MHz, CDCl3) δ 8.70 (dd, J = 2.3, 0.9 Hz, 1H), 8.60 (dd, J = 4.9, 1.7 Hz, 1H), 

7.71 (dt, J = 7.8, 1.9 Hz, 1H), 7.32–7.16 (m, 4H), 7.15–7.10 (m, 2H), 7.06 (d, J = 7.6 Hz, 1H), 

4.60 (s, 2H), 3.72–3.61 (m, 1H), 2.30–2.17 (m, 4H), 1.91–1.82 (m, 2H), 1.75–1.43 (m, 9H), 1.43–

1.31 (m, 2H), 1.29–1.15 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 172.3 (2 carbonyl), 150.2, 147.3, 

137.8, 135.7, 134.3, 128.8, 127.7, 127.3, 123.8, 66.8, 51.3, 48.3, 32.9, 32.8, 25.8, 25.6, 24.8, 22.8; 

HRMS (ESI) m/z calcd for C26H34N3O2 [M + H]+ 420.2646, found 420.2634. 

 

 

          N-Benzyl-N-(1-(cyclohexylcarbamoyl)cyclopentyl)nicotinamide. Prepared according to 

the general procedure for Ugi multicomponent reaction, the title compound was obtained as a 

yellow solid (0.095 g, 0.234 mmol, 59% yield, 98.3% purity). Mp = 75–79 ºC; IR (neat) 2931, 

1639 (v br) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.63 (d, J = 1.5 Hz, 1H), 8.58 (dd, J = 5.0, 1.6 Hz, 
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1H), 7.70 (dt, J = 7.9, 1.8 Hz, 1H), 7.32–7.26 (m, 3H), 7.25–7.21 (m, 1H), 7.18–7.12 (m, 2H), 6.67 

(d, J = 7.6 Hz, 1H), 4.64 (s, 2H), 3.82–3.68 (m, 1H), 2.70–2.63 (m, 2H), 2.06–1.96 (m, 2H), 1.95–

1.84 (m, 2H), 1.78–1.65 (m, 6H), 1.64–1.54 (m, 1H), 1.45–1.33 (m, 2H), 1.28–1.13 (m, 3H); 13C 

NMR (126 MHz, CDCl3) δ 172.3, 171.4, 149.1, 146.1, 138.3, 136.0, 134.0, 129.0, 127.7, 126.6, 

123.9, 74.3, 53.1, 48.5, 36.3, 33.0, 25.8, 24.9, 23.3; HRMS (ESI) m/z calcd for C25H32N3O2 [M + 

H]+ 406.2489, found 406.2509. 

 

 

          N-Benzyl-N-(1-(cyclohexylcarbamoyl)cyclohexyl)isonicotinamide. Prepared according 

to the general procedure for Ugi multicomponent reaction, the title compound was obtained as a 

white solid (0.079 g, 0.188 mmol, 47% yield, 97.1% purity). Mp = 89–92 ºC; IR (neat) 2929, 1650 

(v br) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.58 (d, J = 5.5 Hz, 2H), 7.40 (d, J = 5.4 Hz, 2H), 7.33–

7.16 (m, 5H), 6.55 (d, J = 8.0 Hz, 1H), 4.55 (s, 2H), 3.82–3.71 (m, 1H), 2.45–2.36 (m, 2H), 2.11–

1.97 (m, 2H), 1.95–1.88 (m, 2H), 1.77–1.68 (m, 2H), 1.67–1.58 (m, 5H), 1.46–1.32 (m, 3H), 1.30–

1.17 (m, 4H); 13C NMR (126 MHz, CDCl3) δ 171.7, 170.8, 148.8, 146.6, 137.7, 129.0, 127.9, 

126.9, 122.2, 67.1, 50.7, 48.6, 33.0, 32.7, 25.8, 25.5, 24.9, 23.0; HRMS (ESI) m/z calcd for 

C26H34N3O2 [M + H]+ 420.2646, found 420.2639. 
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          N-Benzyl-N-(1-(cyclohexylcarbamoyl)cyclopentyl)isonicotinamide. Prepared according 

to the general procedure for Ugi multicomponent reaction, the title compound was obtained as a 

white solid (0.085 g, 0.210 mmol, 52% yield, 98.9% purity). Mp = 140–142 ºC; IR (neat) 2928, 

1661, 1623 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.57–8.52 (m, 2H), 7.36–7.22 (m, 5H), 7.21–7.15 

(m, 2H), 6.41 (d, J=7.5 Hz, 1H), 4.59 (s, 2H), 3.83–3.72 (m, 1H), 2.67–2.58 (m, 2H), 2.07–1.88 

(m, 4H), 1.78–1.57 (m, 7H), 1.46–1.33 (m, 2H), 1.28–1.15 (m, 3H); 13C NMR (126 MHz, CDCl3) 

δ 172.3, 171.3, 148.0, 146.9, 138.2, 129.1, 127.8, 126.4, 121.5, 74.1, 52.7, 48.6, 36.2, 33.0, 25.7, 

24.9, 23.4; HRMS (ESI) m/z calcd for C25H32N3O2 [M + H]+ 406.2489, found 406.2500. 

 

 

          N-(1-(Cyclohexylcarbamoyl)cyclohexyl)-N-(cyclohexylmethyl)picolinamide. Prepared 

according to the general procedure for Ugi multicomponent reaction, the title compound was 

obtained as a colorless film (0.092 g, 0.216 mmol, 54% yield, 96.7% purity). IR (neat) 2925, 1661, 

1617 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.63–8.58 (m, 1H), 8.29 (d, J = 7.4 Hz, 1H), 7.83–7.75 

(m, 1H), 7.61–7.55 (m, 1H), 7.33 (ddd, J = 7.5, 4.9, 1.4 Hz, 1H), 3.83–3.66 (m, 1H), 3.24 (d, J = 

6.9 Hz, 2H), 2.08–1.81 (m, 5H), 1.75–1.04 (m, 23H), 0.99–0.85 (m, 1H), 0.44 (q, J = 11.3 Hz, 2H); 
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13C NMR (126 MHz, CDCl3) δ 174.3, 173.8, 156.0, 148.9, 137.0, 124.7, 124.6, 65.7, 54.5, 48.1, 

37.2, 32.8, 32.7, 31.0, 26.3, 25.8, 25.8, 25.6, 24.8, 22.3; HRMS (ESI) m/z calcd for C26H40N3O2 

[M + H]+ 426.3115, found 426.3116. 

 

 

          N-(1-(Cyclohexylcarbamoyl)cyclopentyl)-N-(cyclohexylmethyl)picolinamide. Prepared 

according to the general procedure for Ugi multicomponent reaction, the title compound was 

obtained as a white solid (0.066 g, 0.160 mmol, 40% yield, 95.8% purity). Mp = 74–76 ºC; IR 

(neat) 2932, 1665, 1615 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.58 (d, J = 4.3 Hz, 1H), 8.16 (br s, 

1H), 7.83 (t, J = 7.3 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.43–7.32 (m, 1H), 3.83–3.68 (m, 1H), 3.36 

(d, J = 6.7 Hz, 2H), 2.84–2.62 (m, 2H), 2.18–1.49 (m, 17H), 1.45–1.06 (m, 7H), 1.02–0.86 (m, 

1H), 0.63–0.28 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 173.2, 172.1, 155.5, 148.1, 137.6, 124.8, 

124.7, 73.5, 55.4, 48.2, 37.1, 36.2, 32.9, 31.0, 26.3, 25.8, 25.7, 24.9, 22.7; HRMS (ESI) m/z calcd 

for C25H38N3O2 [M + H]+ 412.2959, found 412.2964. 
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          N-(1-(Cyclohexylcarbamoyl)cyclohexyl)-N-(cyclohexylmethyl)nicotinamide. Prepared 

according to the general procedure for Ugi multicomponent reaction, the title compound was 

obtained as a white solid (0.070 g, 0.164 mmol, 41% yield, ≥ 99% purity). Mp = 129–131 ºC; IR 

(neat) 2926, 1676, 1623 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.80–8.69 (m, 2H), 8.28 (d, J = 6.5 

Hz, 1H), 8.02 (d, J = 7.6 Hz, 1H), 7.65–7.51 (m, 1H), 3.83–3.68 (m, 1H), 3.18 (d, J = 6.2 Hz, 2H), 

2.51 (br s, 2H), 2.08–1.80 (m, 4H), 1.79–1.06 (m, 22H), 1.02–0.89 (m, 1H), 0.47 (q, J = 11.3 Hz, 

2H); 13C NMR (126 MHz, CDCl3) δ 173.6, 172.0, 148.4, 146.6, 138.8, 135.3, 124.7, 65.8, 55.9, 

48.1, 37.2, 32.7, 32.2, 31.0, 26.1, 25.7, 25.5, 25.4, 24.6, 22.3; HRMS (ESI) m/z calcd for 

C26H40N3O2 [M + H]+ 426.3115, found 426.3112. 

 

 

          N-(1-(Cyclohexylcarbamoyl)cyclopentyl)-N-(cyclohexylmethyl)nicotinamide. Prepared 

according to the general procedure for Ugi multicomponent reaction, the title compound was 

obtained as a colorless film (0.057 g, 0.138 mmol, 35% yield, 98.0% purity). IR (neat) 2925, 1662, 

1618 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.67–8.62 (m, 1H), 8.61–8.56 (m, 1H), 8.34 (d, J = 8.2 

Hz, 1H), 7.75–7.68 (m, 1H), 7.38–7.31 (m, 1H), 3.78–3.67 (m, 1H), 3.20 (d, J = 6.9 Hz, 2H), 2.67–

2.58 (m, 2H), 2.02–1.47 (m, 17H), 1.42–1.31 (m, 2H), 1.28–1.18 (m, 3H), 1.16–1.04 (m, 2H), 

0.97–0.85 (m, 1H), 0.51–0.31 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 172.8, 172.7, 151.0, 148.8, 

135.8, 133.6, 123.5, 73.3, 56.8, 48.1, 36.8, 36.1, 32.8, 30.8, 26.2, 25.7, 25.5, 24.7, 22.2; HRMS 

(ESI) m/z calcd for C25H38N3O2 [M + H]+ 412.2959, found 412.2964. 



124 
 

 

 

          N-(1-(Cyclohexylcarbamoyl)cyclohexyl)-N-(cyclohexylmethyl)isonicotinamide. 

Prepared according to the general procedure for Ugi multicomponent reaction, the title compound 

was obtained as a colorless film (0.024 g, 0.056 mmol, 14% yield, ≥ 99% purity). IR (neat) 2925, 

1684, 1618 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.75 (d, J = 5.5 Hz, 2H), 8.08 (d, J = 7.6 Hz, 1H), 

7.46 (d, J = 5.5 Hz, 2H), 3.81–3.70 (m, 1H), 3.12 (d, J = 6.4 Hz, 2H), 2.48 (s, 2H), 2.00 (br s, 2H), 

1.92–1.83 (m, 2H), 1.80–1.53 (m, 13H), 1.50–1.07 (m, 11H), 1.03–0.91 (m, 1H), 0.55–0.43 (m, 

2H); 13C NMR (126 MHz, CDCl3) δ 173.6, 172.8, 148.6, 148.0, 123.2, 65.9, 55.5, 48.3, 37.3, 32.9, 

32.4, 31.1, 26.2, 25.8, 25.6, 25.6, 24.7, 22.6; HRMS (ESI) m/z calcd for C26H40N3O2 [M + H]+ 

426.3115, found 426.3122. 

 

 

          N-(1-(Cyclohexylcarbamoyl)cyclopentyl)-N-(cyclohexylmethyl)isonicotinamide. 

Prepared according to the general procedure for Ugi multicomponent reaction, the title compound 

was obtained as a white solid (0.066 g, 0.160 mmol, 40% yield, ≥ 99% purity). Mp = 138–140 ºC; 

IR (neat) 2921, 1673, 1616 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.75–8.70 (m, 2H), 7.98 (d, J = 
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7.3 Hz, 1H), 7.41–7.35 (m, 2H), 3.81–3.70 (m, 1H), 3.15 (d, J = 7.0 Hz, 2H), 2.70–2.63 (m, 2H), 

2.00–1.94 (m, 2H), 1.92–1.84 (m, 2H), 1.83–1.64 (m, 7H), 1.63–1.54 (m, 5H), 1.46–1.34 (m, 2H), 

1.31–1.10 (m, 6H), 1.02–0.90 (m, 1H), 0.52–0.40 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 172.4, 

172.0, 148.7, 147.3, 122.7, 73.5, 56.5, 48.3, 37.0, 36.1, 32.9, 31.0, 26.2, 25.8, 25.6, 24.8, 22.3; 

HRMS (ESI) m/z calcd for C25H38N3O2 [M + H]+ 412.2959, found 412.2946. 

 

 

          (±)-N-(1-(Cyclohexylcarbamoyl)-2-methylcyclopentyl)-N-(furan-2-

ylmethyl)picolinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a colorless film (0.008 g, 0.020 mmol, 5% yield, 

HPLC purity = 92.8%). IR (neat) 2933, 1664 (v br) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.58 (ddd, 

J = 4.8, 1.8, 0.9 Hz, 1H), 7.76 (td, J = 7.7, 1.8 Hz, 1H), 7.58–7.50 (m, 1H), 7.38–7.19 (m, 3H), 

6.25–6.16 (m, 1H), 5.94 (d, J = 3.5 Hz, 1H), 5.08 (d, J = 16.9 Hz, 1H), 4.56 (d, J = 16.9 Hz, 1H), 

3.69–3.58 (m, 1H), 3.32–3.22 (m, 1H), 2.39 (br, 1H), 2.13–1.91 (m, 2H), 1.87–1.51 (m, 7H), 1.48–

1.28 (m, 3H), 1.26–1.02 (m, 3H), 0.96 (d, J = 7.0 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 172.6, 

171.5, 155.1, 151.3, 148.2, 141.8, 137.2, 124.8, 124.2, 110.7, 108.4, 76.3, 51.0, 47.9, 45.1, 38.8, 

32.9, 32.1, 30.9, 25.9, 24.8, 24.7, 19.9, 17.7; HRMS (ESI) m/z calcd for C24H32N3O2 [M + H]+ 

410.2438, found 410.2427. 
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          N-((1S,2S)-rel-1-(Cyclohexylcarbamoyl)-2-methylcyclohexyl)-N-(furan-2-

ylmethyl)picolinamide (trans-1.49)  and N-((1S,2R)-rel-1-(Cyclohexylcarbamoyl)-2-

methylcyclohexyl)-N-(furan-2-ylmethyl)picolinamide (cis-1.49). To a suspension of picolinic 

acid (0.246 g, 2.00 mmol, 1.0 equiv), furfuryl amine (0.194 g, 2.0 mmol, 1.0 equiv), and 2-

methylcyclohexanone (0.224 g, 2.00 mmol, 1.0 equiv) in methanol (5 mL), was added cyclohexyl 

isocyanide (0.218 g, 2.00 mmol, 1.0 equiv) at room temperature. The mixture was stirred at room 

temperature for 24 h. The reaction mixture was quenched with TFA (0.7 mL) followed by 30 min 

of stirring at room temperature, then concentrated in vacuo. Reverse-phase flash column 

chromatography purification afforded two racemic diastereomers trans-1.49 (0.097 g, 0.229 mmol, 

11% yield, 94.9% purity) as a white solid and cis-1.49 (0.083 g, 0.196 mmol, 10% yield, 96.2% 

purity) as a white solid. The relative stereochemistry was assigned by single crystal X-ray 

diffraction crystallography of trans-1.49. Characterization of trans-1.49: Mp = 101–103 ºC; IR 

(neat) 2929, 2856, 1664 (v br) cm-1; 1H NMR (600 MHz, CDCl3) δ 8.58 (dt, J = 4.9, 1.2 Hz, 1H), 

7.75 (td, J = 7.7, 1.8 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.33 (ddd, J = 7.7, 4.8, 1.2 Hz, 1H), 7.20 

(d, J = 1.7 Hz, 1H), 6.15 (dd, J = 3.3, 1.8 Hz, 1H), 5.88 (d, J = 3.2 Hz, 1H), 4.91 (d, J = 16.9 Hz, 

1H), 4.52 (d, J = 16.9 Hz, 1H), 3.68–3.56 (m, 1H), 3.03 (br s, 1H), 2.38 (t, J = 12.4 Hz, 1H), 1.96–

1.01 (m, 20H); 13C NMR (151 MHz, CDCl3) δ 173.5, 171.7, 155.6, 151.2, 148.3, 141.9, 137.1, 

124.8, 124.5, 110.6, 108.4, 69.7, 47.8, 43.2, 33.0, 32.8, 32.5, 29.1, 25.8, 24.8, 24.7, 22.2, 16.7; 

HRMS (ESI) m/z calcd for C25H33N3NaO3 [M + Na]+ 446.2414, found 446.2411. Characterization 
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of cis-1.49: Mp = 98–100 ºC; IR (neat) 3417, 2927, 2855, 1677 (v br) cm-1; 1H NMR (600 MHz, 

CDCl3) δ 8.55 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 7.70 (td, J = 7.7, 1.7 Hz, 1H), 7.44–7.37 (m, 1H), 

7.29 (ddd, J = 7.7, 4.8, 1.2 Hz, 1H), 6.70 (br s, 1H), 6.21 (dd, J = 3.3, 1.9 Hz, 1H), 5.83 (d, J = 3.3 

Hz, 1H), 5.17 (d, J = 17.3 Hz, 1H), 4.55 (d, J = 17.2 Hz, 1H), 3.81–3.70 (m, 1H), 3.30 (br s, 1H), 

2.51–2.37 (m, 1H), 2.11–0.99 (m, 20H); 13C NMR (151 MHz, CDCl3) δ 172.3, 170.2, 155.8, 152.2, 

148.1, 141.7, 137.0, 124.3, 123.7, 111.0, 107.6, 69.6, 47.9, 42.5, 33.3, 31.2, 29.93, 29.87, 25.9, 

24.9, 23.2, 20.2, 15.3; HRMS (ESI) m/z calcd for C25H33N3NaO3 [M + Na]+ 446.2414, found 

446.2412. 

 

 

          (±)-N-(1-(Cyclohexylcarbamoyl)-3-methylcyclohexyl)-N-(furan-2-

ylmethyl)picolinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a colorless oil (0.023 g, 0.054 mmol, 14% yield, 96.3% 

purity). IR (neat) 2927, 1666 (v br) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.58 (dd, J = 4.8, 1.6 Hz, 

1H), 7.75 (td, J = 7.6, 1.8 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.46–7.30 (m, 2H), 7.25–7.19 (m, 1H), 

6.20–6.12 (m, 1H), 5.86 (d, J = 3.4 Hz, 1H), 4.73 (br s, 2H), 3.63–3.48 (m, 1H), 3.03–2.36 (m, 

2H), 1.93–1.44 (m, 10H), 1.41–0.79 (m, 10H); 13C NMR (126 MHz, CDCl3) δ 173.7, 173.1, 155.3, 

151.0, 148.3, 141.9, 137.2, 125.0, 124.5, 110.7, 108.7, 67.5, 47.9, 43.6, 40.5, 34.5, 32.9, 31.9, 28.1, 

25.9, 24.7, 22.6, 21.9; HRMS (ESI) m/z calcd for C25H34N3O3 [M + H]+ 424.2595, found 424.2584. 
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          N-((1r,4r)-1-(Cyclohexylcarbamoyl)-4-methylcyclohexyl)-N-(furan-2-

ylmethyl)picolinamide and (trans-1.51) N-((1s,4s)-1-(Cyclohexylcarbamoyl)-4-

methylcyclohexyl)-N-(furan-2-ylmethyl)picolinamide (cis-1.51). To a suspension of picolinic 

acid (0.246 g, 2.00 mmol, 1.0 equiv), furfuryl amine (0.194 g, 2.0 mmol, 1.0 equiv), and 4-

methylcyclohexanone (0.224 g, 2.00 mmol, 1.0 equiv) in methanol (5 mL), was added cyclohexyl 

isocyanide (0.218 g, 2.00 mmol, 1.0 equiv) at room temperature. The mixture was stirred at room 

temperature for 24 h. The reaction mixture was quenched with TFA (0.7 mL) followed by 30 min 

of stirring at room temperature, then concentrated in vacuo. Reverse-phase flash column 

chromatography purification afforded two racemic diastereomers trans-1.51 (0.228 g, 0.538 mmol, 

27% yield, 98.4% purity) as a white solid and cis-1.51 (0.287 g, 0.678 mmol, 34% yield, ≥ 99% 

purity) as a white solid. The relative stereochemistry was assigned by single crystal X-ray 

diffraction crystallography of trans-1.51. Characterization of trans-1.51: Mp = 87–89 ºC; IR (neat) 

3410, 2927, 2856, 1656 (v br) cm-1; 1H NMR (600 MHz, CDCl3) δ 8.54 (d, J = 4.8 Hz, 1H), 7.74 

(td, J = 7.7, 1.6 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.30 (d, J = 0.9 Hz, 1H), 7.27 (d, J = 0.9 Hz, 

1H), 6.46 (d, J = 7.6 Hz, 1H), 6.24 (dd, J = 3.1, 1.8 Hz, 1H), 6.02 (d, J = 3.1 Hz, 1H), 4.79 (s, 2H), 

3.79–3.68 (m, 1H), 2.54 (d, J = 12.4 Hz, 2H), 1.91–1.81 (m, 2H), 1.72–1.48 (m, 9H), 1.44–1.28 

(m, 3H), 1.22–1.04 (m, 3H), 0.90 (d, J = 6.5 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 172.3, 170.9, 
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155.6, 151.9, 148.2, 141.8, 137.2, 124.5, 124.0, 110.8, 107.8, 66.0, 48.0, 42.3, 33.2, 32.8, 31.9, 

31.3, 25.9, 24.9, 21.8; HRMS (ESI) m/z calcd for C25H33N3NaO3 [M + Na]+ 446.2414, found 

446.2413. Characterization of cis-1.51: Mp = 74–76 ºC; IR (neat) 2926, 2854, 1657 (v br) cm-1; 

1H NMR (600 MHz, CDCl3) δ 8.62 – 8.56 (m, 1H), 7.74 (td, J = 7.8, 1.6 Hz, 1H), 7.58 (d, J = 7.8 

Hz, 1H), 7.33 (ddd, J = 7.6, 4.8, 1.2 Hz, 2H), 7.23–7.19 (m, 1H), 6.15 (t, J = 2.9, 1.8 Hz, 1H), 5.86 

(d, J = 2.9 Hz, 1H), 4.77 (s, 2H), 3.63–3.52 (m, 1H), 2.69 (d, J = 13.3 Hz, 2H), 1.93 (td, J = 14.2, 

3.3 Hz, 2H), 1.82–1.73 (m, 2H), 1.71–1.63 (m, 4H), 1.61–1.50 (m, 2H), 1.38–1.29 (m, 2H), 1.29–

1.15 (m, 3H), 1.14–1.05 (m, 2H), 0.96 (d, J = 6.5 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 173.7, 

173.0, 155.3, 151.2, 148.4, 141.9, 137.0, 124.9, 124.4, 110.7, 108.7, 66.5, 48.0, 43.5, 32.9, 32.1, 

32.0, 30.5, 25.9, 24.8, 22.3; HRMS (ESI) m/z calcd for C25H33N3NaO3 [M + Na]+ 446.2414, found 

446.2413. 

 

 

          N-((1r,4r)-4-(tert-Butyl)-1-(cyclohexylcarbamoyl)cyclohexyl)-N-(furan-2-

ylmethyl)picolinamide (trans-1.52) and N-((1s,4s)-4-(tert-Butyl)-1-

(cyclohexylcarbamoyl)cyclohexyl)-N-(furan-2-ylmethyl)picolinamide (cis-1.52). To a 

suspension of picolinic acid (0.123 g, 1.00 mmol, 1.0 equiv), furfurylamine (0.097 g, 1.0 mmol, 

1.0 equiv), and 4-tert-butylcyclohexanone (0.154 g, 1.00 mmol, 1.0 equiv) in methanol (2.5 mL), 

was added cyclohexyl isocyanide (0.109 g, 1.00 mmol, 1.0 equiv) at room temperature. The 
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mixture was stirred at room temperature for 24 h. The reaction mixture was quenched with TFA 

(0.35 mL) followed by 30 min of stirring at room temperature, then concentrated in vacuo. 

Reverse-phase flash column chromatography purification afforded two racemic diastereomers 

trans-1.52 (0.070 g, 0.150 mmol, 15% yield, 94.7% purity) as a white solid and cis-1.52 (0.082 g, 

0.176 mmol, 18% yield, 97.8% purity) as a white solid. The relative stereochemistry was assigned 

by single crystal X-ray diffraction crystallography of cis-1.52. Characterization of trans-1.52: Mp 

= 103–105 ºC; IR (neat) 2931, 2855, 1660 (v br) cm-1; 1H NMR (600 MHz, CDCl3) δ 8.54 (ddd, J 

= 4.9, 1.7, 0.9 Hz, 1H), 7.73 (td, J = 7.7, 1.7 Hz, 1H), 7.52 (dt, J = 7.9, 1.1 Hz, 1H), 7.32–7.27 (m, 

2H), 6.39 (d, J = 7.8 Hz, 1H), 6.26 (dd, J = 3.1, 1.9 Hz, 1H), 6.07 (d, J = 2.9 Hz, 1H), 4.77 (s, 2H), 

3.75 (dtd, J = 10.3, 7.0, 6.6, 4.1 Hz, 1H), 2.72–2.61 (m, 2H), 1.88 (dd, J = 13.0, 4.1 Hz, 2H), 1.70–

1.52 (m, 9H), 1.40–1.29 (m, 2H), 1.21–1.05 (m, 3H), 1.03–0.94 (m, 1H), 0.84 (s, 9H); 13C NMR 

(151 MHz, CDCl3) δ 172.0, 170.8, 155.6, 152.1, 148.2, 141.7, 137.1, 124.4, 123.7, 110.8, 107.8, 

66.0, 48.0, 47.7, 42.4, 33.6, 33.2, 32.5, 27.7, 25.9, 24.9, 24.2; HRMS (ESI) m/z calcd for 

C28H39N3NaO3 [M + Na]+ 488.2884, found 488.2882. Characterization of cis-1.52: Mp = 96–98 

ºC; IR (neat) 2935, 2857, 1662 (v br) cm-1; 1H NMR (400 MHz, CDCl3) δ 8.56 (ddd, J = 4.8, 1.7, 

0.9 Hz, 1H), 7.74 (td, J = 7.7, 1.7 Hz, 1H), 7.58 (dt, J = 7.8, 1.0 Hz, 1H), 7.47 (d, J = 6.1 Hz, 1H), 

7.32 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H), 7.19 (dd, J = 1.8, 0.8 Hz, 1H), 6.12 (dd, J = 3.2, 1.9 Hz, 1H), 

5.84 (d, J = 3.2 Hz, 1H), 4.71 (s, 2H), 3.65–3.45 (m, 1H), 2.77 (br s, 2H), 1.95–1.46 (m, 9H), 1.41–

0.98 (m, 8H), 0.87 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 173.9, 173.1, 154.8, 150.8, 148.3, 141.9, 

137.1, 125.1, 124.3, 110.6, 108.7, 66.3, 48.0, 47.2, 43.6, 32.8, 32.5, 32.5, 27.5, 25.8, 24.7, 22.5; 

HRMS (ESI) m/z calcd for C28H39N3NaO3 [M + Na]+ 488.2884, found 488.2882. 
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          N-((1r,4r)-1-(Cyclohexylcarbamoyl)-4-phenylcyclohexyl)-N-(furan-2-

ylmethyl)picolinamide (trans-1.53) and N-((1s,4s)-1-(Cyclohexylcarbamoyl)-4-

phenylcyclohexyl)-N-(furan-2-ylmethyl)picolinamide (cis-1.53). To a suspension of picolinic 

acid (0.123 g, 1.00 mmol, 1.0 equiv), furfurylamine (0.097 g, 1.0 mmol, 1.0 equiv), and 4-

phenylcyclohexanone (0.174 g, 1.00 mmol, 1.0 equiv) in methanol (2.5 mL), was added 

cyclohexyl isocyanide (0.109 g, 1.00 mmol, 1.0 equiv) at room temperature. The mixture was 

stirred at room temperature for 24 h. The reaction mixture was quenched with TFA (0.35 mL) 

followed by 30 min of stirring at room temperature, then concentrated in vacuo. Reverse-phase 

flash column chromatography purification afforded two racemic diastereomers trans-1.53 (0.102 

g, 0.210 mmol, 21% yield, ≥ 99% purity) and cis-1.53 (0.128 g, 0.264 mmol, 26% yield, ≥ 99% 

purity). The relative stereochemistry was assigned by single crystal X-ray diffraction 

crystallography of trans-1.53. Characterization of trans-1.53: Mp = 107–109 ºC; IR (neat) 2929, 

2856, 1658 (v br) cm-1; 1H NMR (400 MHz, CDCl3) δ 8.55 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H), 7.76 

(td, J = 7.7, 1.7 Hz, 1H), 7.56 (dt, J = 7.8, 1.1 Hz, 1H), 7.35–7.29 (m, 2H), 7.29–7.21 (m, 4H), 

7.19–7.13 (m, 1H), 6.44 (d, J = 8.1 Hz, 1H), 6.28 (dd, J = 3.2, 1.9 Hz, 1H), 6.06 (dd, J = 3.3, 0.6 

Hz, 1H), 4.85 (s, 2H), 3.78 (tdt, J = 10.5, 8.0, 3.9 Hz, 1H), 2.68 (d, J = 13.1 Hz, 2H), 2.50 (tt, J = 

12.4, 3.5 Hz, 1H), 2.22–2.07 (m, 2H), 1.95–1.53 (m, 9H), 1.43–1.28 (m, 2H), 1.23–1.03 (m, 3H); 

13C NMR (101 MHz, CDCl3) δ 172.2, 170.7, 155.3, 151.8, 148.1, 146.7, 141.9, 137.3, 128.3, 127.1, 
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126.1, 124.5, 123.9, 110.9, 107.8, 65.5, 48.0, 43.9, 42.2, 33.3, 33.2, 30.7, 25.8, 24.9; HRMS (ESI) 

m/z calcd for C30H35N3NaO3 [M + Na]+ 508.2571, found 508.2569. Characterization of cis-1.53: 

Mp = 64–66 ºC; IR (neat) 2930, 2855, 1665 (v br)cm-1; 1H NMR (600 MHz, CDCl3) δ 8.68 (ddd, 

J = 4.8, 1.7, 0.9 Hz, 1H), 7.80 (td, J = 7.7, 1.7 Hz, 1H), 7.67 (dt, J = 7.9, 1.1 Hz, 1H), 7.57 (br s, 

1H), 7.40 (ddd, J = 7.5, 4.8, 1.0 Hz, 1H), 7.36 (d, J = 7.3 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.23 

(dd, J = 1.9, 0.8 Hz, 1H), 7.22–7.18 (m, 1H), 6.16 (dd, J = 3.1, 1.9 Hz, 1H), 5.88 (d, J = 2.9 Hz, 

1H), 4.77 (s, 2H), 3.66–3.53 (m, 1H), 2.88 (br s, 2H), 2.76–2.67 (m, 1H), 2.14–1.98 (m, 2H), 1.92–

1.73 (m, 6H), 1.72–1.64 (m, 2H), 1.60–1.52 (m, 1H), 1.40–1.30 (m, 2H), 1.27–1.19 (m, 1H), 1.18–

1.09 (m, 2H); 13C NMR (151 MHz, CDCl3) δ 173.7, 173.6, 154.9, 150.8, 148.4, 146.9, 142.1, 

137.4, 128.5, 127.2, 126.3, 125.3, 124.7, 110.8, 108.9, 66.1, 48.1, 43.8, 43.7, 32.8, 32.5, 29.3, 25.9, 

24.7; HRMS (ESI) m/z calcd for C30H35N3NaO3 [M + Na]+ 508.2571, found 508.2571. 

 

 

          N-(1-(Cyclohexylcarbamoyl)-3,3,5,5-tetramethylcyclohexyl)-N-(furan-2-

ylmethyl)picolinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a white solid (0.007 g, 0.015 mmol, 4% yield, ≥ 99% 

purity). Mp = 131–133 ºC;  IR (neat) 2930, 1651 (v br) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.55 

(ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.74 (td, J = 7.7, 1.7 Hz, 1H), 7.59 (dt, J = 8.0, 1.1 Hz, 1H), 7.45–

7.38 (m, 1H), 7.31 (ddd, J = 7.7, 4.8, 1.3 Hz, 1H), 7.17 (dd, J = 1.9, 0.9 Hz, 1H), 6.13 (dd, J = 3.3, 
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1.8 Hz, 1H), 5.86–5.82 (m, 1H), 4.82 (s, 2H), 3.60–3.49 (m, 1H), 2.39 (d, J = 14.7 Hz, 2H), 2.02 

(d, J = 14.8 Hz, 2H), 1.86–1.72 (m, 3H), 1.70–1.59 (m, 2H), 1.59–1.49 (m, 1H), 1.39–1.08 (m, 

12H), 0.99 (s, 6H); 13C NMR (126 MHz, CDCl3) δ 173.6, 173.4, 155.2, 151.2, 148.1, 141.8, 137.1, 

124.9, 124.8, 110.6, 108.5, 67.7, 51.3, 48.1, 43.9, 42.4, 34.4, 32.7, 31.3, 30.5, 25.9, 24.7; HRMS 

(ESI) m/z calcd for C28H40N3O3 [M + H]+ 466.3064, found 466.3061. 

 

 

          N-(1-(Cyclohexylcarbamoyl)cycloheptyl)-N-(furan-2-ylmethyl)picolinamide. Prepared 

according to the general procedure for Ugi multicomponent reaction, the title compound was 

obtained as a yellow solid (0.010 g, 0.024 mmol, 6% yield, ≥ 99% purity). Mp = 86–89 ºC;  IR 

(neat) 2927, 1664, 1617  cm-1; 1H NMR (500 MHz, CDCl3) δ 8.60–8.51 (m, 1H), 7.73 (td, J = 7.7, 

1.8 Hz, 1H), 7.53–7.45 (m, 1H), 7.37–7.27 (m, 2H), 6.36–6.18 (m, 2H), 5.85 (d, J = 3.3 Hz, 1H), 

4.89 (s, 2H), 3.78–3.66 (m, 1H), 2.55–2.46 (m, 2H), 2.08–1.99 (m, 2H), 1.95–1.44 (m, 13H), 1.39–

1.26 (m, 2H), 1.19–0.97 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 173.9, 170.2, 155.3, 151.9, 147.8, 

142.0, 137.4, 124.6, 124.1, 110.9, 107.7, 69.9, 48.2, 42.4, 35.6, 33.2, 30.3, 25.8, 25.0, 24.1; HRMS 

(ESI) m/z calcd for C25H34N3O3 [M+H]+ 424.2595, found 424.2595. 
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        N-(1-(Cyclohexylcarbamoyl)cyclooctyl)-N-(furan-2-ylmethyl)picolinamide. Prepared 

according to the general procedure for Ugi multicomponent reaction, the title compound was 

obtained as a colorless film (8 mg, 0.018 mmol, 5% yield, ≥ 99% purity). IR (neat) 2927, 1665, 

1624 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.57–8.51 (m, 1H), 7.70 (td, J = 7.7, 1.8 Hz, 1H), 7.41 

(dt, J = 7.9, 1.2 Hz, 1H), 7.34–7.26 (m, 2H), 6.31 (d, J = 8.1 Hz, 1H), 6.21 (dd, J = 3.3, 1.8 Hz, 

1H), 5.89 (d, J = 3.2 Hz, 1H), 4.94 (s, 2H), 3.82–3.69 (m, 1H), 2.47–2.38 (m, 2H), 2.22–2.13 (m, 

2H), 1.99–0.97 (m, 20H); 13C NMR (126 MHz, CDCl3) δ 173.0, 169.9, 155.6, 152.3, 148.0, 141.7, 

137.1, 124.4, 123.8, 111.0, 107.5, 70.0, 48.1, 42.8, 33.3, 29.8, 28.5, 25.9, 25.4, 24.9, 22.4; HRMS 

(ESI) m/z calcd for C25H34N3O3 [M+H]+ 438.2751, found 438.2750. 

 

 

          N-(4-(Cyclohexylcarbamoyl)tetrahydro-2H-pyran-4-yl)-N-(furan-2-

ylmethyl)picolinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a yellow solid (0.100 g, 0.243 mmol, 61% yield, ≥ 

99% purity). Mp = 109–112 ºC; IR (neat) 2926, 1660, 1622 cm-1; 1H NMR (500 MHz, CDCl3) δ 

8.57 (dt, J = 4.9, 1.4 Hz, 1H), 7.85–7.77 (m, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.41–7.32 (m, 1H), 
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7.27 (dd, J = 1.9, 0.9 Hz, 1H), 7.00 (s, 1H), 6.23 (dd, J = 3.3, 1.8 Hz, 1H), 5.98 (d, J = 3.2 Hz, 1H), 

4.80 (s, 2H), 3.97–3.79 (m, 4H), 3.75–3.63 (m, 1H), 2.51–2.42 (m, 2H), 2.19–2.10 (m, 2H), 1.91–

1.51 (m, 5H), 1.41 1.28 (m, 2H), 1.23–1.04 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 171.6, 171.3, 

154.7, 150.9, 147.8, 142.1, 137.9, 125.1, 124.4, 110.9, 108.4, 64.6, 64.0, 48.1, 42.8, 33.5, 33.0, 

25.8, 24.9; HRMS (ESI) m/z calcd for C23H30N3O4 [M+H]+ 412.2231, found 412.2231. 

 

 

          N-(4-(Cyclohexylcarbamoyl)-1-methylpiperidin-4-yl)-N-(furan-2-

ylmethyl)picolinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a yellow solid (0.088 g, 0.207 mmol, 52% yield, ≥ 

99% purity). Mp = 91–94 ºC; IR (neat) 2927, 1660, 1628 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.54 

(ddd, J = 5.0, 1.8, 0.9 Hz, 1H), 7.74 (td, J = 7.7, 1.8 Hz, 1H), 7.53 (dt, J = 7.8, 1.0 Hz, 1H), 7.37–

7.23 (m, 2H), 6.85–6.80 (m, 1H), 6.21 (dd, J = 3.2, 1.8 Hz, 1H), 5.96 (d, J = 3.2 Hz, 1H), 4.78 (s, 

2H), 3.72–3.61 (m, 1H), 2.69–2.52 (m, 3H), 2.48–2.15 (m, 8H), 1.86–1.77 (m, 2H), 1.70–1.60 (m, 

2H), 1.59–1.50 (m, 1H), 1.38–1.26 (m, 2H), 1.22–1.01 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 

172.0, 171.5, 155.0, 151.3, 148.2, 141.9, 137.2, 124.8, 124.0, 110.9, 108.1, 64.0, 52.1, 48.0, 45.9, 

42.8, 33.0, 32.5, 25.8, 24.8; HRMS (ESI) m/z calcd for C24H33N4O3 [M+H]+ 425.2547, found 

425.2556. 
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          N-(1-Benzoyl-4-(cyclohexylcarbamoyl)piperidin-4-yl)-N-(furan-2-

ylmethyl)picolinamide. Prepared according to the general procedure for Ugi multicomponent 

reaction, the title compound was obtained as a yellow film (0.135 g, 0.262 mmol, 66% yield, ≥ 99% 

purity). IR (neat) 2929, 1665, 1625 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.54 (ddd, J = 4.9, 1.8, 

0.9 Hz, 1H), 7.78 (td, J = 7.7, 1.7 Hz, 1H), 7.58 (dt, J = 7.8, 1.1 Hz, 1H), 7.41–7.32 (m, 6H), 7.28 

(dd, J = 1.9, 0.8 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 6.24 (dd, J = 3.3, 1.9 Hz, 1H), 5.98 (dd, J = 3.3, 

0.9 Hz, 1H), 4.86–4.74 (m, 2H), 4.32–4.23 (m, 1H), 3.85–3.76 (m, 1H), 3.72–3.61 (m, 1H), 3.59–

3.48 (m, 2H), 2.57–2.49 (m, 1H), 2.36–2.24 (m, 2H), 2.21–2.17 (m, 1H), 1.89–1.72 (m, 3H), 1.68–

1.43 (m, 2H), 1.39–1.21 (m, 2H), 1.20–1.00 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 171.8, 171.4, 

170.4, 154.6, 150.7, 148.2, 142.3, 137.5, 136.0, 129.7, 128.5, 126.9, 125.1, 124.3, 110.9, 108.4, 

64.3, 48.1, 45.0, 42.7, 41.0, 38.7, 33.0, 32.9, 32.7, 25.7, 24.8; HRMS (ESI) m/z calcd for 

C30H35N4O4 [M+H]+ 515.2653, found 515.2654. 
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          N-(1-(Cyclohexylcarbamoyl)cyclohexyl)-N-(2-fluorobenzyl)picolinamide. To a 

suspension of picolinic acid (0.100 g, 0.081 mmol, 1.0 equiv), 2-fluorobenzylamine (0.102 g, 

0.081 mmol, 1.0 equiv), and cyclohexanone (0.080 g, 0.081 mmol, 1.0 equiv) in methanol (2 mL), 

was added cyclohexyl isocyanide (0.088 g, 0.081 mmol, 1.0 equiv) at room temperature. The 

mixture was stirred at room temperature for 24 h. The reaction mixture was quenched with TFA 

(0.3 mL), stirred for 30 min at room temperature, and then concentrated in vacuo. Reverse-phase 

flash column chromatography purification (0-100% CH3CN/H2O) afforded the title compound as 

yellow solid (0.027 g, 0.062 mmol, 8% yield, ≥ 99% purity). Mp = 95–98 ºC; IR (neat) 2930, 1656 

(v br) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.58 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H), 7.80 (t, J = 7.6 Hz, 

1H), 7.66–7.57 (m, 1H), 7.45–7.33 (m, 1H), 7.25 (dd, J = 1.8, 0.8 Hz, 1H), 7.04 (d, J = 9.8 Hz, 

1H), 6.20 (dd, J = 3.3, 1.8 Hz, 1H), 5.95 (dd, J = 3.2, 0.9 Hz, 1H), 4.78 (s, 2H), 3.71–3.58 (m, 1H), 

2.23–2.11 (m, 3H), 1.78 (ddt, J = 19.3, 12.5, 7.0 Hz, 5H), 1.71–1.42 (m, 8H), 1.40–1.05 (m, 6H); 

13C NMR (126 MHz, CDCl3) δ 172.7, 172.5, 161.6, 159.6, 155.3, 148.3, 137.3, 130.5, 130.4, 129.3, 

129.3, 125.3, 125.2, 124.8, 124.2, 124.2, 115.4, 115.2, 66.6, 48.2, 44.7, 44.7, 32.8, 31.1, 25.9, 25.8, 

24.8, 22.5; HRMS (ESI) m/z calcd for C26H33FN3O2 [M + H]+ 438.2551, found 438.2539. 

 

 

          N-(1-(Cyclohexylcarbamoyl)cyclohexyl)-N-(2-fluorobenzyl)isonicotinamide. To a 

suspension of isonicotinic acid (0.100 g, 0.081 mmol, 1.0 equiv), 2-fluorobenzylamine (0.102 g, 

0.081 mmol, 1.0 equiv), and cyclohexanone (0.080 g, 0.081 mmol, 1.0 equiv) in methanol (2 mL), 
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was added cyclohexyl isocyanide (0.088 g, 0.081 mmol, 1.0 equiv) at room temperature. The 

mixture was stirred at room temperature for 24 h. The reaction mixture was quenched with TFA 

(0.3 mL), stirred for 30 min at room temperature, and then concentrated in vacuo. Reverse-phase 

flash column chromatography purification (0-100% CH3CN/H2O) afforded the title compound as 

a yellow solid (0.130 mg, 0.297 mmol, 37% yield, ≥ 99% purity). Mp = 108–111 ºC; IR (neat) 

2935, 1660 (v br) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.65 (d, J = 5.0 Hz, 2H), 7.53 (td, J = 7.7, 

1.7 Hz, 1H), 7.37 (d, J = 6.1 Hz, 2H), 7.26–7.21 (m, 1H), 7.13 (td, J = 7.5, 0.9 Hz, 1H), 6.97 (d, J 

= 7.0 Hz, 1H), 6.94–6.88 (m, 1H), 4.55 (s, 2H), 3.58–3.44 (m, 1H), 2.27–2.16 (m, 4H), 1.88–1.77 

(m, 2H), 1.75–1.63 (m, 4H), 1.61–1.47 (m, 5H), 1.41–1.16 (m, 5H); 13C NMR (126 MHz, CDCl3) 

δ 172.8, 172.2, 161.7, 159.8, 149.9, 145.6, 130.3, 130.2, 129.9, 129.9, 124.5, 124.4, 124.2, 124.0, 

121.7, 115.5, 115.4, 66.4, 48.4, 45.9, 45.9, 32.7, 32.4, 25.8, 25.6, 24.7, 22.7; HRMS (ESI) m/z 

calcd for C26H33FN3O2 [M + H]+ 438.2551, found 438.2556. 

 

 

          N-Butyl-N-(1-(cyclohexylcarbamoyl)cyclohexyl)nicotinamide. To a suspension of 

nicotinic acid (0.100 g, 0.081 mmol, 1.0 equiv), n-butylamine (0.059 g, 0.081 mmol, 1.0 equiv), 

and cyclohexanone (0.080 g, 0.081 mmol, 1.0 equiv) in methanol (2 mL), was added cyclohexyl 

isocyanide (0.088 g, 0.081 mmol, 1.0 equiv) at room temperature. The mixture was stirred at room 

temperature for 24 h. The reaction mixture was quenched with TFA (0.3 mL), stirred for 30 min 

at room temperature, and then concentrated in vacuo. Reverse-phase flash column chromatography 
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purification (0-100% CH3CN/H2O) afforded the title compound as a white solid (0.088 g, 0.228 

mmol, 28% yield, 98.7% purity). Mp = 77–80 ºC; IR (neat) 2921, 1647 (v br) cm-1; 1H NMR (500 

MHz, CDCl3) δ 8.81–8.63 (m, 2H), 7.94 (d, J = 7.2 Hz, 1H), 7.84 (dt, J = 7.8, 1.8 Hz, 1H), 7.42 

(dd, J = 7.7, 5.0 Hz, 1H), 3.86–3.70 (m, 1H), 3.35 (t, J = 7.6 Hz, 2H), 2.51 (d, J = 12.2 Hz, 2H), 

2.05–1.93 (m, 2H), 1.93–1.80 (m, 2H), 1.77–1.54 (m, 6H), 1.50–1.19 (m, 10H), 1.04 (h, J = 7.4 

Hz, 2H), 0.69 (t, J = 7.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 174.3, 173.0, 150.7, 148.2, 136.1, 

134.2, 123.9, 65.6, 48.7, 48.0, 32.8, 32.5, 32.0, 25.8, 25.7, 24.7, 22.4, 20.2, 13.5; HRMS (ESI) m/z 

calcd for C23H36N3O2 [M + H]+ 368.2802, found 386.2791. 

 

 

          N-Butyl-N-(1-(cyclohexylcarbamoyl)cyclohexyl)isonicotinamide. To a suspension of 

isonicotinic acid (0.100 g, 0.081 mmol, 1.0 equiv), n-butylamine (0.059 g, 0.081 mmol, 1.0 equiv), 

and cyclohexanone (0.080 g, 0.081 mmol, 1.0 equiv) in methanol (2 mL), was added cyclohexyl 

isocyanide (0.088 g, 0.081 mmol, 1.0 equiv) at room temperature. The mixture was stirred at room 

temperature for 24 h. The reaction mixture was quenched with TFA (0.3 mL), stirred for 30 min 

at room temperature, and then concentrated in vacuo. Reverse-phase flash column chromatography 

purification (0-100% CH3CN/H2O) afforded the title compound as white solid (0.142 g, 0.368 

mmol, 45% yield, ≥ 99% purity). Mp = 133–136 ºC; IR (neat) 2931, 1657 (v br) cm-1; 1H NMR 

(500 MHz, CDCl3) δ 8.78–8.72 (m, 2H), 7.66 (d, J = 8.0 Hz, 1H), 7.42–7.33 (m, 2H), 3.87–3.74 

(m, 1H), 3.33–3.26 (m, 2H), 2.49–2.35 (m, 2H), 2.12–2.03 (m, 2H), 1.96–1.84 (m, 2H), 1.79–1.56 
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(m, 6H), 1.55–1.15 (m, 10H), 1.05 (h, J = 7.4 Hz, 2H), 0.73 (t, J = 7.3 Hz, 3H); 13C NMR (126 

MHz, CDCl3) δ 173.8, 172.8, 150.1, 146.3, 121.6, 65.7, 48.1, 48.1, 32.8, 32.6, 32.2, 25.8, 25.6, 

24.7, 22.6, 20.1, 13.5; HRMS (ESI) m/z calcd for C23H36N3O2 [M + H]+ 368.2802, found 386.2812. 

 

 

          N-(1-(Cyclohexylcarbamoyl)cyclohexyl)-N-phenethylpicolinamide. To a suspension of 

picolinic acid (0.100 g, 0.081 mmol, 1.0 equiv), 2-phenethylamine (0.098 g, 0.081 mmol, 1.0 

equiv), and cyclohexanone (0.080 g, 0.081 mmol, 1.0 equiv) in methanol (2 mL), was added 

cyclohexyl isocyanide (0.088 g, 0.081 mmol, 1.0 equiv) at room temperature. The mixture was 

stirred at room temperature for 24 h. The reaction mixture was quenched with TFA (0.3 mL), 

stirred for 30 min at room temperature, and then concentrated in vacuo. Reverse-phase flash 

column chromatography purification (0-100% CH3CN/H2O) afforded the title compound as white 

solid (0.155 g, 44% yield, 97.6% purity). Mp = 77–79 ºC; IR (neat) 2931, 1661 (v br) cm-1; 1H 

NMR (400 MHz, CDCl3) δ 8.65–8.57 (m, 1H), 7.77 (td, J = 7.7, 1.7 Hz, 1H), 7.56 (d, J = 6.8 Hz, 

1H), 7.41 (d, J = 7.8 Hz, 1H), 7.36 (ddd, J = 7.6, 4.9, 1.0 Hz, 1H), 7.19–7.10 (m, 3H), 6.82 (dd, J 

= 7.2, 1.8 Hz, 2H), 3.89–3.75 (m, 1H), 3.69–3.52 (m, 2H), 2.90–2.76 (m, 2H), 2.46–2.14 (m, 4H), 

1.97–1.84 (m, 2H), 1.78–1.17 (m, 14H); 13C NMR (101 MHz, CDCl3) δ 173.6, 172.5, 155.7, 148.4, 

138.5, 137.4, 128.7, 128.6, 126.5, 124.6, 123.3, 66.1, 48.8, 48.2, 36.9, 33.2, 32.9, 25.8, 25.8, 24.8, 

22.7; HRMS (ESI) m/z calcd for C27H36N3O2 [M + H]+ 434.2802, found 434.2801. 
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          N-(1-(Cyclohexylcarbamoyl)cyclohexyl)-N-phenethylnicotinamide. To a suspension of 

nicotinic acid (0.100 g, 0.081 mmol, 1.0 equiv), 2-phenethylamine (0.098 g, 0.081 mmol, 1.0 

equiv), and cyclohexanone (0.080 g, 0.081 mmol, 1.0 equiv) in methanol (2 mL), was added 

cyclohexyl isocyanide (0.088 g, 0.081 mmol, 1.0 equiv) at room temperature. The mixture was 

stirred at room temperature for 24 h. The reaction mixture was quenched with TFA (0.3 mL), 

stirred for 30 min at room temperature, and then concentrated in vacuo. Reverse-phase flash 

column chromatography purification (0-100% CH3CN/H2O) afforded the title compound as 

yellow oil (0.156 g, 44% yield, 90.9% purity). IR (neat) 2931, 1656 (v br) cm-1; 1H NMR (400 

MHz, CD2Cl2) δ 8.73 (dd, J = 5.3, 1.4 Hz, 1H), 8.49 (d, J = 1.5 Hz, 1H), 7.81 (dt, J = 7.9, 1.7 Hz, 

1H), 7.62 (dd, J = 7.9, 5.3 Hz, 1H), 7.50 (d, J = 7.2 Hz, 1H), 7.24–7.14 (m, 3H), 6.91–6.83 (m, 

2H), 3.88–3.74 (m, 1H), 3.62 (t, J = 7.3 Hz, 2H), 2.79 (t, J = 7.3 Hz, 2H), 2.41–2.18 (m, 4H), 2.00–

1.86 (m, 2H), 1.80–1.20 (m, 14H); 13C NMR (101 MHz, CD2Cl2) δ 173.1, 170.4, 146.3, 144.1, 

140.1, 138.4, 136.3, 129.4, 129.3, 127.4, 126.0, 66.5, 50.2, 49.0, 36.7, 33.3, 33.2, 26.2, 26.0, 25.2, 

23.3; HRMS (ESI) m/z calcd for C27H36N3O2 [M + H]+ 434.2802, found 434.2815. 
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          N-(1-(Cyclohexylcarbamoyl)cyclohexyl)-N-phenethylisonicotinamide To a suspension 

of isonicotinic acid (0.100 g, 0.081 mmol, 1.0 equiv), 2-phenethylamine (0.098 g, 0.081 mmol, 1.0 

equiv), and cyclohexanone (0.080 g, 0.081 mmol, 1.0 equiv) in methanol (2 mL), was added 

cyclohexyl isocyanide (0.088 g, 0.081 mmol, 1.0 equiv) at room temperature. The mixture was 

stirred at room temperature for 24 h. The reaction mixture was quenched with TFA (0.3 mL), 

stirred for 30 min at room temperature, and then concentrated in vacuo. Reverse-phase flash 

column chromatography purification (0-100% CH3CN/H2O) afforded the title compound as white 

solid (0.098 g, 0.226 mmol, 28% yield). 99% purity; Mp = 99–102 ºC; IR (neat) 2934, 1657 (v br) 

cm-1; 1H NMR (500 MHz, CDCl3) δ 8.73–8.67 (m, 2H), 7.58 (d, J = 8.0 Hz, 1H), 7.26–7.11 (m, 

5H), 6.79 (dt, J = 6.7, 2.2 Hz, 2H), 3.89–3.77 (m, 1H), 3.55–3.46 (m, 2H), 2.78–2.70 (m, 2H), 

2.50–2.42 (m, 2H), 2.24–2.08 (m, 2H), 1.96–1.87 (m, 2H), 1.76–1.66 (m, 4H), 1.64–1.55 (m, 2H), 

1.54–1.35 (m, 5H), 1.33–1.20 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 173.3, 172.8, 150.4, 145.6, 

137.7, 128.8, 128.6, 126.9, 121.2, 65.8, 49.7, 48.2, 36.6, 32.9, 32.8, 25.8, 25.6, 24.7, 22.7; HRMS 

(ESI) m/z calcd for C27H36N3O2 [M + H]+ 434.2802, found 434.2831. 

 

 

          N-(1-(Cyclohexylcarbamoyl)cyclohexyl)-N-phenylpicolinamide. To a suspension of 

picolinic acid (0.100 g, 0.081 mmol, 1.0 equiv), aniline (0.076 g, 0.081 mmol, 1.0 equiv), and 

cyclohexanone (0.080 g, 0.081 mmol, 1.0 equiv) in methanol (2 mL), was added cyclohexyl 

isocyanide (0.088 g, 0.081 mmol, 1.0 equiv) at room temperature. The mixture was stirred at room 
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temperature for 24 h. The reaction mixture was quenched with TFA (0.3 mL), stirred for 30 min 

at room temperature, and then concentrated in vacuo. Reverse-phase flash column chromatography 

purification (0-100% CH3CN/H2O) afforded the title compound as white solid (0.216 g, 0.533 

mmol, 66% yield, ≥ 99% yield). Mp = 67–69 ºC; IR (neat) 2929, 1658 (v br) cm-1; 1H NMR (500 

MHz, CDCl3) δ 8.31–8.25 (m, 1H), 7.45 (td, J = 7.6, 1.7 Hz, 2H), 7.38–7.21 (m, 2H), 7.22–7.06 

(m, 4H), 6.99 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H), 6.70 (d, J = 8.1 Hz, 1H), 3.96–3.84 (m, 1H), 2.49–

2.35 (m, 2H), 2.07–1.95 (m, 2H), 1.78–1.49 (m, 10H), 1.47–1.13 (m, 6H); 13C NMR (126 MHz, 

CDCl3) δ 172.4, 170.0, 155.6, 148.2, 139.4, 136.3, 131.9, 128.3, 127.9, 123.2, 122.6, 66.9, 48.6, 

34.0, 33.1, 25.8, 25.5, 25.0, 22.9; HRMS (ESI) m/z calcd for C25H32N3O2 [M + H]+ 406.2489, 

found 406.2493. 

 

 

          N-(4-(cyclohexylcarbamoyl)-1-phenethylpiperidin-4-yl)-N-(furan-2-

ylmethyl)picolinamide. To a suspension of picolinic acid (0.123 g, 1.00 mmol, 1.0 equiv), 

furfurylamine (0.097 g, 1.00 mmol, 1.0 equiv), and 1-phenethyl-4-piperidone (0.203 g, 1.00 mmol, 

1.0 equiv) in methanol (2 mL), was added cyclohexyl isocyanide (0.109 g, 1.00 mmol, 1.0 equiv) 

at room temperature. The mixture was stirred at room temperature for 24 h. The reaction mixture 

was quenched with TFA (0.3 mL), stirred for 30 min at room temperature, and then concentrated 

in vacuo. Reverse-phase flash column chromatography purification (0-100% CH3CN/H2O) 
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afforded the title compound as brown solid (0.281 g, 0.546 mmol, 55% yield, ≥ 99% purity). Mp 

= 76–78 ºC; IR (neat) 2928, 1651 (v br) cm-1; 1H NMR (400 MHz, CDCl3) δ 8.57 (ddd, J = 4.8, 

1.6, 0.9 Hz, 1H), 7.76 (td, J = 7.7, 1.7 Hz, 1H), 7.56 (dt, J = 7.8, 1.2 Hz, 1H), 7.39–7.15 (m, 7H), 

6.93 (d, J = 7.4 Hz, 1H), 6.24 (dd, J = 3.2, 1.9 Hz, 1H), 5.99 (d, J = 3.1 Hz, 1H), 4.82 (s, 2H), 

3.80–3.62 (m, 1H), 2.90–2.60 (m, 8H), 2.56–2.40 (m, 2H), 2.37–2.20 (m, 2H), 1.94–1.78 (m, 2H), 

1.76–1.50 (m, 3H), 1.42–1.05 (m, 5H); 13C NMR (101 MHz, CDCl3) δ 171.9, 171.7, 155.1, 151.3, 

148.2, 141.8, 140.6, 137.1, 128.8, 128.4, 126.0, 124.7, 124.0, 110.8, 108.1, 64.7, 60.3, 50.0, 47.9, 

42.9, 33.8, 33.0, 32.6, 25.8, 24.7; HRMS (ESI) m/z calcd for C31H39N4O3 [M + H]+ 515.3017, 

found 515.3025. 

 

 

          Methyl 3-(4-(cyclohexylcarbamoyl)-4-(N-(furan-2-ylmethyl)picolinamido)piperidin-1-

yl)propanoate (1.69) and 3-(4-(Cyclohexylcarbamoyl)-4-(N-(furan-2-

ylmethyl)picolinamido)piperidin-1-yl)propanoic acid (1.70). To a suspension of picolinic acid 

(0.123 g, 1.00 mmol, 1.0 equiv), furfurylamine (0.097 g, 1.00 mmol, 1.0 equiv), and methyl 3-(4-

oxopiperidin-1-yl)propanoate (0.185 g, 1.00 mmol, 1.0 equiv) in methanol (2 mL), was added 

cyclohexyl isocyanide (0.109 g, 1.00 mmol, 1.0 equiv) at room temperature. The mixture was 

stirred at room temperature for 24 h. The reaction mixture was quenched with TFA (0.3 mL), 

stirred for 30 min at room temperature, and then concentrated in vacuo. Reverse-phase flash 
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column chromatography purification (0-100% CH3CN/H2O) afforded the desired product (1.73) 

which was partially hydrolyzed in the aqueous solution. The partially hydrolyzed mixture was 

further purified with normal phase flash column chromatography (0-20% CH3OH/DCM) to afford 

1.69 (0.185 g, 0.371 mmol, 37% yield, ≥ 99% purity) as a colorless oil and 1.70 (0.035 g, 

0.073mmol, 7% yield, ≥ 99% purity) as a white solid. Characterization of 1.69: IR (neat) 2930, 

1656 (v br) cm-1; 1H NMR (400 MHz, CDCl3) δ 8.54 (ddd, J = 4.8, 1.6, 0.9 Hz, 1H), 7.74 (td, J = 

7.7, 1.7 Hz, 1H), 7.53 (dt, J = 7.8, 0.9 Hz, 1H), 7.31 (ddd, J = 7.6, 4.9, 1.2 Hz, 1H), 7.24 (dd, J = 

1.8, 0.7 Hz, 1H), 6.91 (d, J = 7.4 Hz, 1H), 6.20 (dd, J = 3.2, 1.9 Hz, 1H), 5.94 (d, J = 3.2 Hz, 1H), 

4.76 (s, 2H), 3.73–3.57 (m, 4H), 2.76–2.54 (m, 6H), 2.53–2.35 (m, 4H), 2.31–2.16 (m, 2H), 1.88–

1.74 (m, 2H), 1.71–1.49 (m, 3H), 1.39–1.01 (m, 5H); 13C NMR (101 MHz, CDCl3) δ 173.1, 172.0, 

171.8, 155.1, 151.3, 148.3, 141.9, 137.2, 124.8, 124.1, 110.8, 108.2, 64.6, 53.4, 51.7, 49.8, 48.0, 

42.9, 33.0, 32.6, 32.4, 25.8, 24.8; HRMS (ESI) m/z calcd for C27H37N4O5 [M + H]+ 497.2758, 

found 497.2760. Characterization of 1.70: Mp = 101–103 ºC;  IR (neat) 2972 (v br), 1716, 1652 (v 

br) cm-1; 1H NMR (400 MHz, CDCl3) δ 8.54 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H), 7.78 (td, J = 7.7, 1.7 

Hz, 3H), 7.56 (dt, J = 7.9, 1.1 Hz, 1H), 7.35 (ddd, J = 7.7, 4.8, 1.2 Hz, 1H), 7.29 (d, J = 1.5 Hz, 

1H), 6.67 (d, J = 8.0 Hz, 1H), 6.24 (dd, J = 3.3, 1.9 Hz, 1H), 6.04 (d, J = 3.2 Hz, 1H), 4.83 (s, 2H), 

3.72–3.58 (m, 1H), 3.30–3.22 (m, 2H), 3.20–3.09 (m, 2H), 2.99 (t, J = 6.1 Hz, 2H), 2.58–2.33 (m, 

6H), 1.85–1.74 (m, 2H), 1.71–1.50 (m, 2H), 1.39–1.23 (m, 2H), 1.21–0.98 (m, 3H); 13C NMR (101 

MHz, CDCl3) δ 174.7, 171.8, 171.0, 154.4, 150.8, 148.2, 142.1, 137.4, 124.9, 124.0, 111.0, 108.4, 

62.7, 53.8, 49.1, 48.1, 42.4, 32.9, 31.2, 30.7, 25.6, 24.7; HRMS (ESI) m/z calcd for C26H35N4O5 

[M + H]+ 483.2602, found 483.2594. 
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(S)-N-(1-((4-Bromophenyl)amino)-2-methyl-1-oxobutan-2-yl)-N-(furan-2-

ylmethyl)picolinamide ((S)-1.71) and (R)-N-(1-((4-Bromophenyl)amino)-2-methyl-1-

oxobutan-2-yl)-N-(furan-2-ylmethyl)picolinamide ((R)-1.71). To a suspension of picolinic acid 

(0.295 g, 2.40 mmol, 1.0 equiv), furfurylamine (0.233 g, 2.40 mmol, 1.0 equiv), and 2-butanone 

(0.173 g, 2.40 mmol, 1.0 equiv) in methanol (6 mL), was added 4-bromophenyl isocyanide (0.437 

g, 2.40 mmol, 1.0 equiv) at room temperature. The mixture was stirred at room temperature for 24 

h. The reaction mixture was quenched with TFA (0.84 mL) followed by 30 min of stirring at room 

temperature, then concentrated in vacuo. Reverse-phase flash column chromatography purification 

(0-100% CH3CN/H2O) afforded the racemic mixture (0.400 g, 0.877 mmol, 37% yield). Reaction 

was repeated to obtain enough racemic material for chiral separation. The racemic mixture (0.600 

g dissolved in 4 mL of DCM, 0.15 mL for every injection) was separated by Chiral HPLC 

(CHIRALPAK IA SFC Semi-Prep column, 25% EtOH/hexanes) to afford (S)-1.71 (0.250 g, tR = 

16.2 min) as a white solid and (R)-1.71 (0.240 g, tR = 28.0 min) as a white solid. The absolute 

configuration of (S)-1.71 was unambiguously determined by anomalous scattering of the Cu X-

rays of the Br atoms while that of (R)-1.71 was then assigned accordingly. Characterization of (S)-

1.71: [ɑ]𝐷
20 =  ̶ 66.4 (c 1.0, DCM); Mp = 108–110 ºC; Characterization of (R)-1.71: [ɑ]𝐷

20 = +66.1 

(c 1.0, DCM); Mp = 107–109 ºC;  IR (neat) 2982, 1691, 1641cm-1; 1H NMR (600 MHz, CD2Cl2) 

δ 8.57 (ddd, J = 4.8, 1.7, 1.0 Hz, 1H), 8.35 (s, 1H), 7.79 (td, J = 7.8, 1.7 Hz, 1H), 7.54–7.49 (m, 

1H), 7.44–7.35 (m, 6H), 6.28 (dd, J = 3.3, 1.9 Hz, 1H), 5.96 (dd, J = 3.3, 0.9 Hz, 1H), 5.16 (d, J = 

17.3 Hz, 1H), 4.69 (d, J = 17.3 Hz, 1H), 2.32 (dq, J = 13.4, 7.5 Hz, 1H), 1.96 (dq, J = 13.4, 7.5 Hz, 
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1H), 1.51 (s, 3H), 0.98 (t, J = 7.5 Hz, 3H); 13C NMR (151 MHz, CD2Cl2) δ 172.5, 170.8, 155.0, 

152.1, 148.4, 142.7, 138.6, 138.1, 132.2, 125.4, 124.4, 121.8, 116.3, 111.5, 108.2, 67.3, 42.9, 29.4, 

20.7, 8.7; HRMS (ESI) m/z calcd for C22H22BrN3NaO3 [M+Na]+ 478.0737, found 478.0737. 

 

 

          (S)-N-(1-((4-Bromophenyl)amino)-2,4-dimethyl-1-oxopentan-2-yl)-N-(furan-2-

ylmethyl)picolinamide ((S)-1.72) and (R)-N-(1-((4-Bromophenyl)amino)-2,4-dimethyl-1-

oxopentan-2-yl)-N-(furan-2-ylmethyl)picolinamide ((R)-1.72). To a suspension of picolinic 

acid (0.590 g, 4.80 mmol, 1.0 equiv), furfurylamine (0.466 g, 4.80 mmol, 1.0 equiv), and 4-

methylpentan-2-one (0.481 g, 4.80 mmol, 1.0 equiv) in methanol (12 mL), was added 4-

bromophenyl isocyanide (0.874 g, 4.80 mmol, 1.0 equiv) at room temperature. The mixture was 

stirred at room temperature for 24 h. The reaction mixture was quenched with TFA (1.70 mL) 

followed by 30 min of stirring at room temperature, then concentrated in vacuo. Reverse-phase 

flash column chromatography purification (0-100% CH3CN/H2O) afforded the racemic mixture 

(0.512 g, 1.057 mmol, 22% yield). The racemic mixture (0.512 g dissolved in 4 mL of DCM, 0.25 

mL for every injection) was separated by Chiral HPLC (CHIRALPAK IA SFC Semi-Prep column, 

25% EtOH/hexanes) to afford (S)-1.72 (0.167 g, tR = 11.7 min) as a white solid and (R)-1.72 (0.199 

g, tR = 24.9 min) as a white solid. The absolute configuration of (S)-1.72 was unambiguously 

determined by anomalous scattering of the Cu X-rays of the Br atoms while that of (R)-1.72 was 
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then assigned accordingly. Characterization of (S)-1.72: [ɑ]𝐷
20 = –78.7 (c 1.0, DCM); Mp = 120–

122 ºC. Characterization of (R)-1.72: [ɑ]𝐷
20 = +76.6 (c 1.0, DCM); Mp = 118–121 ºC; IR (neat) 

2958, 1690, 1643 cm-1; 1H NMR (600 MHz,  CD2Cl2) δ 8.62–8.53 (m, 1H), 8.35 (s, 1H), 7.78 (tdd, 

J = 7.8, 1.8, 0.7 Hz, 1H), 7.45–7.33 (m, 6H), 6.28 (ddd, J = 3.1, 1.9, 0.7 Hz, 1H), 6.00–5.90 (m, 

1H), 5.23 (d, J = 17.2 Hz, 1H), 4.69 (d, J = 17.2 Hz, 1H), 2.20 (dd, J = 13.9, 5.7 Hz, 1H), 1.90 (dd, 

J = 13.9, 4.8 Hz, 1H), 1.87–1.79 (m, 1H), 1.55 (s, 3H), 1.00 (d, J = 6.6 Hz, 3H), 0.98 (d, J = 6.6 

Hz, 3H); 13C NMR (151 MHz, CD2Cl2) δ 172.6, 170.7, 155.1, 152.1, 148.5, 142.7, 138.6, 138.0, 

132.2, 125.3, 124.5, 121.8, 116.3, 111.5, 108.3, 67.0, 44.8, 42.8, 25.4, 25.1, 24.4, 21.8; HRMS 

(ESI) m/z calcd for C24H26BrN3NaO3 [M+Na]+ 506.1050, found 506.1045. 

 

 

          (S)-N-(1-((4-Bromophenyl)amino)-2-methyl-1-oxohexan-2-yl)-N-(furan-2-

ylmethyl)picolinamide ((S)-1.73) and (R)-N-(1-((4-Bromophenyl)amino)-2-methyl-1-

oxohexan-2-yl)-N-(furan-2-ylmethyl)picolinamide ((R)-1.73). To a suspension of picolinic acid 

(0.295 g, 2.40 mmol, 1.0 equiv), furfurylamine (0.233 g, 2.40 mmol, 1.0 equiv), and 2-hexanone 

(0.240 g, 2.40 mmol, 1.0 equiv) in methanol (6 mL), was added 4-bromophenyl isocyanide (0.437 

g, 2.40 mmol, 1.0 equiv) at room temperature. The mixture was stirred at room temperature for 24 

h. The reaction mixture was quenched with TFA (0.84 mL) followed by 30 min of stirring at room 

temperature, then concentrated in vacuo. Reverse-phase flash column chromatography purification 



149 
 

(0-100% CH3CN/H2O) afforded the racemic mixture (0.396 g, 0.818 mmol, 34% yield). The 

racemic mixture (0.396 g dissolved in 3 mL of DCM, 0.25 mL for every injection) was separated 

by Chiral HPLC (CHIRALPAK IA SFC Semi-Prep column, 40% Isopropanol/hexanes) to afford 

(S)-1.73 (0.197 g, tR = 12.3 min) as a white solid and (R)-1.73 (0.174 g, tR = 20.0 min) as a white 

solid. The absolute configuration of (S)-1.73 was unambiguously determined by anomalous 

scattering of the Cu X-rays of the Br atoms while that of (R)-1.73 was then assigned accordingly. 

Characterization of (S)-1.73: [ɑ]𝐷
20 =  ̶ 56.7 (c 0.9, DCM); Mp = 98–100 ºC; IR (neat) 2958, 1691, 

1644 cm-1; 1H NMR (600 MHz, CD2Cl2) δ 8.61–8.53 (m, 1H), 8.33 (s, 1H), 7.79 (td, J = 7.7, 1.7 

Hz, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.47–7.33 (m, 6H), 6.28 (dd, J = 3.3, 1.9 Hz, 1H), 5.97 (d, J = 

3.3 Hz, 1H), 5.15 (d, J = 17.2 Hz, 1H), 4.69 (d, J = 17.2 Hz, 1H), 2.29–2.19 (m, 1H), 1.94–1.86 

(m, 1H), 1.52 (s, 3H), 1.42–1.25 (m, 4H), 0.92 (t, J = 6.9 Hz, 3H); 13C NMR (151 MHz, CD2Cl2) 

δ 172.0, 170.4, 154.5, 151.6, 148.0, 142.1, 138.0, 137.4, 131.7, 124.7, 123.8, 121.2, 115.8, 110.9, 

107.6, 66.3, 42.3, 35.9, 26.0, 23.1, 20.7, 13.8; HRMS (ESI) m/z calcd for C24H26BrN3NaO3 

[M+Na]+ 506.1050, found 506.1051. Characterization of (R)-1.73: [ɑ]𝐷
20 = +56.3 (c 1.0, DCM); 

Mp = 100–102 ºC. 

 

Procedure for Chapter 2 

 

          Methyl 2-tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylate. To a suspension of methyl 

1,2,3,4-tetrahydroisoquinoline-6-carboxylate hydrochloride (1.000 g, 4.39 mmol, 1.0 equiv) in 
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anhydrous DCM (12 mL) were added triethylamine (1.33 g, 13.17 mmol, 3.0 equiv) and 4-

methylbenzenesulfonyl chloride (0.837 g, 4.39 mmol, 1.0 equiv) at room temperature, then stirred 

overnight. The reaction mixture was acidified with aqueous HCl (2 N) to pH 3, then extracted with 

DCM (3 × 20 mL). The combined organic layers were washed with brine, dried over Na2SO4 and 

concentrated in vacuo to afford the title compound as a white solid (1.50 g, 4.34 mmol, 99% yield). 

Mp = 143–145 °C; IR (neat) 1718 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.83–7.76 (m, 2H), 7.75–

7.69 (m, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 1H), 4.28 (s, 2H), 3.89 (s, 3H), 3.37 (t, 

J = 5.9 Hz, 2H), 2.97 (t, J = 5.9 Hz, 2H), 2.42 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 166.9, 144.0, 

136.9, 133.5, 133.3, 130.3, 129.9, 128.8, 127.9, 127.5, 126.6, 52.3, 47.8, 43.7, 28.9, 21.7; HRMS 

(ESI) m/z calcd for C18H20NO4S [M+H]+ 346.1108, found 346.1106. 

 

 

          2-Tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid. To a solution of methyl 2-

tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylate (0.660 g, 2.13 mmol, 1.0 equiv) in methanol 

(10 mL) and THF (10 mL) was added aqueous NaOH (1 N, 20 mL) at room temperature. The 

mixture was stirred overnight, and concentrated in vacuo. The concentrated mixture was acidified 

with aqueous HCl (2 N) to pH 2, then filtered to afford the title compound as a white solid (0.100 

g, 0.29 mmol, 90% yield). Mp = 235–237 °C; IR (neat) 1678 cm-1; 1H NMR (400 MHz, DMSO-

d6) δ 12.89 (br s, 1H); 7.74–7.70 (m, 4H), 7.44 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 1H), 4.25 

(s, 2H), 3.30 (t, J = 6.0 Hz, 2H), 2.91 (t, J = 6.0 Hz, 2H), 2.39 (s, 3H); 13C NMR (101 MHz, 
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DMSO-d6,) δ 167.0, 143.7, 136.7, 133.4, 133.0, 129.9, 129.7, 129.1, 127.4, 126.9, 126.7, 47.3, 

43.3, 27.9, 21.0; HRMS (ESI) m/z calcd for C17H16NO4S [M-H]-330.0806, found 330.0807. 

 

General procedure for reductive amination. To a solution of ketone/aldehyde, amine in DCE 

were added NaBH(OAc)3 and AcOH at room temperature. The resulting mixture were stirred for 

12 or 24 h as needed for the completion of reaction. The reaction was quenched at room 

temperature with aqueous NaOH (1 N) to pH 10, then extracted with EtOAc three times. The 

combined organic phase was washed with brine, dried over Na2SO4, concentrated in vacuo.  The 

crude sample was purified with reverse-phase flash column chromatography (0-100% 

CH3CN/H2O) to afford the product. 

 

 

          N-(4-Chlorobenzyl)-2-methylpropan-2-amine. Prepared according to the general 

procedure for reductive amination using 4-chlorobenzaldehyde (5.000 g, 35.57 mmol, 1.0 equiv), 

tert-butylamine (2.602 g, 35.57 mmol, 1.0 equiv), NaBH(OAc)3 (10.56 g, 49.80 mmol, 1.4 equiv), 

AcOH (1 drop) and DCE (50 mL), which was stirred at room temperature for 12 h. Reverse-phase 

flash column chromatography (0 ̶ 100% CH3CN/H2O) afforded the title compound as a light 

yellow oil (5.340 g, 27.01 mmol, 76% yield). IR (neat) 1590 cm-1; 1H NMR (400 MHz, CD2Cl2) 

δ 7.40–7.19 (m, 4H), 3.70 (s, 2H), 1.15 (s, 9H), 0.95 (br s, 1H); 13C NMR (101 MHz, CD2Cl2) δ 
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141.5, 132.6, 130.1, 128.8, 51.1, 46.9, 29.5; HRMS (ESI) m/z calcd for C11H17ClN [M+H]+ 

198.1044, found 198.1047. 

 

 

          2-(tert-Butyl(4-chlorobenzyl)amino)acetonitrile. To a solution of N-(4-chlorobenzyl)-2-

methylpropan-2-amine (1.970 g, 9.96 mmol, 1.0 equiv) in acetonitrile (25 mL) were added K2CO3 

(2.760 g, 19.97 mmol, 2.0 equiv), KI (1.660 g, 10.00 mmol, 1.0 equiv) and ClCH2CN (0.831 g, 

11.01 mmol, 1.1 equiv) at room temperature. The reaction was stirred at this temperature for 16 h, 

then diluted with saturated aqueous Na2CO3 (50 mL) and extracted with ether (3 × 100 mL). The 

combined organic layers were washed with brine, dried over Na2SO4, and concentrated in vacuo. 

Silica gel chromatography (0-20% EtOAc/hexanes) afforded the title compound as a yellowish oil 

(1.490 g, 6.29 mmol, 63% yield). IR 2975, 1597, 1490, (neat) cm-1; 1H NMR (400 MHz, CDCl3) 

δ 7.33–7.27 (m, 4H), 3.80 (s, 2H), 3.43 (s, 2H), 1.28 (s, 9H); 13C NMR (151 MHz, CDCl3) δ 137.4, 

133.3, 129.9, 128.8, 117.9, 55.4, 50.9, 35.8, 27.4; HRMS (ESI) m/z calcd for C13H18ClN2 [M+H]+ 

237.1153, found 237.1141. 
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          N1-(tert-Butyl)-N1-(4-chlorobenzyl)ethane-1,2-diamine. To a solution of 2-(tert-butyl(4-

chlorobenzyl)amino)acetonitrile (1.360 g, 5.74 mmol, 1.0 equiv) in anhydrous THF (115 mL) was 

added LiAlH4, (1 N in THF, 23 mL, 23.0 mmol, 4.0 equiv) dropwise at room temperature. The 

resulting mixture was stirred at this temperature for 4 h, then quenched with Glaubler’s salt 

(Na2SO4·10H2O, 90 g) at 0 °C. The reaction was warmed to room temperature and stirred for 15 

min, then filtrated and concentrated in vacuo. Reverse-phase flash column chromatography (0-

100% CH3CN/H2O) afforded the title compound as colorless oil (0.967 g, 4.02 mmol, 70% yield). 

IR 2969, 2869, 1488 (neat) cm-1; 1H NMR (400 MHz, CDCl3) δ 7.33–7.18 (m, 4H), 3.63 (s, 2H), 

2.60 (t, J = 6.4 Hz, 2H), 2.44 (t, J = 6.4 Hz, 2H), 1.33 (br s, 2H), 1.10 (s, 9H); 13C NMR (101 MHz, 

CDCl3) δ 142.3, 131.9, 129.0, 128.3, 55.2, 54.7, 54.6, 42.2, 27.5;  HRMS (ESI) m/z calcd for 

C13H22ClN2 [M+H]+ 241.1466, found 241.1462. 

 

 

          N-(2-(tert-Butyl(4-chlorobenzyl)amino)ethyl)-2-tosyl-1,2,3,4-tetrahydroisoquinoline-

6-carboxamide. To a solution of 2-tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (1.000 

g, 3.02 mmol, 1.0 equiv) in anhydrous DMF (15 mL) were added DIPEA (1.170 g, 9.05 mmol, 3.0 

equiv) and HATU (1.148 g, 3.02 mmol, 1.0 equiv) at room temperature. The mixture was stirred 

for 5 min, followed by addition of N1-(tert-butyl)-N1-(4-chlorobenzyl)ethane-1,2-diamine (0.727 

g, 3.02 mmol, 1.0 equiv). The reaction was stirred for 12 h at room temperature, then concentrated 
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under N2. The crude sample was purified with reverse-phase flash column chromatography (0-100% 

CH3CN/H2O) to afford the title compound as a white solid (1.108 g, 2.00 mmol, 66% yield, ≥ 99% 

purity). Mp = 95–97 ºC; IR (neat) 2969, 1644, 1541, 1489 cm-1; 1H NMR (400 MHz, CDCl3) δ 

7.71 (d, J = 8.4 Hz, 2H), 7.53 (m, 2H), 7.45–7.39 (m, 4H), 7.31 (m, 2H), 7.20 (d, J = 8.0 Hz, 1H), 

4.20 (s, 2H), 3.69 (s, 2H), 3.28 (t, J = 6.0 Hz, 2H), 3.04 (m, 2H), 2.87 (t, J = 6.0 Hz, 2H), 2.64 (m, 

2H), 2.39 (s, 3H), 1.09 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 165.5, 143.6, 142.1, 134.6, 132.9, 

132.84, 132.77, 130.5, 129.9, 129.3, 127.8, 127.45, 127.42, 126.3, 124.7, 54.8, 53.4, 49.9, 47.2, 

43.4, 40.4, 28.0, 27.1, 21.0; HRMS (ESI) m/z calcd for C30H37ClN3O3S [M+H]+ 554.2244, found 

554.2261. 

 

 

          N-(2-(tert-Butyl(4-chlorobenzyl)amino)ethyl)acetamide. To a solution of N1-(tert-butyl)-

N1-(4-chlorobenzyl)ethane-1,2-diamine (0.050 g, 0.208 mmol, 1.0 equiv) in anhydrous DCM (1 

mL) was added trimethylamine (0.064 g, 0.632 mmol, 3.0 equiv) and solution of acetyl chloride 

(0.016 g, 0.208 mmol, 1.0 equiv) in anhydrous DCM (1 mL) at 0 °C. The resulting mixture was 

stirred at room temperature for 3 h, then concentrated in vacuo, diluted with water (10 mL), and 

extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine and dried 

over Na2SO4, concentrated in vacuo. Reverse-phase flash column chromatography (0-100% 

CH3CN/H2O) afforded the title compound as a colorless film (0.025 g, 0.088 mmol, 42% yield, 

94.3% purity).  IR (neat) 3286, 2971, 1648, 1553; 1488 cm-1; 1H NMR (600 MHz, CD2Cl2) δ 7.36–
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7.25 (m, 4H), 5.42 (br s, 1H), 3.64 (s, 2H), 2.97–2.90 (m, 2H), 2.67 (t, J = 6.3 Hz, 2H), 1.73 (s, 

3H), 1.13 (s, 9H); 13C NMR (151 MHz, CD2Cl2) δ 169.2, 141.9, 132.0, 129.4, 128.3, 55.3, 54.4, 

50.1, 39.8, 27.0, 22.8; HRMS (ESI) m/z calcd for C15H24ClN2O [M+H]+ 283.1572, found 283.1564. 

 

 

          N-(2-(tert-Butyl(4-chlorobenzyl)amino)ethyl)benzamide. To a solution of N1-(tert-

butyl)-N1-(4-chlorobenzyl)ethane-1,2-diamine (0.050 g, 0.208 mmol, 1.0 equiv) in anhydrous 

DCM (1 mL) was added trimethylamine (0.064 g, 0.632 mmol, 3.0 equiv) and solution of benzoyl 

bromide (0.038 g, 0.205 mmol, 1.0 equiv) in anhydrous DCM (1 mL) at 0 °C. The resulting mixture 

was stirred at room temperature for 3 h, then concentrated in vacuo, diluted with water (10 mL), 

and extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine, 

dried over Na2SO4, concentrated in vacuo. Reverse-phase flash column chromatography (0-100% 

CH3CN/H2O) afforded the title compound as a colorless oil (0.041 g, 0.119 mmol, 57% yield, ≥ 

99% purity). IR (neat) 3327, 2969, 1638, 1541, 1488 cm-1; 1H NMR (600 MHz, CD2Cl2) δ 7.60–

7.55 (m, 2H), 7.52–7.47 (m, 1H), 7.45–7.40 (m, 2H), 7.36–7.29 (m, 2H), 7.24–7.17 (m, 2H), 6.24 

(br s, 1H), 3.69 (s, 2H), 3.22–3.14 (m, 2H), 2.82 (t, J = 6.2 Hz, 2H), 1.16 (s, 9H); 13C NMR (151 

MHz, CD2Cl2) δ 167.2, 142.4, 135.5, 132.5, 131.6, 129.8, 129.0, 128.9, 127.2, 56.0, 55.0, 50.7, 

40.5, 27.6; IR (neat) 3326, 2971, 1639, 1541 cm-1 HRMS (ESI) m/z calcd for C20H26ClN2O 

[M+H]+ 345.1726, found 345.1728.  
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          N-iso-Propyl-2-tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxamide. To a solution of 2-

tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.025 g, 0.075 mmol, 1.0 equiv) in 

anhydrous DMF (0.5 mL) were added DIPEA (0.029 g, 0.226 mmol, 3.0 equiv) and HATU (0.029 

g, 0.075 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by 

addition of isopropylamine (0.005 g, 0.085 mmol, 1.1 equiv). The reaction was stirred for 12 h at 

room temperature, then concentrated under N2 stream. The crude sample was purified with reverse-

phase flash column chromatography (0-100% CH3CN/H2O) to afford the title compound as a 

colorless film (0.007 g, 0.019 mmol, 25% yield, ≥99% purity). IR (neat) 3318, 2972, 1633, 1543 

cm-1; 1H NMR (600 MHz, CD2Cl2) δ 7.69 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.3 Hz, 2H), 7.36 (d, J 

= 8.0 Hz, 2H), 7.10 (d, J = 7.9 Hz, 1H), 5.95 (d, J = 7.1 Hz, 1H), 4.23–4.13 (m, 3H), 3.30 (t, J = 

5.9 Hz, 2H), 2.96 (t, J = 5.8 Hz, 2H), 2.41 (s, 3H), 1.21 (d, J = 6.6 Hz, 6H); 13C NMR (151 MHz, 

CD2Cl2) δ 166.2, 144.6, 135.4, 134.0, 133.9, 132.9, 130.2, 128.1, 127.9, 126.9, 124.8, 48.0, 44.1, 

42.3, 29.2, 22.9, 21.8; HRMS (ESI) m/z calcd for C20H25N2O3S [M+H]+ 373.1580, found 373.1580. 
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          2-(4-Methylbenzoyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid. To a solution of 

methyl 2-(4-methylbenzoyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylate (0.660 g, 2.13 mmol, 

1.0 equiv) in a mixture of THF and methanol (1:1, 20 mL) was added aqueous NaOH (1 N, 20 mL) 

at room temperature. The resulting mixture was stirred at this temperature for 24 h, then acidified 

with aqueous HCl (1 N) to pH 2. Filtration followed by purification with reverse-phase flash 

column chromatography (0-100% CH3CN/H2O) afforded the title compound as a white solid 

(0.520 g, 1.76 mmol, 84% yield). Mp = 70–72 °C IR 1675; 1H NMR (600 MHz, DMSO-d6) δ 

7.84–7.65 (m, 2H), 7.47–7.12 (m, 5H), 4.76 (br s, 2H), 3.63 (m, 2H), 2.91 (s, 2H), 2.35 (s, 3H). 

13C NMR (151 MHz, DMSO-d6) δ 169.6, 167.0, 139.3, 138.2, 134.7, 133.0, 129.6, 128.9, 128.8, 

126.90, 126.87, 126.6, 49.2, 44.4, 28.6, 20.8; HRMS (ESI) m/z calcd for C18H18NO3 [M+H]+ 

296.1281, found 296.1280. 

 

 

          N-(2-(tert-Butyl(4-chlorobenzyl)amino)ethyl)-2-(4-methylbenzoyl)-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of 2-(4-methylbenzoyl)-1,2,3,4-

tetrahydroisoquinoline-6-carboxylic acid (0.030 g, 0.10 mmol, 1.0 equiv) in anhydrous DMF (1 

mL) were added DIPEA (0.039 g, 0.302 mmol, 3.0 equiv) and HATU (0.038 g, 0.10 mmol, 1.0 

equiv) at room temperature. The mixture was stirred for 5 min, followed by addition of N1-(tert-

butyl)-N1-(4-chlorobenzyl)ethane-1,2-diamine (0.034 g, 0.10 mmol, 1.0 equiv). The reaction was 
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stirred for 12 h at room temperature, then concentrated under N2 stream. The crude sample was 

purified with reverse-phase flash column chromatography (0-100% CH3CN/H2O) to afford the 

title compound as a light yellow film (0.022 g, 0.041 mmol, 53% yield, 98.7% purity).  IR (neat) 

2931, 1667 (v br) cm-1; 1H NMR (600 MHz, DMSO-d6) δ 8.21 (t, J = 5.4 Hz, 1H), 7.66–7.53 (m, 

2H), 7.47–7.19 (m, 9H), 4.72 (br s, 2H), 3.95 – 3.47 (m, 5H), 3.33 (q, J = 6.1 Hz, 2H), 2.87 (s, 

2H), 2.61–2.52 (m, 2H), 2.39–2.28 (m, 5H), 0.83 (s, 9H); 13C NMR (151 MHz, DMSO-d6) δ 169.5, 

165.6, 139.2, 139.0, 136.1, 134.2, 133.0, 132.7, 131.1, 130.1, 128.8, 127.9, 127.4, 126.8, 126.2, 

124.7, 66.4, 59.5, 54.8, 44.4, 40.1, 37.2, 32.7, 28.7, 27.9, 20.8; HRMS (ESI) m/z calcd for 

C31H37ClN3O2 [M+H]+ 518.2569, found 518.2556. 

 

 

          2-(p-Tolylcarbamoyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid. To a solution of 

methyl ester (0.324 g, 1.00 mmol, 1.0 equiv) in THF (3.3 mL) were added methanol (3.3 mL) and 

aqueous NaOH solution (1 N, 3.3 mL) at room temperature. The mixture was stirred at this 

temperature for 12 h, then concentrated in vacuo, diluted with water (20 mL), and extracted with 

EtOAc (20 mL). The aqueous layer was acidified with aqueous HCl solution (1 N) to pH 2, then 

filtered to afford the title compound as a white solid (0.237 g, 0.76 mmol, 76% yield). Mp = 206–

208 °C; 1H NMR (600 MHz, DMSO-d6) δ 8.54 (s, 1H), 7.80–7.72 (m, 2H), 7.39–7.34 (m, 2H), 

7.29 (d, J = 8.0 Hz, 1H), 7.04 (d, J = 8.3 Hz, 2H), 4.69 (s, 2H), 3.71 (t, J = 5.9 Hz, 2H), 2.90 (t, J 

= 5.8 Hz, 2H), 2.22 (s, 3H); 13C NMR (151 MHz, DMSO-d6) δ 167.2, 155.1, 139.1, 137.8, 135.1, 
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130.6, 129.7, 128.7, 126.9, 126.5, 120.0, 45.7, 41.2, 28.3, 20.4; IR (neat) 3417, 2922, 1668, 1650, 

1517 cm-1; HRMS (ESI) m/z calcd for C18H19N2O3 [M+H]+ 311.1390, found 311.1391. 

 

 

          N6-(2-(tert-Butyl(4-chlorobenzyl)amino)ethyl)-N2-(p-tolyl)-3,4-dihydroisoquinoline-

2,6(1H)-dicarboxamide. To a solution of 2-(p-tolylcarbamoyl)-1,2,3,4-tetrahydroisoquinoline-6-

carboxylic acid (0.025 g, 0.080 mmol, 1.0 equiv) in anhydrous DMF (1 mL) were added DIPEA 

(0.031 g, 0.240 mmol, 3.0 equiv) and HATU (0.031 g, 0.082 mmol, 1.0 equiv) at room temperature. 

The mixture was stirred for 5 min, followed by addition of N1-(tert-butyl)-N1-(4-

chlorobenzyl)ethane-1,2-diamine (0.019 g, 0.079 mmol, 1.0 equiv). The reaction was stirred for 

12 h at room temperature, then concentrated under N2 stream. The crude sample was purified with 

reverse-phase flash column chromatography (0-100% CH3CN/H2O) to afford the title compound 

as a colorless oil (0.018 g, 0.034 mmol, 42% yield, ≥99% purity). IR (neat) 3310, 2969, 1635, 

1597, 1517 cm-1; 1H NMR (600 MHz, CD2Cl2) δ 7.43 (s, 1H), 7.35 (dd, J = 7.9, 1.5 Hz, 1H), 7.33–

7.29 (m, 2H), 7.29–7.25 (m, 2H), 7.23–7.16 (m, 3H), 7.10 (d, J = 8.2 Hz, 2H), 6.49 (s, 1H), 6.21 

(t, J = 4.7 Hz, 1H), 4.68 (s, 2H), 3.74–3.66 (m, 4H), 3.18 (q, J = 5.9 Hz, 2H), 2.96 (t, J = 5.9 Hz, 

2H), 2.81 (t, J = 6.2 Hz, 2H), 2.30 (s, 3H), 1.16 (s, 9H); 13C NMR (151 MHz, CDCl3) δ 167.0, 

155.3, 141.5, 136.8, 136.4, 135.4, 133.4, 133.0, 132.4, 129.6, 129.3, 128.7, 127.3, 126.6, 124.6, 
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120.5, 55.7, 54.7, 50.3, 45.8, 41.7, 40.2, 29.2, 27.5, 20.9; HRMS (ESI) m/z calcd for C31H38ClN4O2 

[M+H]+ 533.2678, found 533.2681. 

 

 

          Methyl 4-((iso-butylamino)methyl)benzoate. Prepared according to the general procedure 

using isobutyraldehyde (0.358 g, 4.96 mmol, 1.0 equiv), methyl 4-(aminomethyl)benzoate 

hydrochloride (1.0 g, 4.96 mmol, 1.0 equiv), NaBH(OAc)3 (1.472 g, 6.94 mmol, 1.4 equiv), and 

DCE (10 ml), stirred at room temperature for 12 h. Reverse-phase flash column chromatography 

(0-100% CH3CN/H2O) afforded the title compound as a light yellow oil (0.670 g, 3.03 mmol, 61% 

yield). IR (neat) 2954, 1722 cm-1; 1H NMR (600 MHz, CDCl3) δ 8.02–7.96 (m, 2H), 7.42–7.37 

(m, 2H), 3.91 (s, 3H), 3.84 (s, 2H), 2.43 (d, J = 6.8 Hz, 2H), 1.82–1.71 (m, 1H), 0.92 (d, J = 6.7 

Hz, 6H); 13C NMR (151 MHz, CDCl3) δ 167.2, 146.4, 129.8, 128.9, 128.0, 57.7, 53.9, 52.2, 28.6, 

20.8; HRMS (ESI) m/z calcd for C13H20ClNO2 [M+H]+ 222.1489, found 222.1484. 

 

 

          Methyl 4-(((N-iso-butyl-4-methylphenyl)sulfonamido)methyl)benzoate. To a solution of 

methyl 4-((iso-butylamino)methyl)benzoate (0.040 g, 0.181 mmol, 1.0 equiv) and trimethylamine 
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(0.055 g, 0.544 mmol, 3.0 equiv) in anhydrous DCM (1 mL) was added p-toluenesulfonyl chloride 

(0.035 g, 0.184 mmol, 1.0 equiv) at room temperature. The resulting mixture was stirred at this 

temperature for 3 h, then diluted with water, extracted with DCM (2 × 10 mL), washed with brine, 

dried over Na2SO4 and concentrated in vacuo. Reverse-phase flash column chromatography 

afforded the title compound as a colorless oil (0.055 g, 0.146 mmol, 81% yield). IR (neat) 2958, 

1720 cm-1; 1H NMR (600 MHz, CDCl3) δ 7.99–7.94 (m, 2H), 7.74–7.69 (m, 2H), 7.37–7.29 (m, 

4H), 4.33 (s, 2H), 3.91 (s, 3H), 2.89 (d, J = 7.6 Hz, 2H), 2.44 (s, 3H), 1.65–1.56 (m, 1H), 0.73 (d, 

J = 6.7 Hz, 6H); 13C NMR (151 MHz, CDCl3) δ 167.0, 143.5, 142.3, 136.9, 129.9, 129.9, 129.7, 

128.4, 127.4, 57.1, 53.0, 52.3, 27.1, 21.7, 20.1; HRMS (ESI) m/z calcd for C20H26NO4S [M+H]+ 

376.1577, found 376.1574. 

 

 

          4-(((N-iso-Butyl-4-methylphenyl)sulfonamido)methyl)benzoic acid. To a solution of 

methyl 4-(((N-iso-butyl-4-methylphenyl)sulfonamido)methyl)benzoate  (0.043 g, 0.115 mmol, 1.0 

equiv) in a THF (1 mL) was added methanol (1 mL) and aqueous NaOH solution (1 N, 1 mL) at 

room temperature. The resulting mixture was stirred at this temperature for 12 h, then concentrated 

in vacuo, diluted with water, acidified with aqueous HCl solution (1 N) to pH 2. Filtration afforded 

the title compound as a white solid (0.035 g, 0.097 mmol, 85% yield). Mp = 105–108 °C; IR (neat) 

2964, 1708 cm-1; 1H NMR (400 MHz, DMSO-d6) δ 12.93 (s, 1H), 7.93–7.87 (m, 2H), 7.77–7.72 
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(m, 2H), 7.47–7.40 (m, 4H), 4.32 (s, 2H), 2.85 (d, J = 7.4 Hz, 2H), 2.41 (s, 3H), 1.58–1.41 (m, 

1H), 0.66 (d, J = 6.6 Hz, 6H); 13C NMR (101 MHz, DMSO-d6) δ 167.1, 143.3, 142.7, 135.9, 129.9, 

129.9, 129.3, 128.1, 127.1, 57.2, 52.5, 26.5, 21.0, 19.7; HRMS (ESI) m/z calcd for C19H24NO4S 

[M+H]+ 362.1421, found 362.1422. 

 

 

          N-(2-(tert-Butyl(4-chlorobenzyl)amino)ethyl)-4-(((N-iso-butyl-4-

methylphenyl)sulfonamido)methyl)benzamide. To a solution of 4-(((N-iso-butyl-4-

methylphenyl)sulfonamido)methyl)benzoic acid (0.024 g, 0.067 mmol, 1.0 equiv) in anhydrous 

DMF (1 mL) were added DIPEA (0.026 g, 0.201 mmol, 3.0 equiv) and HATU (0.025 g, 0.067 

mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by addition of 

N1-(tert-butyl)-N1-(4-chlorobenzyl)ethane-1,2-diamine (0.031 g, 0.15 mmol, 1.0 equiv). The 

reaction was stirred for 12 h at room temperature, then concentrated under N2 stream. The crude 

sample was purified with reverse-phase flash column chromatography (0-100% CH3CN/H2O) to 

afford the title compound as a colorless film (0.016 g, 0.027 mmol, 41% yield, ≥ 99% purity). IR 

(neat) 3338, 2965, 1642 cm-1; 1H NMR (600 MHz, CD2Cl2) δ 7.71 (d, J = 8.2 Hz, 2H), 7.52 (d, J 

= 8.2 Hz, 2H), 7.39–7.29 (m, 6H), 7.20 (d, J = 8.3 Hz, 2H), 6.25 (t, J = 5.4 Hz, 1H), 4.31 (s, 2H), 

3.69 (s, 2H), 3.17 (q, J = 5.9 Hz, 2H), 2.89 (d, J = 7.5 Hz, 2H), 2.81 (t, J = 6.2 Hz, 2H), 2.44 (s, 

3H), 1.64–1.56 (m, 1H), 1.16 (s, 9H), 0.74 (d, J = 6.6 Hz, 6H); 13C NMR (151 MHz, CD2Cl2) δ 

166.8, 144.1, 142.3, 141.0, 137.3, 134.7, 132.5, 130.3, 129.8, 128.9, 128.8, 127.7, 127.3, 57.5, 
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56.0, 55.0, 53.3, 50.7, 40.5, 27.6, 27.4, 21.8, 20.3; HRMS (ESI) m/z calcd for C32H43ClN3O3S 

[M+H]+ 584.2708, found 584.2720. 

 

 

          Methyl (R)-1,2,3,4-tetrahydroisoquinoline-3-carboxylate. To a solution of (R)-1,2,3,4-

tetrahydroisoquinoline-3-carboxylic acid (1.0 g, 5.64 mmol, 1.0 equiv) in anhydrous methanol (25 

mL) was added sulfuric acid (95-98%, 0.5 mL) at room temperature. The reaction was refluxed 

for 24 h, followed by removal of solvent in vacuo. The residue was diluted with water (100 mL), 

then extracted with EtOAc (3 × 100 mL). The combined organic layers were washed with brine, 

dried over Na2SO4 and concentrated in vacuo. Flash column chromatography (0-10% 

CH3OH/CH2Cl2) afforded the title compound as yellowish oil (0.97 g, 5.07 mmol, 90% yield). 

[ɑ]𝐷
20 = +58.3 (c 0.5, MeOH); IR (neat) 3331, 2951, 1739 cm-1; 1H NMR (400 MHz, CDCl3) δ 

7.18–7.08 (m, 3H), 7.07–7.00 (m, 1H), 4.19–4.04 (m, 2H), 3.81–3.73 (m, 4H), 3.09 (dd, J = 16.2, 

4.7 Hz, 1H), 2.97 (dd, J = 16.2, 10.1 Hz, 1H), 2.31–2.22 (m, 1H); 13C NMR (101 MHz, CDCl3) δ 

173.6, 134.9, 133.2, 129.3, 126.4, 126.3, 126.2, 56.0, 52.3, 47.4, 31.7; HRMS (ESI) m/z calcd for 

C11H14NO2 [M+H]+ 192.1019, found 192.1017. 
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          Methyl (R)-2-isopropyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate. To a solution of 

acetone (2.61 g, 44.87 mmol, 1.4 equiv) in DCE (30 mL) were added methyl (R)-1,2,3,4-

tetrahydroisoquinoline-3-carboxylate (6.13 g, 32.05 mmol, 1.0 equiv), NaBH(OAc)3 (9.51 g, 

44.87 mmol, 1.4 equiv) and acetic acid (1.92 g, 32.05 mmol, 1.0 equiv) at room temperature. The 

reaction was stirred at this temperature for 24 h, then basified with aqueous NaOH (1 N) to pH 10. 

The mixture was extracted with EtOAc (3 × 200 mL), washed with brine, dried over Na2SO4 and 

concentrated in vacuo. Reverse-phase flash column chromatography (0-100% CH3CN/H2O) 

afforded the title compound as an orange oil (6.26 g, 26.8 mmol, 84% yield). [ɑ]𝐷
20 =  ̶ 3.3 (c 1.0, 

MeOH); IR (neat) 2966, 1737 cm-1; 1H NMR (500 MHz, CDCl3) δ 7.17–7.04 (m, 4H), 4.09 (d, J 

= 15.2 Hz, 1H), 3.97–3.90 (m, 2H), 3.65 (s, 3H), 3.20–3.03 (m, 3H), 1.19 (d, J = 6.5 Hz, 3H), 1.11 

(d, J = 6.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 174.1, 135.1, 132.4, 128.3, 126.4, 126.1, 126.0, 

56.9, 52.5, 51.6, 47.4, 32.7, 21.1, 19.1; HRMS (ESI) m/z calcd for C14H20NO2 [M+H]+ 234.1489, 

found 234.1487. 
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          (±)-2-Isopropyl-1,2,3,4-tetrahydroisoquinoline-3-carboxamide. The suspension of 

methyl (R)-2-isopropyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (5.69 g, 24.388 mmol, 1.0 

equiv) in aqueous NH3 solution (28-30% NH3 basis, 150 mL) was loaded in Parr reactor. The 

reaction was stirred for 24 h at 60 °C, followed by another 24 h at 90 °C. The solvent was removed 

in vacuo. Reverse-phase column chromatography (0-100% CH3CN/H2O) afforded the title 

compound as a yellow solid (1.120 g, 5.131 mmol, 21% yield). IR (neat) 3414, 2966, 1678 cm-1; 

1H NMR (400 MHz, CDCl3) δ 7.26–7.09 (m, 5H), 5.58 (br s, 1H), 3.80–3.72 (m, 2H), 3.52 (dd, J 

= 7.0, 4.4 Hz, 1H), 3.09 (dd, J = 15.1, 4.4 Hz, 1H), 3.05–2.92 (m, 2H), 1.14 (d, J = 6.6 Hz, 3H), 

1.06 (d, J = 6.6 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 178.5, 137.3, 135.2, 127.5, 127.2, 126.5, 

125.7, 59.2, 53.6, 47.0, 31.7, 19.8, 18.7; HRMS (ESI) m/z calcd for C13H19N2O [M+H]+ 219.1492, 

found 219.1490. The compound demonstrated no optical rotation, and was then evidenced as a 

racemate by chiral HPLC (ChiralPak IA column 4.6 × 250 mm, 5% isopropanol/hexanes, UV 

length 220 nm). 
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          (±)-(2-Isopropyl-1,2,3,4-tetrahydroisoquinolin-3-yl)methanamine. To a solution of (±)-

2-isopropyl-1,2,3,4-tetrahydroisoquinoline-3-carboxamide (0.36 g, 1.65 mmol, 1.0 equiv) in 

anhydrous THF (10 mL) was added LiAlH4 (1 N in THF, 6.6 mL, 6.6 mmol, 4.0 equiv) dropwise 

at 0 °C. The reaction was refluxed for 3 h, then quenched with Glauber’s salt at -20 °C and warmed 

to room temperature to stir for 15 min. The mixture was filtered through Celite amd concentrated 

in vacuo. Reverse-phase column chromatography (0-100% CH3CN/0.5% aqueous NH3) afforded 

the title compound as a colorless oil (0.22 g, 1.077 mmol, 65% yield). IR (neat) 2965, 1576, 1456 

cm-1; 1H NMR (400 MHz, CD3OD) δ 7.18–7.04 (m, 4H), 3.79 (AB q, ΔδAB = 0.07, J=15.5 Hz, 

2H), 3.15–2.90 (m, 3H), 2.80–2.69 (m, 2H), 2.52 (dd, J = 12.7, 7.7 Hz, 1H), 1.18 (d, J = 6.5 Hz, 

3H), 1.10 (d, J = 6.4 Hz, 3H); 13C NMR (101 MHz, CD3OD) δ 136.5, 135.4, 129.5, 127.5, 127.2, 

127.0, 57.3, 52.1, 47.4, 43.1, 31.3, 21.4, 18.7; HRMS (ESI) m/z calcd for C13H21N2 [M+H]+ 

205.1699, found 205.1697. 

 

 

         (±)-N-((2-Isopropyl-1,2,3,4-tetrahydroisoquinolin-3-yl)methyl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of 2-tosyl-1,2,3,4-tetrahydroisoquinoline-

6-carboxylic acid (0.05 g, 0.15 mmol, 1.0 equiv) in anhydrous DMF (2 mL) were added DIPEA 



167 
 

(0.058 g, 0.449 mmol, 3.0 equiv) and HATU (0.057 g, 0.150 mmol, 1.0 equiv) at room temperature. 

The mixture was stirred for 5 min, followed by addition of (2-isopropyl-1,2,3,4-

tetrahydroisoquinolin-3-yl)methanamine (0.031 g, 0.152 mmol, 1.0 equiv). The reaction was 

stirred for 12 h at room temperature, then concentrated under N2 stream. The crude sample was 

purified with reverse-phase flash column chromatography (0-100% CH3CN/H2O) to afford the 

title compound as a colorless film (0.016 g, 0.031 mmol, 21% yield, HPLC purity = 100%). IR 

(neat) 3330, 2967, 1643, 1537, 1494 cm-1; 1H NMR (600 MHz, CD2Cl2) δ 7.75–7.70 (m, 2H), 

7.43–7.32 (m, 4H), 7.18–7.05 (m, 5H), 6.65 (br s, 1H), 4.25 (s, 2H), 3.89–3.76 (m, 2H), 3.51–3.31 

(m, 5H), 3.08 (hept, J = 6.5 Hz, 1H), 3.00 (dd, J = 16.2, 5.8 Hz, 1H), 2.95 (t, J = 5.9 Hz, 2H), 2.69 

(dd, J = 16.2, 3.6 Hz, 1H), 2.44 (s, 3H), 1.18 (d, J = 6.5 Hz, 3H), 1.10 (d, J = 6.4 Hz, 3H); 13C 

NMR (151 MHz, CD2Cl2) δ 167.1, 144.6, 136.7, 135.6, 135.2, 134.1, 133.9, 133.6, 130.3, 128.8, 

128.2, 128.0, 127.0, 126.5, 126.4, 126.3, 125.1, 53.7, 51.7, 42.6, 31.5, 29.4, 21.9, 21.8, 18.6; 

HRMS (ESI) m/z calcd for C30H36N3O3S [M+H]+ 518.2472, found 518.2461. 

 

 

          tert-Butyl (S)-(1-((4-chlorobenzyl)(isopropyl)amino)propan-2-yl)carbamate. To a 

solution of tert-butyl (S)-(1-oxopropan-2-yl)carbamate (0.346 g, 2.0 mmol, 1.0 equiv) in DCE (3 

mL) were added N-(4-chlorobenzyl)propan-2-amine (0.367 g, 2.0 mmol, 1.0 equiv), NaBH(OAc)3 

(0.593 g, 2.8 mmol, 1.4 equiv) and acetic acid (1 drop). The mixture was stirred at room 

temperature for 3 d, then basified with aqueous NaOH (1 N) to pH 10. The mixture was extracted 

with ether (3 × 10 mL), washed with brine, dried over Na2SO4 and concentrated in vacuo. Reverse-
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phase flash column chromatography (0-100% CH3CN/H2O) afforded the title compound as a 

colorless oil (0.550 g, 1.613 mmol, 81% yield). [ɑ]𝐷
20 = –26.4 (c 1.0, CHCl3); IR (neat) 2966, 1698, 

1489 cm-1; 1H NMR (600 MHz, CD2Cl2) δ 7.28 (q, J = 8.5 Hz, 4H), 4.51 (br s, 1H), 3.65–3.45 (m, 

3H), 2.87 (hept, J = 6.6 Hz, 1H), 2.32 (d, J = 7.0 Hz, 2H), 1.42 (s, 9H), 1.06 (d, J = 6.5 Hz, 3H), 

1.01 (d, J = 6.6 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H); 13C NMR (151 MHz, CD2Cl2) δ 156.1, 140.4, 

132.6, 130.5, 128.7, 79.0, 55.5, 54.2, 50.2, 45.5, 28.8, 19.7, 18.7, 17.4; HRMS (ESI) m/z calcd for 

C18H30ClN2O2 [M+H]+ 341.1990, found 341.1990. 

 

 

          (S)-N-(1-((4-Chlorobenzyl)(isopropyl)amino)propan-2-yl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of (S)-N1-(4-chlorobenzyl)-N1-

isopropylpropane-1,2-diamine (0.024 g, 0.1 mmol, 1.0 equiv) in DCM (1 mL) was added TFA (1 

mL) at room temperature. The resulting mixture was stirred for 3 h at this temperature, then 

concentrated in vacuo. The obtained crude TFA salt of diamine was used directly in the following 

HATU promoted amide coupling without further purification. To a solution of 2-(p-

tolylcarbamoyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid 2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxylic acid (0.033 g, 0.1 mmol, 1.0 equiv) in anhydrous DMF (1 mL) 

were added DIPEA (0.039 g, 0.3 mmol, 3.0 equiv) and HATU (0.038 g, 0.1 mmol, 1.0 equiv) at 

room temperature. The mixture was stirred for 5 min, followed by addition of crude TFA salt of 

diamine (0.1 mmol, 1.0 equiv). The reaction was stirred for 12 h at room temperature, then 
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concentrated under N2 stream. The crude sample was purified with reverse-phase flash column 

chromatography (0-100% CH3CN/H2O) to afford the title compound as a white solid (0.026 g, 

0.047 mmol, 47% yield, HPLC purity =99.7%). [ɑ]𝐷
20 = –7.8 (c 0.2, CHCl3); Mp = 102–104 °C; 

IR (neat) 2965, 1638, 1536, 1490 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.76–7.67 (m, 2H), 7.43 (d, 

J = 1.8 Hz, 1H), 7.37 (dd, J = 8.0, 1.8 Hz, 1H), 7.35–7.30 (m, 4H), 7.22–7.12 (m, 4H), 7.07 (d, J 

= 8.0 Hz, 1H), 6.17 (d, J = 5.9 Hz, 1H), 4.27 (s, 2H), 4.08–3.93 (m, 1H), 3.58 (d, J = 14.1 Hz, 1H), 

3.42 (d, J = 14.1 Hz, 1H), 3.36 (t, J = 5.9 Hz, 2H), 2.99–2.86 (m, 3H), 2.51 (dd, J = 13.2, 5.6 Hz, 

1H), 2.45–2.36 (m, 4H), 1.18 (d, J = 6.3 Hz, 3H), 1.03 (d, J = 6.6 Hz, 3H), 0.99 (d, J = 6.5 Hz, 

3H); 13C NMR (101 MHz, CDCl3) δ 166.8, 144.0, 139.4, 135.1, 133.6, 133.6, 133.4, 132.5, 130.0, 

129.9, 128.5, 127.8, 127.7, 126.6, 124.6, 54.7, 53.4, 49.7, 47.6, 44.3, 43.7, 29.0, 21.6, 19.4, 19.1, 

16.6; HRMS (ESI) m/z calcd for C30H37ClN3O3S [M+H]+ 554.2239, found 554.2255. 

 

 

          tert-Butyl (R)-(1-((4-chlorobenzyl)(isopropyl)amino)propan-2-yl)carbamate. To a 

solution of tert-butyl (R)-(1-oxopropan-2-yl)carbamate (0.346 g, 2.0 mmol, 1.0 equiv) in DCE (3 

mL) were added N-(4-chlorobenzyl)propan-2-amine (0.0.367 g, 2.0 mmol, 1.0 equiv), 

NaBH(OAc)3 (0.593 g, 2.8 mmol, 1.4 equiv) and acetic acid (1 drop). The mixture was stirred at 

room temperature for 3 d, then basified with aqueous NaOH (1 N) to pH 10. The mixture was 

extracted with ether (3 × 10 mL), washed with brine, dried over Na2SO4 and concentrated in vacuo. 

Reverse-phase flash column chromatography (0-100% CH3CN/H2O) afforded the title compound 

as a colorless oil (0.555 g, 1.628 mmol, 81% yield). [ɑ]𝐷
20 = +20.4 (c .0, CHCl3); IR (neat) 2967, 
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1701, 1470 cm-1; 1H NMR (400 MHz, CD2Cl2) δ 7.34–7.22 (m, 4H), 4.49 (br s, 1H), 3.53 (q, J = 

14.3 Hz, 3H), 2.87 (hept, J = 6.6 Hz, 1H), 2.32 (d, J = 7.1 Hz, 2H), 1.41 (s, 9H), 1.06 (d, J = 6.5 

Hz, 3H), 1.01 (d, J = 6.6 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H); 13C NMR (101 MHz, CD2Cl2) δ 156.2, 

140.4, 132.6, 130.5, 128.7, 79.1, 55.6, 54.3, 50.3, 45.6, 28.8, 19.7, 18.7, 17.4; HRMS (ESI) m/z 

calcd for C18H30ClN2O2 [M+H]+ 341.1990, found 341.1990. 

 

 

          (R)-N-(1-((4-chlorobenzyl)(isopropyl)amino)propan-2-yl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of (R)-N1-(tert-butyl)-N1-(4-

chlorobenzyl)-3-methylbutane-1,2-diamine (0.028 g, 0.1 mmol, 1.0 equiv) in DCM (1 mL) was 

added TFA (1 mL) at room temperature. The resulting mixture was stirred for 3 h at this 

temperature, then concentrated in vacuo. The obtained crude TFA salt of diamine was used directly 

in the following HATU promoted amide coupling without further purification. To a solution of 2-

tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.033 g, 0.1 mmol, 1.0 equiv) in 

anhydrous DMF (1 mL) were added DIPEA (0.039 g, 0.3 mmol, 3.0 equiv) and HATU (0.038 g, 

0.1 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by addition 

of crude TFA salt of diamine (0.1 mmol, 1.0 equiv). The reaction was stirred for 12 h at room 

temperature, then concentrated under N2 stream. The crude sample was purified with reverse-phase 

flash column chromatography (0-100% CH3CN/H2O) to afford the title compound as a white solid 

(0.029 g, 0.052 mmol, 52% yield, 98.5% purity). [ɑ]𝐷
20 = +6.0 (c 0.1, CHCl3); Mp = 73–76 °C; IR 
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(neat) 2965, 1639, 1537, 1490 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.77–7.69 (m, 2H), 7.43 (d, J 

= 1.7 Hz, 1H), 7.40–7.30 (m, 3H), 7.22–7.12 (m, 4H), 7.07 (d, J = 8.0 Hz, 1H), 6.15 (d, J = 5.7 

Hz, 1H), 4.28 (s, 2H), 4.07–3.94 (m, 1H), 3.59 (d, J = 14.1 Hz, 1H), 3.46–3.30 (m, 3H), 3.03–2.84 

(m, 3H), 2.57–2.36 (m, 5H), 1.19 (d, J = 6.4 Hz, 3H), 1.02 (dd, J = 15.8, 6.6 Hz, 6H); 13C NMR 

(101 MHz, CDCl3) δ 166.9, 144.0, 139.4, 135.2, 133.7, 133.6, 133.4, 132.6, 130.0, 129.9, 128.6, 

127.8, 127.7, 126.6, 124.6, 54.8, 53.4, 49.8, 47.7, 44.3, 43.7, 29.0, 21.6, 19.5, 19.1, 16.5; HRMS 

(ESI) m/z calcd for C30H37ClN3O3S [M+H]+ 554.2239, found 554.2254. 

 

 

          tert-Butyl (S)-(1-(tert-butyl(4-chlorobenzyl)amino)propan-2-yl)carbamate. To a 

solution of tert-butyl (S)-(1-oxopropan-2-yl)carbamate (0.520 g, 3.0 mmol, 1.0 equiv) in DCE (4 

mL) were added N-(4-chlorobenzyl)-2-methylpropan-2-amine (0.593 g, 3.0 mmol, 1.0 equiv) and 

NaBH(OAc)3 (0.890 g, 4.2 mmol, 1.4 equiv) and acetic acid (1 drop). The mixture was stirred at 

room temperature for 3 d, then basified with aqueous NaOH (1 N) to pH 10. The mixture was 

extracted with ether (3 × 10 mL), washed with brine, dried over Na2SO4 and concentrated in vacuo. 

Reverse-phase flash column chromatography (0-100% CH3CN/H2O) afforded the title compound 

as a colorless oil (0.497 g, 1.400 mmol, 47% yield). [ɑ]𝐷
20 = +14.1 (c 0.4, CHCl3); IR (neat) 2972, 

1699, 1488 cm-1; 1H NMR (600 MHz, CD2Cl2) δ 7.35–7.28 (m, 2H), 7.27–7.21 (m, 2H), 4.42 (br 

s, 1H), 3.74 (d, J = 16.2 Hz, 1H), 3.64 (d, J = 16.2 Hz, 1H), 3.24 (br s, 1H), 2.53 (dd, J = 13.3, 7.6 

Hz, 1H), 2.45 (dd, J = 13.3, 6.4 Hz, 1H), 1.39 (s, 9H), 1.08 (s, 9H), 1.01 (d, J = 6.4 Hz, 3H); 13C 
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NMR (151 MHz, CD2Cl2) δ 155.9, 142.8, 132.0, 129.6, 128.6, 79.0, 57.7, 55.8, 55.2, 47.0, 28.7, 

27.5, 19.6; HRMS (ESI) m/z calcd for C19H32ClN2O2 [M+H]+ 355.2147, found 355.2145. 

 

 

          (S)-N-(1-(tert-Butyl(4-chlorobenzyl)amino)propan-2-yl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl (S)-(1-(tert-butyl(4-

chlorobenzyl)amino)propan-2-yl)carbamate (0.035 g, 0.1 mmol, 1.0 equiv) in DCM (1 mL) was 

added TFA (1 mL) at room temperature. The resulting mixture was stirred for 3 h at this 

temperature, then concentrated in vacuo. The obtained crude TFA salt of diamine was used directly 

in the following HATU promoted amide coupling without further purification. To a solution of 2-

tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.033 g, 0.1 mmol, 1.0 equiv) in 

anhydrous DMF (1 mL) were added DIPEA (0.039 g, 0.3 mmol, 3.0 equiv) and  HATU (0.038 g, 

0.1 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by addition 

of TFA salt of crude diamine (0.1 mmol, 1.0 equiv). The reaction was stirred for 12 h at room 

temperature, then concentrated under N2 stream. The crude sample was purified with reverse-phase 

flash column chromatography (0-100% CH3CN/H2O) to afford the title compound as a white solid 

(0.030 g, 0.053 mmol, 53% yield, 98.9% purity). [ɑ]𝐷
20 = +58.5 (c 0.2, CHCl3) IR (neat) 2971, 

1638, 1536, 1488 cm-1;  1H NMR (400 MHz, CD2Cl2) δ 7.76–7.68 (m, 2H), 7.40–7.34 (m, 3H), 

7.34–7.29 (m, 1H), 7.27–7.19 (m, 2H), 7.12–7.03 (m, 3H), 6.02 (d, J = 6.1 Hz, 1H), 4.33–4.19 (m, 
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2H), 3.80–3.58 (m, 3H), 3.39–3.28 (m, 2H), 2.95 (t, J = 5.9 Hz, 2H), 2.70–2.59 (m, 2H), 2.42 (s, 

3H), 1.17–1.06 (m, 12H); 13C NMR (101 MHz, CD2Cl2) δ 166.9, 144.6, 142.4, 135.6, 134.3, 134.1, 

133.9, 132.2, 130.3, 129.7, 128.7, 128.2, 128.0, 127.0, 124.9, 57.3, 56.0, 55.5, 48.2, 46.6, 44.3, 

29.4, 27.6, 21.8, 19.3; HRMS (ESI) m/z calcd for C31H39ClN3O3S [M+H]+ 568.2395, found 

568.2390. 

 

 

          tert-Butyl (R)-(1-(tert-butyl(4-chlorobenzyl)amino)propan-2-yl)carbamate. To a 

solution of tert-butyl (R)-(1-oxopropan-2-yl)carbamate (0.520 g, 3.0 mmol, 1.0 equiv) in DCE (5 

mL) were added N-(4-chlorobenzyl)-2-methylpropan-2-amine (0.593 g, 3.0 mmol, 1.0 equiv) and 

NaBH(OAc)3 (0.890 g, 4.2 mmol, 1.4 equiv) and acetic acid (1 drop). The mixture was stirred at 

room temperature for 3 d, then basified with aqueous NaOH (1 N) to pH 10. The mixture was 

extracted with ether (3 × 10 mL), washed with brine, dried over Na2SO4 and concentrated in vacuo. 

Reverse-phase flash column chromatography (0-100% CH3CN/H2O) afforded the title compound 

as a colorless oil (0.490 g, 1.381 mmol, 46% yield). [ɑ]𝐷
20 =  ̶ 13.0 (c 0.3, CHCl3); IR (neat) 2972, 

1699, 1489 cm-1; 1H NMR (600 MHz, CD2Cl2) δ 7.31 (m, 2H), 7.27–7.22 (m, 2H), 4.43 (br s, 1H), 

3.74 (d, J = 16.2 Hz, 1H), 3.63 (d, J = 16.2 Hz, 1H), 3.24 (br s, 1H), 2.53 (dd, J = 13.3, 7.6 Hz, 

1H), 2.45 (dd, J = 13.3, 6.4 Hz, 1H), 1.38 (s, 9H), 1.08 (s, 9H), 1.01 (d, J = 6.4 Hz, 3H); 13C NMR 

(151 MHz, CD2Cl2) δ 156.0, 142.8, 132.0, 129.6, 128.6, 79.0, 57.7, 55.8, 55.2, 47.0, 28.7, 27.5, 

19.6; HRMS (ESI) m/z calcd for C19H32ClN2O2 [M+H]+ 355.2147, found 355.2144. 
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          (R)-N-(1-(tert-Butyl(4-chlorobenzyl)amino)propan-2-yl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl (R)-(1-(tert-butyl(4-

chlorobenzyl)amino)propan-2-yl)carbamate (0.071 g, 0.20 mmol, 1.0 equiv) in DCM (2 mL) was 

added TFA (2 mL) at room temperature. The resulting mixture was stirred for 3 h at this 

temperature, then concentrated in vacuo. The obtained crude TFA salt of diamine was used directly 

in the following HATU promoted amide coupling without further purification. To a solution of 2-

tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.066 g, 0.20 mmol, 1.0 equiv) in 

anhydrous DMF (1 mL) were added DIPEA (0.078 g, 0.60 mmol, 3.0 equiv) and  HATU (0.076 

g, 0.20 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by 

addition of crude TFA salt of diamine (0.20 mmol, 1.0 equiv). The reaction was stirred for 12 h at 

room temperature, then concentrated under N2 stream. The crude sample was purified with reverse-

phase flash column chromatography (0-100% CH3CN/H2O) to afford the title compound as a 

colorless oil (0.077 g, 0.135 mmol, 68% yield, 92.9% purity). [ɑ]𝐷
20 =  ̶ 61.0 (c 0.2, CHCl3); IR 

(neat) 2970, 1638, 1537, 1489 cm-1; 1H NMR (400 MHz, CD2Cl2) δ 7.76–7.68 (m, 2H), 7.40–7.34 

(m, 3H), 7.31 (dd, J = 8.0, 1.8 Hz, 1H), 7.2 –7.19 (m, 2H), 7.12–7.04 (m, 3H), 5.99 (d, J = 6.0 Hz, 

1H), 4.34–4.18 (m, 2H), 3.80–3.58 (m, 3H), 3.35 (t, J = 6.0 Hz, 2H), 2.95 (t, J = 6.0 Hz, 2H), 2.70–

2.59 (m, 2H), 2.42 (s, 3H), 1.16 – 1.09 (m, 12H); 13C NMR (101 MHz, CD2Cl2) δ 166.9, 144.6, 

142.4, 135.6, 134.3, 134.2, 133.8, 132.2, 130.3, 129.7, 128.7, 128.3, 128.0, 127.0, 124.9, 57.3, 
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56.0, 55.5, 48.2, 46.6, 44.3, 29.4, 27.6, 21.8, 19.3; HRMS (ESI) m/z calcd for C31H39ClN3O3S 

[M+H]+ 568.2395, found 568.2400. 

 

 

          tert-Butyl ((2S)-1-(tert-butyl((4-chlorocyclohexa-1,5-dien-1-yl)methyl)amino)-3-

methylbutan-2-yl)carbamate. To a solution of tert-butyl (S)-(3-methyl-1-oxobutan-2-

yl)carbamate (0.830 g, 4.12 mmol, 1.0 equiv) in DCE (5 mL) were added N-(4-chlorobenzyl)-2-

methylpropan-2-amine (0.815 g, 4.12 mmol, 1.0 equiv) and NaBH(OAc)3 (1.223 g, 5.77 mmol, 

1.4 equiv) and acetic acid (2 drops). The mixture was stirred at room temperature for 7 d, then 

basified with aqueous NaOH (1 N) to pH 10. The mixture was extracted with ether (3 × 10 mL), 

washed with brine, dried over Na2SO4 and concentrated in vacuo. Reverse-phase flash column 

chromatography (0-100% CH3CN/H2O) afforded the title compound as a colorless oil (0.100 g, 

0.261 mmol, 6% yield). [ɑ]𝐷
20 = +10.9 (c 1.1, CHCl3); IR (neat) 2965, 1702, 1489 cm-1; 1H NMR 

(600 MHz, CD2Cl2) δ 7.36–7.29 (m, 2H), 7.27–7.20 (m, 2H), 4.23 (br s, 1H), 3.69 ( AB q, ΔδAB = 

0.77, J = 16.2 Hz, 2H), 3.24 (br s, 1H), 2.62 (dd, J = 13.6, 6.2 Hz, 1H), 2.38 (dd, J = 13.6, 8.0 Hz, 

1H), 1.95–1.86 (m, 1H), 1.07 (s, 9H), 0.80–0.70 (m, 6H); 13C NMR (151 MHz, CD2Cl2) δ 156.4, 

143.0, 132.0, 129.7, 128.6, 78.8, 56.0, 55.7, 55.2, 53.4, 29.9, 28.8, 27.6, 19.7, 17.0; HRMS (ESI) 

m/z calcd for C21H36ClN2O2 [M+H]+ 383.2460, found 383.2482. 
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          (S)-N-(1-(tert-Butyl(4-chlorobenzyl)amino)-3-methylbutan-2-yl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl ((2S)-1-(tert-butyl((4-

chlorocyclohexa-1,5-dien-1-yl)methyl)amino)-3-methylbutan-2-yl)carbamate (0.038 g, 0.1 mmol, 

1.0 equiv) in DCM (1 mL) was added TFA (1 mL) at room temperature. The resulting mixture 

was stirred for 3 h at this temperature, then concentrated in vacuo. The obtained crude TFA salt of 

diamine was used directly in the following HATU promoted amide coupling without further 

purification. To a solution of 2-tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.033 g, 

0.1 mmol, 1.0 equiv) in anhydrous DMF (1 mL) were added DIPEA (0.039 g, 0.3 mmol, 3.0 equiv) 

and  HATU (0.038 g, 0.1 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, 

followed by addition of crude TFA salt of diamine (0.1 mmol, 1.0 equiv). The reaction was stirred 

for 12 h at room temperature, then concentrated under N2 stream. The crude sample was purified 

with reverse-phase flash column chromatography (0-100% CH3CN/H2O) to afford the title 

compound as a colorless oil (0.044 g, 0.074 mmol, 74% yield, 99.0% purity). [ɑ]𝐷
20 = +26.7 (c 0.3, 

CHCl3); IR (neat) 2964, 1643, 1535 cm-1; 1H NMR (500 MHz, CDCl3) δ 7.76–7.70 (m, 2H), 7.39–

7.28 (m, 4H), 7.20–7.14 (m, 2H), 7.07 (d, J = 8.0 Hz, 1H), 7.05 – 7.00 (m, 3H), 5.69 (d, J = 7.8 

Hz, 1H), 4.29 (AB q, ΔδAB = 0.34, J = 15.6 Hz, 2H), 3.85–3.76 (m, 1H), 3.73 (d, J = 12.5 Hz, 1H), 

3.56 (d, J = 12.5 Hz, 1H), 3.44–3.31 (m, 2H), 2.96 (t, J = 4.7 Hz, 2H), 2.81 (dd, J = 11.1, 4.8 Hz, 

1H), 2.48 (dd, J = 11.1, 6.8 Hz, 1H), 2.42 (s, 3H), 2.11–2.00 (m, 1H), 1.10 (s, 9H), 0.83 (d, J = 6.9 

Hz, 3H), 0.80 (d, J = 6.8 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 167.1, 144.0, 141.4, 135.0, 133.8, 
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133.6, 133.2, 131.9, 129.9, 129.3, 128.3, 127.8, 127.7, 126.6, 124.5, 55.7, 55.0, 54.5, 51.9, 47.6, 

43.7, 29.4, 29.0, 27.4, 21.7, 19.1, 17.3; HRMS (ESI) m/z calcd for C33H41ClN3O3S [M-H]- 

594.2563, found 594.2562. 

 

 

 

          tert-Butyl (R)-(1-(tert-butyl(4-chlorobenzyl)amino)-3-methylbutan-2-yl)carbamate. To 

a solution of tert-butyl (R)-(3-methyl-1-oxobutan-2-yl)carbamate (0.830 g, 4.12 mmol, 1.0 equiv) 

in DCE (5 mL) were added N-(4-chlorobenzyl)-2-methylpropan-2-amine (0.815 g, 4.12 mmol, 1.0 

equiv), NaBH(OAc)3 (1.223 g, 5.77 mmol, 1.4 equiv) and acetic acid (2 drops). The mixture was 

stirred at room temperature for 7 d, then basified with aqueous NaOH (1 N) to pH 10. The mixture 

was extracted with ether (3 × 10 mL), washed with brine, dried over Na2SO4 and concentrated in 

vacuo. Reverse-phase flash column chromatography (0-100% CH3CN/H2O) afforded the title 

compound as a colorless oil (0.590 g, 1.541 mmol, 37% yield). [ɑ]𝐷
20 =  ̶ 10.1 (c 1.2, CHCl3); IR 

(neat) 2966, 1701, 1489 cm-1; 1H NMR (400 MHz, CD2Cl2) δ 7.35–7.29 (m, 2H), 7.27–7.22 (m, 

2H), 4.23 (br s, 1H), 3.69 (AB q, ΔδAB = 0.78, J = 16.2 Hz, 2H), 3.24 (br s, 1H), 2.63 (dd, J = 13.6, 

6.2 Hz, 1H), 2.38 (dd, J = 13.6, 8.0 Hz, 1H), 1.98–1.82 (m, 1H), 1.41 (s, 9H), 1.07 (s, 9H), 0.81–

0.72 (m, 6H); 13C NMR (101 MHz, CD2Cl2) δ 156.4, 143.0, 132.0, 129.7, 128.6, 78.9, 56.0, 55.7, 

55.1, 53.3, 29.8, 28.8, 27.6, 19.6, 16.9; HRMS (ESI) m/z calcd for C21H36ClN2O2 [M+H]+ 

383.2460, found 383.2457. 
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          (R)-N-(1-(tert-Butyl(4-chlorobenzyl)amino)-3-methylbutan-2-yl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl (R)-(1-(tert-butyl(4-

chlorobenzyl)amino)-3-methylbutan-2-yl)carbamate (0.038 g, 0.1 mmol, 1.0 equiv) in DCM (1 

mL) was added TFA (1 mL) at room temperature. The resulting mixture was stirred for 3 h at this 

temperature, then concentrated in vacuo. The obtained crude TFA salt of diamine was used directly 

in the following HATU promoted amide coupling without further purification. To a solution of 2-

tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.033 g, 0.1 mmol, 1.0 equiv) in 

anhydrous DMF (1 mL) were added DIPEA (0.039 g, 0.3 mmol, 3.0 equiv) and  HATU (0.038 g, 

0.1 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by addition 

of crude TFA salt of diamine (0.1 mmol, 1.0 equiv). The reaction was stirred for 12 h at room 

temperature, then concentrated under N2 stream. The crude sample was purified with reverse-phase 

flash column chromatography (0-100% CH3CN/H2O) to afford the title compound as a colorless 

oil (0.052 g, 0.087 mmol, 87% yield, ≥ 99% purity). [ɑ]𝐷
20 =  ̶ 26.0 (c 0.2, CHCl3); IR (neat) 2963, 

1640, 1489 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.77–7.69 (m, 2H), 7.39–7.27 (m, 4H), 7.21–7.13 

(m, 2H), 7.10–6.99 (m, 3H), 5.69 (d, J = 7.8 Hz, 1H), 4.31, 4.26 (AB q, ΔδAB = 0.33, J = 15.6 Hz, 

2H), 3.86–3.77 (m, 2H), 3.73 (d, J = 15.6 Hz, 1H), 3.56 (d, J = 15.6 Hz, 1H), 3.45 – 3.30 (m, 2H), 

2.96 (t, J = 6.0 Hz, 2H), 2.81 (dd, J = 13.8, 6.0 Hz, 1H), 2.49 (dd, J = 13.8, 8.4 Hz, 4H), 2.42 (s, 

3H), 2.12–1.99 (m, 1H), 1.10 (s, 9H), 0.82 (m, 6H); 13C NMR (101 MHz, CDCl3) δ 167.1, 143.9, 
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141.5, 135.1, 133.9, 133.7, 133.5, 132.0, 129.9, 129.3, 128.3, 127.8, 127.7, 126.6, 124.5, 55.8, 

55.0, 54.6, 52.0, 47.6, 43.7, 29.5, 29.0, 27.4, 21.6, 19.2, 17.4; HRMS (ESI) m/z calcd for 

C33H43ClN3O3S [M+H]+ 596.2708, found 596.2716. 

 

 

          Methyl 2-((3-methoxyphenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylate. 

To a suspension of methyl 1,2,3,4-tetrahydroisoquinoline-6-carboxylate hydrochloride (0.273 g, 

1.20 mmol, 1.0 equiv) in anhydrous DCM (12 mL) were added triethylamine (0.364 g, 3.60 mmol, 

3.0 equiv) and 3-methoxybenzenesulfonyl chloride (0.248 g, 1.20 mmol, 1.0 equiv) at room 

temperature, then stirred for overnight. The reaction mixture was acidified with aqueous HCl (2 

N) to pH 3, then extracted with DCM (3 × 50 mL). The combined organic layers were washed 

with brine, dried over Na2SO4 and concentrated in vacuo to afford the title compound as a white 

solid (0.386 g, 1.07 mmol, 89% yield). Mp = 117–119 ºC; IR (neat) 1717, 1596, 1479 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 7.83–7.75 (m, 2H), 7.47–7.38 (m, 2H), 7.34–7.30 (m, 1H), 7.13–7.07 

(m, 2H), 5.29 (d, J = 0.9 Hz, 2H), 4.32 (s, 2H), 3.88 (s, 3H), 3.84 (s, 3H), 3.40 (t, J = 5.9 Hz, 2H), 

2.96 (t, J = 5.9 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 166.8, 160.1, 137.5, 136.8, 133.5, 130.4, 

130.3, 128.8, 127.5, 126.6, 119.9, 119.1, 112.7, 55.8, 52.3, 47.7, 43.7, 28.9; HRMS (ESI) m/z 

calcd for C18H20NO5S [M+H]+ 362.1057, found 362.1057. 
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           6-((3-Methoxyphenyl)sulfonyl)-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid. To a 

solution of methyl 2-((4-methoxyphenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylate 

(0.181 g, 0.50 mmol, 1.0 equiv) in methanol (2 mL) was added aqueous NaOH solution (1 N, 2 

mL) and THF (2 mL). The mixture was stirred overnight and organic solvent was removed in 

vacuo. The concentrated mixture was acidified with aqueous HCl (2 N) to pH 2, then filtered to 

afford the title compound as a white solid (0.107 g, 0.31 mmol, 62% yield). Mp = 161–164 ºC; IR 

(neat) 1683, 1596 cm-1; 1H NMR (400 MHz, DMSO-d6) δ 12.88 (s, 1H), 7.74–7.63 (m, 2H), 7.59–

7.49 (m, 1H), 7.43–7.36 (m, 1H), 7.33–7.22 (m, 3H), 4.30 (s, 2H), 3.82 (s, 3H), 3.35 (t, J = 5.9 Hz, 

2H), 2.89 (t, J = 5.9 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 167.0, 159.5, 137.3, 136.7, 133.4, 

130.6, 129.7, 129.1, 126.8, 126.7, 119.4, 119.1, 112.1, 55.6, 47.3, 43.3, 27.8; HRMS (ESI) m/z 

calcd for C17H18NO5S [M+H]+ 348.0900, found 348.0900. 

 

 

          N-(4-Methoxybenzyl)-2-methylpropan-2-amine. Prepared according to the general 

procedure for reductive amination using 4-methoxybenzaldehyde (1.86 g, 13.7 mmol, 1.0 equiv), 

tert-butylamine (1.00 g, 13.7 mmol, 1.0 equiv), NaBH(OAc)3 (4.06 g, 19.2 mmol, 1.4 equiv), 

AcOH (1 drop) and DCE (20 mL), at room temperature for 12 h. Reverse-phase flash column 



181 
 

chromatography (0-100% CH3CN/H2O) afforded the title compound as a colorless oil (2.270 g, 

11.74 mmol, 86% yield). IR (neat) 2961, 1613, 1511 cm-1; 1H NMR (400 MHz, CD2Cl2) δ 7.29– 

7.21 (m, 2H), 6.91–6.79 (m, 2H), 3.77 (s, 3H), 3.65 (s, 2H), 1.15 (s, 9H); 13C NMR (101 MHz, 

CD2Cl2) δ 159.0, 134.6, 129.8, 114.1, 55.7, 51.0, 46.9, 29.4; HRMS (ESI) m/z calcd for C12H20NO 

[M+H]+ 194.1539, found 194.1540. 

 

 

          tert-Butyl (2-(tert-butyl(4-methoxybenzyl)amino)ethyl)carbamate. Prepared according 

to the general procedure for reductive amination using N-Boc-2-aminoacetaldehyde (0.159 g, 1.0 

mmol, 1.0 equiv), N-(4-methoxybenzyl)-2-methylpropan-2-amine (0.193 g, 1.0 mmol, 1.0 equiv), 

NaBH(OAc)3 (0.297 g, 1.40 mmol, 1.4 equiv), AcOH (1 drop) and DCE (2 mL), at room 

temperature for 24 h. Reverse-phase flash column chromatography (0-100% CH3CN/H2O) 

afforded the title compound as a colorless oil (0.187 g, 0.56 mmol, 56% yield). IR (neat) 3415, 

2971, 1707, 1612, 1510 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.25–7.20 (m, 2H), 6.86–6.79 (m, 

2H), 4.55 (br s, 1H), 3.78 (s, 3H), 3.59 (s, 2H), 2.88–2.75 (m, 2H), 2.64 (t, J = 6.1 Hz, 2H), 1.38 

(s, 9H), 1.12 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 158.4, 156.1, 134.9, 129.1, 113.8, 78.7, 55.3, 

55.3, 54.5, 50.4, 40.9, 28.5, 27.5; HRMS (ESI) m/z calcd for C19H33N2O3 [M+H]+ 337.2486, found 

337.2480. 
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           N-(2-(tert-Butyl(4-methoxybenzyl)amino)ethyl)-2-((3-methoxyphenyl)sulfonyl)-

1,2,3,4-tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl (2-(tert-butyl(4-

methoxybenzyl)amino)ethyl)carbamate (0.039 g, 0.115 mmol, 1.0 equiv) in DCM (1 mL) was 

added TFA (1 mL) at room temperature. The resulting mixture was stirred for 3 h at this 

temperature, then concentrated in vacuo. The obtained crude TFA salt of diamine was used directly 

in the following HATU promoted amide coupling without further purification. To a solution of 2-

((3-methoxyphenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.040 g, 0.115 

mmol, 1.0 equiv) in anhydrous DMF (1 mL) were added DIPEA (0.059 g, 0.460 mmol, 4.0 equiv) 

and  HATU (0.044 g, 0.115 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 

min, followed by addition of crude TFA salt of diamine (0.115 mmol, 1.0 equiv). The reaction was 

stirred for 12 h at room temperature, then concentrated under N2 stream. The crude sample was 

purified with reverse-phase flash column chromatography (0-100% CH3CN/H2O) to afford the 

title compound as a colorless oil (0.027 g, 0.048 mmol, 41% yield, ≥ 99% purity). IR (neat) 3334, 

2955, 1647, 1598, 1510 cm-1; 1H NMR (500 MHz, CDCl3) δ 7.49–7.39 (m, 2H), 7.37–7.32 (m, 

2H), 7.25–7.19 (m, 3H), 7.12 (ddd, J = 7.9, 2.6, 1.4 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 6.796.71 

(m, 2H), 6.18 (t, J = 4.7 Hz, 1H), 4.30 (s, 2H), 3.86 (s, 3H), 3.70 (s, 3H), 3.61 (s, 2H), 3.40 (t, J = 

5.9 Hz, 2H), 3.21–3.14 (m, 2H), 2.96 (t, J = 5.8 Hz, 2H), 2.84–2.78 (m, 2H), 1.15 (s, 9H); 13C 

NMR (126 MHz, CDCl3) δ 166.8, 160.1, 158.5, 137.5, 134.8, 134.6, 133.5, 133.5, 130.4, 129.2, 
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127.8, 126.5, 124.6, 119.9, 119.2, 114.0, 112.7, 77.4, 55.8, 55.6, 55.3, 54.7, 49.9, 47.7, 43.8, 40.2, 

28.9, 27.5; HRMS (ESI) m/z calcd for C31H40N3O5S [M+H] + 566.2683, found 566.2688. 

 

 

          N-(3-Methoxybenzyl)-2-methylpropan-2-amine. Prepared according to the general 

procedure for reductive amination using 3-methoxybenzaldehyde (1.86 g, 13.7 mmol, 1.0 equiv), 

tert-butylamine (1.00 g, 13.7 mmol, 1.0 equiv), NaBH(OAc)3 (4.06 g, 19.2 mmol, 1.4 equiv), 

AcOH (1 drop) and DCE (20 mL), at room temperature for 12 h. Reverse-phase flash column 

chromatography (0-100% CH3CN/H2O) afforded the title compound as a colorless oil (2.260 g, 

11.69 mmol, 86% yield). IR (neat) 2961, 1601, 1489 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.30–

7.18 (m, 1H), 6.96–6.88 (m, 2H), 6.81–6.73 (m, 1H), 3.81 (s, 3H), 3.71 (s, 2H), 1.17 (s, 9H); 13C 

NMR (101 MHz, CDCl3) δ 159.8, 143.3, 129.5, 120.6, 113.9, 112.3, 55.3, 50.8, 47.4, 29.3; HRMS 

(ESI) m/z calcd for C12H20NO [M+H]+ 194.1539, found 194.1540. 

 

 

          tert-Butyl (2-(tert-butyl(3-methoxybenzyl)amino)ethyl)carbamate. Prepared according 

to the general procedure for reductive amination using N-Boc-2-aminoacetaldehyde (0.159 g, 1.00 

mmol, 1.0 equiv), N-(3-methoxybenzyl)-2-methylpropan-2-amine (0.193 g, 1.00 mmol, 1.0 equiv), 
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NaBH(OAc)3 (0.297 g, 1.40 mmol, 1.4 equiv), AcOH (1 drop) and DCE (2 mL), at room 

temperature for 24 h. Reverse-phase flash column chromatography (0-100% CH3CN/H2O) 

afforded the title compound as a colorless oil (0.205 g, 0.61 mmol, 61% yield). IR (neat) 3416, 

2971, 1706, 1600, 1488 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.20 (t, J = 7.8 Hz, 1H), 6.97–6.87 

(m, 2H), 6.77–6.69 (m, 1H), 4.64 (br s, 1H), 3.80 (s, 3H), 3.65 (s, 2H), 2.92–2.79 (m, 2H), 2.67 (t, 

J = 6.1 Hz, 2H), 1.39 (s, 9H), 1.12 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 159.7, 156.1, 144.9, 

129.3, 120.1, 113.3, 112.0, 78.8, 55.3, 55.2, 55.1, 28.5, 27.4; HRMS (ESI) m/z calcd for 

C19H33N2O3 [M+H]+ 337.2486, found 337.2484. 

 

 

     N-(2-(tert-Butyl(3-methoxybenzyl)amino)ethyl)-2-tosyl-1,2,3,4-tetrahydroisoquinoline-6-

carboxamide. To a solution of tert-butyl (2-(tert-butyl(3-methoxybenzyl)amino)ethyl)carbamate 

(0.101 g, 0.302 mmol, 1.0 equiv) in DCM (3 mL) was added TFA (3 mL) at room temperature. 

The resulting mixture was stirred for 3 h at this temperature, then concentrated in vacuo. The 

obtained crude TFA salt of diamine was used directly in the following HATU promoted amide 

coupling without further purification. To a solution of 2-tosyl-1,2,3,4-tetrahydroisoquinoline-6-

carboxylic acid (0.100 g, 0.302 mmol, 1.0 equiv) in anhydrous DMF (6 mL) were added DIPEA 

(0.155 g, 1.207 mmol, 4.0 equiv) and  HATU (0.114 g, 0.302 mmol, 1.0 equiv) at room temperature. 

The mixture was stirred for 5 min, followed by addition of crude TFA salt of diamine (0.302 mmol, 

1.0 equiv). The reaction was stirred for 12 h at room temperature, then concentrated under N2 
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stream. The crude sample was purified with reverse-phase flash column chromatography (0-100% 

CH3CN/H2O) to afford the title compound as a colorless film (0.133 g, 0.242 mmol, 80% yield, ≥ 

99% yield). IR (neat) 3327, 2966, 1646, 1599 cm-1; 1H NMR (500 MHz, CDCl3) δ 7.77–7.69 (m, 

2H), 7.39–7.31 (m, 3H), 7.28 (dd, J = 8.0, 1.8 Hz, 1H), 7.18–7.12 (m, 1H), 7.07–7.02 (m, 1H), 

6.96–6.89 (m, 2H), 6.71–6.65 (m, 1H), 6.26 (t, J = 4.9 Hz, 1H), 4.27 (s, 2H), 3.70 (s, 3H), 3.67 (s, 

2H), 3.36 (t, J = 5.9 Hz, 2H), 3.26–3.17 (m, 2H), 2.96 (t, J = 5.8 Hz, 2H), 2.85–2.79 (m, 2H), 2.42 

(s, 3H), 1.15 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 166.7, 159.9, 144.9, 144.0, 134.9, 133.5, 

133.5, 133.2, 129.9, 129.6, 127.9, 127.8, 126.5, 124.6, 120.1, 113.7, 111.8, 55.6, 55.3, 55.2, 50.4, 

47.7, 43.7, 39.8, 29.0, 27.5, 21.7; HRMS (ESI) m/z calcd for C31H40N3O4S [M+H]+ 550.2734, 

found 550.2735. 

 

 

          N-(2-(tert-Butyl(4-methoxybenzyl)amino)ethyl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl (2-(tert-butyl(4-

methoxybenzyl)amino)ethyl)carbamate (0.101 g, 0.302 mmol, 1.0 equiv) in DCM (3 mL) was 

added TFA (3 mL) at room temperature. The resulting mixture was stirred for 3 h at this 

temperature, then concentrated in vacuo. The obtained crude TFA salt of diamine was used directly 

in the following HATU promoted amide coupling without further purification. To a solution of 2-

tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.100 g, 0.302 mmol, 1.0 equiv) in 

anhydrous DMF (6 mL) were added DIPEA (0.155 g, 1.207 mmol, 4.0 equiv) and  HATU (0.114 



186 
 

g, 0.302 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by 

addition of crude TFA salt of diamine (0.302 mmol, 1.0 equiv). The reaction was stirred for 12 h 

at room temperature, then concentrated under N2 stream. The crude sample was purified with 

reverse-phase flash column chromatography (0-100% CH3CN/H2O) to afford the title compound 

as a colorless oil (0.131 g, 0.238 mmol, 79% yield, 97.2% purity). IR (neat) 3319, 2965, 1646, 

1579, 1510 cm-1; 1H NMR (500 MHz, CD3Cl) δ 7.79–7.67 (m, 2H), 7.36–7.31 (m, 3H), 7.25–7.19 

(m, 3H), 7.03 (d, J = 8.1 Hz, 1H), 6.77–6.72 (m, 2H), 6.17 (t, J = 5.5 Hz, 1H), 4.26 (s, 2H), 3.70 

(s, 3H), 3.61 (s, 2H), 3.36 (t, J = 5.9 Hz, 2H), 3.20–3.12 (m, 2H), 2.95 (t, J = 5.8 Hz, 2H), 2.83–

2.77 (m, 2H), 2.42 (s, 3H), 1.15 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 166.8, 158.5, 144.0, 134.9, 

134.6, 133.5, 133.2, 132.2, 129.9, 129.2, 127.9, 127.8, 126.5, 124.5, 114.0, 55.6, 55.3, 54.7, 49.9, 

47.7, 43.7, 40.2, 29.0, 27.5, 21.7; HRMS (ESI) m/z calcd for C31H40N3O4S [M+H]+ 550.2734, 

found 550.2719. 

 

 

          N-(2-(tert-Butyl(4-chlorobenzyl)amino)ethyl)-2-((3-methoxyphenyl)sulfonyl)-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of 2-((3-methoxyphenyl)sulfonyl)-

1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.080 g, 0.230 mmol, 1.0 equiv) in anhydrous 

DMF (4.6 mL) were added DIPEA (0.089 g, 0.689 mmol, 3.0 equiv) and  HATU (0.087 g, 0.229 

mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by addition of 

N1-(tert-butyl)-N1-(4-chlorobenzyl)ethane-1,2-diamine (0.055 g, 0.230 mmol, 1.0 equiv). The 
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reaction was stirred for 12 h at room temperature, then concentrated under N2 stream. The crude 

sample was purified with reverse-phase flash column chromatography (0-100% CH3CN/H2O) to 

afford the title compound as a colorless oil (0.078 g, 0.137 mmol, 59% yield, 91.5% purity). IR 

(neat) 3317, 2970, 1645, 1597 cm-1;  1H NMR (400 MHz, CDCl3) δ 7.38–7.28 (m, 2H), 7.28–7.21 

(m, 2H), 7.20–7.12 (m, 3H), 7.10–6.92 (m, 4H), 6.21–6.05 (m, 1H), 4.20 (s, 2H), 3.74 (s, 3H), 

3.55 (s, 2H), 3.29 (t, J = 5.9 Hz, 2H), 3.09 (q, J = 5.8 Hz, 2H), 2.84 (t, J = 5.8 Hz, 2H), 2.69 (t, J 

= 6.1 Hz, 2H), 1.04 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 166.8, 160.1, 141.5, 137.6, 134.9, 

133.5, 133.4, 132.2, 130.3, 129.2, 128.5, 127.7, 126.5, 124.4, 119.8, 119.0, 112.7, 55.7, 55.6, 54.6, 

50.2, 47.6, 43.7, 40.2, 28.9, 27.4; HRMS (ESI) m/z calcd for C30H37ClN3O4S [M+H]+ 570.2188, 

found 570.2159. 

 

 

          N-(2-(tert-Butyl(4-chlorobenzyl)amino)ethyl)-2-((4-methoxyphenyl)sulfonyl)-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of 2-((4-methoxyphenyl)sulfonyl)-

1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.080 g, 0.230 mmol, 1.0 equiv) in anhydrous 

DMF (4.6 mL) were added DIPEA (0.089 g, 0.689 mmol, 3.0 equiv) and  HATU (0.087 g, 0.229 

mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by addition of 

N1-(tert-butyl)-N1-(4-chlorobenzyl)ethane-1,2-diamine (0.055 g, 0.230 mmol, 1.0 equiv). The 

reaction was stirred for 12 h at room temperature, then concentrated under N2 stream. The crude 

sample was purified with reverse-phase flash column chromatography (0-100% CH3CN/H2O) to 



188 
 

afford the title compound as a colorless oil (0.061 g, 0.107 mmol, 46% yield, 92.9% purity). IR 

(neat) 3326, 2970, 1644, 1596 cm-1;  1H NMR (600 MHz, CD2Cl2) δ 7.80–7.73 (m, 2H), 7.35 (s, 

1H), 7.32–7.27 (m, 3H), 7.20–7.16 (m, 2H), 7.10 (d, J = 8.0 Hz, 1H), 7.06–6.99 (m, 2H), 6.13 (t, 

J = 5.4 Hz, 1H), 4.26 (s, 2H), 3.86 (s, 3H), 3.68 (s, 2H), 3.35 (t, J = 5.9 Hz, 2H), 3.16 (q, J = 5.9 

Hz, 2H), 2.96 (t, J = 5.8 Hz, 2H), 2.80 (t, J = 6.2 Hz, 2H), 1.15 (s, 9H); 13C NMR (151 MHz, 

CD2Cl2) δ 166.3, 163.2, 141.8, 135.1, 133.6, 133.4, 131.9, 129.8, 129.2, 128.3, 127.8, 127.4, 126.5, 

124.2, 114.3, 55.7, 55.4, 54.5, 50.2, 47.6, 43.7, 40.0, 28.8, 27.1; HRMS (ESI) m/z calcd for 

C30H37ClN3O4S [M+H]+ 570.2188, found 570.2170. 

 

 

          N-(2-(tert-Butyl(4-chlorobenzyl)amino)ethyl)-2-((3-hydroxyphenyl)sulfonyl)-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of compound N-(2-(tert-butyl(4-

chlorobenzyl)amino)ethyl)-2-((3-methoxyphenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-

carboxamide (0.025 g, 0.044 mmol, 1.0 equiv) in DCM (6 mL) was added dropwise BBr3 (1 N in 

DCM, 0.68 ml, 0.680 mmol, 17.0 equiv) at -40 °C. The reaction was warmed to 0 °C and stirred 

for 2 h, then quenched with methanol at -20 °C. The organic phase was washed with water, brine, 

dried over Na2SO4 and concentrated in vacuo. Reverse-phase flash column chromatography (0-

100% CH3CN/H2O) afforded the title compound as a colorless film (4 mg, 0.008 mmol, 18% yield, 

HPLC purity = 93.3%). IR (neat) 2970, 1636, 1575, 1542, 1489 cm-1; 1H NMR (600 MHz, CD2Cl2) 
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δ 7.42–7.21 (m, 7H), 7.19–7.13 (m, 2H), 7.09–6.97 (m, 2H), 6.34 (br s, 1H), 4.18 (s, 2H), 3.67 (s, 

2H), 3.26–3.13 (m, 4H), 2.89–2.75 (m, 4H), 1.16 (s, 9H); 13C NMR (151 MHz, CD2Cl2) δ 167.7, 

157.7, 142.2, 137.5, 135.9, 134.3, 133.5, 132.6, 130.9, 129.9, 128.9, 128.1, 127.2, 124.8, 121.0, 

119.8, 114.9, 56.1, 55.1, 50.5, 48.1, 44.2, 40.8, 29.4, 27.6; HRMS (ESI) m/z calcd for 

C29H35ClN3O4S [M+H]+ 556.2031, found 556.2024. 

 

 

          N-(2-(tert-Butyl(4-chlorobenzyl)amino)ethyl)-2-((4-hydroxyphenyl)sulfonyl)-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of compound N-(2-(tert-butyl(4-

chlorobenzyl)amino)ethyl)-2-((4-methoxyphenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-

carboxamide (0.025 g, 0.044 mmol, 1.0 equiv) in anhydrous DCM (6 mL) was added dropwise 

BBr3 (1 N in DCM, 0.68 mL, 0.680 mmol, 15.0 equiv) at -40 °C. The reaction was warmed to 0 °C 

and stirred for 2 h, then quenched with methanol at -20 °C. The organic phase was washed with 

water, brine, dried over Na2SO4 and concentrated in vacuo. Reverse-phase flash column 

chromatography (0-100% CH3CN/H2O) afforded the title compound as a colorless oil (10 mg, 

0.018mmol, 41% yield, 97.7% purity). IR (neat) 2947, 1637, 1580 cm-1; 1H NMR (500 MHz, 

DMSO-d6) δ 10.54 (br s, 2H), 8.20 (t, J = 5.7 Hz, 1H), 7.68–7.61 (m, 2H), 7.56–7.48 (m, 2H), 

7.43–7.38 (m, 2H), 7.36–7.28 (m, 2H), 7.19 (d, J = 6.4 Hz, 1H), 6.98 – 6.89 (m, 2H), 4.14 (s, 2H), 

3.68 (s, 2H), 3.23 (t, J = 6.0 Hz, 2H), 3.07–3.00 (m, 2H), 2.86 (m, 2H), 2.66–2.60 (m, 2H), 1.09 

(s, 9H); 13C NMR (126 MHz, DMSO-d6) δ 165.6, 161.7, 142.2, 134.8, 133.0, 132.8, 130.6, 129.9, 
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129.4, 127.9, 127.5, 126.4, 124.8, 115.8, 54.8, 53.4, 49.9, 47.3, 43.5, 40.4, 28.1, 27.1; HRMS (ESI) 

m/z calcd for C29H35ClN3O4S [M+H]+ 556.2031, found 556.2009. 

 

 

          2-Methyl-N-(4-(methylthio)benzyl)propan-2-amine. Prepared according to the general 

procedure for reductive amination using 4-(methylthio)benzaldehyde (0.761 g, 5.00 mmol, 1.0 

equiv), tert-butylamine (0.366 g, 5.00 mmol, 1.0 equiv), NaBH(OAc)3 (1.483 g, 7.00 mmol, 1.4 

equiv), AcOH (1 drop) and DCE (10 mL), at room temperature for 12 h. Reverse-phase flash 

column chromatography (0-100% CH3CN/H2O) afforded the title compound as a colorless oil 

(0.630 g, 3.01 mmol, 60% yield). IR (neat) 2961, 1492 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.30–

7.18 (m, 4H), 3.68 (s, 2H), 2.46 (s, 3H), 1.17 (s, 9H);  13C NMR (101 MHz, CDCl3) δ 138.8, 136.5, 

128.9, 127.2, 50.8, 46.9, 29.3, 16.4; HRMS (ESI) m/z calcd for C13H22N [M+H]+ 210.1311; found 

210.1306. 

 

 

          tert-Butyl (2-(tert-butyl(4-(methylthio)benzyl)amino)ethyl)carbamate. Prepared 

according to the general procedure for reductive amination using N-Boc-2-aminoacetaldehyde 

(0.159 g, 1.00 mmol, 1.0 equiv), 2-methyl-N-(4-(methylthio)benzyl)propan-2-amine (0.209 g, 1.00 
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mmol, 1.0 equiv), NaBH(OAc)3 (0.297 g, 1.40 mmol, 1.4 equiv), AcOH (1 drop) and DCE (2 mL), 

at room temperature for 24 h. Reverse-phase flash column chromatography (0-100% CH3CN/H2O) 

afforded the title compound as a colorless oil (0.238 g, 0.68 mmol, 68% yield).  IR (neat) 2971, 

1709, 1492 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.29–7.23 (m, 4H), 7.22–7.17 (m, 2H), 4.56 (s, 

1H), 3.62 (s, 2H), 2.89–2.80 (m, 2H), 2.65 (t, J = 6.3 Hz, 2H), 2.46 (s, 3H), 2.17 (s, 2H), 1.39 (s, 

9H), 1.12 (s, 9H);  13C NMR (101 MHz, CDCl3) δ 156.1, 140.3, 136.2, 128.5, 127.1, 78.9, 55.4, 

54.7, 50.7, 40.9, 28.6, 27.5, 16.4; HRMS (ESI) m/z calcd for C19H33N2O2S [M+H]+ 353.2257; 

found 353.2290. 

 

 

          N-(2-(tert-Butyl(4-(methylthio)benzyl)amino)ethyl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl (2-(tert-butyl(4-

(methylthio)benzyl)amino)ethyl)carbamate (0.025 g, 0.071 mmol, 1.0 equiv) in DCM (1 mL) was 

added TFA (1 mL) at room temperature. The resulting mixture was stirred for 3 h at this 

temperature, then concentrated in vacuo. The obtained crude TFA salt of diamine was used directly 

in the following HATU promoted amide coupling without further purification. To a solution of 2-

tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.023 g, 0.069 mmol, 1.0 equiv) in 

anhydrous DMF (1.4 mL) were added DIPEA (0.036 g, 0.28 mmol, 4.0 equiv) and  HATU (0.027 

g, 0.071 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by 

addition of crude TFA salt of diamine (0.071 mmol, 1.0 equiv). The reaction was stirred for 12 h 
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at room temperature, then concentrated under N2 stream. The crude sample was purified with 

reverse-phase flash column chromatography (0-100% CH3CN/H2O) to afford the title compound 

as white solid (0.025 g, 0.044 mmol, 63% yield, ≥ 99% purity). Mp = 59–62 ºC; IR (neat) 2992, 

1626, 1542, 1497 cm-1; 1H NMR (500 MHz, CD2Cl2) δ 7.92 (t, J = 5.7 Hz, 1H), 7.78–7.71 (m, 

2H), 7.53–7.44 (m, 2H), 7.43–7.33 (m, 4H), 7.15 (d, J = 8.1 Hz, 1H), 7.08–7.01 (m, 2H), 4.62–

4.50 (m, 1H), 4.26 (s, 2H), 3.83 (dd, J = 12.9, 8.8 Hz, 1H), 3.74–3.65 (m, 1H), 3.58–3.48 (m, 1H), 

3.45–3.31 (m, 3H), 3.16–3.06 (m, 1H), 3.00 (t, J = 6.1 Hz, 2H), 2.45 (s, 3H), 2.28 (s, 3H), 1.59 (s, 

9H); 13C NMR (126 MHz, CD2Cl2) δ 172.0, 144.7, 142.5, 137.2, 134.3, 133.3, 131.9, 130.3, 128.6, 

128.2, 127.2, 126.6, 125.8, 125.1, 66.1, 56.4, 48.2, 44.1, 40.3, 29.3, 25.5, 21.8, 15.0; HRMS (ESI) 

m/z calcd for C31H40N3O3S2 [M+H]+ 566.2506, found 566.2519. 

 

 

          4-((tert-Butylamino)methyl)-N,N-dimethylaniline. Prepared according to the general 

procedure for reductive amination using 4-(dimethylamino)benzaldehyde (0.746 g, 5.00 mmol, 1.0 

equiv), tert-butylamine (0.366 g, 5.00 mmol, 1.0 equiv), NaBH(OAc)3 (1.483 g, 7.00 mmol, 1.4 

equiv), AcOH (1 drop) and DCE (10 mL), at room temperature for 12 h. Reverse-phase flash 

column chromatography (0-100% CH3CN/H2O) afforded the title compound as a colorless oil 

(0.803 g, 3.89 mmol, 78% yield). IR (neat) 2957, 1613, 1518, 1479 cm-1; 1H NMR (400 MHz, 

CD3OD) δ 7.22–7.14 (m, 2H), 6.79–6.70 (m, 2H), 3.58 (s, 2H), 2.88 (s, 6H), 1.18 (s, 9H); 13C 

NMR (101 MHz, CD3OD) δ 151.5, 130.5, 129.4, 114.3, 51.9, 47.3, 41.2, 28.7; HRMS (ESI) m/z 

calcd for C13H21N2O [M+H]+ 207.1856; found 207.1858. 
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          tert-Butyl (2-(tert-butyl(4-(dimethylamino)benzyl)amino)ethyl)carbamate. Prepared 

according to the general procedure for reductive amination using N-Boc-2-aminoacetaldehyde 

(0.159 g, 1.00 mmol, 1.0 equiv), 4-((tert-butylamino)methyl)-N,N-dimethylaniline (0.206 g, 1.00 

mmol, 1.0 equiv), NaBH(OAc)3 (0.297 g, 1.40 mmol, 1.4 equiv), AcOH (1 drop) and DCE (2 mL), 

at room temperature for 24 h. Reverse-phase column chromatography (0-100% CH3CN/H2O) 

afforded the title compound as a colorless oil (0.200 g, 0.57 mmol, 57% yield). IR (neat) 2964, 

1710, 1614, 1518 cm-1; 1H NMR (400 MHz, CD3OD) δ 7.23–7.14 (m, 2H), 6.78–6.69 (m, 2H), 

3.60 (s, 2H), 2.88 (s, 6H), 2.79–2.71 (m, 2H), 2.67–2.59 (m, 2H), 1.38 (s, 9H), 1.15 (s, 9H);  13C 

NMR (101 MHz, CD3OD) δ 158.2, 151.2, 132.1, 130.1, 114.4, 79.7, 56.1, 55.3, 51.0, 42.2, 41.4, 

28.8, 27.7; HRMS (ESI) m/z calcd for C20H36N3O2 [M+H]+ 350.2802; found 350.2806. 

 

 

          N-(2-(tert-Butyl(4-(dimethylamino)benzyl)amino)ethyl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl (2-(tert-butyl(4-

(dimethylamino)benzyl)amino)ethyl)carbamate (0.035 g, 0.100 mmol, 1.0 equiv) in DCM (1 mL) 

was added TFA (1 mL) at room temperature. The resulting mixture was stirred for 3 h at this 
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temperature, then concentrated in vacuo. The obtained crude TFA salt of diamine was used directly 

in the following HATU promoted amide coupling without further purification. To a solution of 2-

tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.033 g, 0.100 mmol, 1.0 equiv) in 

anhydrous DMF (2 mL) were added DIPEA (0.052 g, 0.402 mmol, 4.0 equiv) and  HATU (0.038 

g, 0.100 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by 

addition of crude diamine (0.100 mmol, 1.0 equiv). The reaction was stirred for 12 h at room 

temperature, then concentrated under N2 stream. The crude sample was purified with reverse-phase 

flash column chromatography (0-100% CH3CN/H2O) to afford the title compound as a colorless 

film (0.030 g, 0.053 mmol, 53% yield, HPLC purity = 96.6%). IR (neat) 3357, 2967, 1645, 1521 

cm-1; 1H NMR (400 MHz, CD2Cl2) δ 7.67–7.58 (m, 2H), 7.31–7.24 (m, 3H), 7.20–7.13 (m, 1H), 

7.12–7.03 (m, 2H), 6.97 (d, J = 8.0 Hz, 1H), 6.54–6.45 (m, 2H), 4.16 (s, 2H), 3.49 (s, 2H), 3.25 (t, 

J = 5.9 Hz, 2H), 3.07–2.98 (m, 2H), 2.90–2.79 (m, 2H), 2.77–2.65 (m, 8H), 2.33 (s, 3H), 1.06 (s, 

9H); 13C NMR (101 MHz, CD2Cl2) δ 166.7, 150.3, 144.6, 135.4, 134.2, 134.0, 133.8, 130.8, 130.3, 

129.3, 128.2, 128.1, 126.9, 125.0, 113.1, 55.8, 55.0, 50.2, 48.2, 44.3, 41.0, 40.5, 29.5, 27.7, 21.8; 

HRMS (ESI) m/z calcd for C32H43N4O3S [M+H]+ 563.3050, found 563.3027. 

 

 

          N-(4-(Methoxymethyl)benzyl)-2-methylpropan-2-amine. Prepared according to the 

general procedure for reductive amination using 4-(methoxymethyl)benzaldehyde (0.150 g, 1.0 

mmol, 1.0 equiv), tert-butylamine (0.073 g, 1.00 mmol, 1.0 equiv), NaBH(OAc)3 (0.297 g, 1.40 

mmol, 1.4 equiv), AcOH (1 drop) and DCE (2 mL), at room temperature for 12 h. Reverse-phase 
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flash column chromatography (0-100% CH3CN/H2O) afforded the title compound as a colorless 

oil (0.150 g, 0.72 mmol, 72% yield). IR (neat) 2963, 1474, 1385 cm-1; 1H NMR (400 MHz, CD3OD) 

δ 7.45–7.32 (m, 4H), 4.46 (s, 2H), 3.88 (s, 2H), 3.37 (s, 3H), 1.30 (s, 9H); 13C NMR (101 MHz, 

CD3OD) δ 139.1, 137.7, 130.2, 129.3, 75.2, 58.3, 54.5, 47.1, 27.6; HRMS (ESI) m/z calcd for 

C13H22NO [M+H]+ 208.1696; found 208.1694. 

 

 

          tert-Butyl (2-(tert-butyl(4-(methoxymethyl)benzyl)amino)ethyl)carbamate. Prepared 

according to the general procedure for reductive amination using N-Boc-2-aminoacetaldehyde 

(0.054 g, 0.34 mmol, 1.0 equiv), N-(4-(methoxymethyl)benzyl)-2-methylpropan-2-amine (0.070 

g, 0.34 mmol, 1.0 equiv), NaBH(OAc)3 (0.100 g, 0.47 mmol, 1.4 equiv), AcOH (1 drop) and DCE 

(0.68 mL), at room temperature for 24 h. Reverse-phase column chromatography (0-100% 

CH3CN/H2O) afforded the title compound as a colorless oil (0.060 g, 0.17 mmol, 50% yield). IR 

2972, 1710, 1500 (neat) cm-1; 1H NMR (400 MHz, CD3OD) δ 7.36 (d, J = 8.1 Hz, 2H), 7.25 (d, J 

= 8.1 Hz, 2H), 4.42 (s, 2H), 3.71 (s, 2H), 3.35 (s, 3H), 2.85–2.72 (m, 2H), 2.70–2.60 (m, 2H), 1.39 

(s, 9H), 1.14 (s, 9H);  13C NMR (101 MHz, CD3OD) δ 158.2, 143.6, 137.2, 129.2, 129.0, 80.0, 

75.4, 58.1, 56.2, 55.5, 51.2, 28.7, 27.6; HRMS (ESI) m/z calcd for C20H35N2O3 [M+H]+ 351.2642; 

found 351.2653. 

 



196 
 

 

          N-(2-(tert-Butyl(4-(methoxymethyl)benzyl)amino)ethyl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl (2-(tert-butyl(4-

(methoxymethyl)benzyl)amino)ethyl)carbamate (0.035 g, 0.100 mmol, 1.0 equiv) in DCM (1 mL) 

was added TFA (1 mL) at room temperature. The resulting mixture was stirred for 3 h at this 

temperature, then concentrated in vacuo. The obtained crude TFA salt of diamine was used directly 

in the following HATU promoted amide coupling without further purification. To a solution of 2-

tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.033 g, 0.100 mmol, 1.0 equiv) in 

anhydrous DMF (2 mL) were added DIPEA (0.052 g, 0.402 mmol, 4.0 equiv) and  HATU (0.038 

g, 0.100 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by 

addition of crude TFA salt of diamine (0.100 mmol, 1.0 equiv). The reaction was stirred for 12 h 

at room temperature, then concentrated under N2 stream. The crude sample was purified with 

reverse-phase flash column chromatography (0-100% CH3CN/H2O) to afford the title compound 

as white solid (0.030 g, 0.053 mmol, 53% yield, ≥ 99% purity). Mp = 83–85 ºC; IR (neat) 3341, 

2970, 1645, 1538 cm-1; 1H NMR (400 MHz, CD3OD) δ 7.76–7.68 (m, 2H), 7.44 (dd, J = 8.0, 1.8 

Hz, 3H), 7.42–7.33 (m, 5H), 7.22–7.16 (m, 2H), 7.12 (d, J = 8.1 Hz, 1H), 4.33 (s, 2H), 4.23 (s, 

2H), 3.73 (s, 2H), 3.37–3.28 (m, 2H), 3.18 – 3.09 (m, 2H), 2.89 (t, J = 5.9 Hz, 1H), 2.83–2.74 (m, 

2H), 2.41 (s, 3H), 1.17 (s, 9H); 13C NMR (101 MHz, CD3OD) δ 169.4, 145.4, 143.7, 137.5, 136.7, 

134.8, 134.7, 134.2, 130.9, 129.2, 128.9, 128.9, 128.7, 127.6, 126.0, 75.5, 58.2, 56.3, 55.8, 51.0, 
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48.7, 45.0, 42.1, 29.7, 27.7, 21.5; HRMS (ESI) m/z calcd for C32H42N3O4S [M+H]+ 564.2891, 

found 564.2869. 

 

 

          (4-((tert-Butylamino)methyl)phenyl)methanol. Prepared according to the general 

procedure for reductive amination using 4-(hydroxymethyl)benzaldehyde (0.681 g, 5.00 mmol, 

1.0 equiv), tert-butylamine (0.366 g, 5.00 mmol, 1.0 equiv), NaBH(OAc)3 (1.483 g, 7.00 mmol, 

1.4 equiv), AcOH (1 drop) and DCE (10 mL) at room temperature for 12 h. Reverse-phase flash 

column chromatography (0-100% CH3CN/H2O) afforded the title compound as a colorless oil 

(0.700 g, 3.62 mmol, 72% yield). IR (neat) 3260, 2965, 1487, 1390 cm-1; 1H NMR (400 MHz, 

CD3OD) δ 7.37–7.28 (m, 5H), 4.58 (s, 2H), 3.70 (s, 2H), 1.20 (s, 9H);  13C NMR (101 MHz, 

CD3OD) δ 141.6, 140.3, 129.7, 128.1, 65.0, 52.1, 47.6, 28.7; HRMS (ESI) m/z calcd for C12H20NO 

[M+H]+ 194.1539; found 194.1538. 

 

 

          tert-Butyl (2-(tert-butyl(4-(hydroxymethyl)benzyl)amino)ethyl)carbamate. Prepared 

according to the general procedure for reductive amination using N-Boc-2-aminoacetaldehyde 

(0.159 g, 1.00 mmol, 1.0 equiv), N-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-2-
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methylpropan-2-amine (0.193 g, 1.00 mmol, 1.0 equiv), NaBH(OAc)3 (0.297 g, 1.40 mmol, 1.4 

equiv), AcOH (1 drop) and DCE (2 mL), at room temperature for 24 h. Reverse-phase flash column 

chromatography (0-100% CH3CN/H2O) afforded the title compound as a colorless oil (0.169 g, 

0.50 mmol, 50% yield). IR (neat) 2972, 1687, 1509 cm-1; 1H NMR (400 MHz, CD3OD) δ 7.35 (d, 

J = 8.1 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 4.57 (s, 2H), 3.71 (s, 2H), 2.86–2.72 (m, 2H), 2.72–2.60 

(m, 2H), 1.39 (s, 9H), 1.14 (s, 9H);  13C NMR (101 MHz, CD3OD) δ 158.2, 143.3, 140.8, 129.1, 

128.0, 79.8, 65.1, 56.1, 55.7, 51.5, 42.2, 28.8, 27.7; HRMS (ESI) m/z calcd for C19H33N2O3 

[M+H]+ 337.2486; found 337.2484. 

 

 

          N-(2-(tert-Butyl(4-(hydroxymethyl)benzyl)amino)ethyl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl (2-(tert-butyl(4-

(hydroxymethyl)benzyl)amino)ethyl)carbamate (0.034 g, 0.100 mmol, 1.0 equiv) in DCM (1 mL) 

was added TFA (1 mL) at room temperature. The resulting mixture was stirred for 3 h at this 

temperature, then concentrated in vacuo. The obtained crude TFA salt of diamine was used directly 

in the following HATU promoted amide coupling without further purification. To a solution of 2-

tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.033 g, 0.100 mmol, 1.0 equiv) in 

anhydrous DMF (2 mL) were added DIPEA (0.052 g, 0.402 mmol, 4.0 equiv) and  HATU (0.038 

g, 0.100 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by 

addition of crude TFA salt of diamine (0.100 mmol, 1.0 equiv). The reaction was stirred for 12 h 
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at room temperature, then concentrated under N2 stream. The crude sample was purified with 

reverse-phase flash column chromatography (0-100% CH3CN/H2O) to afford the title compound 

as a colorless film (0.035 g, 0.064 mmol, 64% yield, ≥ 99% purity). IR (neat) 3371, 2968, 1640, 

1538, 1495 cm-1; 1H NMR (500 MHz, CD3OD) δ 7.77–7.70 (m, 2H), 7.46 (dd, J = 8.0, 1.8 Hz, 

1H), 7.44–7.35 (m, 5H), 7.26–7.20 (m, 2H), 7.16 (d, J = 8.1 Hz, 1H), 4.51 (s, 2H), 4.26 (s, 2H), 

3.75 (s, 2H), 3.36 (t, J = 6.0 Hz, 2H), 3.16 – 3.09 (m, 2H), 2.92 (t, J = 5.9 Hz, 2H), 2.82–2.76 (m, 

2H), 2.42 (s, 3H), 1.17 (s, 9H); 13C NMR (126 MHz, CD3OD) δ 169.5, 145.5, 140.9, 136.8, 134.8, 

134.2, 130.9, 129.3, 128.9, 128.7, 128.0, 127.7, 126.0, 65.1, 56.3, 55.7, 50.9, 48.8, 45.0, 42.1, 29.7, 

27.7, 21.5; HRMS (ESI) m/z calcd for C31H40N3O4S [M+H]+ 550.2734, found 550.2748. 

 

 

          N-(Benzo[d][1,3]dioxol-5-ylmethyl)-2-methylpropan-2-amine. Prepared according to the 

general procedure for reductive amination using benzo[d][1,3]dioxole-5-carbaldehyde (0.750 g, 

5.00 mmol, 1.0 equiv), tert-butylamine (0.366 g, 5.00 mmol, 1.0 equiv), NaBH(OAc)3 (1.483 g, 

7.00 mmol, 1.4 equiv), AcOH (1 drop) and DCE (10 mL), at room temperature for 12 h. Reverse-

phase flash column chromatography (0-100% CH3CN/H2O) afforded the title compound as a 

colorless oil (0.850 g, 4.10 mmol, 82% yield).  IR (neat) 2962, 1488, 1440 cm-1; 1H NMR (400 

MHz, CDCl3) δ 6.87–6.83 (m, 1H), 6.80–6.71 (m, 2H), 5.91 (s, 2H), 3.63 (s, 2H), 1.16 (s, 9H);  

13C NMR (101 MHz, CDCl3) δ 147.7, 146.4, 135.7, 121.2, 109.0, 108.2, 100.9, 50.7, 47.2, 29.3; 

HRMS (ESI) m/z calcd for C13H22N [M+H]+ 208.1332; found 208.1329. 
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          tert-Butyl (2-((benzo[d][1,3]dioxol-5-ylmethyl)(tert-butyl)amino)ethyl)carbamate. 

Prepared according to the general procedure for reductive amination using N-Boc-2-

aminoacetaldehyde (0.159 g, 1.00 mmol, 1.0 equiv), 2-methyl-N-(4-(methylthio)benzyl)propan-2-

amine (0.207 g, 1.00 mmol, 1.0 equiv), NaBH(OAc)3 (0.297 g, 1.40 mmol, 1.4 equiv), AcOH (1 

drop) and DCE (2 mL), at room temperature for 24 h. Reverse-phase flash column chromatography 

(0-100% CH3CN/H2O) afforded the title compound as a colorless oil (0.240 g, 0.68 mmol, 68% 

yield), at room temperature for 24 h. IR (neat) 2972, 1701, 1487, 1440 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 6.88–6.83 (m, 1H), 6.79–6.67 (m, 2H), 5.92 (s, 2H), 4.56 (br s, 1H), 3.57 (s, 2H), 2.90–

2.80 (m, 2H), 2.65 (t, J = 6.1 Hz, 2H), 1.39 (s, 9H), 1.11 (s, 9H);  13C NMR (101 MHz, CDCl3) δ 

156.1, 147.8, 146.3, 137.1, 120.7, 108.5, 108.1, 100.9, 78.8, 55.3, 55.1, 50.6, 41.0, 28.5, 27.5; 

HRMS (ESI) m/z calcd for C19H31N2O4 [M+H]+ 351.2278; found 351.2284. 

 

 

          N-(2-((Benzo[d][1,3]dioxol-5-ylmethyl)(tert-butyl)amino)ethyl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl (2-((benzo[d][1,3]dioxol-5-
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ylmethyl)(tert-butyl)amino)ethyl)carbamate (0.025 g, 0.071 mmol, 1.0 equiv) in DCM (1 mL) was 

added TFA (1 mL) at room temperature. The resulting mixture was stirred for 3 h at this 

temperature, then concentrated in vacuo. The obtained crude TFA salt of diamine was used directly 

in the following HATU promoted amide coupling without further purification. To a solution of 2-

tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.023 g, 0.069 mmol, 1.0 equiv) in 

anhydrous DMF (1.4 mL) were added DIPEA (0.036 g, 0.279 mmol, 4.0 equiv) and  HATU (0.027 

g, 0.071 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by 

addition of crude TFA salt of diamine (0.071 mmol, 1.0 equiv). The reaction was stirred for 12 h 

at room temperature, then concentrated under N2 stream. The crude sample was purified with 

reverse-phase flash column chromatography (0-100% CH3CN/H2O) to afford the title compound 

as a colorless film (0.020 g, 0.035 mmol, 51% yield, 98.8% purity). IR (neat) 2988, 1627, 1540, 

1495 cm-1; 1H NMR (500 MHz, CD2Cl2) 7.89 (t, J = 5.7 Hz, 1H), 7.77–7.71 (m, 2H), 7.56–7.50 

(m, 2H), 7.44–7.37 (m, 2H), 7.19–7.13 (m, 1H), 6.96 (dd, J = 7.9, 1.9 Hz, 1H), 6.89 (d, J = 1.8 Hz, 

1H), 6.72 (d, J = 7.9 Hz, 1H), 5.86 (d, J = 1.4 Hz, 1H), 5.66 (d, J = 1.4 Hz, 1H), 4.56–4.49 (m, 

1H), 4.27 (s, 2H), 3.78 (dd, J = 13.0, 8.9 Hz, 1H), 3.74–3.65 (m, 1H), 3.56 (dddd, J = 15.7, 7.9, 

5.7, 2.0 Hz, 1H), 3.46–3.30 (m, 3H), 3.17 (dtd, J = 14.9, 6.5, 2.0 Hz, 1H), 3.00 (t, J = 6.0 Hz, 2H), 

2.62 (s, 20H), 2.46 (s, 3H), 1.58 (s, 9H); 13C NMR (126 MHz, CD2Cl2) δ 172.1, 149.7, 148.9, 

144.7, 137.3, 134.4, 133.3, 130.4, 130.3, 128.9, 128.2, 127.2, 126.0, 125.7, 122.4, 111.2, 109.4, 

102.4, 66.0, 56.8, 53.7, 48.2, 44.2, 40.4, 29.3, 25.5, 21.8; HRMS (ESI) m/z calcd for C31H38N3O5S 

[M+H]+ 564.2527, found 564.2535. 
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          N-((2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-2-methylpropan-2-amine. Prepared 

according to the general procedure for reductive amination using 2,3-

dihydrobenzo[b][1,4]dioxine-6-carbaldehyde (0.821 g, 5.00 mmol, 1.0 equiv), tert-butylamine 

(0.366 g, 5.00 mmol, 1.0 equiv), NaBH(OAc)3 (1.483 g, 7.00 mmol, 1.4 equiv), AcOH (1 drop) 

and DCE (10 mL), at room temperature for 12 h. Reverse-phase flash column chromatography (0-

100% CH3CN/H2O) afforded the title compound as a colorless oil (0.970 g, 4.38 mmol, 88% yield).  

IR (neat) 2963, 1591, 1506, 1431 cm-1; 1H NMR (400 MHz, CD3OD) δ 6.87 (dd, J = 1.8, 0.7 Hz, 

2H), 6.84–6.76 (m, 4H), 4.23 (s, 4H), 3.62 (s, 2H), 1.21 (s, 9H); 13C NMR (101 MHz, CD3OD) δ 

144.9, 144.2, 134.0, 122.6, 118.5, 118.1, 65.6, 65.6, 52.3, 47.3, 28.5; HRMS (ESI) m/z calcd for 

C13H20NO2 [M+H]+ 222.1489; found 222.1485. 

 

 

          tert-Butyl (2-(tert-butyl((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)amino)ethyl) 

carbamate. Prepared according to the general procedure for reductive amination using N-Boc-2-

aminoacetaldehyde (0.159 g, 1.00 mmol, 1.0 equiv), N-((2,3-dihydrobenzo[b][1,4]dioxin-6-

yl)methyl)-2-methylpropan-2-amine (0.221 g, 1.00 mmol, 1.0 equiv), NaBH(OAc)3 (0.297 g, 1.40 

mmol, 1.4 equiv), AcOH (1 drop) and DCE (2 mL) at room temperature for 24 h. Reverse-phase 
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flash column chromatography (0-100% CH3CN/H2O) afforded the title compound as colorless oil 

(0.217 g, 0.60 mmol, 60% yield). IR (neat) 2972, 1701, 1590 cm-1; 1H NMR (400 MHz, CD3OD) 

δ 6.86–6.69 (m, 3H), 4.24–4.15 (m, 4H), 3.58 (s, 2H), 2.84–2.73 (m, 2H), 2.68–2.59 (m, 2H), 1.39 

(s, 9H), 1.13 (s, 9H);  13C NMR (101 MHz, CD3OD) δ 158.2, 144.7, 143.6, 137.2, 121.8, 117.8, 

117.8, 79.8, 65.6, 65.5, 56.1, 55.3, 51.4, 42.2, 28.8, 27.7; HRMS (ESI) m/z calcd for C20H33N2O4 

[M+H]+ 365.2435; found 365.2428. 

 

 

          N-(2-(tert-Butyl((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)amino)ethyl)-2-tosyl-

1,2,3,4-tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl (2-(tert-butyl((2,3-

dihydrobenzo[b][1,4]dioxin-6-yl)methyl)amino)ethyl)carbamate (0.036 g, 0.100 mmol, 1.0 equiv). 

in DCM (1 mL) was added TFA (1 mL) at room temperature. The resulting mixture was stirred 

for 3 h at this temperature, then concentrated in vacuo. The obtained crude TFA salt of diamine 

was used directly in the following HATU promoted amide coupling without further purification. 

To a solution of 2-tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.033 g, 0.100 mmol, 

1.0 equiv) in anhydrous DMF (2 mL) were added DIPEA (0.052 g, 0.402 mmol, 4.0 equiv) and  

HATU (0.038 g, 0.100 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, 

followed by addition of crude diamine (0.100 mmol, 1.0 equiv). The reaction was stirred for 12 h 

at room temperature, then concentrated under N2 stream. The crude sample was purified with 

reverse-phase flash column chromatography (0-100% CH3CN/H2O) to afford the title compound 
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as colorless film (0.027 g, 0.047 mmol, 47% yield, ≥ 99% purity). IR (neat) 2970, 1646, 1504 cm-

1; 1H NMR (400 MHz, CD3OD) δ 7.76–7.68 (m, 2H), 7.44 (dd, J = 8.0, 1.8 Hz, 1H), 7.42–7.36 

(m, 4H), 7.13 (d, J = 8.1 Hz, 1H), 6.84 (d, J = 1.9 Hz, 2H), 6.79 (dd, J = 8.2, 2.0 Hz, 1H), 6.66 (d, 

J = 8.2 Hz, 1H), 4.24 (s, 2H), 4.13–4.05 (m, 4H), 3.59 (s, 2H), 3.35–3.32 (m, 2H), 3.19–3.10 (m, 

2H), 2.91 (t, J = 5.9 Hz, 2H), 2.81–2.73 (m, 2H), 2.41 (s, 3H), 1.15 (s, 9H); 13C NMR (101 MHz, 

CD3OD) δ 169.4, 145.5, 144.7, 143.6, 137.1, 136.8, 134.9, 134.8, 134.2, 130.9, 128.9, 128.7, 127.7, 

126.1, 121.9, 117.9, 117.9, 65.5, 65.5, 56.3, 55.4, 50.8, 48.8, 45.0, 42.1, 29.7, 27.7, 21.5; HRMS 

(ESI) m/z calcd for C32H40N3O5S [M+H]+ 578.2683, found 578.2678. 

 

 

          N-(4-((tert-Butylamino)methyl)phenyl)acetamide. Prepared according to the general 

procedure for reductive amination using N-(4-formylphenyl)acetamide (0.816 g, 5.00 mmol, 1.0 

equiv), tert-butylamine (0.366 g, 5.00 mmol, 1.0 equiv), NaBH(OAc)3 (1.483 g, 7.00 mmol, 1.4 

equiv), AcOH (1 drop) and DCE (10 mL), at room temperature for 12 h. Reverse-phase flash 

column chromatography (0-100% CH3CN/H2O) afforded the title compound as a colorless oil 

(0.943 g, 4.28 mmol, 86% yield). IR (neat) 3273, 1603, 1551, 1515 cm-1; 1H NMR (400 MHz, 

DMSO-d6) δ 7.53–7.44 (m, 2H), 7.27–7.19 (m, 2H), 3.57 (s, 2H), 2.02 (s, 3H), 1.07 (s, 9H); 13C 

NMR (101 MHz, DMSO-d6) δ 167.9, 137.4, 136.7, 128.1, 118.6, 49.9, 45.8, 28.9, 23.9; HRMS 

(ESI) m/z calcd for C13H21N2O [M+H]+ 221.1648; found 221.1647. 
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          tert-Butyl (2-((4-acetamidobenzyl)(tert-butyl)amino)ethyl)carbamate. Prepared 

according to the general procedure for reductive amination using N-Boc-2-aminoacetaldehyde 

(0.159 g, 1.00 mmol, 1.0 equiv), N-(4-((tert-butylamino)methyl)phenyl)acetamide (0.220 g, 1.00 

mmol, 1.0 equiv), NaBH(OAc)3 (0.297 g, 1.40 mmol, 1.4 equiv), AcOH (1 drop) and DCE (2 mL), 

at room temperature for 24 h. Reverse-phase column chromatography (0-100% CH3CN/H2O) 

afforded the title compound as a colorless oil (0.176 g, 0.48 mmol, 48% yield). IR (neat) 2972, 

1668, 1603, 1510 cm-1; 1H NMR (400 MHz, CD3OD) δ 7.51–7.43 (m, 2H), 7.34–7.26 (m, 2H), 

3.66 (s, 2H), 2.83–2.74 (m, 2H), 2.68–2.60 (m, 2H), 2.10 (s, 3H), 1.38 (s, 9H), 1.13 (s, 9H);  13C 

NMR (101 MHz, CD3OD) δ 171.4, 158.2, 139.9, 138.3, 129.4, 121.0, 79.8, 56.1, 55.4, 51.4, 42.2, 

28.8, 27.7, 23.8; HRMS (ESI) m/z calcd for C20H34N3O3 [M+H]+ 364.2595; found 364.2594. 

 

 

          N-(2-((4-Acetamidobenzyl)(tert-butyl)amino)ethyl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl (2-((4-

acetamidobenzyl)(tert-butyl)amino)ethyl)carbamate (0.036 g, 0.100 mmol, 1.0 equiv) in DCM (1 

mL) was added TFA (1 mL) at room temperature. The resulting mixture was stirred for 3 h at this 

temperature, then concentrated in vacuo. The obtained crude TFA salt of diamine was used directly 
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in the following HATU promoted amide coupling without further purification. To a solution of 2-

tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.033 g, 0.100 mmol, 1.0 equiv) in 

anhydrous DMF (2 mL) were added DIPEA (0.052 g, 0.402 mmol, 4.0 equiv) and  HATU (0.038 

g, 0.100 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by 

addition of crude TFA salt of diamine (0.100 mmol, 1.0 equiv). The reaction was stirred for 12 h 

at room temperature, then concentrated under N2 stream. The crude sample was purified with 

reverse-phase flash column chromatography (0-100% CH3CN/H2O) to afford the title compound 

as a colorless film (0.037 g, 0.064 mmol, 64% yield, ≥ 99% purity). IR (neat) 3307, 2970, 1641 

cm-1; 1H NMR (400 MHz, CD3CN) δ 8.23 (s, 1H), 7.75–7.67 (m, 2H), 7.42–7.33 (m, 6H), 7.32–

7.24 (m, 2H), 7.14–7.06 (m, 1H), 6.67 (t, J = 5.6 Hz, 1H), 4.22 (s, 2H), 3.64 (s, 2H), 3.30 (t, J = 

5.9 Hz, 2H), 3.06 (dt, J = 7.0, 6.0 Hz, 2H), 2.89 (t, J = 6.0 Hz, 2H), 2.73 (t, J = 6.8 Hz, 2H), 2.39 

(s, 3H), 1.99 (s, 3H), 1.12 (s, 9H); 13C NMR (101 MHz, CD3CN) δ 169.3, 167.1, 145.2, 139.2, 

138.5, 136.0, 134.5, 134.4, 134.4, 130.8, 129.3, 128.7, 128.4, 127.5, 125.5, 120.1, 56.0, 55.2, 50.8, 

48.5, 44.7, 41.3, 29.4, 27.6, 24.3, 21.5; HRMS (ESI) m/z calcd for C32H41N4O4S [M+H]+ 577.2843, 

found 577.2828. 

 

 

          N-(4-Ethylbenzyl)-2-methylpropan-2-amine. Prepared according to the general procedure 

for reductive amination using 4-ethylbenzaldehyde (0.671 g, 5.00 mmol, 1.0 equiv), tert-

butylamine (0.366 g, 5.00 mmol, 1.0 equiv), NaBH(OAc)3 (1.483 g, 7.00 mmol, 1.4 equiv), AcOH 

(1 drop) and DCE (10 mL), at room temperature for 12 h. Reverse-phase flash column 
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chromatography (0-100% CH3CN/H2O) afforded the title compound as a colorless oil (0.370 g, 

1.93 mmol, 39% yield). IR (neat) 2962, 1513 cm-1; 1H NMR (600 MHz, CD3CN) δ 7.23 (d, J = 

8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 3.66 (s, 2H), 2.60 (q, J = 7.6 Hz, 2H), 1.19 (t, J = 7.6 Hz, 

3H), 1.12 (s, 9H);  13C NMR (151 MHz, CD3CN) δ 143.4, 140.6, 129.1, 128.6, 51.1, 47.3, 29.3, 

29.1, 16.2; HRMS (ESI) m/z calcd for C13H22N [M+H]+ 192.1747; found 192.1746. 

 

 

          tert-Butyl (2-(tert-butyl(4-ethylbenzyl)amino)ethyl)carbamate. Prepared according to 

the general procedure for reductive amination using N-Boc-2-aminoacetaldehyde (0.159 g, 1.00 

mmol, 1.0 equiv), N-(4-ethylbenzyl)-2-methylpropan-2-amine (0.191 g, 1.00 mmol, 1.0 equiv), 

NaBH(OAc)3 (0.297 g, 1.40 mmol, 1.4 equiv), AcOH (1 drop) and DCE (2 mL), at room 

temperature for 24 h. Reverse-phase column chromatography (0-100% CH3CN/H2O) afforded the 

title compound as a colorless oil (0.173 g, 0.52 mmol, 52% yield).  IR (neat) 2966, 1702 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 7.24 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 8.1 Hz, 2H), 3.64 (s, 2H), 2.88–

2.78 (m, 2H), 2.69–2.56 (m, 4H), 1.39 (s, 9H), 1.23 (t, J = 7.6 Hz, 3H), 1.13 (s, 9H);  13C NMR 

(101 MHz, CDCl3) δ 156.1, 142.5, 140.2, 127.9, 127.9, 78.8, 55.3, 54.9, 50.6, 40.9, 28.6, 28.6, 

27.5, 15.7; HRMS (ESI) m/z calcd for C20H35N2O2 [M+H]+ 335.2693; found 355.2702. 
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          N-(2-(tert-Butyl(4-ethylbenzyl)amino)ethyl)-2-tosyl-1,2,3,4-tetrahydroisoquinoline-6-

carboxamide. To a solution of tert-butyl (2-(tert-butyl(4-ethylbenzyl)amino)ethyl)carbamate 

(0.023 g, 0.069 mmol, 1.0 equiv) in DCM (1 mL) was added TFA (1 mL) at room temperature. 

The resulting mixture was stirred for 3 h at this temperature, then concentrated in vacuo. The 

obtained crude TFA salt of diamine was used directly in the following HATU promoted amide 

coupling without further purification. To a solution of 2-tosyl-1,2,3,4-tetrahydroisoquinoline-6-

carboxylic acid (0.023 g, 0.069 mmol, 1.0 equiv) in anhydrous DMF (1.4 mL) were added DIPEA 

(0.036 g, 0.279 mmol, 4.0 equiv) and  HATU (0.027 g, 0.071 mmol, 1.0 equiv) at room temperature. 

The mixture was stirred for 5 min, followed by addition of crude TFA salt of diamine (0.069 mmol, 

1.0 equiv). The reaction was stirred for 12 h at room temperature, then concentrated under N2 

stream. The crude sample was purified with reverse-phase flash column chromatography (0-100% 

CH3CN/H2O) to afford the title compound as a white solid (0.020 g, 0.037 mmol, 52% yield, HPLC 

purity = 96.7%). Mp = 133–135 ºC; IR (neat) 3339, 2966, 1644 cm-1; 1H NMR (400 MHz, CD3CN) 

δ 7.76–7.68 (m, 2H), 7.46–7.35 (m, 4H), 7.33–7.23 (m, 2H), 7.18–7.01 (m, 3H), 6.68–6.60 (m, 

1H), 4.24 (s, 2H), 3.69 (s, 2H), 3.33 (t, J = 6.0 Hz, 2H), 3.13 – 3.04 (m, 2H), 2.91 (t, J = 6.0 Hz, 

2H), 2.74 (t, J = 6.8 Hz, 2H), 2.53 (q, J = 7.8 Hz, 2H), 2.40 (s, 3H), 2.15 (s, 2H), 1.45 (s, 1H), 1.27 

(s, 1H); 13C NMR (101 MHz, CD3CN) δ 167.1, 145.2, 143.3, 141.5, 136.1, 134.6, 134.5, 134.4, 

130.8, 128.9, 128.7, 128.6, 128.4, 127.5, 125.5, 55.9, 55.3, 50.8, 48.5, 44.7, 41.1, 29.4, 29.0, 27.7, 

21.5, 16.1; HRMS (ESI) m/z calcd for C32H42N3O3S [M+H]+ 548.2941, found 548.2917. 
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         tert-Butyl (2-(tert-butyl(pyridin-2-ylmethyl)amino)ethyl)carbamate. To a solution of 

tert-butylamine (0.219 g, 3.00 mmol, 1.0 equiv) and picolinaldehyde (0.321 g, 3.00 mmol, 1.0 

equiv) in DCE (6 mL) was added NaBH(OAc)3 (0.890 g, 4.20 mmol, 1.4 equiv) at room 

temperature. The reaction mixture was stirred at this temperature overnight, prior to the addition 

of N-Boc-2-aminoacetaldehyde (0.478 g, 3.00 mmol, 1.0 equiv), NaBH(OAc)3 (0.890 g, 4.20 

mmol, 1.4 equiv) and DCE (4 mL). The reaction was stirred for 24 h at room temperature, then 

quenched with aqueous NaOH solution (1 N, 12 mL), extracted with EtOAc (3 × 50 ml). The 

combined organic layers were washed with brine, dried over Na2SO4, filtered and concentrated in 

vacuo.  Reverse-phase flash column chromatography (0-100% CH3CN/H2O) afforded the title 

product as a colorless oil (0.450 g, 1.46 mmol, 49% yield). IR (neat) 3348, 2972, 1701 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 8.53–8.43 (m, 1H), 7.61 (td, J = 7.7, 1.6 Hz, 1H), 7.45 (d, J = 7.6 Hz, 

1H), 7.13–7.04 (m, 1H), 5.26 (br s, 1H), 3.81 (s, 2H), 2.94 (t, J = 6.2 Hz, 2H), 2.73 (t, J = 6.2 Hz, 

2H), 1.40 (s, 9H), 1.08 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 163.4, 156.2, 149.0, 136.4, 122.2, 

121.6, 78.8, 57.1, 55.5, 51.0, 40.8, 28.6, 27.3; HRMS (ESI) m/z calcd for C17H30N3O2 [M+H]+ 

308.2333, found 308.2327. 
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          N-(2-(tert-Butyl(pyridin-2-ylmethyl)amino)ethyl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl (2-(tert-butyl(pyridin-2-

ylmethyl)amino)ethyl)carbamate (0.031 g, 0.100 mmol. 1.0 equiv) in DCM (1 mL) was added 

TFA (1 mL) at room temperature. The resulting mixture was stirred for 3 h at this temperature, 

then concentrated in vacuo. The obtained crude TFA salt of diamine was used directly in the 

following HATU promoted amide coupling without further purification. To a solution of 2-tosyl-

1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.033 g, 0.100 mmol, 1.0 equiv) in anhydrous 

DMF (2 mL) were added DIPEA (0.052 g, 0.402 mmol, 4.0 equiv) and  HATU (0.038 g, 0.100 

mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by addition of 

crude TFA salt of diamine (0.100 mmol, 1.0 equiv). The reaction was stirred for 12 h at room 

temperature, then concentrated under N2 stream. The crude sample was purified with reverse-phase 

flash column chromatography (0-100% CH3CN/H2O) to afford the title compound as a colorless 

film (0.031 g, 0.060 mmol, 60% yield, 98.0% purity). IR (neat) 3292, 2970, 1646, 1538 cm-1; 1H 

NMR (400 MHz, CD2Cl2) δ 8.51–8.29 (m, 2H), 7.76–7.68 (m, 2H), 7.67–7.54 (m, 3H), 7.36 (d, J 

= 8.0 Hz, 2H), 7.28 (d, J = 7.7 Hz, 1H), 7.12 (d, J = 7.9 Hz, 1H), 7.11–7.05 (m, 1H), 4.27 (s, 2H), 

3.85 (s, 2H), 3.43 – 3.30 (m, 4H), 2.96 (t, J = 5.8 Hz, 2H), 2.85 (t, J = 5.7 Hz, 2H), 2.42 (s, 3H), 

1.05 (s, 9H); 13C NMR (101 MHz, CD2Cl2) δ 166.7, 163.9, 149.4, 144.6, 136.9, 135.2, 134.6, 

133.9, 133.7, 130.3, 128.4, 128.2, 126.9, 125.3, 122.6, 122.1, 56.0, 55.9, 50.2, 48.2, 44.3, 39.6, 

29.5, 27.5, 21.8; HRMS (ESI) m/z calcd for C29H37N4O3S [M+H]+ 521.2581, found 521.2570. 
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          tert-Butyl (2-(tert-butyl(pyridin-3-ylmethyl)amino)ethyl)carbamate. To a solution of 

tert-butylamine (0.110 g, 1.50 mmol, 1.0 equiv) and nicotinaldehyde (0.161 g, 1.50 mmol, 1.0 

equiv) in DCE (3 mL) was added NaBH(OAc)3 (0.445 g, 2.10 mmol, 1.4 equiv) at room 

temperature. The reaction mixture was stirred at this temperature overnight, prior to the addition 

of N-Boc-2-aminoacetaldehyde (0.239 g, 1.50 mmol, 1.0 equiv), NaBH(OAc)3 (0.445 g, 2.10 

mmol, 1.4 equiv) and DCE (2 mL). The reaction was stirred for 24 h at room temperature, then 

quenched with aqueous NaOH solution (1 N, 6 mL), extracted with EtOAc (3 × 25 mL). The 

combined organic layers were washed with brine, dried over Na2SO4, filtered and concentrated in 

vacuo.  Reverse-phase flash column chromatography (0-100% CH3CN/H2O) afforded the title 

product as a colorless oil (0.163 g, 0.53 mmol, 35% yield). IR (neat) 3346, 2972, 1702 cm-1; 1H 

NMR (400 MHz, acetone-d6) δ 8.56 (dd, J = 2.3, 0.9 Hz, 1H), 8.40 (dd, J = 4.7, 1.7 Hz, 1H), 7.79 

(dt, J = 7.8, 1.9 Hz, 1H), 7.33–7.21 (m, 1H), 5.69 (br s, 1H), 3.78 (s, 2H), 2.93–2.84 (m, 2H), 2.73–

2.66 (m, 2H), 1.36 (s, 9H), 1.14 (s, 9H); 13C NMR (101 MHz, acetone-d6) δ 156.5, 150.3, 148.6, 

139.4, 136.1, 123.9, 78.3, 55.9, 52.9, 51.5, 42.0, 28.6, 27.6; HRMS (ESI) m/z calcd for C17H30N3O2 

[M+H]+ 308.2333, found 308.2329. 
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          N-(2-(tert-Butyl(pyridin-3-ylmethyl)amino)ethyl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl (2-(tert-butyl(pyridin-3-

ylmethyl)amino)ethyl)carbamate (0.031 g, 0.100 mmol. 1.0 equiv) in DCM (1 mL) was added 

TFA (1 mL) at room temperature. The resulting mixture was stirred for 3 h at this temperature, 

then concentrated in vacuo. The obtained crude TFA salt of diamine was used directly in the 

following HATU promoted amide coupling without further purification. To a solution of 2-tosyl-

1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.033 g, 0.100 mmol, 1.0 equiv) in anhydrous 

DMF (2 mL) were added DIPEA (0.052 g, 0.402 mmol, 4.0 equiv) and  HATU (0.038 g, 0.100 

mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by addition of 

crude TFA salt of diamine (0.100 mmol, 1.0 equiv). The reaction was stirred for 12 h at room 

temperature, then concentrated under N2 stream. The crude sample was purified with reverse-phase 

flash column chromatography (0-100% CH3CN/H2O) to afford the title compound as a white solid 

(0.040 g, 0.077 mmol, 77% yield, 95.0% purity). Mp = 120–123 ºC; IR (neat) 3321, 2969, 1647, 

1538 cm-1; 1H NMR (600 MHz, CD2Cl2) δ 8.57 (s, 1H), 8.39–8.31 (m, 1H), 7.71 (d, J = 8.3 Hz, 

2H), 7.66 (d, J = 7.7 Hz, 1H), 7.40–7.29 (m, 4H), 7.13 (dd, J = 7.7, 4.8 Hz, 1H), 7.09 (d, J = 8.0 

Hz, 1H), 6.20 (t, J = 5.5 Hz, 1H), 4.25 (s, 2H), 3.73 (s, 2H), 3.34 (t, J = 5.9 Hz, 2H), 3.18–3.11 (m, 

2H), 2.96 (t, J = 5.8 Hz, 2H), 2.80 (t, J = 6.3 Hz, 2H), 2.42 (s, 3H), 1.15 (s, 9H); 13C NMR (151 

MHz, CD2Cl2) δ 166.8, 150.1, 148.6, 144.6, 138.7, 135.9, 135.6, 134.2, 133.8, 133.6, 130.3, 128.2, 

128.0, 127.0, 124.9, 123.7, 56.1, 53.1, 50.7, 48.1, 44.2, 40.5, 29.4, 27.6, 21.8; HRMS (ESI) m/z 

calcd for C29H37N4O3S [M+H]+ 521.2581, found 521.2571. 
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          tert-Butyl (2-(tert-butyl(pyridin-4-ylmethyl)amino)ethyl)carbamate. To a solution of 

tert-butylamine (0.110 g, 1.5 mmol, 1.0 equiv) and isonicotinaldehyde (0.161 g, 1.50 mmol, 1.0 

equiv) in DCE (3 mL) was added NaBH(OAc)3 (0.445 g, 2.10 mmol, 1.4 equiv) at room 

temperature. The reaction mixture was stirred at this temperature overnight, prior to the addition 

of N-Boc-2-aminoacetaldehyde (0.239 g, 1.50 mmol, 1.0 equiv), NaBH(OAc)3 (0.445 g, 2.10 

mmol, 1.4 equiv) and DCE (2 mL). The reaction was stirred for 24 h at room temperature, then 

quenched with aqueous NaOH solution (1 N, 6 mL), extracted with EtOAc (3 × 25 mL). The 

combined organic layers were washed with brine, dried over Na2SO4, filtered and concentrated in 

vacuo.  Reverse-phase flash column chromatography (0-100% CH3CN/H2O) afforded the title 

product as a light yellow oil (0.196 g, 0.44 mmol, 43% yield). IR (neat) 3349, 2972, 1703 cm-1; 

1H NMR (400 MHz, acetone-d6) δ 8.51–8.40 (m, 2H), 7.46–7.34 (m, 2H), 5.80 (br s, 1H), 3.78 (s, 

2H), 2.98–2.89 (m, 2H), 2.76–2.66 (m, 2H), 1.37 (s, 9H), 1.11 (s, 9H); 13C NMR (101 MHz, 

acetone-d6) δ 156.5, 153.8, 150.3, 123.5, 78.4, 55.8, 54.6, 51.9, 41.9, 28.6, 27.5; HRMS (ESI) m/z 

calcd for C17H30N3O2 [M+H]+ 308.2333, found 308.2330. 
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          N-(2-(tert-Butyl(pyridin-4-ylmethyl)amino)ethyl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of tert-butyl (2-(tert-butyl(pyridin-4-

ylmethyl)amino)ethyl)carbamate (0.031 g, 0.100 mmol. 1.0 equiv) in DCM (1 mL) was added 

TFA (1 mL) at room temperature. The resulting mixture was stirred for 3 h at this temperature, 

then concentrated in vacuo. The obtained crude TFA salt of diamine was used directly in the 

following HATU promoted amide coupling without further purification. To a solution of 2-tosyl-

1,2,3,4-tetrahydroisoquinoline-6-carboxylic acid (0.033 g, 0.100 mmol, 1.0 equiv) in anhydrous 

DMF (2 mL) were added DIPEA (0.052 g, 0.402 mmol, 4.0 equiv) and  HATU (0.038 g, 0.100 

mmol, 1.0 equiv) at room temperature. The mixture was stirred for 5 min, followed by addition of 

crude TFA salt of diamine (0.100 mmol, 1.0 equiv). The reaction was stirred for 12 h at room 

temperature, then concentrated under N2 stream. The crude sample was purified with reverse-phase 

flash column chromatography (0-100% CH3CN/H2O) to afford the title compound as white solid 

(0.040 g, 0.077 mmol, 77% yield, 99.0% purity). Mp = 89–70 ºC; IR (neat) 3313, 2969, 1646, 

1541 cm-1; 1H NMR (600 MHz, CD2Cl2) δ 8.41 (d, J = 5.9 Hz, 2H), 7.71 (d, J = 8.3 Hz, 2H), 7.41 

– 7.34 (m, 4H), 7.31 (d, J = 5.4 Hz, 2H), 7.10 (d, J = 8.0 Hz, 1H), 6.26 (s, 1H), 4.25 (s, 2H), 3.74 

(s, 2H), 3.34 (t, J = 5.9 Hz, 2H), 3.24–3.15 (m, 2H), 2.95 (t, J = 5.8 Hz, 2H), 2.81 (t, J = 6.1 Hz, 

2H), 2.42 (s, 3H), 1.13 (s, 9H); 13C NMR (151 MHz, CD2Cl2) δ 166.9, 153.2, 150.2, 144.6, 135.7, 

134.2, 133.8, 133.6, 130.3, 128.2, 128.0, 127.1, 124.8, 123.2, 56.0, 54.7, 51.1, 48.1, 44.2, 40.4, 

29.4, 27.5, 21.8; HRMS (ESI) m/z calcd for C29H37N4O3S [M+H]+ 521.2581, found 521.2569. 
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          N-(4-Chlorobenzyl)-2,2-dimethylpropan-1-amine. Prepared according to the general 

procedure for reductive amination using pivalaldehyde (1.034 g, 12.0 mmol, 1.0 equiv), methyl 4-

chlorobenzylamine (1.70 g, 12.0 mmol, 1.0 equiv), NaBH(OAc)3 (3.56 g, 16.8 mmol, 1.4 equiv), 

AcOH (1 drop) and DCE (20 mL), at room temperature for 12 h. Reverse-phase flash column 

chromatography (0-100% CH3CN/H2O) afforded the title compound as a light yellow oil (1.68 g, 

7.93 mmol, 66% yield). IR (neat) 2952, 1490 cm-1; 1H NMR (600 MHz, CD2Cl2) δ 9.27 (br s, 1H), 

7.56–7.48 (m, 2H), 7.41–7.34 (m, 2H), 4.06 (s, 2H), 2.66 (s, 2H), 1.01 (s, 9H); 13C NMR (151 

MHz, CD2Cl2) δ 136.1, 132.7, 129.8, 129.6, 58.6, 52.0, 31.1, 27.7; HRMS (ESI) m/z calcd for 

C12H19ClN [M+H]+ 212.1201, found 212.1205. 

 

 

 

          2-((4-Chlorobenzyl)(neopentyl)amino)acetonitrile. To a solution of N-(4-chlorobenzyl)-

2,2-dimethylpropan-1-amine (1.58 g, 7.46 mmol, 1.0 equiv) in acetonitrile (20 mL) were added 

K2CO3 (2.06 g, 14.9 mmol, 2.0 equiv), KI (1.24 g, 7.46 mmol, 1.0 equiv) and chloroacetonitrile 

(0.62 g, 8.21 mmol, 1.1 equiv) at room temperature. The resulting mixture was stirred at this 

temperature overnight, then diluted with saturated aqueous Na2CO3. The aqueous phase was 

extracted with ether (3 × 50 mL), washed with brine, dried over Na2SO4 and concentrated in vacuo. 

Silica gel chromatography (0-20% EtOAc/hexanes) afforded the title compound as a colorless oil 

(0.996 g, 3.97 mmol, 53% yield). IR (neat) 2953, 1484 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.35–
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7.29 (m, 4H), 3.74 (s, 2H), 3.37 (s, 2H), 2.43 (s, 2H), 0.95 (s, 9H); 13C NMR (101 MHz, CDCl3) 

δ 136.4, 133.7, 130.3, 129.0, 115.8, 67.0, 60.1, 44.0, 33.5, 27.9. HRMS (ESI) m/z calcd for 

C14H20ClN2 [M+H]+ 251.1310, found 251.1310. 

 

 

          N1-(4-Chlorobenzyl)-N1-neopentylethane-1,2-diamine. To a solution of 2-((4-

chlorobenzyl)(neopentyl)amino)acetonitrile (0.687 g, 2.74 mmol, 1.0 equiv) in anhydrous THF (6 

mL) was added LiAlH4, (1 N in THF, 3.0 mL, 3.0 mmol, 1.1 equiv) dropwise at room temperature. 

The resulting mixture was stirred overnight, then gradually quenched with EtOAc and water. The 

solution was acidified with aqueous HCl (2 N) to pH 5, then washed with EtOAc. The aqueous 

phase was basified with aqueous NaOH (2 N) to pH 11, then extracted with EtOAc (3 × 50 mL), 

washed with brine, dried over Na2SO4 and concentrated in vacuo. Flash column chromatography 

(0-10% CH3OH/DCM, CH3OH containing 10% diethylamine) afforded the title compound as 

colorless oil (0.370 g, 1.45 mmol, 53% yield). IR (neat) 2961, 1489 cm-1; 1H NMR (600 MHz, 

CD2Cl2) δ 7.38–7.22 (m, 4H), 3.59 (s, 2H), 2.65 (t, J = 6.3 Hz, 2H), 2.40 (t, J = 6.3 Hz, 2H), 2.28 

(s, 2H), 0.89 (s, 9H); 13C NMR (151 MHz, CD2Cl2) δ 139.9, 132.7, 130.7, 128.7, 67.9, 61.7, 60.3, 

40.7, 33.4, 28.7;  HRMS (ESI) m/z calcd for C14H24ClN2 [M+H]+ 255.1623, found 255.1622. 
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          N-(2-((4-Chlorobenzyl)(neopentyl)amino)ethyl)-2-tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of 2-tosyl-1,2,3,4-tetrahydroisoquinoline-

6-carboxylic acid (0.025 g, 0.075 mmol, 1.0 equiv) in anhydrous DMF (0.5 mL) were added 

DIPEA (0.029 g, 0.224 mmol, 3.0 equiv) and HATU (0.031 g, 0.082 mmol, 1.0 equiv) at room 

temperature. The mixture was stirred for 5 min, followed by addition of N1-(4-chlorobenzyl)-N1-

neopentylethane-1,2-diamine (0.019 g, 0.075 mmol, 1.0 equiv). The reaction was stirred for 12 h 

at room temperature, then concentrated under N2 stream. The crude sample was purified with 

reverse-phase flash column chromatography (0-100% CH3CN/H2O) to afford the title compound 

as a yellow film (0.014 g, 0.025 mmol, 33% yield, ≥ 99% purity). IR (neat) 2950, 1640 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 7.76 (d, J = 8.3 Hz, 2H), 7.45 (s, 1H), 7.41–7.34 (m, 3H), 7.29 (t, J = 

4.2 Hz, 3H), 7.23 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.0 Hz, 1H), 6.38 (t, J = 4.4 Hz, 1H), 4.32 (s, 

2H), 3.63 (s, 2H), 3.47–3.34 (m, 4H), 3.00 (t, J = 5.8 Hz, 2H), 2.63–2.57 (m, 2H), 2.45 (s, 3H), 

2.37 (s, 2H), 0.94 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 166.9, 144.0, 138.6, 135.3, 133.8, 133.3, 

133.3, 132.9, 130.3, 129.9, 128.7, 127.9, 127.8, 126.7, 124.5, 67.4, 61.0, 54.8, 47.7, 43.7, 38.0, 

33.1, 29.0, 28.6, 21.7; HRMS (ESI) m/z calcd for C31H39ClN3O3S [M+H]+ 568.2395, found 

568.2399. 
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          N6-(2-((4-Chlorobenzyl)(neopentyl)amino)ethyl)-N2-(p-tolyl)-3,4-dihydroisoquinoline-

2,6(1H)-dicarboxamide. To a solution of 2-(p-tolylcarbamoyl)-1,2,3,4-tetrahydroisoquinoline-6-

carboxylic acid (0.025 g, 0.081 mmol, 1.0 equiv) in anhydrous DMF (0.5 mL) were added DIPEA 

(0.031 g, 0.240 mmol, 3.0 equiv) and HATU (0.031 g, 0.082 mmol, 1.0 equiv) at room temperature. 

The mixture was stirred for 5 min, followed by addition of N1-(4-chlorobenzyl)-N1-

neopentylethane-1,2-diamine (0.021 g, 0.082 mmol, 1.0 equiv). The reaction was stirred for 12 h 

at room temperature, then concentrated under N2 stream. The crude sample was purified with 

reverse-phase flash column chromatography (0-100% CH3CN/H2O) to afford the title compound 

as a colorless film (0.022 g, 0.040 mmol, 50% yield, HPLC purity = 100%). IR (neat) 3320, 3222, 

2948, 1633 cm-1; 1H NMR (600 MHz, CD2Cl2) δ 7.51 (s, 1H), 7.44 (dd, J = 7.9, 1.2 Hz, 1H), 7.32 

(d, J = 8.3 Hz, 2H), 7.29–7.26 (m, 2H), 7.26–7.21 (m, 3H), 7.10 (d, J = 8.3 Hz, 2H), 6.44 (s, 1H), 

6.37 (t, J = 5.2 Hz, 1H), 4.70 (s, 2H), 3.72 (t, J = 5.9 Hz, 2H), 3.63 (s, 2H), 3.39 (q, J = 5.6 Hz, 

2H), 2.98 (t, J = 5.8 Hz, 2H), 2.61 (t, J = 6.0 Hz, 2H), 2.37 (s, 2H), 2.30 (s, 3H), 0.93 (s, 9H); 13C 

NMR (151 MHz, CD2Cl2) δ 167.0, 155.4, 139.4, 137.5, 137.2, 136.1, 133.8, 133.2, 133.1, 130.9, 

129.8, 128.9, 127.6, 127.0, 125.0, 120.8, 67.7, 61.3, 55.4, 46.3, 42.2, 38.4, 33.3, 29.6, 28.8, 21.0; 

HRMS (ESI) m/z calcd for C32H40ClN4O2 [M+H]+ 547.2834, found 547.2838. 
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          N-(2-((4-Chlorobenzyl)(neopentyl)amino)ethyl)-2-(4-methylbenzoyl)-1,2,3,4-

tetrahydroisoquinoline-6-carboxamide. To a solution of 2-(4-methylbenzoyl)-1,2,3,4-

tetrahydroisoquinoline-6-carboxylic acid (0.024 g, 0.080 mmol, 1.0 equiv) in anhydrous DMF (0.5 

mL) were added DIPEA (0.031 g, 0.240 mmol, 3.0 equiv) and HATU (0.030 g, 0.079 mmol, 1.0 

equiv) at room temperature. The mixture was stirred for 5 min, followed by addition of N1-(4-

chlorobenzyl)-N1-neopentylethane-1,2-diamine (0.020 g, 0.078 mmol, 1.0 equiv). The reaction 

was stirred for 12 h at room temperature, then concentrated under N2 stream. The crude sample 

was purified with reverse-phase flash column chromatography (0-100% CH3CN/H2O) to afford 

the title compound as a white solid (0.022 g, 0.041 mmol, 53% yield, HPLC purity = 98.6%). 1H 

NMR (600 MHz, DMSO-d6) δ 8.21 (t, J = 5.4 Hz, 1H), 7.66–7.53 (m, 2H), 7.47–7.19 (m, 9H), 

4.72 (br s, 2H), 3.95–3.47 (m, 5H), 3.33 (q, J = 6.1 Hz, 2H), 2.87 (s, 2H), 2.61–2.52 (m, 2H), 2.39–

2.28 (m, 5H), 0.83 (s, 9H); 13C NMR (151 MHz, DMSO-d6) δ 169.5, 165.6, 139.2, 139.0, 136.1, 

134.2, 133.0, 132.7, 131.1, 130.1, 128.8, 127.9, 127.4, 126.8, 126.2, 124.7, 66.4, 59.5, 54.8, 44.4, 

40.1, 37.2, 32.7, 28.7, 27.9, 20.8.  HRMS (ESI) m/z calcd for C32H39ClN3O2 [M+H]+ 532.2725, 

found 532.7726 

 

Procedure for Chapter 3 
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          (R)-4-Benzyl-3-(2-bromoacetyl)oxazolidin-2-one. To a solution of (R)-4-

benzyloxazolidin-2-one (10.63 g, 60.0 mmol, 1.0 equiv) in THF (300 mL) was added n-BuLi (2.5 

N in hexanes, 25.20 mL, 63.0 mmol, 1.05 equiv) dropwise at –78 °C. The mixture was stirred for 

1 h at this temperature, followed by addition of neat bromoacetyl bromide (12.72 g, 63.0 mmol, 

1.05 equiv) at –78 °C. The reaction was slowly warmed to room temperature and stirred for 3 h, 

followed by quenching with aqueous NH4Cl solution at –20 °C. The aqueous layer was extracted 

with EtOAc (3 × 200 mL), then the combined organic extracts were washed with brine, dried over 

Na2SO4, and concentrated in vacuo. Normal phase flash column chromatography (0-40% 

EtOAc/hexanes) afforded the title compound as yellow oil (15.98 g, 53.6 mmol, 89% yield). [ɑ]𝐷
20 

=  ̵̶ 71.2 (c 1.0, CHCl3); IR (neat) 3029, 1774, 1698 cm-1; 1H NMR (400 MHz, acetone-d6) δ 7.39–

7.23 (m, 5H), 4.80 (m, 1H), 4.61 (AB q, ΔδAB = 0.10, J = 12.8 Hz, 2H), 4.44 (m, 1H), 4.31 (dd, J 

= 8.9, 3.2 Hz, 1H), 3.20 (dd, J = 13.6, 3.2 Hz, 1H), 2.99 (dd, J = 13.6, 8.2 Hz, 1H); 13C NMR (101 

MHz, acetone-d6) δ 166.5, 154.1, 136.5, 130.5, 129.6, 127.9, 67.5, 56.0, 37.7, 29.6; HRMS (ESI) 

m/z calcd for C12H13BrNO3 [M+H]+ 298.0073, found 298.0073.  

 

 

          (R)-Diethyl 2-(4-benzyl-2-oxooxazolidin-3-yl)-2-oxoethylphosphonate. A mixture of 

(R)-4-benzyl-3-(2-bromoacetyl)oxazolidin-2-one (15.780 g, 52.90 mmol, 1.0 equiv) and triethyl 

phosphite (17.58 g, 105.8 mmol, 2.0 equiv) was heated under reflux for 2 h. The mixture was 
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cooled to room temperature and loaded directly on silica gel column for purification (0-100% 

EtOAc/hexanes) to afford the title compound as a light yellow oil (14.57 g, 41.0 mmol, 78% yield). 

[ɑ]𝐷
20 =  ̶̵ 44.0 (c 0.5, CHCl3);  IR (neat) 2985, 1776, 1695 cm-1; 1H NMR (400 MHz, CDCl3) δ 

7.36–7.15 (m, 5H), 4.75–4.64 (m, 1H), 4.26–4.10 (m, 6H), 3.90–3.67 (m, 2H), 3.32 (dd, J = 13.4, 

3.3 Hz, 1H), 2.75 (dd, J = 13.4, 9.8 Hz, 1H), 1.34 (td, J = 7.1, 0.6 Hz, 6H); 13C NMR (101 MHz, 

CDCl3) δ 165.0, 164.9, 153.3, 135.1, 129.4, 128.9, 127.3, 66.0, 62.7, 62.7, 55.4, 37.6, 35.0, 33.7, 

16.3, 16.3; HRMS (ESI) m/z calcd for C16H23NO6P [M+H]+ 356.1258, found 356.1251. 

 

 

          (R,E)-4-Benzyl-3-(3-(1-methyl-1H-imidazol-5-yl)acryloyl)oxazolidin-2-one. To a 

solution of diethyl (R)-(2-(4-benzyl-2-oxooxazolidin-3-yl)-2-oxoethyl)phosphonate (14.32 g, 40.3 

mmol, 1.05 equiv) in anhydrous THF (200 mL), was added NaH (60% dispersion in mineral oil, 

1.61 g, 40.3 mmol, 1.05 equiv) at 0 °C. The resulting mixture was stirred for 15 min at 0 °C and 

45 min at room temperature. This solution was cooled to  –78 °C prior to addition of 1-methyl-

1H-imidazole-5-carbaldehyde (4.230 g, 38.38 mmol, 1.0 equiv) in anhydrous THF (200 mL). The 

reaction was slowly warmed to room temperature and stirred for 3 h, followed by quenching with 

water at 0 °C. The mixture was extracted with EtOAc (3 × 200 mL), then combined organic layers 

were washed with brine, dried over Na2SO4, and concentrated in vacuo. The residue was purified 

via flash column chromatography (0-80% EtOAc/hexanes) to afford title compound as a white 

solid (7.34 g, 23.6 mmol, 61% yield). Mp = 120–122 °C; [ɑ]𝐷
20 = +66.0 (c 1.0, CHCl3);   IR (neat) 
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3029, 1768, 1672, 1607 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.76 (AB q, ΔδAB = 0.03, J = 15.9 

Hz, 2H), 7.57 (s, 1H), 7.55 (s, 1H), 7.39–7.20 (m, 5H), 4.85–4.74 (m, 1H), 4.29–4.17 (m, 2H), 

3.79 (s, 3H), 3.36 (dd, J = 13.4, 3.3 Hz, 1H), 2.84 (dd, J = 13.4, 9.5 Hz, 1H); 13C NMR (101 MHz, 

CDCl3) δ 165.2, 153.7, 141.9, 135.4, 135.0, 131.4, 129.6, 129.2, 129.1, 127.5, 114.3, 66.3, 55.6, 

38.1, 33.0; HRMS (ESI) m/z calcd for C17H18N3O3 [M+H]+ 312.1343, found 312.1338. 

 

 

          (R)-4-Benzyl-3-(3-(1-methyl-1H-imidazol-5-yl)propanoyl)oxazolidin-2-one. A round-

bottom flask was flushed with N2, then charged with a solution of (R,E)-4-benzyl-3-(3-(1-methyl-

1H-imidazol-5-yl)acryloyl)oxazolidin-2-one (5.00 g, 16.1 mmol, 1.0 equiv) in EtOAc (160 mL) 

and Pd/C (0.500 g, 10 wt%). The resulting suspension was and stirred under an H2 atmosphere 

(balloon) at room temperature for 16 h. The mixture was filtered through Celite, and concentrated 

to afford the title product as a yellow oil (5.03 g, 16.1 mmol, 100% yield). [ɑ]𝐷
20 =  ̶̵ 65.2 (c 0.5, 

CHCl3);  IR (neat) 2982, 1776, 1733, 1697 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.41–7.23 (m, 4H), 

7.20–7.14 (m, 2H), 6.83 (s, 1H), 4.71–4.61 (m, 1H), 4.27–4.13 (m, 2H), 3.61 (s, 3H), 3.37–3.20 

(m, 3H), 2.95 (t, J = 7.3 Hz, 2H), 2.76 (dd, J = 13.4, 9.6 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 

171.9, 153.6, 137.9, 135.2, 130.5, 129.5, 129.1, 127.5, 126.7, 66.5, 55.3, 38.0, 34.6, 31.4, 18.7; 

HRMS (ESI) m/z calcd for C17H20N3O3 [M+H]+ 314.1499, found 314.1496. 
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          (R)-4-Benzyl-3-((R)-2-((1-methyl-1H-imidazol-5-yl)methyl)pent-4-enoyl)oxazolidin-2-

one. To a solution of (R)-4-benzyl-3-(3-(1-methyl-1H-imidazol-5-yl)propanoyl)oxazolidin-2-one 

(5.02 g, 16.0 mmol, 1.0 equiv) in anhydrous THF (140 mL) was added NaHMDS (1 N in THF, 

17.62 mL, 17.62 mmol, 1.1 equiv) dropwise over 10 min at  ̶̵ 78 °C. The resulting mixture was 

warmed to room temperature and stirred for 1 h. The mixture was cooled to  ̶̵ 78 °C, followed by 

slow addition of allyl iodide (4.31 g, 25.6 mmol, 1.6 equiv) at this temperature. The reaction was 

stirred at  ̵̶ 78 °C for 1 h, followed by another 2 h of stirring at  ̵̶ 20 °C. The reaction was quenched 

by the addition of saturated aqueous NH4Cl solution at  ̶̵ 20 °C and slowly warmed to room 

temperature while stirring. The reaction mixture was extracted with EtOAc (3 × 100 mL), then the 

combined organic layer was washed with brine, dried over Na2SO4, and concentrated in vacuo. 

The residue was purified with reverse-phase flash column chromatography (0–100% CH3CN/H2O) 

to afford title product as yellow oil (3.55 g, 10.1 mmol, 63% yield). [ɑ]𝐷
20 =  ̶̵ 95.2 (c 1.1, CHCl3); 

IR (neat) 1770, 1692, 1502 cm-1; 1H NMR (400 MHz, CD2Cl2) δ 7.37–7.23 (m, 4H), 7.23–7.18 

(m, 2H), 6.69 (s, 1H), 5.87 (ddt, J = 17.1, 10.1, 7.0 Hz, 1H), 5.21–5.08 (m, 2H), 4.67–4.53 (m, 

1H), 4.30–4.19 (m, 1H), 4.11–4.03 (m, 2H), 3.56 (s, 3H), 3.20 (dd, J = 13.5, 3.4 Hz, 1H), 2.97 (dd, 

J = 15.0, 9.9 Hz, 1H), 2.79–2.68 (m, 2H), 2.63–2.51 (m, 1H), 2.43–2.32 (m, 1H); 13C NMR (101 

MHz, CD2Cl2) δ 175.2, 153.7, 138.3, 136.0, 135.3, 130.0, 129.8, 129.3, 127.7, 127.6, 118.1, 66.7, 

55.8, 42.3, 38.5, 37.1, 31.7, 26.2; HRMS (ESI) m/z calcd for C20H24N3O3 [M+H]+ 354.1812, found 

354.1806. 
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          (R)-2-((1-Methyl-1H-imidazol-5-yl)methyl)pent-4-enoic acid. To a solution of (R)-4-

benzyl-3-((R)-2-((1-methyl-1H-imidazol-5-yl)methyl)pent-4-enoyl)oxazolidin-2-one (3.00 g, 

8.49 mmol, 1.0 equiv) in THF (42.5 mL), was added a solution of LiOH (0.713 g, 17.0 mmol) and 

H2O2 (30% weight in water, 4.25 mL, 41.6 mmol, 4.9 equiv) in H2O (42.5 mL) at 0 °C. The 

reaction was stirred for 2 h, followed by quenching with saturated aqueous solution of Na2SO3 at 

0 °C, and concentrated in vacuo. The residue was purified with reverse-phase flash column 

chromatography (0 ̶̵ 100% CH3CN/H2O) to afford the title compound as colorless oil. (1.481 g, 

8.49 mmol, 90% yield). [ɑ]𝐷
20 = +6.2 (c 0.5, EtOH); IR (neat) 3364, 1590 cm-1; 1H NMR (600 

MHz, CD3OD) δ 7.45 (s, 1H), 6.76 (s, 1H), 5.91–5.80 (m, 1H), 5.05 (dq, J = 17.1, 1.6 Hz, 1H), 

4.98 (ddt, J = 10.2, 2.2, 1.1 Hz, 1H), 3.61 (s, 3H), 2.86 (dd, J = 15.3, 8.9 Hz, 1H), 2.63 (dd, J = 

15.3, 5.7 Hz, 1H), 2.57–2.49 (m, 1H), 2.44–2.35 (m, 1H), 2.27–2.17 (m, 1H); 13C NMR (151 MHz, 

CD3OD) δ 182.7, 138.4, 138.1, 132.8, 126.7, 116.4, 49.4, 38.5, 31.6, 27.4; HRMS (ESI) m/z calcd 

for C10H15N2O2 [M+H]+ 195.1128, found 195.1129. 

 

 

          tert-Butyl (1-(allylamino)-2-methyl-1-oxopropan-2-yl)carbamate. To a solution of -

(Boc-amino)isobutyric acid (6.10 g, 30.0 mmol, 1.0 equiv) in DCM (150 mL), were added DIPEA 
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(11.63 g, 90.0 mmol, 3.0 equiv) and HATU (11.41 g, 30.0 mmol, 1.0 equiv) at room temperature. 

The resulting mixture was stirred for 5 min, followed by addition of allylamine (1.71 g, 30.0 mmol, 

1.0 equiv) dropwise at room temperature. The reaction was stirred for 12 h, then diluted with water. 

The aqueous layer was extracted with DCM (2 × 100 mL), then the combined organic layers were 

washed with brine, dried over Na2SO4, and concentrated in vacuo. The residue was purified with 

reverse-phase flash column chromatography to afford the title compound as a white solid (4.79 g, 

19.8 mmol, 66% yield). Mp = 123 ̶̵ 124 °C; IR (neat) 3321, 1684, 1656 cm-1; 1H NMR (400 MHz, 

CHCl3) δ 6.57 (s, 1H), 5.83 (ddt, J = 17.2, 10.3, 5.5 Hz, 1H), 5.20 (dq, J = 17.2, 1.7 Hz, 1H), 5.11 

(dq, J = 10.3, 1.4 Hz, 1H), 4.89 (s, 1H), 3.88 (tt, J = 5.7, 1.6 Hz, 2H), 1.49 (s, 6H), 1.43 (s, 9H); 

13C NMR (101 MHz, CHCl3) δ 174.6, 154.9, 134.4, 116.2, 80.4, 57.0, 42.1, 28.4, 25.9; HRMS 

(ESI) m/z calcd for C12H22N2NaO3 [M+Na]+ 265.1523, found 265.1522. 

 

 

          tert-Butyl (S)-2-((1-(allylamino)-2-methyl-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1-

carboxylate. To a solution of tert-butyl (1-(allylamino)-2-methyl-1-oxopropan-2-yl)carbamate 

(3.16 g, 13.0 mmol, 1.0 equiv) in DCM (26 mL) was added TFA (26 mL) at room temperature. 

The resulting mixture was stirred for 3 h at room temperature, then concentrated in vauco to afford 

a crude TFA salt of N-allyl-2-amino-2-methylpropanamide, which was used directly in the 

subsequent HATU promoted amide coupling without further purification. To a solution of N-Boc-

L-proline (2.81 g, 13.0 mmol, 1.0 equiv) in DCM (35 mL), were added DIPEA (6.74 g, 52.2 mmol, 
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4.0 equiv) and HATU (4.96 g, 13.0 mmol, 1.0 equiv) at room temperature. The resulting mixture 

was stirred at room temperature for 5 min, followed by addition of the previously obtained TFA 

salt of N-allyl-2-amino-2-methylpropanamide (13.04 mmol, 1.0 equiv). The reaction was stirred 

for 12 h, then concentrated. The crude sample was purified with reverse-phase flash column 

chromatography (0-100% CH3CN/H2O) to afford the title as a white solid (2.64 g, 7.78 mmol, 60% 

yield). mp = 161 ̶ 164 °C; [ɑ]𝐷
20 =  ̶ 27.0 (c 0.5, DMSO); IR (neat) 3321, 2978, 1674, 1656, 1537 

cm-1; 1H NMR (600 MHz, DMSO-d6, 40 ºC) δ 8.22–7.67 (m, 1H), 7.51 (s, 1H), 5.85–5.65 (m, 1H), 

5.19–5.08 (m, 1H), 5.08–4.94 (m, 1H), 4.14–4.00 (m, 1H), 3.81–3.51 (m, 2H), 3.41–3.26 (m, 2H), 

2.16–1.63 (m, 4H), 1.57–1.14 (m, 15H); major rotamer 13C NMR (101 MHz, DMSO-d6) δ 173.8, 

171.8, 154.1, 135.2, 114.5, 79.1, 59.7, 56.2, 46.8, 41.0, 29.5, 28.1, 26.6, 24.2, 24.2; minor rotamer 

13C NMR (101 MHz, DMSO-d6) δ 173.7, 171.7, 153.3, 135.4, 114.5, 78.4, 59.6, 55.8, 46.5, 41.1, 

30.7, 28.0, 25.5, 24.3, 23.0; HRMS (ESI) m/z calcd for C17H29N3NaO4 [M+Na]+ 362.2050, found 

362.2050. 

 

 

          (S)-N-(1-(Allylamino)-2-methyl-1-oxopropan-2-yl)-1-((R)-2-((1-methyl-1H-imidazol-

5-yl)methyl)pent-4-enoyl)pyrrolidine-2-carboxamide 2,2,2-trifluoroacetate. To a solution of 

tert-butyl (S)-2-((1-(allylamino)-2-methyl-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1-

carboxylate (2.60 g, 7.66 mmol, 1.0 equiv) in DCM (16 mL) was added TFA (16 mL) at room 



227 
 

temperature. The resulting mixture was stirred for 3 h. The reaction was concentrated in vacuo to 

afford a TFA salt of (S)-N-(1-(allylamino)-2-methyl-1-oxopropan-2-yl)pyrrolidine-2-carboxamide, 

which was used directly in the subsequent HATU promoted amide coupling without further 

purification. To the solution of (R)-2-((1-methyl-1H-imidazol-5-yl)methyl)pent-4-enoic acid (1.49 

g, 7.66 mmol, 1.0 equiv) and DIPEA (4.95 g, 38.3 mmol, 5.0 equiv) in anhydrous DMF (50 mL) 

was added HATU (2.91 g, 7.66 mmol, 1.0 equiv) at room temperature. The resulting mixture was 

stirred for 5 min, followed by addition of the TFA salt of (S)-N-(1-(allylamino)-2-methyl-1-

oxopropan-2-yl)pyrrolidine-2-carboxamide (7.66 mmol, 1.0 equiv) in anhydrous DMF (20 mL). 

After stirred for 12 h at room temperature, the reaction was concentrated under an N2 stream. The 

residue was purified with reverse-phase flash column chromatography (0 ̶100% CH3CN/0.5% 

TFA in H2O) to afford the title product as a yellow foam (1.969 g, 3.84 mmol, 50% yield). mp = 

42 ̶ 44 °C. [ɑ]𝐷
20  =  ̶ 56.1  (c 1.0, CHCl3); IR (neat) 3326, 2980, 1625 cm-1; 1H NMR (400 MHz, 

CD3OD) δ 7.53 (br s, 1H), 6.70 (br s, 1H), 5.94–5.76 (m, 2H), 5.26–5.01 (m, 4H), 4.21 (dd, J = 

7.7, 6.3 Hz, 1H), 3.85 (ddt, J = 16.0, 5.2, 1.8 Hz, 1H), 3.71 (ddt, J = 15.9, 5.3, 1.8 Hz, 1H), 3.65–

3.52 (m, 4H), 3.22 (ddd, J = 9.8, 7.3, 5.2 Hz, 1H), 3.02–2.71 (m, 3H), 2.53–2.40 (m, 1H), 2.32–

2.17 (m, 1H), 2.14–1.94 (m, 2H), 1.93–1.81 (m, 1H), 1.78–1.64 (m, 1H), 1.52 (s, 3H), 1.43 (s, 3H); 

13C NMR (151 MHz, CD3OD) δ 176.8, 175.4, 174.3, 138.8, 136.6, 135.6, 131.6, 126.8, 117.8, 

115.8, 61.9, 58.2, 48.9, 44.8, 43.1, 38.0, 31.7, 30.2, 27.4, 26.5, 26.0, 24.3; HRMS (ESI) m/z calcd 

for for C22H34N5O3 [M+H]+ 416.2656, found 416.2650. 
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          (10R,15aS,E)-3,3-dimethyl-10-((1-methyl-1H-imidazol-5-yl)methyl)-

2,3,5,6,9,10,13,14,15,15a-decahydro-1H-pyrrolo[1,2-a][1,4,7]triazacyclotridecine-1,4,11-

trione (trans-3.23) and (10R,15aS,Z)-3,3-dimethyl-10-((1-methyl-1H-imidazol-5-yl)methyl)-

2,3,5,6,9,10,13,14,15,15a-decahydro-1H-pyrrolo[1,2-a][1,4,7]triazacyclotridecine-1,4,11-

trione (cis-3.23). To a solution of 3.22 (1.960 g, 3.82 mmol, 1.0 equiv) in anhydrous DCM (350 

mL) was added Hoveyda-Grubbs 2 catalyst (0.359 g, 0.574 mmol, 0.15 equiv) at room temperature, 

then stirred for 15 h at this temperature. The reaction was quenched by addition of DMSO (7.470 

g, 96.0 mmol, 25.0 equiv), and stirred for 2 h. The mixture was concentrated in vacuo to remove 

DCM, with residue purified with reverse-phase flash column chromatography (0-100% 

CH3CN/H2O) to afford the majority of products as inseparable mixture of cis/trans isomers (0.460 

g, 1.19 mmol, 31% yield). Only small fraction of trans-3.23 was isolated (0.002 g), which was 

characterized with 1H NMR and HRMS. 1H NMR (600 MHz, CD3OD) δ 7.50 (s, 1H), 6.67 (s, 1H), 

5.68 (ddd, J = 15.1, 10.0, 5.0 Hz, 1H), 5.30 (ddd, J = 15.1, 9.6, 5.2 Hz, 1H), 4.39 (dd, J = 8.5, 3.7 

Hz, 1H), 4.13 (dd, J = 12.7, 5.2 Hz, 1H), 3.72 (dd, J = 6.2, 3.7 Hz, 1H), 3.65 (s, 3H), 3.55 (dt, J = 

10.0, 6.8 Hz, 1H), 3.19 (dd, J = 12.6, 9.7 Hz, 1H), 3.11 (dd, J = 15.2, 10.0 Hz, 1H), 2.72–2.64 (m, 

1H), 2.40 (ddd, J = 13.2, 10.0, 5.3 Hz, 1H), 2.35–2.23 (m, 2H), 2.03 (dq, J = 14.5, 9.3, 8.3 Hz, 

1H), 1.95–1.86 (m, 2H), 1.43 (s, 3H), 1.37 (s, 3H); HRMS (ESI) m/z calcd for for C20H30N5O3 

[M+H]+ 388.2343, found 388.2344. 
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          (10R,15aS)-3,3-dimethyl-10-((1-methyl-1H-imidazol-5-yl)methyl)dodecahydro-1H-

pyrrolo[1,2-a][1,4,7]triazacyclotridecine-1,4,11-trione. A solution of 3.23 (0.460 g, 1.187 mmol, 

1.0 equiv) in CH3OH (40 mL) was stirred under an H2 atmosphere (balloon) for 18 h. The reaction 

nixture was filtered through Celite, then concentrated in vacuo to afford the title compound as a 

white solid (0.460 g, 1.18 mmol, 100% yield). Mp = 163 ̶ 165 °C. [ɑ]𝐷
20 =  ̶ 24.0 (c 0.5, EtOH); IR 

(neat) 3326, 2944, 1667, 1613 cm-1; 1H NMR (400 MHz, CD3OD) δ 7.52 (s, 1H), 6.71 (s, 1H), 

4.50 (dd, J = 7.8, 5.8 Hz, 1H), 3.64 (s, 3H), 3.59 (ddd, J = 13.8, 5.0, 2.3 Hz, 1H), 3.50 (dt, J = 9.8, 

7.6 Hz, 1H), 3.03–2.68 (m, 5H), 2.17–1.99 (m, 2H), 1.92 (dtd, J = 12.8, 7.0, 5.4 Hz, 1H), 1.81–

1.32 (m, 11H), 1.30–1.01 (m, 2H); 13C NMR (101 MHz, CD3OD) δ 178.0, 176.8, 174.7, 139.0, 

131.5, 127.1, 61.3, 58.8, 48.7, 37.2, 31.6, 30.6, 29.0, 28.3, 27.3, 27.3, 26.3, 23.3, 21.6; HRMS 

(ESI) m/z calcd for for C20H32N5O3 [M+H]+ 390.2500, found 390.2500. The structure was 

confirmed with single crystal X-ray experiment (see appendices) 

General Procedure for the Kinetic Resolution of Racemic Alcohols. A stock solution of catalyst 

was prepared by dissolving 3.13 (0.025 g, 0.064 mmol) in anhydrous DCM (20 mL). A stock 

solution of DIPEA was prepared by dissolving the base (0.033 g, 0.26 mmol) in anhydrous toluene 

(1 mL). A solution of substrate was prepared by dissolving alcohol (0.128 mmol, 1.0 equiv) in 

anhydrous toluene (12.8 mL). To an oven-dried flask was added 1.0 mL of catalyst solution 
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(0.0032 mmol, 2.5 mol %), followed by removal of DCM in vacuo. To the flask containing catalyst 

was added the previously prepared substrate solution. The resulting mixture was stirred at 25 °C 

for 30 min, then DIPEA (0.10 mL of stock solution, 0.026 mmol, 0.2 equiv) and Ac2O (0.108 g, 

1.058 mmol, 8.26 equiv) were introduced. During the reaction, aliquot of 0.05 mL were removed 

per 15 min, quenched with 0.05 mL of CH3OH, and directed monitored by chiral HPLC in order 

to estimate an appropriate time to quench the reaction. The reaction was quenched with 10 mL of 

CH3OH, concentrated in vacuo, and purified with reverse-phase flash column chromatography (0 ̶ 

100% CH3CN/H2O) to afford the product and recovered starting material. The enantiomeric excess 

of both product and recovered starting material was obtained by chiral HPLC analysis. Conversion 

and selectivity factor s were calculated by the method of Kagan.22 

 

 

           trans-2-Acetamidocyclohexyl acetate (3.7-Ac). The reaction was quenched at 2.5 h and 

afforded 3.7-Ac (0.010 g, 0.050 mmol, 39%) and recovered 3.7 (0.010 g, 0.064 mmol, 50%) after 

purification. IR (neat) 3282, 1729, 1731, 1642, 1556 cm-1; 1H NMR (600 MHz, CDCl3) δ 5.73 (d, 

J = 8.2 Hz, 1H), 4.62 (ddd, J = 11.2, 10.1, 4.6 Hz, 1H), 3.83 (dddd, J = 11.2, 10.1, 8.2, 4.3 Hz, 

1H), 2.01 (s, 4H), 1.89 (s, 4H), 1.78–1.71 (m, 1H), 1.70–1.61 (m, 1H), 1.5–1.40 (m, 1H), 1.37–

1.20 (m, 2H), 1.19–1.08 (m, 1H); 13C NMR (151 MHz, CDCl3) δ 172.0, 169.8, 74.8, 53.0, 32.2, 

31.2, 24.2, 23.5, 21.3; HRMS (ESI) m/z calcd for C10H18NO3 [M+H]+ 200.1281, found 200.1278. 

Chiral HPLC analysis of 3.7-Ac: 3.7-Ac was hydrolyzed with NaOH (1 N in 1:1 EtOH-H2O) to 
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free alcohol (3.7) for ee analysis. Chiralpak IA analytical column (4.6 × 250 mm), flow rate 1 

mL/min, isocratic (5% isopropanol/hexanes), detector wavelength (220 nm); tR = 20.3 min (1R, 

2R, minor), 25.9 (1S, 2S, major). Chiral HPLC analysis of recovered 3.7: Chiralpak IA analytical 

column (4.6 × 250 mm), flow rate 1 mL/min, isocratic (5% isopropanol/hexanes), detector 

wavelength (220 nm); tR = 19.7 min (1R,2R, major), 26.5 (1S,2S, minor). The absolute 

configuration was determined by comparing with the tR of (1R,2R)-3.7 (18.9 min) and tR of 

racemic 3.7 (20.2 min, 26.8 min) under the same conditions. 

 

 

          trans-2-Acetamidocycloheptyl acetate (3.24-Ac). The reaction was quenched at 2.5 h and 

afforded 3.24-Ac (0.010 g, 0.047 mmol, 37%) and recovered 3.24 (0.011 g, 0.064 mmol, 50%) 

after purification.IR (neat) 3272, 2931, 1731, 1646 cm-1;1H NMR (400 MHz, CDCl3) δ 5.77 (d, J 

= 7.4 Hz, 1H), 4.84–4.74 (m, 1H), 4.00 (qd, J = 9.0, 3.4 Hz, 1H), 2.02 (s, 3H), 1.91 (s, 3H), 1.86–

1.43 (m, 10H); 13C NMR (101 MHz, CDCl3) δ 171.7, 169.6, 77.6, 55.4, 31.6, 31.5, 27.8, 24.1, 

23.5, 22.6, 21.4; HRMS (ESI) m/z calcd for C11H20NO3 [M+H]+ 214.1438, found 214.1436. Chiral 

HPLC analysis of 3.24-Ac: 3.24-Ac was inseparable with all methods surveyed, which was then 

hydrolyzed with NaOH (1 N in 1:1 EtOH/H2O) to free alcohol (3.24) for ee analysis. Chiralpak IA 

analytical column (4.6 × 250 mm), flow rate 1 mL/min, isocratic (5% isopropanol/hexanes), 

detector wavelength (220 nm); tR = 21.6 min (1R, 2R, minor), 27.1 (1S, 2S, major). Chiral HPLC 

analysis of recovered 3.24: Chiralpak IA analytical column (4.6 × 250 mm), flow rate 1 mL/min, 
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isocratic (5% isopropanol/hexanes), detector wavelength (220 nm); tR = 21.9 min (1R,2R, major), 

29.3 (1S,2S, minor). The absolute configuration was determined by comparing with the tR of 

(1S,2S)-3.24 (28.4 min) and tR of racemic 3.24 (21.7 min, 28.7 min) at the same conditions. 

 

 

          trans-2-Acetamidocyclooctyl acetate (3.25-Ac). The reaction was quenched at 3.0 h and 

afforded 3.25-Ac (0.014 g, 0.062 mmol, 48%) and recovered 3.25 (0.010 g, 0.054 mmol, 42%) 

after purification. IR (neat) 3287, 2926, 1647, 1556 cm-1; 1H NMR (400 MHz, CD3OD) δ 4.90 

(ddd, J = 10.0, 6.9, 2.1 Hz, 1H), 4.13 (ddd, J = 10.0, 7.2, 2.8 Hz, 1H), 1.98 (s, 3H), 1.90 (s, 3H), 

1.88–1.43 (m, 12H). 13C NMR (101 MHz, CD3OD) δ 172.6, 172.5, 78.1, 53.5, 31.7, 30.0, 26.7, 

26.7, 26.1, 25.3, 22.6, 21.1; HRMS (ESI) m/z calcd for C12H22NO3 [M+H]+ 228.1594, found 

228.1591. Chiral HPLC analysis of 3.25-Ac: Chiralpak IA analytical column (4.6 × 250 mm), flow 

rate 1 mL/min, isocratic (2% isopropanol/hexanes), detector wavelength (220 nm); tR = 16.8 min 

(1R,2R, minor), 20.1 (1S,2S, major). Chiral HPLC analysis of recovered 3.25: Chiralpak IA 

analytical column (4.6 × 250 mm), flow rate 1 mL/min, isocratic (5% isopropanol/hexanes), 

detector wavelength (220 nm); tR = 18.5 min (1R, 2R, major), 24.3 (1S, 2S, minor). The absolute 

configuration was determined by comparing the specific optical rotation of recovered 3.25 [ɑ]𝐷
20 

=  ̶ 9.1 (c 0.2, EtOH) with reported (1S,2S)-2-amino-cyclooctanol [ɑ]𝐷
20 =  +19 (c 0.765, EtOH).23 
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          trans-6-Acetamidocyclohex-3enyl acetate (3.26-Ac). The reaction was quenched at 2.0 h 

and afforded 3.26-Ac (0.006 g, 0.030 mmol, 24%) and recovered 3.26 (0.013 g, 0.084 mmol, 65%) 

after purification. IR (neat) 3283, 1729, 1650, 1548 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.69 (d, 

J = 7.1 Hz, 1H), 5.63–5.53 (m, 2H), 4.97 (ddd, J = 9.9, 8.6, 5.9 Hz, 1H), 4.26–4.14 (m, 1H), 2.65–

2.52 (m, 1H), 2.49–2.37 (m, 1H), 2.35 – 2.24 (m, 1H), 2.06 (d, J = 0.4 Hz, 3H), 2.02–1.91 (m, 4H); 

13C NMR (101 MHz, CDCl3) δ 172.0, 170.0, 124.8, 124.1, 71.0, 49.0, 31.8, 30.7, 23.5, 21.3; 

HRMS (ESI) m/z calcd for C10H15NNaO3 [M+Na]+ 220.0944, found 220.0941. Chiral HPLC 

analysis of 3.26-Ac: Chiralpak IC analytical column (4.6 × 250 mm), flow rate 0.6 mL/min, 

isocratic (10% isopropanol/hexanes), detector wavelength (220 nm); tR = 26.4 min (major), 36.2 

(minor). Chiral HPLC analysis of recovered 3.26: Chiralpak IA analytical column (4.6 × 250 mm), 

flow rate 1.0 mL/min, isocratic (5% isopropanol/hexanes), detector wavelength (220 nm); tR = 

19.4 min (major), 27.0 (minor). The absolute configuration was not determined. 

 

 

          (1S,2S)-rel-2-acetamido-1,2-diphenylethyl acetate (3.27-Ac). The reaction was quenched 

at 5.0 h and afforded 3.27-Ac (0.008 g, 0.027 mmol, 21%) and recovered 3.27 (0.021 g, 0.082 

mmol, 64%) after purification. IR (neat) 3273, 1736, 1649, 1541 cm-1; 1H NMR (400 MHz, 
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CD3OD) δ 7.30–7.13 (m, 10H), 5.98 (d, J = 7.2 Hz, 1H), 5.38 (d, J = 7.2 Hz, 1H), 2.05 (s, 3H), 

1.95 (s, 3H). 13C NMR (101 MHz, CD3OD) δ 172.8, 171.6, 139.9, 139.0, 129.3, 129.2, 129.1, 

128.6, 128.6, 128.1, 79.2, 58.9, 22.4, 20.8; HRMS (ESI) m/z calcd for C16H18NO2 [M+H]+ 

298.1438, found 298.1439. Chiral HPLC analysis of 3.27-Ac: Chiralpak IA analytical column (4.6 

× 250 mm), flow rate 1.0 mL/min, isocratic (5% isopropanol/hexanes), detector wavelength (220 

nm); tR = 22.8 min (minor), 27.3 (major). Chiral HPLC analysis of recovered 3.27: Chiralpak IC 

analytical column (4.6 × 250 mm), flow rate 0.6 mL/min, isocratic (10% isopropanol/hexanes), 

detector wavelength (220 nm); tR = 26.1 min (minor), 34.6 (major). The absolute configuration 

was not determined. 
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Appendices 

X-ray crystallographic data of trans-1.49 

Table A1.1.  Crystal data and structure refinement for trans-1.49 

Identification code  v74b 

Empirical formula  C25 H35 N3 O4 

Formula weight  441.56 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  P21/n 

Unit cell dimensions a = 10.9057(9) Å = 90°. 

 b = 18.4019(15) Å = 112.106(2)°. 

 c = 12.5970(10) Å  = 90°. 

Volume 2342.2(3) Å3 

Z 4 

Density (calculated) 1.252 Mg/m3 

Absorption coefficient 0.684 mm-1 

F(000) 952 

Crystal size 0.250 x 0.090 x 0.040 mm3 

Theta range for data collection 4.486 to 68.108°. 

Index ranges -10<=h<=13, -19<=k<=22, -14<=l<=10 

Reflections collected 15007 

Independent reflections 4154 [R(int) = 0.0229] 

Completeness to theta = 66.000° 99.4 %  



236 
 

Absorption correction Multi-scan 

Max. and min. transmission 1.000 and 0.876 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4154 / 0 / 429 

Goodness-of-fit on F2 1.028 

Final R indices [I>2sigma(I)] R1 = 0.0450, wR2 = 0.1168 

R indices (all data) R1 = 0.0497, wR2 = 0.1214 

Extinction coefficient n/a 

Largest diff. peak and hole 0.540 and -0.276 e.Å-3 
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Table A1.2.  Atomic coordinates ( x 104) and equivalent  isotropic displacement parameters 

(Å2x 103) for trans-1.49.  U(eq) is defined as one third of  the trace of the orthogonalized Uij 

tensor. 

______________________________________________________________________________  

 x y z U(eq) 

______________________________________________________________________________  

C(1) 3368(2) 1714(1) 3478(2) 28(1) 

C(2) 3842(2) 1210(1) 4548(2) 33(1) 

C(3) 3030(2) 498(1) 4307(2) 41(1) 

C(4) 3159(2) 74(1) 3316(2) 43(1) 

C(5) 2657(2) 529(1) 2228(2) 38(1) 

C(6) 3341(2) 1265(1) 2406(2) 34(1) 

C(7) 3825(2) 1554(1) 5639(2) 37(1) 

N(8) 4293(1) 2342(1) 3631(1) 23(1) 

C(9) 3906(2) 2873(1) 2818(1) 24(1) 

O(10) 2844(1) 2867(1) 1999(1) 30(1) 

C(11) 4788(2) 3527(1) 2940(1) 24(1) 

N(12) 4978(1) 3970(1) 3833(1) 27(1) 

C(13) 5632(2) 4591(1) 3868(2) 30(1) 

C(14) 6131(2) 4787(1) 3052(2) 35(1) 

C(15) 5952(2) 4316(1) 2149(2) 37(1) 

C(16) 5258(2) 3679(1) 2084(2) 30(1) 

C(17) 5700(2) 2292(1) 4401(1) 24(1) 

C(18) 6533(2) 1823(1) 3984(1) 26(1) 

O(19) 6550(1) 1976(1) 2922(1) 31(1) 
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C(20) 7496(2) 1529(1) 2790(2) 38(1) 

C(21) 8048(2) 1111(1) 3721(2) 37(1) 

C(22) 7418(2) 1296(1) 4495(2) 31(1) 

C(23) 1984(2) 2028(1) 3308(1) 27(1) 

O(24) 972(1) 1711(1) 2682(1) 34(1) 

N(25) 1946(2) 2616(1) 3909(1) 28(1) 

C(26) 720(2) 2964(1) 3836(2) 30(1) 

C(27) 293(2) 2685(1) 4787(2) 35(1) 

C(28) -944(2) 3074(1) 4780(2) 44(1) 

C(29) -736(2) 3890(1) 4861(2) 44(1) 

C(30) -365(2) 4164(1) 3883(2) 42(1) 

C(31) 886(2) 3788(1) 3885(2) 35(1) 

O(1W) 4013(1) 3532(1) 5595(1) 32(1) 

______________________________________________________________________________
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Table A1.3.   Bond lengths [Å] and angles [°] for  trans-1.49 

_____________________________________________________  

C(1)-N(8)  1.498(2) 

C(1)-C(23)  1.554(2) 

C(1)-C(2)  1.555(2) 

C(1)-C(6)  1.573(3) 

C(2)-C(7)  1.518(3) 

C(2)-C(3)  1.547(3) 

C(2)-H(2)  1.06(2) 

C(3)-C(4)  1.523(3) 

C(3)-H(3A)  1.02(3) 

C(3)-H(3B)  1.00(2) 

C(4)-C(5)  1.521(3) 

C(4)-H(4A)  1.05(3) 

C(4)-H(4B)  1.11(3) 

C(5)-C(6)  1.522(3) 

C(5)-H(5A)  1.09(2) 

C(5)-H(5B)  1.06(2) 

C(6)-H(6A)  1.06(2) 

C(6)-H(6B)  0.99(2) 

C(7)-H(7A)  1.09(3) 

C(7)-H(7B)  1.00(2) 

C(7)-H(7C)  1.05(3) 

N(8)-C(9)  1.363(2) 
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N(8)-C(17)  1.478(2) 

C(9)-O(10)  1.227(2) 

C(9)-C(11)  1.512(2) 

C(11)-N(12)  1.340(2) 

C(11)-C(16)  1.386(2) 

N(12)-C(13)  1.339(2) 

C(13)-C(14)  1.380(3) 

C(13)-H(13)  0.97(2) 

C(14)-C(15)  1.383(3) 

C(14)-H(14)  0.95(2) 

C(15)-C(16)  1.382(3) 

C(15)-H(15)  0.99(3) 

C(16)-H(16)  0.95(2) 

C(17)-C(18)  1.486(2) 

C(17)-H(17A)  0.98(2) 

C(17)-H(17B)  0.95(2) 

C(18)-C(22)  1.348(2) 

C(18)-O(19)  1.374(2) 

O(19)-C(20)  1.377(2) 

C(20)-C(21)  1.340(3) 

C(20)-H(20)  0.98(3) 

C(21)-C(22)  1.430(3) 

C(21)-H(21)  1.00(3) 

C(22)-H(22)  0.93(2) 
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C(23)-O(24)  1.236(2) 

C(23)-N(25)  1.330(2) 

N(25)-C(26)  1.453(2) 

N(25)-H(25N)  0.82(2) 

C(26)-C(31)  1.525(3) 

C(26)-C(27)  1.529(2) 

C(26)-H(26)  0.93(2) 

C(27)-C(28)  1.525(3) 

C(27)-H(27A)  1.04(2) 

C(27)-H(27B)  1.07(2) 

C(28)-C(29)  1.516(3) 

C(28)-H(28A)  1.07(3) 

C(28)-H(28B)  1.06(3) 

C(29)-C(30)  1.520(3) 

C(29)-H(29A)  1.00(3) 

C(29)-H(29B)  1.04(2) 

C(30)-C(31)  1.529(3) 

C(30)-H(30A)  1.00(3) 

C(30)-H(30B)  0.94(3) 

C(31)-H(31A)  0.99(2) 

C(31)-H(31B)  0.94(2) 

O(1W)-H(1W1)  0.86(3) 

O(1W)-H(1W2)  0.88(3) 
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N(8)-C(1)-C(23) 107.55(13) 

N(8)-C(1)-C(2) 111.11(13) 

C(23)-C(1)-C(2) 109.28(14) 

N(8)-C(1)-C(6) 108.05(14) 

C(23)-C(1)-C(6) 111.94(14) 

C(2)-C(1)-C(6) 108.93(15) 

C(7)-C(2)-C(3) 109.22(16) 

C(7)-C(2)-C(1) 115.04(16) 

C(3)-C(2)-C(1) 110.84(15) 

C(7)-C(2)-H(2) 108.8(11) 

C(3)-C(2)-H(2) 105.4(12) 

C(1)-C(2)-H(2) 107.1(11) 

C(4)-C(3)-C(2) 111.87(17) 

C(4)-C(3)-H(3A) 111.6(14) 

C(2)-C(3)-H(3A) 110.3(14) 

C(4)-C(3)-H(3B) 113.6(13) 

C(2)-C(3)-H(3B) 111.0(13) 

H(3A)-C(3)-H(3B) 97.6(18) 

C(5)-C(4)-C(3) 110.10(18) 

C(5)-C(4)-H(4A) 110.4(13) 

C(3)-C(4)-H(4A) 108.4(13) 

C(5)-C(4)-H(4B) 108.1(13) 

C(3)-C(4)-H(4B) 109.9(13) 

H(4A)-C(4)-H(4B) 110.0(19) 
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C(4)-C(5)-C(6) 111.53(16) 

C(4)-C(5)-H(5A) 109.7(12) 

C(6)-C(5)-H(5A) 106.0(12) 

C(4)-C(5)-H(5B) 111.8(11) 

C(6)-C(5)-H(5B) 106.1(11) 

H(5A)-C(5)-H(5B) 111.5(16) 

C(5)-C(6)-C(1) 116.35(15) 

C(5)-C(6)-H(6A) 108.6(12) 

C(1)-C(6)-H(6A) 104.9(12) 

C(5)-C(6)-H(6B) 107.5(12) 

C(1)-C(6)-H(6B) 113.0(12) 

H(6A)-C(6)-H(6B) 105.9(16) 

C(2)-C(7)-H(7A) 108.2(14) 

C(2)-C(7)-H(7B) 113.4(12) 

H(7A)-C(7)-H(7B) 111.3(19) 

C(2)-C(7)-H(7C) 105.2(14) 

H(7A)-C(7)-H(7C) 103.6(19) 

H(7B)-C(7)-H(7C) 114.4(19) 

C(9)-N(8)-C(17) 119.27(13) 

C(9)-N(8)-C(1) 116.98(13) 

C(17)-N(8)-C(1) 121.29(13) 

O(10)-C(9)-N(8) 123.58(15) 

O(10)-C(9)-C(11) 117.09(14) 

N(8)-C(9)-C(11) 119.26(14) 
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N(12)-C(11)-C(16) 123.00(16) 

N(12)-C(11)-C(9) 117.46(14) 

C(16)-C(11)-C(9) 119.27(15) 

C(13)-N(12)-C(11) 117.29(15) 

N(12)-C(13)-C(14) 123.62(17) 

N(12)-C(13)-H(13) 115.5(12) 

C(14)-C(13)-H(13) 120.8(12) 

C(13)-C(14)-C(15) 118.38(17) 

C(13)-C(14)-H(14) 117.2(13) 

C(15)-C(14)-H(14) 124.4(13) 

C(16)-C(15)-C(14) 118.99(17) 

C(16)-C(15)-H(15) 120.6(15) 

C(14)-C(15)-H(15) 120.4(15) 

C(15)-C(16)-C(11) 118.69(17) 

C(15)-C(16)-H(16) 123.4(13) 

C(11)-C(16)-H(16) 117.9(13) 

N(8)-C(17)-C(18) 115.22(13) 

N(8)-C(17)-H(17A) 107.0(11) 

C(18)-C(17)-H(17A) 108.6(11) 

N(8)-C(17)-H(17B) 111.8(11) 

C(18)-C(17)-H(17B) 107.8(12) 

H(17A)-C(17)-H(17B) 106.0(16) 

C(22)-C(18)-O(19) 110.05(15) 

C(22)-C(18)-C(17) 132.26(16) 
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O(19)-C(18)-C(17) 117.32(14) 

C(18)-O(19)-C(20) 106.24(14) 

C(21)-C(20)-O(19) 110.36(17) 

C(21)-C(20)-H(20) 132.4(15) 

O(19)-C(20)-H(20) 117.2(15) 

C(20)-C(21)-C(22) 106.64(17) 

C(20)-C(21)-H(21) 127.9(14) 

C(22)-C(21)-H(21) 125.4(14) 

C(18)-C(22)-C(21) 106.70(16) 

C(18)-C(22)-H(22) 124.4(13) 

C(21)-C(22)-H(22) 128.9(13) 

O(24)-C(23)-N(25) 122.37(17) 

O(24)-C(23)-C(1) 120.00(16) 

N(25)-C(23)-C(1) 117.50(14) 

C(23)-N(25)-C(26) 123.17(15) 

C(23)-N(25)-H(25N) 121.2(16) 

C(26)-N(25)-H(25N) 115.6(16) 

N(25)-C(26)-C(31) 110.07(15) 

N(25)-C(26)-C(27) 110.26(15) 

C(31)-C(26)-C(27) 111.60(16) 

N(25)-C(26)-H(26) 106.0(12) 

C(31)-C(26)-H(26) 110.8(13) 

C(27)-C(26)-H(26) 107.9(12) 

C(28)-C(27)-C(26) 111.59(17) 
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C(28)-C(27)-H(27A) 111.0(12) 

C(26)-C(27)-H(27A) 107.4(12) 

C(28)-C(27)-H(27B) 111.6(13) 

C(26)-C(27)-H(27B) 106.5(12) 

H(27A)-C(27)-H(27B) 108.4(17) 

C(29)-C(28)-C(27) 110.77(17) 

C(29)-C(28)-H(28A) 110.9(15) 

C(27)-C(28)-H(28A) 110.1(15) 

C(29)-C(28)-H(28B) 105.0(15) 

C(27)-C(28)-H(28B) 109.4(14) 

H(28A)-C(28)-H(28B) 111(2) 

C(28)-C(29)-C(30) 110.68(18) 

C(28)-C(29)-H(29A) 110.1(15) 

C(30)-C(29)-H(29A) 108.8(15) 

C(28)-C(29)-H(29B) 108.0(12) 

C(30)-C(29)-H(29B) 111.0(12) 

H(29A)-C(29)-H(29B) 108.2(18) 

C(29)-C(30)-C(31) 110.91(17) 

C(29)-C(30)-H(30A) 109.7(14) 

C(31)-C(30)-H(30A) 108.0(14) 

C(29)-C(30)-H(30B) 112.4(15) 

C(31)-C(30)-H(30B) 111.9(15) 

H(30A)-C(30)-H(30B) 103(2) 

C(26)-C(31)-C(30) 110.99(16) 
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C(26)-C(31)-H(31A) 109.6(12) 

C(30)-C(31)-H(31A) 108.2(12) 

C(26)-C(31)-H(31B) 110.3(12) 

C(30)-C(31)-H(31B) 110.9(12) 

H(31A)-C(31)-H(31B) 106.6(16) 

H(1W1)-O(1W)-H(1W2) 104(2) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A1.4.   Anisotropic displacement parameters (Å2x 103) for trans-1.49. The anisotropic 

displacement factor exponent takes the form:  -22[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

C(1) 26(1)  26(1) 29(1)  1(1) 6(1)  -5(1) 

C(2) 35(1)  31(1) 29(1)  3(1) 9(1)  -3(1) 

C(3) 49(1)  34(1) 35(1)  2(1) 10(1)  -7(1) 

C(4) 55(1)  31(1) 38(1)  -2(1) 13(1)  -8(1) 

C(5) 43(1)  34(1) 35(1)  -6(1) 12(1)  -6(1) 

C(6) 37(1)  32(1) 34(1)  -1(1) 15(1)  -3(1) 

C(7) 41(1)  34(1) 36(1)  0(1) 12(1)  -3(1) 

N(8) 22(1)  24(1) 22(1)  1(1) 5(1)  -2(1) 

C(9) 26(1)  26(1) 20(1)  0(1) 9(1)  0(1) 

O(10) 27(1)  35(1) 22(1)  3(1) 4(1)  -3(1) 

C(11) 23(1)  25(1) 23(1)  3(1) 6(1)  2(1) 

N(12) 27(1)  26(1) 27(1)  0(1) 10(1)  0(1) 

C(13) 33(1)  24(1) 33(1)  -2(1) 12(1)  -1(1) 

C(14) 40(1)  26(1) 40(1)  3(1) 17(1)  -4(1) 

C(15) 44(1)  35(1) 37(1)  6(1) 22(1)  -3(1) 

C(16) 35(1)  29(1) 28(1)  0(1) 14(1)  0(1) 

C(17) 22(1)  26(1) 21(1)  0(1) 3(1)  -2(1) 

C(18) 27(1)  25(1) 23(1)  -2(1) 5(1)  -2(1) 

O(19) 35(1)  33(1) 25(1)  0(1) 10(1)  7(1) 
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C(20) 39(1)  42(1) 32(1)  -6(1) 13(1)  8(1) 

C(21) 37(1)  35(1) 34(1)  -7(1) 7(1)  10(1) 

C(22) 34(1)  28(1) 26(1)  -1(1) 5(1)  2(1) 

C(23) 27(1)  31(1) 21(1)  4(1) 6(1)  -6(1) 

O(24) 26(1)  42(1) 30(1)  -6(1) 5(1)  -10(1) 

N(25) 22(1)  36(1) 22(1)  -1(1) 4(1)  -6(1) 

C(26) 24(1)  39(1) 24(1)  -3(1) 7(1)  -5(1) 

C(27) 38(1)  40(1) 31(1)  -3(1) 17(1)  -7(1) 

C(28) 42(1)  55(1) 42(1)  -7(1) 24(1)  -8(1) 

C(29) 39(1)  52(1) 40(1)  -5(1) 16(1)  5(1) 

C(30) 39(1)  42(1) 41(1)  2(1) 9(1)  4(1) 

C(31) 31(1)  40(1) 33(1)  5(1) 10(1)  -2(1) 

O(1W) 27(1)  39(1) 24(1)  -2(1) 6(1)  -5(1) 

______________________________________________________________________________ 
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Table A1.5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 

for trans-1.49 

______________________________________________________________________________  

 x  y  z  U(eq) 

______________________________________________________________________________  

  

H(2) 4820(20) 1050(12) 4687(17) 35(5) 

H(3A) 2060(30) 605(13) 4170(20) 48(6) 

H(3B) 3240(20) 205(13) 5020(20) 41(6) 

H(4A) 2600(20) -408(14) 3200(20) 51(6) 

H(4B) 4220(30) -59(14) 3510(20) 57(7) 

H(5A) 1600(20) 643(13) 1991(19) 44(6) 

H(5B) 2850(20) 276(11) 1550(17) 33(5) 

H(6A) 4350(20) 1183(12) 2537(18) 36(5) 

H(6B) 2950(20) 1539(11) 1676(18) 33(5) 

H(7A) 4350(30) 1194(14) 6350(20) 57(7) 

H(7B) 4200(20) 2054(13) 5777(18) 38(6) 

H(7C) 2840(30) 1520(14) 5570(20) 56(7) 

H(13) 5780(20) 4892(11) 4535(17) 31(5) 

H(14) 6580(20) 5238(13) 3153(18) 40(6) 

H(15) 6320(20) 4433(14) 1570(20) 51(7) 

H(16) 5070(20) 3338(12) 1472(19) 37(6) 

H(17A) 6058(19) 2788(11) 4502(16) 25(5) 

H(17B) 5800(19) 2128(11) 5148(17) 25(5) 
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H(20) 7640(20) 1566(14) 2070(20) 53(7) 

H(21) 8790(20) 755(14) 3880(20) 50(6) 

H(22) 7570(20) 1108(12) 5220(20) 37(5) 

H(25N) 2620(20) 2796(12) 4370(20) 37(6) 

H(26) 80(20) 2820(11) 3136(18) 29(5) 

H(27A) 1080(20) 2763(12) 5559(19) 38(6) 

H(27B) 130(20) 2112(14) 4650(20) 46(6) 

H(28A) -1210(30) 2879(15) 5460(20) 63(8) 

H(28B) -1730(30) 2988(15) 3980(20) 58(7) 

H(29A) -1560(30) 4139(14) 4830(20) 54(7) 

H(29B) 10(20) 4006(12) 5652(19) 37(5) 

H(30A) -1100(20) 4058(14) 3140(20) 50(6) 

H(30B) -290(20) 4672(15) 3880(20) 45(6) 

H(31A) 1630(20) 3926(11) 4600(18) 32(5) 

H(31B) 1105(19) 3951(11) 3275(17) 25(5) 

H(1W1) 4400(30) 3678(15) 5150(20) 57(8) 

H(1W2) 4670(30) 3455(14) 6260(20) 55(7) 

______________________________________________________________________________

__ 
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Table A1.6.  Torsion angles [°] for trans-1.49 

________________________________________________________________  

N(8)-C(1)-C(2)-C(7) 65.3(2) 

C(23)-C(1)-C(2)-C(7) -53.2(2) 

C(6)-C(1)-C(2)-C(7) -175.77(16) 

N(8)-C(1)-C(2)-C(3) -170.17(15) 

C(23)-C(1)-C(2)-C(3) 71.31(19) 

C(6)-C(1)-C(2)-C(3) -51.3(2) 

C(7)-C(2)-C(3)-C(4) -172.38(17) 

C(1)-C(2)-C(3)-C(4) 59.9(2) 

C(2)-C(3)-C(4)-C(5) -60.2(2) 

C(3)-C(4)-C(5)-C(6) 54.1(2) 

C(4)-C(5)-C(6)-C(1) -50.4(2) 

N(8)-C(1)-C(6)-C(5) 169.31(15) 

C(23)-C(1)-C(6)-C(5) -72.4(2) 

C(2)-C(1)-C(6)-C(5) 48.5(2) 

C(23)-C(1)-N(8)-C(9) -52.47(18) 

C(2)-C(1)-N(8)-C(9) -172.02(14) 

C(6)-C(1)-N(8)-C(9) 68.54(18) 

C(23)-C(1)-N(8)-C(17) 145.49(14) 

C(2)-C(1)-N(8)-C(17) 25.9(2) 

C(6)-C(1)-N(8)-C(17) -93.50(17) 

C(17)-N(8)-C(9)-O(10) 164.17(15) 

C(1)-N(8)-C(9)-O(10) 1.7(2) 
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C(17)-N(8)-C(9)-C(11) -18.7(2) 

C(1)-N(8)-C(9)-C(11) 178.84(14) 

O(10)-C(9)-C(11)-N(12) 112.27(17) 

N(8)-C(9)-C(11)-N(12) -65.0(2) 

O(10)-C(9)-C(11)-C(16) -61.9(2) 

N(8)-C(9)-C(11)-C(16) 120.79(17) 

C(16)-C(11)-N(12)-C(13) 1.4(2) 

C(9)-C(11)-N(12)-C(13) -172.51(14) 

C(11)-N(12)-C(13)-C(14) -1.2(3) 

N(12)-C(13)-C(14)-C(15) -0.2(3) 

C(13)-C(14)-C(15)-C(16) 1.4(3) 

C(14)-C(15)-C(16)-C(11) -1.2(3) 

N(12)-C(11)-C(16)-C(15) -0.3(3) 

C(9)-C(11)-C(16)-C(15) 173.57(16) 

C(9)-N(8)-C(17)-C(18) -90.05(18) 

C(1)-N(8)-C(17)-C(18) 71.59(19) 

N(8)-C(17)-C(18)-C(22) -132.38(19) 

N(8)-C(17)-C(18)-O(19) 55.4(2) 

C(22)-C(18)-O(19)-C(20) -0.69(19) 

C(17)-C(18)-O(19)-C(20) 173.15(15) 

C(18)-O(19)-C(20)-C(21) 0.2(2) 

O(19)-C(20)-C(21)-C(22) 0.3(2) 

O(19)-C(18)-C(22)-C(21) 0.9(2) 

C(17)-C(18)-C(22)-C(21) -171.76(18) 
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C(20)-C(21)-C(22)-C(18) -0.7(2) 

N(8)-C(1)-C(23)-O(24) 147.01(15) 

C(2)-C(1)-C(23)-O(24) -92.28(18) 

C(6)-C(1)-C(23)-O(24) 28.5(2) 

N(8)-C(1)-C(23)-N(25) -36.91(19) 

C(2)-C(1)-C(23)-N(25) 83.80(18) 

C(6)-C(1)-C(23)-N(25) -155.45(15) 

O(24)-C(23)-N(25)-C(26) -3.8(3) 

C(1)-C(23)-N(25)-C(26) -179.77(14) 

C(23)-N(25)-C(26)-C(31) -141.51(16) 

C(23)-N(25)-C(26)-C(27) 94.94(19) 

N(25)-C(26)-C(27)-C(28) 176.44(16) 

C(31)-C(26)-C(27)-C(28) 53.8(2) 

C(26)-C(27)-C(28)-C(29) -55.5(2) 

C(27)-C(28)-C(29)-C(30) 57.6(2) 

C(28)-C(29)-C(30)-C(31) -58.0(2) 

N(25)-C(26)-C(31)-C(30) -176.55(15) 

C(27)-C(26)-C(31)-C(30) -53.8(2) 

C(29)-C(30)-C(31)-C(26) 56.0(2) 

________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

  



255 
 

Table A1.7.  Hydrogen bonds for trans-1.49 [Å and °] 

____________________________________________________________________________  

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________  

 C(6)-H(6B)...O(10) 0.99(2) 2.49(2) 3.007(2) 112.2(14) 

 C(17)-H(17A)...N(12) 0.98(2) 2.47(2) 3.199(2) 131.3(14) 

 C(17)-H(17B)...O(10)#1 0.95(2) 2.55(2) 3.241(2) 129.5(15) 

 N(25)-H(25N)...O(1W) 0.82(2) 2.18(2) 2.972(2) 163(2) 

 C(31)-H(31A)...O(1W) 0.99(2) 2.53(2) 3.311(2) 135.7(15) 

 O(1W)-H(1W1)...N(12) 0.86(3) 2.06(3) 2.905(2) 168(3) 

 O(1W)-H(1W2)...O(24)#10.88(3) 1.85(3) 2.7289(18) 176(2) 

____________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 x+1/2,-y+1/2,z+1/2       
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X-ray crystallographic data of trans-1.51 

Table A2.1.  Crystal data and structure refinement for trans-1.51. 

Identification code  v76b 

Empirical formula  C25 H35 N3 O4 

Formula weight  441.56 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 6.0174(8) Å = 90°. 

 b = 18.465(3) Å = 90°. 

 c = 21.840(3) Å  = 90°. 

Volume 2426.7(6) Å3 

Z 4 

Density (calculated) 1.209 Mg/m3 

Absorption coefficient 0.660 mm-1 

F(000) 952 

Crystal size 0.590 x 0.050 x 0.025 mm3 

Theta range for data collection 3.134 to 67.990°. 

Index ranges -6<=h<=7, -21<=k<=18, -25<=l<=25 

Reflections collected 13187 

Independent reflections 4283 [R(int) = 0.0275] 

Completeness to theta = 66.000° 99.8 %  

Absorption correction Multi-scan 
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Max. and min. transmission 1.000 and 0.800 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4283 / 0 / 429 

Goodness-of-fit on F2 1.047 

Final R indices [I>2sigma(I)] R1 = 0.0276, wR2 = 0.0700 

R indices (all data) R1 = 0.0286, wR2 = 0.0711 

Absolute structure parameter 0.51(6) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.110 and -0.176 e.Å-3 
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Table A2.2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 

103) for trans-1.51. U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

______________________________________________________________________________  

 x y z U(eq) 

______________________________________________________________________________   

C(1) 5400(3) 5631(1) 6124(1) 20(1) 

C(2) 6828(3) 6279(1) 5915(1) 23(1) 

C(3) 6710(3) 6438(1) 5226(1) 27(1) 

C(4) 4327(3) 6480(1) 4988(1) 29(1) 

C(5) 3090(3) 5788(1) 5159(1) 26(1) 

C(6) 3037(3) 5695(1) 5852(1) 22(1) 

C(7) 4267(4) 6630(1) 4302(1) 40(1) 

N(8) 5264(2) 5618(1) 6810(1) 20(1) 

C(9) 7041(3) 5383(1) 7131(1) 22(1) 

O(10) 8780(2) 5187(1) 6884(1) 26(1) 

C(11) 6897(3) 5339(1) 7821(1) 23(1) 

N(12) 5263(3) 4927(1) 8056(1) 27(1) 

C(13) 5187(3) 4862(1) 8668(1) 31(1) 

C(14) 6668(4) 5200(1) 9059(1) 32(1) 

C(15) 8343(3) 5616(1) 8807(1) 34(1) 

C(16) 8473(3) 5685(1) 8177(1) 30(1) 

C(17) 3452(3) 6012(1) 7124(1) 22(1) 

C(18) 3678(3) 6813(1) 7083(1) 25(1) 

O(19) 5692(2) 7095(1) 7257(1) 32(1) 

C(20) 5490(5) 7837(1) 7184(1) 43(1) 
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C(21) 3468(5) 8009(1) 6982(1) 47(1) 

C(22) 2271(4) 7346(1) 6914(1) 36(1) 

C(23) 6409(3) 4902(1) 5897(1) 21(1) 

O(24) 7914(2) 4892(1) 5515(1) 25(1) 

N(25) 5404(3) 4303(1) 6104(1) 24(1) 

C(26) 6118(3) 3578(1) 5918(1) 24(1) 

C(27) 4102(3) 3082(1) 5882(1) 31(1) 

C(28) 4788(3) 2308(1) 5706(1) 34(1) 

C(29) 6476(3) 2008(1) 6160(1) 33(1) 

C(30) 8523(3) 2498(1) 6191(1) 34(1) 

C(31) 7874(3) 3280(1) 6352(1) 30(1) 

O(1W) 2238(2) 4211(1) 7186(1) 29(1) 

______________________________________________________________________________



260 
 

Table A2.3.   Bond lengths [Å] and angles [°] for trans-1.51 

_____________________________________________________  

C(1)-N(8)  1.501(2) 

C(1)-C(2)  1.543(2) 

C(1)-C(6)  1.545(2) 

C(1)-C(23)  1.558(2) 

C(2)-C(3)  1.534(2) 

C(2)-H(2A)  0.98(3) 

C(2)-H(2B)  1.00(2) 

C(3)-C(4)  1.527(3) 

C(3)-H(3A)  0.98(2) 

C(3)-H(3B)  0.96(2) 

C(4)-C(7)  1.523(3) 

C(4)-C(5)  1.525(3) 

C(4)-H(4)  1.02(2) 

C(5)-C(6)  1.525(2) 

C(5)-H(5A)  0.99(2) 

C(5)-H(5B)  1.00(2) 

C(6)-H(6A)  0.99(2) 

C(6)-H(6B)  0.97(2) 

C(7)-H(7A)  0.99(3) 

C(7)-H(7B)  0.98(3) 

C(7)-H(7C)  1.03(3) 

N(8)-C(9)  1.350(2) 
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N(8)-C(17)  1.479(2) 

C(9)-O(10)  1.232(2) 

C(9)-C(11)  1.513(2) 

C(11)-N(12)  1.345(2) 

C(11)-C(16)  1.383(3) 

N(12)-C(13)  1.344(3) 

C(13)-C(14)  1.384(3) 

C(13)-H(13)  0.95(2) 

C(14)-C(15)  1.380(3) 

C(14)-H(14)  0.96(3) 

C(15)-C(16)  1.384(3) 

C(15)-H(15)  0.98(3) 

C(16)-H(16)  0.97(3) 

C(17)-C(18)  1.487(2) 

C(17)-H(17A)  0.97(2) 

C(17)-H(17B)  0.99(2) 

C(18)-C(22)  1.349(3) 

C(18)-O(19)  1.373(2) 

O(19)-C(20)  1.385(3) 

C(20)-C(21)  1.333(4) 

C(20)-H(20)  0.93(3) 

C(21)-C(22)  1.429(3) 

C(21)-H(21)  0.96(3) 

C(22)-H(22)  0.95(3) 
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C(23)-O(24)  1.231(2) 

C(23)-N(25)  1.339(2) 

N(25)-C(26)  1.464(2) 

N(25)-H(25N)  0.87(3) 

C(26)-C(27)  1.522(2) 

C(26)-C(31)  1.522(3) 

C(26)-H(26)  0.99(2) 

C(27)-C(28)  1.535(3) 

C(27)-H(27A)  1.04(3) 

C(27)-H(27B)  0.98(3) 

C(28)-C(29)  1.524(3) 

C(28)-H(28A)  1.02(3) 

C(28)-H(28B)  1.03(3) 

C(29)-C(30)  1.529(3) 

C(29)-H(29A)  1.01(3) 

C(29)-H(29B)  0.99(3) 

C(30)-C(31)  1.536(3) 

C(30)-H(30A)  1.00(3) 

C(30)-H(30B)  0.99(2) 

C(31)-H(31A)  0.98(3) 

C(31)-H(31B)  1.01(2) 

O(1W)-H(1W1)  0.89(3) 

O(1W)-H(1W2)  0.94(3) 
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N(8)-C(1)-C(2) 109.77(13) 

N(8)-C(1)-C(6) 109.53(13) 

C(2)-C(1)-C(6) 109.83(14) 

N(8)-C(1)-C(23) 108.95(13) 

C(2)-C(1)-C(23) 111.07(14) 

C(6)-C(1)-C(23) 107.66(14) 

C(3)-C(2)-C(1) 114.34(14) 

C(3)-C(2)-H(2A) 112.0(14) 

C(1)-C(2)-H(2A) 107.7(13) 

C(3)-C(2)-H(2B) 108.0(13) 

C(1)-C(2)-H(2B) 106.4(13) 

H(2A)-C(2)-H(2B) 108.1(19) 

C(4)-C(3)-C(2) 112.77(15) 

C(4)-C(3)-H(3A) 109.7(13) 

C(2)-C(3)-H(3A) 110.5(13) 

C(4)-C(3)-H(3B) 110.6(13) 

C(2)-C(3)-H(3B) 108.6(13) 

H(3A)-C(3)-H(3B) 104.4(18) 

C(7)-C(4)-C(5) 112.38(17) 

C(7)-C(4)-C(3) 111.47(17) 

C(5)-C(4)-C(3) 109.41(15) 

C(7)-C(4)-H(4) 106.9(12) 

C(5)-C(4)-H(4) 106.9(13) 

C(3)-C(4)-H(4) 109.6(13) 
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C(4)-C(5)-C(6) 110.31(15) 

C(4)-C(5)-H(5A) 109.7(12) 

C(6)-C(5)-H(5A) 109.3(13) 

C(4)-C(5)-H(5B) 108.9(13) 

C(6)-C(5)-H(5B) 108.5(12) 

H(5A)-C(5)-H(5B) 110.1(18) 

C(5)-C(6)-C(1) 111.76(14) 

C(5)-C(6)-H(6A) 107.7(12) 

C(1)-C(6)-H(6A) 108.2(12) 

C(5)-C(6)-H(6B) 111.2(13) 

C(1)-C(6)-H(6B) 111.5(13) 

H(6A)-C(6)-H(6B) 106.2(17) 

C(4)-C(7)-H(7A) 109.5(15) 

C(4)-C(7)-H(7B) 107.5(16) 

H(7A)-C(7)-H(7B) 108(2) 

C(4)-C(7)-H(7C) 110.5(16) 

H(7A)-C(7)-H(7C) 108(2) 

H(7B)-C(7)-H(7C) 114(2) 

C(9)-N(8)-C(17) 120.07(14) 

C(9)-N(8)-C(1) 118.73(14) 

C(17)-N(8)-C(1) 119.64(13) 

O(10)-C(9)-N(8) 122.66(16) 

O(10)-C(9)-C(11) 118.02(15) 

N(8)-C(9)-C(11) 119.31(15) 
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N(12)-C(11)-C(16) 123.29(17) 

N(12)-C(11)-C(9) 116.85(15) 

C(16)-C(11)-C(9) 119.78(16) 

C(13)-N(12)-C(11) 117.04(17) 

N(12)-C(13)-C(14) 123.47(19) 

N(12)-C(13)-H(13) 117.5(14) 

C(14)-C(13)-H(13) 119.1(14) 

C(15)-C(14)-C(13) 118.43(18) 

C(15)-C(14)-H(14) 121.5(15) 

C(13)-C(14)-H(14) 120.0(15) 

C(14)-C(15)-C(16) 119.21(19) 

C(14)-C(15)-H(15) 119.9(15) 

C(16)-C(15)-H(15) 120.8(15) 

C(11)-C(16)-C(15) 118.55(19) 

C(11)-C(16)-H(16) 120.3(15) 

C(15)-C(16)-H(16) 121.2(15) 

N(8)-C(17)-C(18) 113.22(15) 

N(8)-C(17)-H(17A) 108.1(12) 

C(18)-C(17)-H(17A) 108.8(11) 

N(8)-C(17)-H(17B) 110.6(12) 

C(18)-C(17)-H(17B) 109.5(12) 

H(17A)-C(17)-H(17B) 106.4(17) 

C(22)-C(18)-O(19) 110.65(17) 

C(22)-C(18)-C(17) 133.14(19) 
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O(19)-C(18)-C(17) 116.21(16) 

C(18)-O(19)-C(20) 105.47(17) 

C(21)-C(20)-O(19) 110.7(2) 

C(21)-C(20)-H(20) 137.9(17) 

O(19)-C(20)-H(20) 111.4(17) 

C(20)-C(21)-C(22) 106.92(19) 

C(20)-C(21)-H(21) 124.0(19) 

C(22)-C(21)-H(21) 128.9(19) 

C(18)-C(22)-C(21) 106.3(2) 

C(18)-C(22)-H(22) 126.0(17) 

C(21)-C(22)-H(22) 127.8(17) 

O(24)-C(23)-N(25) 123.35(16) 

O(24)-C(23)-C(1) 120.95(15) 

N(25)-C(23)-C(1) 115.45(15) 

C(23)-N(25)-C(26) 121.92(15) 

C(23)-N(25)-H(25N) 119.0(15) 

C(26)-N(25)-H(25N) 118.3(15) 

N(25)-C(26)-C(27) 109.32(15) 

N(25)-C(26)-C(31) 111.19(15) 

C(27)-C(26)-C(31) 111.61(16) 

N(25)-C(26)-H(26) 107.1(13) 

C(27)-C(26)-H(26) 108.9(14) 

C(31)-C(26)-H(26) 108.6(14) 

C(26)-C(27)-C(28) 110.99(16) 
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C(26)-C(27)-H(27A) 109.9(14) 

C(28)-C(27)-H(27A) 111.7(13) 

C(26)-C(27)-H(27B) 108.5(15) 

C(28)-C(27)-H(27B) 109.1(15) 

H(27A)-C(27)-H(27B) 107(2) 

C(29)-C(28)-C(27) 110.80(17) 

C(29)-C(28)-H(28A) 110.3(15) 

C(27)-C(28)-H(28A) 109.3(14) 

C(29)-C(28)-H(28B) 111.2(14) 

C(27)-C(28)-H(28B) 107.0(14) 

H(28A)-C(28)-H(28B) 108(2) 

C(28)-C(29)-C(30) 110.51(17) 

C(28)-C(29)-H(29A) 110.6(15) 

C(30)-C(29)-H(29A) 108.0(16) 

C(28)-C(29)-H(29B) 110.5(17) 

C(30)-C(29)-H(29B) 109.7(17) 

H(29A)-C(29)-H(29B) 107(2) 

C(29)-C(30)-C(31) 111.16(16) 

C(29)-C(30)-H(30A) 110.5(16) 

C(31)-C(30)-H(30A) 109.2(15) 

C(29)-C(30)-H(30B) 109.4(14) 

C(31)-C(30)-H(30B) 109.8(13) 

H(30A)-C(30)-H(30B) 107(2) 

C(26)-C(31)-C(30) 111.92(16) 
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C(26)-C(31)-H(31A) 108.9(14) 

C(30)-C(31)-H(31A) 108.8(14) 

C(26)-C(31)-H(31B) 109.3(14) 

C(30)-C(31)-H(31B) 108.2(13) 

H(31A)-C(31)-H(31B) 109.7(19) 

H(1W1)-O(1W)-H(1W2) 106(2) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A2.4.   Anisotropic displacement parameters (Å2x 103) for trans-1.51. The anisotropic 

displacement factor exponent takes the form: -22[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

C(1) 21(1)  21(1) 19(1)  1(1) 0(1)  -1(1) 

C(2) 21(1)  22(1) 25(1)  2(1) 1(1)  -2(1) 

C(3) 32(1)  23(1) 25(1)  3(1) 4(1)  -3(1) 

C(4) 35(1)  28(1) 23(1)  2(1) 0(1)  6(1) 

C(5) 24(1)  32(1) 23(1)  1(1) -4(1)  3(1) 

C(6) 19(1)  25(1) 23(1)  0(1) 0(1)  0(1) 

C(7) 50(1)  42(1) 28(1)  8(1) -3(1)  2(1) 

N(8) 20(1)  21(1) 19(1)  -1(1) 0(1)  0(1) 

C(9) 22(1)  20(1) 23(1)  1(1) 0(1)  -2(1) 

O(10) 20(1)  31(1) 26(1)  0(1) 0(1)  2(1) 

C(11) 24(1)  22(1) 24(1)  0(1) 0(1)  4(1) 

N(12) 32(1)  25(1) 23(1)  4(1) -1(1)  -2(1) 

C(13) 38(1)  29(1) 26(1)  6(1) 3(1)  -1(1) 

C(14) 44(1)  32(1) 21(1)  2(1) -3(1)  9(1) 

C(15) 33(1)  42(1) 27(1)  -7(1) -7(1)  3(1) 

C(16) 26(1)  36(1) 28(1)  -2(1) -1(1)  0(1) 

C(17) 24(1)  23(1) 21(1)  1(1) 3(1)  2(1) 

C(18) 29(1)  25(1) 22(1)  -4(1) 4(1)  -1(1) 

O(19) 37(1)  28(1) 31(1)  -7(1) 3(1)  -7(1) 

C(20) 67(2)  27(1) 36(1)  -9(1) 11(1)  -14(1) 
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C(21) 73(2)  26(1) 42(1)  -2(1) 4(1)  6(1) 

C(22) 46(1)  28(1) 34(1)  0(1) 0(1)  8(1) 

C(23) 19(1)  23(1) 21(1)  1(1) -3(1)  0(1) 

O(24) 25(1)  27(1) 22(1)  0(1) 4(1)  1(1) 

N(25) 23(1)  22(1) 27(1)  -2(1) 4(1)  1(1) 

C(26) 26(1)  21(1) 26(1)  -3(1) 3(1)  1(1) 

C(27) 26(1)  25(1) 42(1)  -4(1) -5(1)  0(1) 

C(28) 32(1)  25(1) 45(1)  -6(1) -2(1)  -2(1) 

C(29) 35(1)  23(1) 42(1)  2(1) 4(1)  1(1) 

C(30) 30(1)  26(1) 45(1)  -1(1) -1(1)  4(1) 

C(31) 26(1)  25(1) 37(1)  -2(1) -3(1)  0(1) 

O(1W) 27(1)  26(1) 33(1)  1(1) -4(1)  2(1) 

______________________________________________________________________________ 
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Table A2.5. Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 

for trans-1.51 

______________________________________________________________________________  

 x  y  z  U(eq) 

______________________________________________________________________________  

  

H(2A) 8360(40) 6192(12) 6052(10) 32(6) 

H(2B) 6240(40) 6715(12) 6138(10) 30(6) 

H(3A) 7530(40) 6073(12) 4996(10) 28(5) 

H(3B) 7490(40) 6883(13) 5146(10) 29(5) 

H(4) 3520(40) 6897(12) 5197(10) 28(5) 

H(5A) 1540(40) 5811(11) 5001(10) 27(5) 

H(5B) 3890(40) 5365(12) 4976(10) 30(6) 

H(6A) 2330(30) 6129(12) 6027(9) 20(5) 

H(6B) 2110(40) 5288(12) 5970(10) 27(5) 

H(7A) 4980(50) 6227(15) 4081(12) 47(7) 

H(7B) 5140(50) 7071(15) 4228(12) 51(8) 

H(7C) 2650(50) 6663(15) 4150(12) 54(8) 

H(13) 4050(40) 4568(12) 8836(10) 28(5) 

H(14) 6520(40) 5142(12) 9494(12) 38(6) 

H(15) 9370(40) 5878(13) 9074(12) 43(7) 

H(16) 9620(40) 5978(13) 7987(11) 38(6) 

H(17A) 3460(30) 5872(10) 7551(9) 16(4) 

H(17B) 1990(40) 5864(11) 6959(9) 23(5) 
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H(20) 6780(50) 8078(15) 7306(13) 50(7) 

H(21) 2950(50) 8498(16) 6925(13) 57(8) 

H(22) 780(50) 7283(15) 6783(13) 53(8) 

H(25N) 4450(40) 4341(12) 6401(11) 33(6) 

H(26) 6780(40) 3623(12) 5507(11) 33(6) 

H(27A) 2940(40) 3294(13) 5576(11) 38(6) 

H(27B) 3380(40) 3072(13) 6283(12) 39(6) 

H(28A) 5440(40) 2310(13) 5275(12) 44(7) 

H(28B) 3360(40) 1999(13) 5701(11) 40(6) 

H(29A) 6980(50) 1508(14) 6032(12) 47(7) 

H(29B) 5810(50) 1964(14) 6572(13) 53(8) 

H(30A) 9600(50) 2314(14) 6501(12) 48(7) 

H(30B) 9300(40) 2488(12) 5792(11) 34(6) 

H(31A) 9200(40) 3586(13) 6328(11) 37(6) 

H(31B) 7280(40) 3284(12) 6783(11) 36(6) 

H(1W1) 3080(50) 4434(14) 7462(12) 46(7) 

H(1W2) 1010(60) 4514(16) 7115(14) 63(9) 

______________________________________________________________________________
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Table A2.6. Torsion angles [°] for trans-1.51 

________________________________________________________________  

N(8)-C(1)-C(2)-C(3) -168.49(14) 

C(6)-C(1)-C(2)-C(3) -48.0(2) 

C(23)-C(1)-C(2)-C(3) 70.97(19) 

C(1)-C(2)-C(3)-C(4) 49.8(2) 

C(2)-C(3)-C(4)-C(7) -179.39(16) 

C(2)-C(3)-C(4)-C(5) -54.5(2) 

C(7)-C(4)-C(5)-C(6) -175.41(16) 

C(3)-C(4)-C(5)-C(6) 60.2(2) 

C(4)-C(5)-C(6)-C(1) -61.2(2) 

N(8)-C(1)-C(6)-C(5) 174.23(13) 

C(2)-C(1)-C(6)-C(5) 53.60(19) 

C(23)-C(1)-C(6)-C(5) -67.45(18) 

C(2)-C(1)-N(8)-C(9) -75.91(18) 

C(6)-C(1)-N(8)-C(9) 163.42(14) 

C(23)-C(1)-N(8)-C(9) 45.90(19) 

C(2)-C(1)-N(8)-C(17) 89.86(17) 

C(6)-C(1)-N(8)-C(17) -30.8(2) 

C(23)-C(1)-N(8)-C(17) -148.32(14) 

C(17)-N(8)-C(9)-O(10) -164.82(16) 

C(1)-N(8)-C(9)-O(10) 0.9(2) 

C(17)-N(8)-C(9)-C(11) 16.7(2) 

C(1)-N(8)-C(9)-C(11) -177.64(14) 
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O(10)-C(9)-C(11)-N(12) -121.34(18) 

N(8)-C(9)-C(11)-N(12) 57.3(2) 

O(10)-C(9)-C(11)-C(16) 55.5(2) 

N(8)-C(9)-C(11)-C(16) -125.90(18) 

C(16)-C(11)-N(12)-C(13) 0.5(3) 

C(9)-C(11)-N(12)-C(13) 177.25(16) 

C(11)-N(12)-C(13)-C(14) 0.8(3) 

N(12)-C(13)-C(14)-C(15) -1.4(3) 

C(13)-C(14)-C(15)-C(16) 0.6(3) 

N(12)-C(11)-C(16)-C(15) -1.2(3) 

C(9)-C(11)-C(16)-C(15) -177.88(17) 

C(14)-C(15)-C(16)-C(11) 0.6(3) 

C(9)-N(8)-C(17)-C(18) 95.80(18) 

C(1)-N(8)-C(17)-C(18) -69.8(2) 

N(8)-C(17)-C(18)-C(22) 129.3(2) 

N(8)-C(17)-C(18)-O(19) -51.9(2) 

C(22)-C(18)-O(19)-C(20) -0.4(2) 

C(17)-C(18)-O(19)-C(20) -179.51(16) 

C(18)-O(19)-C(20)-C(21) 0.5(2) 

O(19)-C(20)-C(21)-C(22) -0.3(3) 

O(19)-C(18)-C(22)-C(21) 0.3(2) 

C(17)-C(18)-C(22)-C(21) 179.1(2) 

C(20)-C(21)-C(22)-C(18) 0.0(3) 

N(8)-C(1)-C(23)-O(24) -132.58(16) 
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C(2)-C(1)-C(23)-O(24) -11.6(2) 

C(6)-C(1)-C(23)-O(24) 108.72(17) 

N(8)-C(1)-C(23)-N(25) 52.91(19) 

C(2)-C(1)-C(23)-N(25) 173.94(15) 

C(6)-C(1)-C(23)-N(25) -65.79(19) 

O(24)-C(23)-N(25)-C(26) 3.8(3) 

C(1)-C(23)-N(25)-C(26) 178.21(15) 

C(23)-N(25)-C(26)-C(27) -146.03(18) 

C(23)-N(25)-C(26)-C(31) 90.3(2) 

N(25)-C(26)-C(27)-C(28) -178.32(17) 

C(31)-C(26)-C(27)-C(28) -54.9(2) 

C(26)-C(27)-C(28)-C(29) 57.1(2) 

C(27)-C(28)-C(29)-C(30) -57.6(2) 

C(28)-C(29)-C(30)-C(31) 56.0(2) 

N(25)-C(26)-C(31)-C(30) 175.92(16) 

C(27)-C(26)-C(31)-C(30) 53.6(2) 

C(29)-C(30)-C(31)-C(26) -54.1(2) 

________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A2.7. Hydrogen bonds for trans-1.51  [Å and °] 

____________________________________________________________________________  

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________  

 C(2)-H(2A)...O(10) 0.98(3) 2.61(2) 3.151(2) 115.0(16) 

 C(2)-H(2B)...O(19) 1.00(2) 2.56(2) 3.366(2) 136.8(17) 

 C(14)-H(14)...O(24)#1 0.96(3) 2.26(3) 3.195(2) 165(2) 

 C(17)-H(17A)...N(12) 0.97(2) 2.33(2) 3.057(2) 131.2(15) 

 C(17)-H(17B)...O(10)#2 0.99(2) 2.31(2) 3.240(2) 157.0(17) 

 C(20)-H(20)...O(1W)#3 0.93(3) 2.44(3) 3.192(3) 138(2) 

 N(25)-H(25N)...O(1W) 0.87(3) 2.18(3) 3.040(2) 169(2) 

 O(1W)-H(1W1)...N(12) 0.89(3) 2.06(3) 2.944(2) 175(3) 

 O(1W)-H(1W2)...O(10)#20.94(3) 1.90(3) 2.8313(18) 172(3) 

____________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 -x+3/2,-y+1,z+1/2    #2 x-1,y,z    #3 -x+1,y+1/2,-z+3/2       
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 X-ray crystallographic data of cis-1.52 

 

Table A3.1. Crystal data and structure refinement for cis-1.52 

Identification code  x1611001  

Empirical formula  C28H39N3O3  

Formula weight  465.62  

Temperature/K  100  

Crystal system  triclinic  

Space group  P-1  

a/Å  8.0902(10)  

b/Å  12.2718(16)  

c/Å  13.6660(18)  

α/°  105.567(10)  

β/°  102.637(10)  

γ/°  90.859(10)  

Volume/Å3  1271.4(3)  

Z  2  

ρcalcg/cm3  1.216  

μ/mm-1  0.625  

F(000)  504.0  

Crystal size/mm3  0.138 × 0.086 × 0.053  

Radiation  CuKα (λ = 1.54178)  

2Θ range for data collection/°  6.902 to 133.352  

Index ranges  -9 ≤ h ≤ 9, -14 ≤ k ≤ 14, -15 ≤ l ≤ 16  

Reflections collected  10318  

Independent reflections  4318 [Rint = 0.0645, Rsigma = 0.0612]  
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Data/restraints/parameters  4318/0/310  

Goodness-of-fit on F2  1.018  

Final R indexes [I>=2σ (I)]  R1 = 0.0532, wR2 = 0.1282  

Final R indexes [all data]  R1 = 0.0765, wR2 = 0.1425  

Largest diff. peak/hole / e Å-3  0.22/-0.30  
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Table A3.2. Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103) for cis-1.52. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ 

tensor 

Atom x y z U(eq) 

N1 3431(2) 6658.8(16) 4576.2(15) 22.2(4) 

C2 3203(3) 6052(2) 3578.2(19) 25.4(5) 

C3 3809(3) 6416(2) 2840.6(19) 29.4(6) 

C4 4688(3) 7481(2) 3140.2(19) 28.5(5) 

C5 4906(3) 8138(2) 4156.0(19) 25.3(5) 

C6 4283(3) 7686.2(19) 4846.3(18) 20.6(5) 

C7 4425(3) 8434.3(18) 5948.2(18) 20.5(5) 

O8 3906(2) 9384.3(13) 6059.0(13) 25.6(4) 

N9 5122(2) 8025.4(15) 6768.3(14) 19.2(4) 

C10 6001(3) 6966.2(19) 6588.6(18) 20.9(5) 

C11 7268(3) 6912.7(18) 5934.4(17) 19.9(5) 

O12 8297.4(19) 7890.5(13) 6129.2(12) 23.3(4) 

C13 9432(3) 7622(2) 5503.1(18) 25.4(5) 

C14 9163(3) 6529(2) 4949.6(18) 26.1(5) 

C15 7750(3) 6065(2) 5220.8(18) 24.6(5) 

C16 5056(3) 8741.7(18) 7841.7(17) 20.6(5) 

C17 6061(3) 9912.4(19) 8093.9(17) 21.8(5) 

N18 7447(2) 9904.5(16) 7703.4(16) 24.1(4) 

C19 8532(3) 10923.9(19) 7854.5(18) 22.4(5) 

C20 9354(3) 10784(2) 6931.0(19) 29.5(5) 

C21 10528(3) 11826(2) 7053(2) 31.2(6) 

C22 11850(3) 12129(2) 8095(2) 27.0(5) 
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C23 10990(3) 12275(2) 9002.3(19) 27.2(5) 

C24 9883(3) 11204(2) 8881.7(18) 24.7(5) 

O25 5657(2) 10762.3(13) 8677.5(13) 27.2(4) 

C26 5854(3) 8210.0(19) 8723.3(17) 22.2(5) 

C27 4861(3) 7131(2) 8738.0(18) 23.9(5) 

C28 2971(3) 7289.1(19) 8715.4(17) 21.0(5) 

C29 1973(3) 6171(2) 8680.6(18) 24.2(5) 

C30 2610(3) 5873(2) 9713(2) 36.9(6) 

C31 71(3) 6361(2) 8560(2) 28.5(5) 

C32 2134(3) 5174(2) 7764(2) 36.3(6) 

C33 2218(3) 7794.6(19) 7823.2(17) 21.2(5) 

C34 3197(3) 8901.5(19) 7906.6(18) 21.8(5) 
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Table 3.3. Anisotropic Displacement Parameters (Å2×103) for x1611001. The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…] 

Atom U11 U22 U33 U23 U13 U12 

N1 21.3(9) 22.2(10) 23.5(10) 7.9(8) 4.5(8) 2.6(8) 

C2 24.0(11) 24.3(12) 25.4(12) 5.8(10) 1.8(9) 4.7(9) 

C3 31.2(12) 33.1(13) 22.7(12) 5.7(10) 5.9(10) 11.1(11) 

C4 26.5(12) 39.5(14) 29.4(12) 20.1(11) 13.2(10) 13.4(11) 

C5 20.0(11) 26.5(12) 34.6(13) 16.7(11) 6.9(10) 4.5(9) 

C6 15.8(10) 21.8(11) 26.1(11) 10.8(10) 3.5(8) 2.2(8) 

C7 17.5(10) 18.3(11) 27.2(12) 8.5(9) 5.7(9) -1.5(9) 

O8 28.9(8) 18.3(8) 31.6(9) 9.8(7) 7.7(7) 4.2(7) 

N9 18.5(9) 16.3(9) 23(1) 6.1(8) 4.4(7) 2.0(7) 

C10 21.5(11) 18.9(11) 23.4(11) 8.3(9) 4.2(9) 4.4(9) 

C11 18.4(10) 20.0(11) 21.1(11) 7.9(9) 1.2(8) 1.3(9) 

O12 21.9(8) 21.6(8) 25.8(8) 3.5(7) 7.9(6) -0.2(6) 

C13 23.0(11) 33.5(13) 21.6(11) 8.3(10) 8.2(9) 0.1(10) 

C14 27.4(12) 30.1(13) 21.2(11) 4.8(10) 8.8(9) 5.2(10) 

C15 29.2(12) 21.9(11) 21.7(11) 4.2(9) 6.3(9) 2.5(10) 

C16 21.4(11) 17.4(11) 21.8(11) 3.1(9) 5.9(9) 1.2(9) 

C17 20.9(11) 20.5(11) 21.2(11) 3.7(9) 1.6(9) 1.3(9) 

N18 21.3(9) 16.5(9) 31.8(11) 0.0(8) 9.3(8) -1.4(8) 

C19 20.7(10) 18.2(11) 27.6(12) 6.4(9) 4.1(9) 1.8(9) 

C20 30.1(12) 28.7(13) 28.3(12) 7.3(11) 4.2(10) 0.7(10) 

C21 35.3(13) 32.7(13) 31.0(13) 14.1(11) 12.2(11) 1.3(11) 

C22 23.7(11) 21.6(11) 38.3(14) 11.2(11) 9.1(10) -0.6(9) 

C23 22.5(11) 28.9(13) 27.0(12) 6.8(10) 0.9(9) -2.7(10) 
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C24 22.9(11) 26.7(12) 24.9(12) 8.8(10) 4.1(9) -0.5(10) 

O25 27.8(8) 18.9(8) 32.7(9) 1.7(7) 9.4(7) 2.3(7) 

C26 18.8(10) 24.2(11) 22.1(11) 5.0(9) 3.0(9) 2.5(9) 

C27 22.8(11) 27.8(12) 22.3(11) 8.9(10) 5.4(9) 3.7(9) 

C28 20.4(11) 21.5(11) 19.4(11) 3.1(9) 4.3(9) 0.8(9) 

C29 23.8(11) 23.5(12) 26.1(12) 7.2(10) 7.4(9) 0.7(9) 

C30 28.2(12) 45.4(16) 42.4(15) 24.2(13) 4.9(11) -1.4(12) 

C31 23.8(12) 31.0(13) 30.5(13) 9.4(11) 5(1) -1.8(10) 

C32 37.3(14) 21.1(12) 47.8(16) 2.2(12) 14.0(12) -3.1(11) 

C33 16.5(10) 21.7(11) 23.8(11) 4.0(9) 4.2(8) 1.8(9) 

C34 20.5(11) 19.5(11) 25.3(11) 5.5(9) 6.0(9) 5.1(9) 
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Table A3.4. Bond Lengths for cis-1.52 

Atom Atom Length/Å  Atom Atom Length/Å 

N1 C2 1.338(3)  C16 C34 1.539(3) 

N1 C6 1.347(3)  C17 N18 1.342(3) 

C2 C3 1.381(4)  C17 O25 1.228(3) 

C3 C4 1.393(4)  N18 C19 1.458(3) 

C4 C5 1.377(4)  C19 C20 1.523(3) 

C5 C6 1.390(3)  C19 C24 1.531(3) 

C6 C7 1.517(3)  C20 C21 1.531(3) 

C7 O8 1.227(3)  C21 C22 1.532(3) 

C7 N9 1.364(3)  C22 C23 1.522(3) 

N9 C10 1.479(3)  C23 C24 1.531(3) 

N9 C16 1.507(3)  C26 C27 1.545(3) 

C10 C11 1.492(3)  C27 C28 1.539(3) 

C11 O12 1.381(3)  C28 C29 1.565(3) 

C11 C15 1.349(3)  C28 C33 1.528(3) 

O12 C13 1.373(3)  C29 C30 1.534(4) 

C13 C14 1.339(3)  C29 C31 1.540(3) 

C14 C15 1.431(3)  C29 C32 1.529(3) 

C16 C17 1.556(3)  C33 C34 1.526(3) 

C16 C26 1.545(3)         
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Table A3.5. Bond Angles for cis-1.52 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

C2 N1 C6 116.4(2)  C34 C16 C26 106.41(18) 

N1 C2 C3 123.8(2)  N18 C17 C16 115.72(18) 

C2 C3 C4 118.7(2)  O25 C17 C16 120.9(2) 

C5 C4 C3 118.9(2)  O25 C17 N18 123.2(2) 

C4 C5 C6 118.1(2)  C17 N18 C19 123.22(19) 

N1 C6 C5 124.1(2)  N18 C19 C20 109.57(19) 

N1 C6 C7 117.5(2)  N18 C19 C24 112.24(19) 

C5 C6 C7 118.2(2)  C20 C19 C24 110.75(19) 

O8 C7 C6 118.2(2)  C19 C20 C21 111.9(2) 

O8 C7 N9 123.0(2)  C20 C21 C22 111.5(2) 

N9 C7 C6 118.82(19)  C23 C22 C21 110.7(2) 

C7 N9 C10 119.99(18)  C22 C23 C24 111.0(2) 

C7 N9 C16 116.92(17)  C19 C24 C23 110.24(19) 

C10 N9 C16 122.95(18)  C16 C26 C27 115.18(18) 

N9 C10 C11 114.99(19)  C28 C27 C26 113.06(18) 

O12 C11 C10 116.37(18)  C27 C28 C29 112.21(18) 

C15 C11 C10 133.5(2)  C33 C28 C27 108.91(18) 

C15 C11 O12 109.9(2)  C33 C28 C29 113.89(18) 

C13 O12 C11 106.25(17)  C30 C29 C28 109.31(19) 

C14 C13 O12 110.5(2)  C30 C29 C31 108.0(2) 

C13 C14 C15 106.8(2)  C31 C29 C28 109.37(19) 

C11 C15 C14 106.6(2)  C32 C29 C28 112.7(2) 

N9 C16 C17 110.27(18)  C32 C29 C30 110.0(2) 

N9 C16 C26 113.55(17)  C32 C29 C31 107.3(2) 
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N9 C16 C34 109.87(17)   C34 C33 C28 112.12(18) 

C26 C16 C17 106.21(17)   C33 C34 C16 112.59(18) 

C34 C16 C17 110.40(17)           
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Table A3.6. Torsion Angles for cis-1.52 

A B C D Angle/˚  A B C D Angle/˚ 

N1 C2 C3 C4 -1.0(3)  C15 C11 O12 C13 0.5(2) 

N1 C6 C7 O8 -123.7(2)  C16 N9 C10 C11 -126.8(2) 

N1 C6 C7 N9 56.5(3)  C16 C17 N18 C19 179.50(19) 

C2 N1 C6 C5 0.6(3)  C16 C26 C27 C28 -51.8(3) 

C2 N1 C6 C7 174.76(19)  C17 C16 C26 C27 170.00(17) 

C2 C3 C4 C5 -0.7(3)  C17 C16 C34 C33 -171.65(18) 

C3 C4 C5 C6 2.1(3)  C17 N18 C19 C20 -150.9(2) 

C4 C5 C6 N1 -2.2(3)  C17 N18 C19 C24 85.6(3) 

C4 C5 C6 C7 -176.33(19)  N18 C19 C20 C21 -179.32(19) 

C5 C6 C7 O8 50.9(3)  N18 C19 C24 C23 179.83(18) 

C5 C6 C7 N9 -129.0(2)  C19 C20 C21 C22 53.7(3) 

C6 N1 C2 C3 1.0(3)  C20 C19 C24 C23 57.0(2) 

C6 C7 N9 C10 11.0(3)  C20 C21 C22 C23 -54.3(3) 

C6 C7 N9 C16 -173.25(18)  C21 C22 C23 C24 57.0(3) 

C7 N9 C10 C11 48.7(3)  C22 C23 C24 C19 -58.5(2) 

C7 N9 C16 C17 -61.7(2)  C24 C19 C20 C21 -55.0(3) 

C7 N9 C16 C26 179.29(18)  O25 C17 N18 C19 -5.7(4) 

C7 N9 C16 C34 60.3(2)  C26 C16 C17 N18 88.8(2) 

O8 C7 N9 C10 -168.9(2)  C26 C16 C17 O25 -86.2(2) 

O8 C7 N9 C16 6.9(3)  C26 C16 C34 C33 -56.8(2) 

N9 C10 C11 O12 41.7(3)  C26 C27 C28 C29 177.46(18) 

N9 C10 C11 C15 -144.7(2)  C26 C27 C28 C33 50.4(2) 

N9 C16 C17 N18 -34.7(3)  C27 C28 C29 C30 67.0(2) 

N9 C16 C17 O25 150.4(2)  C27 C28 C29 C31 -174.95(19) 
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N9 C16 C26 C27 -68.6(2)  C27 C28 C29 C32 -55.7(3) 

N9 C16 C34 C33 66.5(2)  C27 C28 C33 C34 -55.7(2) 

C10 N9 C16 C17 114.0(2)  C28 C33 C34 C16 61.9(2) 

C10 N9 C16 C26 -5.1(3)  C29 C28 C33 C34 178.22(17) 

C10 N9 C16 C34 -124.1(2)  C33 C28 C29 C30 -168.73(19) 

C10 C11 O12 C13 175.48(18)  C33 C28 C29 C31 -50.6(2) 

C10 C11 C15 C14 -173.7(2)  C33 C28 C29 C32 68.6(2) 

C11 O12 C13 C14 -0.9(3)  C34 C16 C17 N18 -156.3(2) 

O12 C11 C15 C14 0.1(3)  C34 C16 C17 O25 28.8(3) 

O12 C13 C14 C15 1.0(3)  C34 C16 C26 C27 52.3(2) 

C13 C14 C15 C11 -0.6(3)       
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Table A3.7. Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103) for cis-1.52 

Atom x y z U(eq) 

H2 2590 5330 3365 30 

H3 3630 5949 2143 35 

H4 5131 7750 2652 34 

H5 5466 8878 4379 30 

H10A 5136 6318 6248 25 

H10B 6587 6873 7274 25 

H13 10288 8139 5468 31 

H14 9789 6137 4469 31 

H15 7250 5308 4951 29 

H18 7714 9252 7338 29 

H19 7798 11574 7875 27 

H20A 8454 10658 6282 35 

H20B 10017 10107 6866 35 

H21A 9840 12480 7012 37 

H21B 11117 11672 6472 37 

H22A 12637 11519 8099 32 

H22B 12522 12841 8176 32 

H23A 10276 12927 9033 33 

H23B 11866 12442 9665 33 

H24A 10604 10560 8891 30 

H24B 9325 11321 9474 30 

H26A 5955 8786 9402 27 

H26B 7017 8021 8657 27 
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H27A 4952 6503 8127 29 

H27B 5391 6912 9375 29 

H28 2917 7863 9381 25 

H30A 3792 5681 9776 55 

H30B 1903 5223 9724 55 

H30C 2539 6526 10297 55 

H31A -66 7070 9065 43 

H31B -518 5727 8687 43 

H31C -415 6406 7850 43 

H32A 1840 5399 7115 54 

H32B 1361 4530 7717 54 

H32C 3306 4954 7873 54 

H33A 2234 7240 7150 25 

H33B 1019 7938 7830 25 

H34A 3173 9457 8578 26 

H34B 2624 9217 7337 26 
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X-ray crystallographic data of trans-1.53 

Table A4.1. Crystal data and structure refinement for trans-1.53  

Identification code  x1605004  

Empirical formula  C30H37N3O4  

Formula weight  503.62  

Temperature/K  100  

Crystal system  tetragonal  

Space group  P42/n  

a/Å  25.908(2)  

b/Å  25.908(2)  

c/Å  8.0598(8)  

α/°  90  

β/°  90  

γ/°  90  

Volume/Å3  5409.8(11)  

Z  8  

ρcalcg/cm3  1.237  

μ/mm-1  0.659  

F(000)  2160.0  

Crystal size/mm3  0.26 × 0.206 × 0.144  

Radiation  CuKα (λ = 1.54178)  

2Θ range for data collection/°  4.824 to 140.416  

Index ranges  -31 ≤ h ≤ 31, -31 ≤ k ≤ 31, -9 ≤ l ≤ 9  

Reflections collected  48994  
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Independent reflections  5144 [Rint = 0.0352, Rsigma = 0.0162]  

Data/restraints/parameters  5144/0/337  

Goodness-of-fit on F2  1.052  

Final R indexes [I>=2σ (I)]  R1 = 0.0386, wR2 = 0.0945  

Final R indexes [all data]  R1 = 0.0420, wR2 = 0.0970  

Largest diff. peak/hole / e Å-3  0.34/-0.34  
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Table A4.2. Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103) for trans-1.53. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ 

tensor 

Atom x y z U(eq) 

N1 7067.6(4) 4058.9(4) -640.1(14) 23.9(2) 

C2 7176.7(6) 3792.6(6) -2024.1(18) 29.3(3) 

C3 7564.9(6) 3428.5(6) -2096(2) 34.2(3) 

C4 7848.8(6) 3324.9(6) -681(2) 35.4(3) 

C5 7735.4(5) 3591.9(5) 762.5(19) 28.2(3) 

C6 7347.4(5) 3958.7(5) 719.0(16) 20.7(3) 

C7 7204.5(4) 4248.0(5) 2284.1(16) 18.9(3) 

O8 7088.4(3) 3998.5(3) 3521.9(11) 23.1(2) 

N9 7184.8(4) 4774.6(4) 2233.1(13) 17.3(2) 

C10 7478.9(5) 5055.4(5) 955.5(15) 19.1(3) 

C11 8020.8(5) 5171.8(5) 1462.6(16) 20.3(3) 

O12 8303.9(3) ,,4757.4(3) 2000.3(12) 23.5(2) 

C13 8792.9(5) 4938.5(6) 2283.8(17) 27.3(3) 

C14 8821.9(5) 5444.5(6) 1941.5(18) 29.1(3) 

C15 8317.7(5) 5597.5(5) 1408.6(17) 24.6(3) 

C16 7010.3(5) 5048.7(5) 3768.7(15) 17.0(2) 

C17 7419.1(5) 4995.5(5) 5145.5(15) 18.1(3) 

C18 7318.5(5) 5330.9(5) 6674.8(15) 18.0(2) 

C19 7212.3(5) 5897.6(5) 6234.3(15) 17.9(3) 

C20 7113.7(5) 6210.5(5) 7783.4(16) 18.8(3) 

C21 7494.3(5) 6537.6(5) 8402.4(17) 22.7(3) 

C22 7414.7(6) 6818.7(5) 9845.6(18) 27.9(3) 
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C23 6949.3(6) 6782.5(5) 10688.1(17) 29.0(3) 

C24 6565.8(5) 6458.5(5) 10087.0(17) 26.2(3) 

C25 6650.1(5) 6171.1(5) 8658.6(17) 22.3(3) 

C26 6775.5(5) 5926.6(5) 4957.1(16) 19.4(3) 

C27 6923.3(5) 5626.6(5) 3394.4(15) 18.3(3) 

C28 6480.8(5) 4813.2(4) 4277.9(16) 18.0(3) 

O29 6386.0(3) 4697.2(4) 5720.4(11) 23.8(2) 

N30 6133.1(4) 4778.0(4) 3045.3(13) 19.2(2) 

C31 5662.8(5) 4467.4(5) 3219.9(16) 19.9(3) 

C32 5216.6(5) 4705.6(5) 2262(2) 33.7(4) 

C33 4732.1(5) 4367.7(6) 2401(2) 39.1(4) 

C34 4834.3(6) 3815.3(6) 1844(2) 32.2(3) 

C35 5287.9(5) 3583.0(5) 2766.4(19) 26.2(3) 

C36 5768.3(5) 3920.6(5) 2620.9(18) 25.5(3) 

O37 3784.2(5) 5251.0(5) 753.2(13) 40.5(3) 
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Table A4.3. Anisotropic Displacement Parameters (Å2×103) for trans-1.53. The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…] 

Atom U11 U22 U33 U23 U13 U12 

N1 25.4(6) 22.0(5) 24.2(6) -3.1(4) -1.5(5) -1.5(4) 

C2 33.7(7) 29.0(7) 25.3(7) -5.1(6) -0.5(6) -6.5(6) 

C3 34.3(8) 34.3(8) 34.0(8) -13.7(6) 9.5(6) -5.0(6) 

C4 26.4(7) 32.6(8) 47.3(9) -9.4(7) 6.5(7) 5.3(6) 

C5 21.9(6) 28.5(7) 34.2(8) -2.2(6) 0.0(6) 3.3(5) 

C6 18.6(6) 18.7(6) 24.9(7) -0.4(5) 1.6(5) -3.4(5) 

C7 14.6(5) 20.2(6) 21.9(6) 0.9(5) -1.8(5) -1.1(5) 

O8 26.4(5) 19.3(4) 23.8(5) 2.7(4) 1.6(4) -1.7(4) 

N9 17.4(5) 17.7(5) 16.9(5) 0.5(4) 1.1(4) -1.6(4) 

C10 20.8(6) 19.1(6) 17.4(6) 1.4(5) 2.3(5) -2.2(5) 

C11 22.0(6) 21.0(6) 18.0(6) -0.4(5) 3.2(5) 0.3(5) 

O12 20.9(4) 23.8(5) 25.8(5) 2.0(4) 0.9(4) -0.6(4) 

C13 18.5(6) 36.7(8) 26.7(7) -3.9(6) 0.4(5) -0.7(5) 

C14 22.6(7) 33.1(7) 31.6(8) -8.2(6) 3.4(6) -7.3(6) 

C15 24.5(6) 22.4(6) 26.8(7) -3.1(5) 5.5(5) -3.8(5) 

C16 16.4(6) 17.7(6) 16.9(6) 0.7(5) 0.5(5) -0.7(4) 

C17 16.2(6) 18.0(6) 19.9(6) 0.9(5) -1.1(5) 0.9(4) 

C18 16.4(6) 18.7(6) 18.9(6) 1.0(5) -1.8(5) 0.7(4) 

C19 15.7(6) 17.8(6) 20.1(6) 0.7(5) 1.3(5) -1.6(4) 

C20 20.4(6) 15.8(6) 20.4(6) 2.4(5) -1.6(5) 2.5(5) 

C21 20.2(6) 21.7(6) 26.3(7) 0.3(5) -2.1(5) 0.3(5) 

C22 32.1(7) 23.2(6) 28.5(7) -3.9(6) -7.8(6) 1.0(5) 

C23 42.8(8) 24.0(7) 20.0(7) -1.9(5) -1.1(6) 8.4(6) 
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C24 30.3(7) 24.8(7) 23.6(7) 4.8(5) 6.9(6) 7.4(5) 

C25 22.0(6) 19.3(6) 25.5(7) 1.9(5) 2.2(5) 0.0(5) 

C26 18.2(6) 17.1(6) 22.7(6) 1.5(5) -1.2(5) 1.6(5) 

C27 17.3(6) 17.8(6) 19.8(6) 2.3(5) -1.8(5) -0.8(4) 

C28 18.1(6) 14.9(5) 20.9(6) -0.5(5) 0.9(5) 0.2(4) 

O29 23.6(5) 29.6(5) 18.3(5) 1.9(4) 1.5(4) -6.5(4) 

N30 17.7(5) 20.2(5) 19.8(5) 2.3(4) 0.5(4) -3.4(4) 

C31 17.0(6) 22.4(6) 20.3(6) 0.0(5) 0.8(5) -3.9(5) 

C32 19.7(7) 22.4(7) 59.1(10) 9.2(7) -6.2(7) -1.6(5) 

C33 17.5(7) 30.2(8) 69.6(12) 11.3(8) -8.6(7) -1.8(6) 

C34 27.8(7) 33.2(8) 35.5(8) 3.3(6) -8.8(6) -11.5(6) 

C35 25.0(7) 21.3(6) 32.3(7) -0.6(6) 0.7(6) -4.7(5) 

C36 20.4(6) 21.5(6) 34.7(8) -0.3(6) 1.1(6) -1.5(5) 

O37 44.2(6) 50.4(7) 27.0(6) 10.7(5) 9.6(5) 22.6(5) 
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Table A4.4. Bond Lengths for trans-1.53 

Atom Atom Length/Å  Atom Atom Length/Å 

N1 C2 1.3418(18)  C17 C18 1.5305(17) 

N1 C6 1.3389(17)  C18 C19 1.5353(16) 

C2 C3 1.380(2)  C19 C20 1.5105(17) 

C3 C4 1.383(2)  C19 C26 1.5316(17) 

C4 C5 1.385(2)  C20 C21 1.3925(18) 

C5 C6 1.3838(19)  C20 C25 1.3965(18) 

C6 C7 1.5133(18)  C21 C22 1.3878(19) 

C7 O8 1.2262(16)  C22 C23 1.387(2) 

C7 N9 1.3657(16)  C23 C24 1.388(2) 

N9 C10 1.4732(15)  C24 C25 1.3884(19) 

N9 C16 1.4969(15)  C26 C27 1.5287(17) 

C10 C11 1.4930(17)  C28 O29 1.2256(16) 

C11 O12 1.3706(15)  C28 N30 1.3441(17) 

C11 C15 1.3453(18)  N30 C31 1.4670(15) 

O12 C13 1.3700(16)  C31 C32 1.5208(18) 

C13 C14 1.342(2)  C31 C36 1.5212(18) 

C14 C15 1.431(2)  C32 C33 1.5345(19) 

C16 C17 1.5402(16)  C33 C34 1.523(2) 

C16 C27 1.5439(16)  C34 C35 1.515(2) 

C16 C28 1.5565(16)  C35 C36 1.5257(18) 
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Table A4.5. Bond Angles for trans-1.53 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

C6 N1 C2 117.80(12)  C18 C17 C16 114.35(10) 

N1 C2 C3 122.67(14)  C17 C18 C19 112.78(10) 

C2 C3 C4 119.05(14)  C20 C19 C18 110.63(10) 

C3 C4 C5 118.88(14)  C20 C19 C26 113.84(10) 

C6 C5 C4 118.40(14)  C26 C19 C18 109.55(10) 

N1 C6 C5 123.18(12)  C21 C20 C19 120.19(11) 

N1 C6 C7 116.97(11)  C21 C20 C25 118.20(12) 

C5 C6 C7 119.78(12)  C25 C20 C19 121.58(11) 

O8 C7 C6 118.49(11)  C22 C21 C20 120.96(12) 

O8 C7 N9 122.81(11)  C23 C22 C21 120.27(13) 

N9 C7 C6 118.61(11)  C22 C23 C24 119.49(13) 

C7 N9 C10 119.68(10)  C23 C24 C25 120.08(13) 

C7 N9 C16 117.40(10)  C24 C25 C20 120.99(12) 

C10 N9 C16 119.99(9)  C27 C26 C19 110.11(10) 

N9 C10 C11 113.25(10)  C26 C27 C16 111.63(10) 

O12 C11 C10 115.58(10)  O29 C28 C16 121.51(11) 

C15 C11 C10 133.98(12)  O29 C28 N30 123.39(11) 

C15 C11 O12 110.26(11)  N30 C28 C16 114.98(10) 

C13 O12 C11 106.22(10)  C28 N30 C31 121.53(10) 

C14 C13 O12 110.62(12)  N30 C31 C32 111.10(10) 

C13 C14 C15 106.33(12)  N30 C31 C36 109.33(10) 

C11 C15 C14 106.57(12)  C32 C31 C36 110.69(11) 

N9 C16 C17 110.21(9)  C31 C32 C33 110.68(12) 
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N9 C16 C27 110.04(10)   C34 C33 C32 111.85(13) 

N9 C16 C28 107.36(9)   C35 C34 C33 111.31(12) 

C17 C16 C27 109.14(10)   C34 C35 C36 111.54(11) 

C17 C16 C28 112.40(10)   C31 C36 C35 111.27(11) 

C27 C16 C28 107.64(9)           
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Table A4.6. Hydrogen Bonds for trans-1.53 

D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 

O37 H37A O291 0.87 2.10 2.8794(14) 148.3 

O37 H37B N12 0.87 1.98 2.8417(16) 172.0 

11-X,1-Y,1-Z; 21-X,1-Y,-Z 
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Table A4.7. Torsion Angles for trans-1.53 

A B C D Angle/˚  A B C D Angle/˚ 

N1 C2 C3 C4 1.2(2)  C16 C28 N30 C31 166.58(10) 

N1 C6 C7 O8 122.32(13)  C17 C16 C27 C26 -55.55(13) 

N1 C6 C7 N9 -54.37(15)  C17 C16 C28 O29 13.37(16) 

C2 N1 C6 C5 -0.81(19)  C17 C16 C28 N30 -170.42(10) 

C2 N1 C6 C7 -177.67(11)  C17 C18 C19 C20 179.77(10) 

C2 C3 C4 C5 -0.3(2)  C17 C18 C19 C26 53.47(13) 

C3 C4 C5 C6 -1.1(2)  C18 C19 C20 C21 103.95(13) 

C4 C5 C6 N1 1.7(2)  C18 C19 C20 C25 -74.18(14) 

C4 C5 C6 C7 178.48(12)  C18 C19 C26 C27 -59.02(13) 

C5 C6 C7 O8 -54.65(17)  C19 C20 C21 C22 -178.48(12) 

C5 C6 C7 N9 128.65(13)  C19 C20 C25 C24 179.58(11) 

C6 N1 C2 C3 -0.7(2)  C19 C26 C27 C16 61.73(13) 

C6 C7 N9 C10 -23.12(16)  C20 C19 C26 C27 176.53(10) 

C6 C7 N9 C16 176.24(10)  C20 C21 C22 C23 -0.8(2) 

C7 N9 C10 C11 -87.33(13)  C21 C20 C25 C24 1.42(19) 

C7 N9 C16 C17 69.20(13)  C21 C22 C23 C24 0.7(2) 

C7 N9 C16 C27 -170.38(10)  C22 C23 C24 C25 0.4(2) 

C7 N9 C16 C28 -53.51(13)  C23 C24 C25 C20 -1.5(2) 

O8 C7 N9 C10 160.33(11)  C25 C20 C21 C22 -0.29(19) 

O8 C7 N9 C16 -0.30(17)  C26 C19 C20 C21 -132.18(12) 

N9 C10 C11 O12 52.76(14)  C26 C19 C20 C25 49.69(16) 

N9 C10 C11 C15 -132.79(15)  C27 C16 C17 C18 49.99(13) 

N9 C16 C17 C18 170.94(10)  C27 C16 C28 O29 -106.85(13) 
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N9 C16 C27 C26 -176.60(9)  C27 C16 C28 N30 69.36(13) 

N9 C16 C28 O29 134.72(12)  C28 C16 C17 C18 -69.35(13) 

N9 C16 C28 N30 -49.07(13)  C28 C16 C27 C26 66.71(12) 

C10 N9 C16 C17 -91.37(12)  C28 N30 C31 C32 147.24(12) 

C10 N9 C16 C27 29.04(14)  C28 N30 C31 C36 -90.29(14) 

C10 N9 C16 C28 145.91(10)  O29 C28 N30 C31 -17.29(18) 

C10 C11 O12 C13 175.71(11)  N30 C31 C32 C33 177.97(13) 

C10 C11 C15 C14 -174.52(14)  N30 C31 C36 C35 -179.57(11) 

C11 O12 C13 C14 -0.10(15)  C31 C32 C33 C34 -55.24(19) 

O12 C11 C15 C14 0.14(15)  C32 C31 C36 C35 -56.87(15) 

O12 C13 C14 C15 0.18(16)  C32 C33 C34 C35 54.09(18) 

C13 C14 C15 C11 -0.20(16)  C33 C34 C35 C36 -54.14(17) 

C15 C11 O12 C13 -0.03(14)  C34 C35 C36 C31 55.83(16) 

C16 N9 C10 C11 72.80(13)  C36 C31 C32 C33 56.29(17) 

C16 C17 C18 C19 -50.43(14)       
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Table A4.8. Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103) for trans-1.53 

Atom x y z U(eq) 

H2 6979 3857 -2994 35 

H3 7636 3252 -3103 41 

H4 8117 3075 -699 42 

H5 7920 3525 1758 34 

H10A 7299 5384 704 23 

H10B 7485 4847 -74 23 

H13 9073 4734 2669 33 

H14 9118 5659 2034 35 

H15 8213 5934 1081 29 

H17A 7435 4630 5497 22 

H17B 7761 5088 4680 22 

H18A 7622 5313 7418 22 

H18B 7018 5190 7287 22 

H19 7531 6038 5698 21 

H21 7813 6569 7828 27 

H22 7680 7037 10258 34 

H23 6893 6978 11669 35 

H24 6245 6433 10654 31 

H25 6389 5944 8271 27 

H26A 6456 5780 5438 23 

H26B 6708 6292 4668 23 

H27A 7243 5775 2919 22 
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H27B 6645 5663 2559 22 

H30 6189 4945 2112 23 

H31 5567 4453 4421 24 

H32A 5314 4743 1080 40 

H32B 5142 5054 2707 40 

H33A 4612 4366 3567 47 

H33B 4454 4518 1710 47 

H34A 4523 3603 2045 39 

H34B 4906 3812 638 39 

H35A 5363 3236 2310 31 

H35B 5197 3542 3952 31 

H36A 6050 3768 3289 31 

H36B 5882 3931 1449 31 

H37A 3838 5189 1799 61 

H37B 3541 5480 652 61 
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X-ray crystallographic data of (S)-1.71  

Table A5.1. Crystal data and structure refinement for (S)-1.71 

Identification code  q07e 

Empirical formula  C22.50 H25 Br Cl N3 O4 

Formula weight  516.81 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Triclinic 

Space group  P1 

Unit cell dimensions a = 5.9999(3) Å  

 b = 12.1506(6) Å  

 c = 16.4980(9) Å  

Volume 1171.90(10) Å3 

Z 2 

Density (calculated) 1.465 Mg/m3 

Absorption coefficient 3.723 mm-1 

F(000) 530 

Crystal size 0.350 x 0.135 x 0.025 mm3 

Theta range for data collection 2.680 to 69.680°. 

Index ranges -7<=h<=6, -14<=k<=12, -20<=l<=20 

Reflections collected 12689 

Independent reflections 5679 [R(int) = 0.0342] 

Completeness to theta = 66.000° 95.0 %  

Absorption correction Multi-scan 
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Max. and min. transmission 1.000 and 0.645 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5679 / 3 / 732 

Goodness-of-fit on F2 1.025 

Final R indices [I>2sigma(I)] R1 = 0.0297, wR2 = 0.0732 

R indices (all data) R1 = 0.0297, wR2 = 0.0732 

Absolute structure parameter 0.055(8) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.564 and -0.672 e.Å-3 
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Table A5.2. Atomic coordinates ( x 104) and equivalent  isotropic displacement parameters (Å2x 

103) for (S)-1.71. U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor 

______________________________________________________________________________ 

 x y z U(eq) 

______________________________________________________________________________ 

C(1A) 255(6) 3333(3) 809(2) 16(1) 

C(2A) -1971(6) 3669(3) 539(2) 18(1) 

C(3A) -1576(7) 4798(3) 124(2) 27(1) 

C(4A) 1603(6) 3057(3) 80(2) 20(1) 

N(5A) -333(5) 2340(2) 1350(2) 15(1) 

C(6A) 1359(6) 2108(3) 1824(2) 16(1) 

O(7A) 3325(4) 2680(2) 1820(2) 20(1) 

C(8A) 806(6) 1161(3) 2419(2) 18(1) 

N(9A) -777(6) 1230(3) 2976(2) 23(1) 

C(10A) -1133(7) 440(4) 3543(2) 29(1) 

C(11A) 30(8) -424(4) 3570(3) 31(1) 

C(12A) 1614(8) -493(4) 2984(3) 35(1) 

C(13A) 2031(7) 318(3) 2396(3) 28(1) 

C(14A) -2462(6) 1483(3) 1200(2) 18(1) 

C(15A) -2451(6) 824(3) 428(2) 22(1) 

O(16A) -594(5) 373(2) 299(2) 26(1) 

C(17A) -1024(8) -241(4) -419(3) 32(1) 

C(18A) -3048(9) -185(4) -733(3) 38(1) 

C(19A) -4003(8) 518(4) -183(3) 32(1) 

C(20A) 1708(6) 4364(3) 1305(2) 17(1) 
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O(21A) 3365(4) 4969(2) 1006(1) 20(1) 

N(22A) 790(5) 4561(2) 2026(2) 16(1) 

C(23A) 1743(6) 5429(3) 2600(2) 17(1) 

C(24A) 4047(6) 5947(3) 2639(2) 20(1) 

C(25A) 4862(7) 6744(3) 3256(2) 23(1) 

C(26A) 3365(7) 6997(3) 3826(2) 21(1) 

C(27A) 1067(7) 6499(3) 3797(2) 21(1) 

C(28A) 255(7) 5721(3) 3171(2) 19(1) 

Br(29) 4543(1) 8040(1) 4690(1) 29(1) 

C(1B) 5344(6) 5965(3) 7789(2) 16(1) 

C(2B) 7804(6) 6099(3) 8128(2) 19(1) 

C(3B) 8474(7) 7021(3) 8788(2) 25(1) 

C(4B) 3585(6) 5415(3) 8406(2) 20(1) 

N(5B) 5107(5) 5276(2) 7012(2) 16(1) 

C(6B) 3353(6) 5335(3) 6497(2) 17(1) 

O(7B) 1932(4) 5887(2) 6668(1) 21(1) 

C(8B) 3220(6) 4751(3) 5672(2) 18(1) 

N(9B) 5152(5) 4912(3) 5239(2) 18(1) 

C(10B) 5000(6) 4451(3) 4490(2) 20(1) 

C(11B) 2993(7) 3806(3) 4149(2) 22(1) 

C(12B) 1016(7) 3658(3) 4599(2) 24(1) 

C(13B) 1127(7) 4146(3) 5375(2) 22(1) 

C(14B) 6141(7) 4280(3) 6967(2) 20(1) 

C(15B) 4782(8) 3302(3) 7409(2) 25(1) 



308 
 

O(16B) 2526(5) 2981(2) 7184(2) 31(1) 

C(17B) 1567(10) 2082(4) 7649(3) 40(1) 

C(18B) 3133(11) 1845(4) 8140(3) 47(1) 

C(19B) 5250(9) 2625(4) 7993(2) 37(1) 

C(20B) 5012(6) 7168(3) 7620(2) 18(1) 

O(21B) 3889(4) 7632(2) 8078(1) 21(1) 

N(22B) 6232(5) 7684(3) 6996(2) 19(1) 

C(23B) 6097(6) 8744(3) 6691(2) 18(1) 

C(24B) 4225(7) 9227(3) 6815(2) 21(1) 

C(25B) 4090(7) 10209(3) 6418(2) 23(1) 

C(26B) 5827(6) 10713(3) 5918(2) 22(1) 

C(27B) 7779(7) 10271(3) 5822(2) 21(1) 

C(28B) 7904(6) 9288(3) 6210(2) 20(1) 

Br(2B) 5457(1) 11960(1) 5310(1) 26(1) 

Cl(1S) 6529(2) 8434(1) 1588(1) 63(1) 

Cl(2S) 1872(2) 7951(1) 930(1) 55(1) 

C(1S) 4625(11) 7688(4) 816(4) 53(1) 

O(1W) -2933(5) 3136(2) 2895(2) 22(1) 

O(2W) 8810(5) 6781(2) 5786(2) 22(1) 

______________________________________________________________________________
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Table A5.3. Bond lengths [Å] and angles [°] for (S)-1.71 

_____________________________________________________  

C(1A)-N(5A)  1.500(4) 

C(1A)-C(4A)  1.526(4) 

C(1A)-C(2A)  1.546(5) 

C(1A)-C(20A)  1.562(5) 

C(2A)-C(3A)  1.523(5) 

C(2A)-H(2A)  1.02(4) 

C(2A)-H(2B)  0.92(5) 

C(3A)-H(3A)  0.9800 

C(3A)-H(3B)  0.9800 

C(3A)-H(3C)  0.9800 

C(4A)-H(4A)  0.9800 

C(4A)-H(4B)  0.9800 

C(4A)-H(4C)  0.9800 

N(5A)-C(6A)  1.359(4) 

N(5A)-C(14A)  1.471(4) 

C(6A)-O(7A)  1.229(4) 

C(6A)-C(8A)  1.516(5) 

C(8A)-N(9A)  1.341(5) 

C(8A)-C(13A)  1.388(5) 

N(9A)-C(10A)  1.344(5) 

C(10A)-C(11A)  1.385(6) 

C(10A)-H(10A)  1.03(7) 
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C(11A)-C(12A)  1.377(7) 

C(11A)-H(11A)  1.01(8) 

C(12A)-C(13A)  1.387(6) 

C(12A)-H(12A)  0.95(6) 

C(13A)-H(13A)  0.87(6) 

C(14A)-C(15A)  1.486(5) 

C(14A)-H(14A)  0.95(5) 

C(14A)-H(14B)  0.87(5) 

C(15A)-C(19A)  1.352(6) 

C(15A)-O(16A)  1.363(5) 

O(16A)-C(17A)  1.373(5) 

C(17A)-C(18A)  1.331(7) 

C(17A)-H(17A)  0.84(6) 

C(18A)-C(19A)  1.438(6) 

C(18A)-H(18A)  0.93(7) 

C(19A)-H(19A)  0.97(7) 

C(20A)-O(21A)  1.215(4) 

C(20A)-N(22A)  1.352(4) 

N(22A)-C(23A)  1.416(5) 

N(22A)-H(22N)  0.80(5) 

C(23A)-C(24A)  1.385(6) 

C(23A)-C(28A)  1.396(5) 

C(24A)-C(25A)  1.392(5) 

C(24A)-H(24A)  1.01(5) 
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C(25A)-C(26A)  1.382(6) 

C(25A)-H(25A)  1.02(5) 

C(26A)-C(27A)  1.377(6) 

C(26A)-Br(29)  1.902(3) 

C(27A)-C(28A)  1.388(5) 

C(27A)-H(27A)  0.91(6) 

C(28A)-H(28A)  0.84(7) 

C(1B)-N(5B)  1.500(4) 

C(1B)-C(4B)  1.530(5) 

C(1B)-C(2B)  1.546(5) 

C(1B)-C(20B)  1.551(5) 

C(2B)-C(3B)  1.525(5) 

C(2B)-H(2C)  0.97(5) 

C(2B)-H(2D)  1.06(5) 

C(3B)-H(3D)  0.9800 

C(3B)-H(3E)  0.9800 

C(3B)-H(3F)  0.9800 

C(4B)-H(4D)  0.9800 

C(4B)-H(4E)  0.9800 

C(4B)-H(4F)  0.9800 

N(5B)-C(6B)  1.362(4) 

N(5B)-C(14B)  1.479(4) 

C(6B)-O(7B)  1.227(4) 

C(6B)-C(8B)  1.509(4) 
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C(8B)-N(9B)  1.347(5) 

C(8B)-C(13B)  1.384(6) 

N(9B)-C(10B)  1.337(5) 

C(10B)-C(11B)  1.386(6) 

C(10B)-H(10B)  1.07(6) 

C(11B)-C(12B)  1.385(6) 

C(11B)-H(11B)  0.99(5) 

C(12B)-C(13B)  1.391(5) 

C(12B)-H(12B)  0.97(6) 

C(13B)-H(13B)  0.86(6) 

C(14B)-C(15B)  1.495(6) 

C(14B)-H(14C)  0.95(6) 

C(14B)-H(14D)  0.95(4) 

C(15B)-C(19B)  1.352(6) 

C(15B)-O(16B)  1.367(6) 

O(16B)-C(17B)  1.375(5) 

C(17B)-C(18B)  1.319(9) 

C(17B)-H(17B)  0.99(10) 

C(18B)-C(19B)  1.433(8) 

C(18B)-H(18B)  0.9500 

C(19B)-H(19B)  0.99(6) 

C(20B)-O(21B)  1.224(4) 

C(20B)-N(22B)  1.355(5) 

N(22B)-C(23B)  1.413(5) 
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N(22B)-H(22B)  0.77(6) 

C(23B)-C(24B)  1.393(5) 

C(23B)-C(28B)  1.404(5) 

C(24B)-C(25B)  1.395(6) 

C(24B)-H(24B)  0.98(5) 

C(25B)-C(26B)  1.379(6) 

C(25B)-H(25B)  0.99(6) 

C(26B)-C(27B)  1.401(5) 

C(26B)-Br(2B)  1.893(4) 

C(27B)-C(28B)  1.387(6) 

C(27B)-H(27B)  0.89(5) 

C(28B)-H(28B)  1.04(4) 

Cl(1S)-C(1S)  1.787(7) 

Cl(2S)-C(1S)  1.762(6) 

C(1S)-H(1SA)  1.03(8) 

C(1S)-H(1SB)  1.12(7) 

O(1W)-H(1W1)  0.81(6) 

O(1W)-H(1W2)  0.92(7) 

O(2W)-H(2W1)  0.81(5) 

O(2W)-H(2W2)  0.90(7) 

N(5A)-C(1A)-C(4A) 110.6(3) 

N(5A)-C(1A)-C(2A) 109.2(3) 

C(4A)-C(1A)-C(2A) 111.3(3) 

N(5A)-C(1A)-C(20A) 109.0(2) 
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C(4A)-C(1A)-C(20A) 109.7(3) 

C(2A)-C(1A)-C(20A) 106.9(3) 

C(3A)-C(2A)-C(1A) 113.9(3) 

C(3A)-C(2A)-H(2A) 109(2) 

C(1A)-C(2A)-H(2A) 110(2) 

C(3A)-C(2A)-H(2B) 108(3) 

C(1A)-C(2A)-H(2B) 112(3) 

H(2A)-C(2A)-H(2B) 104(4) 

C(2A)-C(3A)-H(3A) 109.5 

C(2A)-C(3A)-H(3B) 109.5 

H(3A)-C(3A)-H(3B) 109.5 

C(2A)-C(3A)-H(3C) 109.5 

H(3A)-C(3A)-H(3C) 109.5 

H(3B)-C(3A)-H(3C) 109.5 

C(1A)-C(4A)-H(4A) 109.5 

C(1A)-C(4A)-H(4B) 109.5 

H(4A)-C(4A)-H(4B) 109.5 

C(1A)-C(4A)-H(4C) 109.5 

H(4A)-C(4A)-H(4C) 109.5 

H(4B)-C(4A)-H(4C) 109.5 

C(6A)-N(5A)-C(14A) 120.3(3) 

C(6A)-N(5A)-C(1A) 118.0(3) 

C(14A)-N(5A)-C(1A) 119.6(3) 

O(7A)-C(6A)-N(5A) 122.2(3) 
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O(7A)-C(6A)-C(8A) 118.0(3) 

N(5A)-C(6A)-C(8A) 119.7(3) 

N(9A)-C(8A)-C(13A) 123.6(3) 

N(9A)-C(8A)-C(6A) 117.0(3) 

C(13A)-C(8A)-C(6A) 119.3(3) 

C(8A)-N(9A)-C(10A) 116.9(3) 

N(9A)-C(10A)-C(11A) 123.3(4) 

N(9A)-C(10A)-H(10A) 117(4) 

C(11A)-C(10A)-H(10A) 120(4) 

C(12A)-C(11A)-C(10A) 118.9(4) 

C(12A)-C(11A)-H(11A) 119(5) 

C(10A)-C(11A)-H(11A) 122(5) 

C(11A)-C(12A)-C(13A) 119.0(4) 

C(11A)-C(12A)-H(12A) 117(4) 

C(13A)-C(12A)-H(12A) 124(4) 

C(12A)-C(13A)-C(8A) 118.3(4) 

C(12A)-C(13A)-H(13A) 121(4) 

C(8A)-C(13A)-H(13A) 121(4) 

N(5A)-C(14A)-C(15A) 113.0(3) 

N(5A)-C(14A)-H(14A) 111(3) 

C(15A)-C(14A)-H(14A) 110(3) 

N(5A)-C(14A)-H(14B) 106(3) 

C(15A)-C(14A)-H(14B) 107(3) 

H(14A)-C(14A)-H(14B) 109(4) 
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C(19A)-C(15A)-O(16A) 110.6(3) 

C(19A)-C(15A)-C(14A) 132.7(4) 

O(16A)-C(15A)-C(14A) 116.6(3) 

C(15A)-O(16A)-C(17A) 106.1(3) 

C(18A)-C(17A)-O(16A) 111.0(4) 

C(18A)-C(17A)-H(17A) 135(3) 

O(16A)-C(17A)-H(17A) 114(3) 

C(17A)-C(18A)-C(19A) 106.5(4) 

C(17A)-C(18A)-H(18A) 121(4) 

C(19A)-C(18A)-H(18A) 133(4) 

C(15A)-C(19A)-C(18A) 105.9(4) 

C(15A)-C(19A)-H(19A) 122(3) 

C(18A)-C(19A)-H(19A) 132(3) 

O(21A)-C(20A)-N(22A) 125.6(3) 

O(21A)-C(20A)-C(1A) 120.4(3) 

N(22A)-C(20A)-C(1A) 113.6(3) 

C(20A)-N(22A)-C(23A) 125.8(3) 

C(20A)-N(22A)-H(22N) 118(3) 

C(23A)-N(22A)-H(22N) 116(3) 

C(24A)-C(23A)-C(28A) 119.9(3) 

C(24A)-C(23A)-N(22A) 123.4(3) 

C(28A)-C(23A)-N(22A) 116.7(3) 

C(23A)-C(24A)-C(25A) 119.5(3) 

C(23A)-C(24A)-H(24A) 119(3) 
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C(25A)-C(24A)-H(24A) 121(3) 

C(26A)-C(25A)-C(24A) 119.5(4) 

C(26A)-C(25A)-H(25A) 123(3) 

C(24A)-C(25A)-H(25A) 117(3) 

C(27A)-C(26A)-C(25A) 122.0(3) 

C(27A)-C(26A)-Br(29) 119.3(3) 

C(25A)-C(26A)-Br(29) 118.7(3) 

C(26A)-C(27A)-C(28A) 118.3(3) 

C(26A)-C(27A)-H(27A) 122(4) 

C(28A)-C(27A)-H(27A) 120(4) 

C(27A)-C(28A)-C(23A) 120.8(4) 

C(27A)-C(28A)-H(28A) 121(4) 

C(23A)-C(28A)-H(28A) 119(4) 

N(5B)-C(1B)-C(4B) 111.1(3) 

N(5B)-C(1B)-C(2B) 108.7(2) 

C(4B)-C(1B)-C(2B) 110.9(3) 

N(5B)-C(1B)-C(20B) 109.7(3) 

C(4B)-C(1B)-C(20B) 109.3(3) 

C(2B)-C(1B)-C(20B) 107.0(3) 

C(3B)-C(2B)-C(1B) 114.1(3) 

C(3B)-C(2B)-H(2C) 112(3) 

C(1B)-C(2B)-H(2C) 108(3) 

C(3B)-C(2B)-H(2D) 112(3) 

C(1B)-C(2B)-H(2D) 106(3) 
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H(2C)-C(2B)-H(2D) 105(4) 

C(2B)-C(3B)-H(3D) 109.5 

C(2B)-C(3B)-H(3E) 109.5 

H(3D)-C(3B)-H(3E) 109.5 

C(2B)-C(3B)-H(3F) 109.5 

H(3D)-C(3B)-H(3F) 109.5 

H(3E)-C(3B)-H(3F) 109.5 

C(1B)-C(4B)-H(4D) 109.5 

C(1B)-C(4B)-H(4E) 109.5 

H(4D)-C(4B)-H(4E) 109.5 

C(1B)-C(4B)-H(4F) 109.5 

H(4D)-C(4B)-H(4F) 109.5 

H(4E)-C(4B)-H(4F) 109.5 

C(6B)-N(5B)-C(14B) 119.6(3) 

C(6B)-N(5B)-C(1B) 117.8(3) 

C(14B)-N(5B)-C(1B) 118.6(3) 

O(7B)-C(6B)-N(5B) 122.1(3) 

O(7B)-C(6B)-C(8B) 118.9(3) 

N(5B)-C(6B)-C(8B) 119.0(3) 

N(9B)-C(8B)-C(13B) 123.2(3) 

N(9B)-C(8B)-C(6B) 117.4(3) 

C(13B)-C(8B)-C(6B) 119.3(3) 

C(10B)-N(9B)-C(8B) 117.3(3) 

N(9B)-C(10B)-C(11B) 123.7(3) 
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N(9B)-C(10B)-H(10B) 114(3) 

C(11B)-C(10B)-H(10B) 123(3) 

C(12B)-C(11B)-C(10B) 118.3(3) 

C(12B)-C(11B)-H(11B) 123(3) 

C(10B)-C(11B)-H(11B) 118(3) 

C(11B)-C(12B)-C(13B) 119.0(4) 

C(11B)-C(12B)-H(12B) 122(3) 

C(13B)-C(12B)-H(12B) 119(3) 

C(8B)-C(13B)-C(12B) 118.5(3) 

C(8B)-C(13B)-H(13B) 122(3) 

C(12B)-C(13B)-H(13B) 119(3) 

N(5B)-C(14B)-C(15B) 112.3(3) 

N(5B)-C(14B)-H(14C) 109(3) 

C(15B)-C(14B)-H(14C) 112(3) 

N(5B)-C(14B)-H(14D) 107(3) 

C(15B)-C(14B)-H(14D) 112(3) 

H(14C)-C(14B)-H(14D) 105(4) 

C(19B)-C(15B)-O(16B) 109.7(4) 

C(19B)-C(15B)-C(14B) 135.1(4) 

O(16B)-C(15B)-C(14B) 115.2(3) 

C(15B)-O(16B)-C(17B) 106.9(4) 

C(18B)-C(17B)-O(16B) 109.9(5) 

C(18B)-C(17B)-H(17B) 133(5) 

O(16B)-C(17B)-H(17B) 117(5) 
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C(17B)-C(18B)-C(19B) 107.8(4) 

C(17B)-C(18B)-H(18B) 126.1 

C(19B)-C(18B)-H(18B) 126.1 

C(15B)-C(19B)-C(18B) 105.7(5) 

C(15B)-C(19B)-H(19B) 123(3) 

C(18B)-C(19B)-H(19B) 131(3) 

O(21B)-C(20B)-N(22B) 123.9(3) 

O(21B)-C(20B)-C(1B) 120.5(3) 

N(22B)-C(20B)-C(1B) 115.2(3) 

C(20B)-N(22B)-C(23B) 125.6(3) 

C(20B)-N(22B)-H(22B) 119(3) 

C(23B)-N(22B)-H(22B) 115(3) 

C(24B)-C(23B)-C(28B) 119.7(3) 

C(24B)-C(23B)-N(22B) 123.0(3) 

C(28B)-C(23B)-N(22B) 117.2(3) 

C(23B)-C(24B)-C(25B) 119.7(3) 

C(23B)-C(24B)-H(24B) 119(3) 

C(25B)-C(24B)-H(24B) 121(3) 

C(26B)-C(25B)-C(24B) 120.1(3) 

C(26B)-C(25B)-H(25B) 122(3) 

C(24B)-C(25B)-H(25B) 117(3) 

C(25B)-C(26B)-C(27B) 120.8(3) 

C(25B)-C(26B)-Br(2B) 118.9(3) 

C(27B)-C(26B)-Br(2B) 120.2(3) 
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C(28B)-C(27B)-C(26B) 119.1(3) 

C(28B)-C(27B)-H(27B) 120(3) 

C(26B)-C(27B)-H(27B) 120(3) 

C(27B)-C(28B)-C(23B) 120.4(3) 

C(27B)-C(28B)-H(28B) 124(2) 

C(23B)-C(28B)-H(28B) 115(2) 

Cl(2S)-C(1S)-Cl(1S) 110.5(3) 

Cl(2S)-C(1S)-H(1SA) 107(4) 

Cl(1S)-C(1S)-H(1SA) 108(4) 

Cl(2S)-C(1S)-H(1SB) 107(4) 

Cl(1S)-C(1S)-H(1SB) 111(4) 

H(1SA)-C(1S)-H(1SB) 112(5) 

H(1W1)-O(1W)-H(1W2) 102(5) 

H(2W1)-O(2W)-H(2W2) 98(5) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A5.4. Anisotropic displacement parameters  (Å2x 103) for (S)-1.71.  The anisotropic 

displacement factor exponent takes the form: -22[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

C(1A) 12(2)  17(2) 19(1)  2(1) -2(1)  3(1) 

C(2A) 12(2)  20(2) 23(2)  2(1) -4(1)  5(1) 

C(3A) 23(2)  29(2) 30(2)  11(2) -2(1)  9(2) 

C(4A) 17(2)  22(2) 20(1)  -1(1) 3(1)  4(1) 

N(5A) 10(2)  16(1) 18(1)  2(1) -2(1)  4(1) 

C(6A) 14(2)  16(2) 20(2)  0(1) -1(1)  8(1) 

O(7A) 12(1)  20(1) 28(1)  3(1) -2(1)  4(1) 

C(8A) 15(2)  17(2) 23(2)  3(1) -2(1)  3(1) 

N(9A) 21(2)  24(2) 24(1)  2(1) -1(1)  8(1) 

C(10A) 30(2)  32(2) 25(2)  7(2) 1(2)  6(2) 

C(11A) 30(2)  29(2) 35(2)  14(2) -1(2)  6(2) 

C(12A) 30(3)  26(2) 53(3)  15(2) 5(2)  13(2) 

C(13A) 19(2)  24(2) 43(2)  9(2) 4(2)  9(2) 

C(14A) 10(2)  18(2) 25(2)  2(1) -2(1)  2(1) 

C(15A) 16(2)  17(2) 31(2)  2(1) -4(1)  3(1) 

O(16A) 20(2)  22(1) 34(1)  -5(1) -3(1)  6(1) 

C(17A) 33(3)  24(2) 37(2)  -11(2) -1(2)  6(2) 

C(18A) 47(3)  33(2) 33(2)  -13(2) -10(2)  7(2) 

C(19A) 31(3)  28(2) 35(2)  -6(2) -12(2)  6(2) 
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C(20A) 12(2)  16(2) 23(2)  3(1) -2(1)  5(1) 

O(21A) 15(1)  19(1) 24(1)  0(1) 1(1)  1(1) 

N(22A) 11(2)  16(1) 21(1)  1(1) 0(1)  1(1) 

C(23A) 19(2)  14(2) 19(2)  2(1) -3(1)  7(1) 

C(24A) 16(2)  21(2) 24(2)  1(1) -2(1)  6(1) 

C(25A) 16(2)  23(2) 31(2)  1(1) -4(1)  3(1) 

C(26A) 25(2)  16(2) 21(2)  -2(1) -7(1)  5(1) 

C(27A) 21(2)  20(2) 22(2)  1(1) 2(1)  8(1) 

C(28A) 14(2)  19(2) 25(2)  3(1) 0(1)  2(1) 

Br(29) 31(1)  27(1) 26(1)  -8(1) -7(1)  1(1) 

C(1B) 14(2)  19(2) 16(1)  -1(1) -1(1)  6(1) 

C(2B) 17(2)  23(2) 18(2)  -1(1) -3(1)  9(1) 

C(3B) 22(2)  28(2) 26(2)  -6(2) -6(1)  10(2) 

C(4B) 17(2)  22(2) 23(2)  3(1) 1(1)  8(1) 

N(5B) 15(2)  18(1) 18(1)  0(1) -2(1)  8(1) 

C(6B) 12(2)  18(2) 21(2)  2(1) -1(1)  6(1) 

O(7B) 17(1)  26(1) 22(1)  0(1) -3(1)  10(1) 

C(8B) 18(2)  17(2) 20(2)  3(1) 2(1)  10(1) 

N(9B) 13(2)  21(2) 19(1)  2(1) -2(1)  6(1) 

C(10B) 19(2)  23(2) 21(2)  6(1) 2(1)  10(1) 

C(11B) 29(2)  21(2) 18(2)  1(1) 1(1)  13(2) 

C(12B) 20(2)  26(2) 25(2)  -3(2) -5(1)  7(1) 

C(13B) 15(2)  28(2) 23(2)  0(1) 0(1)  7(1) 

C(14B) 19(2)  22(2) 20(2)  -1(1) -3(1)  12(1) 
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C(15B) 40(3)  21(2) 20(2)  -1(1) 0(1)  16(2) 

O(16B) 31(2)  25(1) 35(1)  4(1) 8(1)  3(1) 

C(17B) 52(3)  24(2) 43(2)  6(2) 20(2)  4(2) 

C(18B) 78(4)  29(2) 35(2)  6(2) 19(2)  16(2) 

C(19B) 58(3)  35(2) 25(2)  5(2) 1(2)  25(2) 

C(20B) 13(2)  20(2) 22(2)  -1(1) -5(1)  7(1) 

O(21B) 21(1)  23(1) 22(1)  1(1) 3(1)  11(1) 

N(22B) 17(2)  18(2) 24(1)  2(1) 0(1)  10(1) 

C(23B) 19(2)  14(2) 19(1)  -1(1) -4(1)  5(1) 

C(24B) 23(2)  19(2) 24(2)  4(1) -1(1)  10(1) 

C(25B) 23(2)  17(2) 31(2)  2(1) -2(1)  10(1) 

C(26B) 21(2)  19(2) 24(2)  -3(1) -7(1)  4(1) 

C(27B) 19(2)  19(2) 25(2)  0(1) -2(1)  4(1) 

C(28B) 15(2)  20(2) 24(2)  1(1) -3(1)  6(1) 

Br(2B) 30(1)  18(1) 34(1)  6(1) 0(1)  10(1) 

Cl(1S) 35(1)  39(1) 112(1)  34(1) -7(1)  -2(1) 

Cl(2S) 43(1)  48(1) 74(1)  -9(1) -13(1)  15(1) 

C(1S) 53(4)  27(2) 80(4)  8(2) 21(3)  11(2) 

O(1W) 15(1)  23(1) 28(1)  0(1) -2(1)  6(1) 

O(2W) 15(1)  22(1) 31(1)  1(1) -1(1)  8(1) 

______________________________________________________________________________ 
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Table A5.5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 

for (S)-1.71 

______________________________________________________________________________ 

 x  y  z  U(eq) 

______________________________________________________________________________ 

  

H(2A) -2990(70) 3700(40) 1030(20) 13(9) 

H(2B) -2840(90) 3130(40) 190(30) 21(10) 

H(3A) -561 4788 -337 33(12) 

H(3B) -870 5405 511 29(12) 

H(3C) -3043 4928 -70 32(12) 

H(4A) 2895 2755 268 33(13) 

H(4B) 2174 3745 -220 33(13) 

H(4C) 604 2493 -275 19(10) 

H(10A) -2360(120) 480(50) 3960(40) 49(16) 

H(11A) -160(140) -970(70) 4030(50) 60(20) 

H(12A) 2300(100) -1130(50) 2990(30) 40(14) 

H(13A) 3010(100) 290(50) 2020(30) 33(13) 

H(14A) -3750(90) 1820(40) 1210(30) 23(11) 

H(14B) -2570(80) 1010(40) 1590(30) 18(10) 

H(17A) 70(100) -520(40) -570(30) 24(12) 

H(18A) -3590(120) -580(60) -1210(40) 51(17) 

H(19A) -5480(120) 710(50) -170(30) 41(14) 

H(22N) -340(90) 4120(40) 2160(30) 17(10) 



326 
 

H(24A) 5090(90) 5750(40) 2210(30) 22(11) 

H(25A) 6570(90) 7090(40) 3270(30) 18(10) 

H(27A) 110(100) 6630(50) 4190(30) 36(13) 

H(28A) -1150(120) 5410(50) 3130(30) 35(14) 

H(2C) 8840(90) 6220(40) 7680(30) 23(11) 

H(2D) 7890(90) 5290(40) 8340(30) 26(12) 

H(3D) 7413 6860 9239 15(9) 

H(3E) 8408 7753 8566 44(15) 

H(3F) 10032 7044 8983 14(10) 

H(4D) 2041 5335 8178 40(14) 

H(4E) 3751 5891 8902 20(11) 

H(4F) 3836 4669 8533 19(10) 

H(10B) 6600(90) 4570(40) 4190(30) 30(12) 

H(11B) 3030(90) 3500(50) 3590(30) 29(13) 

H(12B) -420(110) 3200(50) 4400(30) 34(13) 

H(13B) -100(90) 4060(40) 5660(30) 24(11) 

H(14C) 7680(100) 4500(40) 7170(30) 26(12) 

H(14D) 6270(80) 4100(40) 6410(30) 14(9) 

H(17B) -50(170) 1700(80) 7520(50) 80(20) 

H(18B) 2898 1263 8523 56 

H(19B) 6770(110) 2750(50) 8270(30) 35(13) 

H(22B) 7050(90) 7380(40) 6770(30) 16(10) 

H(24B) 2940(90) 8830(40) 7130(30) 22(11) 

H(25B) 2660(110) 10480(50) 6470(30) 38(14) 
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H(27B) 8930(90) 10620(40) 5520(30) 22(11) 

H(28B) 9180(70) 8850(30) 6120(20) 12(9) 

H(1SA) 4480(130) 6830(60) 890(40) 56(18) 

H(1SB) 5220(130) 7960(60) 200(40) 59(18) 

H(1W1) -2440(90) 2570(50) 2860(30) 19(10) 

H(1W2) -4270(120) 2940(50) 2590(40) 36(14) 

H(2W1) 7900(90) 6240(40) 5600(30) 11(10) 

H(2W2) 9860(120) 6420(50) 5960(40) 42(15) 

______________________________________________________________________________
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Table A5.6. Torsion angles [°] for (S)-1.71 

________________________________________________________________  

N(5A)-C(1A)-C(2A)-C(3A) 168.8(3) 

C(4A)-C(1A)-C(2A)-C(3A) -68.8(4) 

C(20A)-C(1A)-C(2A)-C(3A) 51.0(4) 

C(4A)-C(1A)-N(5A)-C(6A) 74.8(3) 

C(2A)-C(1A)-N(5A)-C(6A) -162.4(3) 

C(20A)-C(1A)-N(5A)-C(6A) -45.9(4) 

C(4A)-C(1A)-N(5A)-C(14A) -88.6(3) 

C(2A)-C(1A)-N(5A)-C(14A) 34.2(4) 

C(20A)-C(1A)-N(5A)-C(14A) 150.6(3) 

C(14A)-N(5A)-C(6A)-O(7A) 163.3(3) 

C(1A)-N(5A)-C(6A)-O(7A) 0.0(4) 

C(14A)-N(5A)-C(6A)-C(8A) -20.7(4) 

C(1A)-N(5A)-C(6A)-C(8A) 176.0(3) 

O(7A)-C(6A)-C(8A)-N(9A) 118.5(4) 

N(5A)-C(6A)-C(8A)-N(9A) -57.6(4) 

O(7A)-C(6A)-C(8A)-C(13A) -57.7(5) 

N(5A)-C(6A)-C(8A)-C(13A) 126.2(4) 

C(13A)-C(8A)-N(9A)-C(10A) 1.2(6) 

C(6A)-C(8A)-N(9A)-C(10A) -174.8(3) 

C(8A)-N(9A)-C(10A)-C(11A) -0.5(6) 

N(9A)-C(10A)-C(11A)-C(12A) -0.8(7) 

C(10A)-C(11A)-C(12A)-C(13A) 1.5(7) 
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C(11A)-C(12A)-C(13A)-C(8A) -0.8(7) 

N(9A)-C(8A)-C(13A)-C(12A) -0.6(6) 

C(6A)-C(8A)-C(13A)-C(12A) 175.3(4) 

C(6A)-N(5A)-C(14A)-C(15A) -95.9(4) 

C(1A)-N(5A)-C(14A)-C(15A) 67.2(4) 

N(5A)-C(14A)-C(15A)-C(19A) -133.7(4) 

N(5A)-C(14A)-C(15A)-O(16A) 50.1(4) 

C(19A)-C(15A)-O(16A)-C(17A) -0.3(4) 

C(14A)-C(15A)-O(16A)-C(17A) 176.7(3) 

C(15A)-O(16A)-C(17A)-C(18A) 0.0(5) 

O(16A)-C(17A)-C(18A)-C(19A) 0.3(5) 

O(16A)-C(15A)-C(19A)-C(18A) 0.5(5) 

C(14A)-C(15A)-C(19A)-C(18A) -175.9(4) 

C(17A)-C(18A)-C(19A)-C(15A) -0.5(5) 

N(5A)-C(1A)-C(20A)-O(21A) 137.5(3) 

C(4A)-C(1A)-C(20A)-O(21A) 16.3(4) 

C(2A)-C(1A)-C(20A)-O(21A) -104.6(3) 

N(5A)-C(1A)-C(20A)-N(22A) -49.4(4) 

C(4A)-C(1A)-C(20A)-N(22A) -170.6(3) 

C(2A)-C(1A)-C(20A)-N(22A) 68.5(3) 

O(21A)-C(20A)-N(22A)-C(23A) -7.9(6) 

C(1A)-C(20A)-N(22A)-C(23A) 179.4(3) 

C(20A)-N(22A)-C(23A)-C(24A) -22.7(5) 

C(20A)-N(22A)-C(23A)-C(28A) 160.4(3) 
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C(28A)-C(23A)-C(24A)-C(25A) 0.9(5) 

N(22A)-C(23A)-C(24A)-C(25A) -176.0(3) 

C(23A)-C(24A)-C(25A)-C(26A) 0.8(6) 

C(24A)-C(25A)-C(26A)-C(27A) -1.2(6) 

C(24A)-C(25A)-C(26A)-Br(29) 177.2(3) 

C(25A)-C(26A)-C(27A)-C(28A) -0.1(5) 

Br(29)-C(26A)-C(27A)-C(28A) -178.5(3) 

C(26A)-C(27A)-C(28A)-C(23A) 1.8(5) 

C(24A)-C(23A)-C(28A)-C(27A) -2.2(5) 

N(22A)-C(23A)-C(28A)-C(27A) 174.9(3) 

N(5B)-C(1B)-C(2B)-C(3B) 164.9(3) 

C(4B)-C(1B)-C(2B)-C(3B) -72.7(4) 

C(20B)-C(1B)-C(2B)-C(3B) 46.4(4) 

C(4B)-C(1B)-N(5B)-C(6B) 76.8(4) 

C(2B)-C(1B)-N(5B)-C(6B) -160.9(3) 

C(20B)-C(1B)-N(5B)-C(6B) -44.1(4) 

C(4B)-C(1B)-N(5B)-C(14B) -80.7(4) 

C(2B)-C(1B)-N(5B)-C(14B) 41.6(4) 

C(20B)-C(1B)-N(5B)-C(14B) 158.4(3) 

C(14B)-N(5B)-C(6B)-O(7B) 153.9(3) 

C(1B)-N(5B)-C(6B)-O(7B) -3.4(5) 

C(14B)-N(5B)-C(6B)-C(8B) -29.2(5) 

C(1B)-N(5B)-C(6B)-C(8B) 173.5(3) 

O(7B)-C(6B)-C(8B)-N(9B) 129.9(4) 
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N(5B)-C(6B)-C(8B)-N(9B) -47.0(4) 

O(7B)-C(6B)-C(8B)-C(13B) -45.9(5) 

N(5B)-C(6B)-C(8B)-C(13B) 137.1(3) 

C(13B)-C(8B)-N(9B)-C(10B) -0.4(5) 

C(6B)-C(8B)-N(9B)-C(10B) -176.1(3) 

C(8B)-N(9B)-C(10B)-C(11B) -1.4(5) 

N(9B)-C(10B)-C(11B)-C(12B) 2.1(6) 

C(10B)-C(11B)-C(12B)-C(13B) -1.0(5) 

N(9B)-C(8B)-C(13B)-C(12B) 1.4(5) 

C(6B)-C(8B)-C(13B)-C(12B) 177.0(3) 

C(11B)-C(12B)-C(13B)-C(8B) -0.7(6) 

C(6B)-N(5B)-C(14B)-C(15B) -81.6(4) 

C(1B)-N(5B)-C(14B)-C(15B) 75.5(4) 

N(5B)-C(14B)-C(15B)-C(19B) -126.5(5) 

N(5B)-C(14B)-C(15B)-O(16B) 54.3(4) 

C(19B)-C(15B)-O(16B)-C(17B) 0.5(4) 

C(14B)-C(15B)-O(16B)-C(17B) 179.9(3) 

C(15B)-O(16B)-C(17B)-C(18B) -0.2(4) 

O(16B)-C(17B)-C(18B)-C(19B) -0.2(5) 

O(16B)-C(15B)-C(19B)-C(18B) -0.7(4) 

C(14B)-C(15B)-C(19B)-C(18B) -179.9(4) 

C(17B)-C(18B)-C(19B)-C(15B) 0.5(5) 

N(5B)-C(1B)-C(20B)-O(21B) 138.1(3) 

C(4B)-C(1B)-C(20B)-O(21B) 16.0(4) 
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C(2B)-C(1B)-C(20B)-O(21B) -104.1(4) 

N(5B)-C(1B)-C(20B)-N(22B) -48.5(4) 

C(4B)-C(1B)-C(20B)-N(22B) -170.6(3) 

C(2B)-C(1B)-C(20B)-N(22B) 69.3(4) 

O(21B)-C(20B)-N(22B)-C(23B) -11.5(6) 

C(1B)-C(20B)-N(22B)-C(23B) 175.4(3) 

C(20B)-N(22B)-C(23B)-C(24B) -20.9(5) 

C(20B)-N(22B)-C(23B)-C(28B) 162.3(3) 

C(28B)-C(23B)-C(24B)-C(25B) 4.2(5) 

N(22B)-C(23B)-C(24B)-C(25B) -172.5(3) 

C(23B)-C(24B)-C(25B)-C(26B) -1.4(6) 

C(24B)-C(25B)-C(26B)-C(27B) -2.2(5) 

C(24B)-C(25B)-C(26B)-Br(2B) 174.1(3) 

C(25B)-C(26B)-C(27B)-C(28B) 2.8(5) 

Br(2B)-C(26B)-C(27B)-C(28B) -173.4(3) 

C(26B)-C(27B)-C(28B)-C(23B) 0.0(5) 

C(24B)-C(23B)-C(28B)-C(27B) -3.5(5) 

N(22B)-C(23B)-C(28B)-C(27B) 173.4(3) 

________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A5.7. Hydrogen bonds for (S)-1.71  [Å and °] 

____________________________________________________________________________  

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________  

 C(2A)-H(2A)...O(7A)#1 1.02(4) 2.66(4) 3.553(4) 147(3) 

 C(4A)-H(4A)...O(7A) 0.98 2.58 3.122(4) 115.1 

 C(14A)-H(14A)...O(7A)#10.95(5) 2.45(5) 3.340(4) 157(4) 

 C(14A)-H(14B)...N(9A) 0.87(5) 2.50(5) 3.134(5) 131(4) 

 C(18A)-H(18A)...O(21B)#20.93(7) 2.59(7) 3.425(5) 148(5) 

 N(22A)-H(22N)...O(1W) 0.80(5) 2.15(5) 2.919(4) 162(4) 

 C(24A)-H(24A)...O(21A)1.01(5) 2.31(5) 2.901(4) 116(3) 

 C(2B)-H(2C)...O(7B)#3 0.97(5) 2.60(5) 3.517(4) 159(4) 

 C(4B)-H(4D)...O(7B) 0.98 2.60 3.134(4) 114.3 

 C(14B)-H(14D)...N(9B) 0.95(4) 2.35(4) 3.059(4) 131(3) 

 C(14B)-H(14D)...Br(2B)#40.95(4) 3.07(4) 3.823(3) 137(3) 

 N(22B)-H(22B)...O(2W) 0.77(6) 2.14(5) 2.877(4) 159(4) 

 C(24B)-H(24B)...O(21B) 0.98(5) 2.32(5) 2.863(4) 114(4) 

 C(28B)-H(28B)...O(2W) 1.04(4) 2.52(4) 3.270(4) 129(3) 

 C(1S)-H(1SA)...O(21A) 1.03(8) 2.23(8) 3.245(6) 168(6) 

 O(1W)-H(1W1)...N(9A) 0.81(6) 2.10(6) 2.900(4) 168(4) 

 O(1W)-H(1W2)...O(7A)#10.92(7) 1.88(7) 2.793(4) 169(6) 

 O(2W)-H(2W1)...N(9B) 0.81(5) 2.10(5) 2.901(4) 171(5) 

 O(2W)-H(2W2)...O(7B)#30.90(7) 1.92(7) 2.784(4) 162(5) 

____________________________________________________________________________  
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Symmetry transformations used to generate equivalent atoms:  

#1 x-1,y,z    #2 x-1,y-1,z-1    #3 x+1,y,z    #4 x,y-1,z       
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 X-ray crystallographic data of (S)-1.72 

Table A6.1.  Crystal data and structure refinement for (S)-1.72 

Identification code  v13b 

Empirical formula  C24 H28 Br N3 O4 

Formula weight  502.40 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  P21 

Unit cell dimensions a = 10.961(3) Å = 90°. 

 b = 6.1312(17) Å = 104.859(7)°. 

 c = 18.282(5) Å  = 90°. 

Volume 1187.5(6) Å3 

Z 2 

Density (calculated) 1.405 Mg/m3 

Absorption coefficient 2.646 mm-1 

F(000) 520 

Crystal size 0.240 x 0.060 x 0.030 mm3 

Theta range for data collection 4.280 to 67.972°. 

Index ranges -12<=h<=13, -7<=k<=4, -21<=l<=21 

Reflections collected 7711 

Independent reflections 3031 [R(int) = 0.0182] 

Completeness to theta = 66.000° 98.3 %  

Absorption correction Multi-scan 
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Max. and min. transmission 1.000 and 0.798 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3031 / 1 / 378 

Goodness-of-fit on F2 1.045 

Final R indices [I>2sigma(I)] R1 = 0.0198, wR2 = 0.0511 

R indices (all data) R1 = 0.0203, wR2 = 0.0515 

Absolute structure parameter 0.077(8) 

Extinction coefficient 0.0013(3) 

Largest diff. peak and hole 0.318 and -0.395 e.Å-3 
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Table A6.2.  Atomic coordinates ( x 104) and equivalent  isotropic displacement parameters 

(Å2x 103) for (S)-1.72. U(eq) is defined as one third of  the trace of the orthogonalized Uij 

tensor 

______________________________________________________________________________ 

 x y z U(eq) 

______________________________________________________________________________ 

C(1) 3505(2) 2119(4) 1685(1) 24(1) 

C(2) 2924(2) 118(4) 1203(1) 26(1) 

C(3) 1845(3) 650(5) 494(2) 30(1) 

C(4) 552(2) 67(5) 616(2) 33(1) 

C(5) 2049(3) -581(6) -190(2) 42(1) 

C(6) 4229(2) 3546(4) 1252(1) 27(1) 

N(7) 4360(2) 1351(3) 2412(1) 23(1) 

C(8) 4682(2) 2816(5) 2988(1) 25(1) 

O(9) 4291(2) 4715(3) 2934(1) 30(1) 

C(10) 5500(2) 2068(4) 3745(1) 27(1) 

N(11) 5136(2) 288(4) 4058(1) 28(1) 

C(12) 5826(2) -294(5) 4756(2) 32(1) 

C(13) 6873(3) 862(6) 5146(2) 37(1) 

C(14) 7229(2) 2695(8) 4814(2) 40(1) 

C(15) 6531(3) 3316(5) 4103(2) 36(1) 

C(16) 5121(2) -640(4) 2418(1) 25(1) 

C(17) 6139(2) -328(4) 2022(1) 27(1) 

O(18) 6924(2) 1408(3) 2267(1) 32(1) 

C(19) 7760(3) 1445(5) 1820(2) 39(1) 
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C(20) 7529(3) -201(6) 1324(2) 39(1) 

C(21) 6473(3) -1366(5) 1451(2) 32(1) 

C(22) 2403(2) 3451(4) 1840(1) 24(1) 

O(23) 2032(2) 5106(3) 1476(1) 34(1) 

N(24) 1832(2) 2565(4) 2354(1) 24(1) 

C(25) 990(2) 3689(4) 2692(1) 23(1) 

C(26) 411(2) 5648(4) 2412(2) 27(1) 

C(27) -290(2) 6790(5) 2822(2) 30(1) 

C(28) -437(2) 5937(5) 3492(2) 30(1) 

C(29) 40(2) 3916(5) 3747(1) 30(1) 

C(30) 758(2) 2790(6) 3345(1) 28(1) 

Br(31) -1265(1) 7696(1) 4083(1) 38(1) 

O(1W) 2732(2) -1380(4) 3247(1) 31(1) 

______________________________________________________________________________
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Table A6.3. Bond lengths [Å] and angles [°] for  (S)-1.72 

_____________________________________________________  

C(1)-N(7)  1.493(3) 

C(1)-C(6)  1.531(3) 

C(1)-C(22)  1.543(3) 

C(1)-C(2)  1.549(3) 

C(2)-C(3)  1.548(3) 

C(2)-H(2A)  1.01(3) 

C(2)-H(2B)  0.98(4) 

C(3)-C(5)  1.527(4) 

C(3)-C(4)  1.533(4) 

C(3)-H(3)  0.96(4) 

C(4)-H(4A)  0.9800 

C(4)-H(4B)  0.9800 

C(4)-H(4C)  0.9800 

C(5)-H(5A)  0.9800 

C(5)-H(5B)  0.9800 

C(5)-H(5C)  0.9800 

C(6)-H(6A)  0.9800 

C(6)-H(6B)  0.9800 

C(6)-H(6C)  0.9800 

N(7)-C(8)  1.360(3) 

N(7)-C(16)  1.477(3) 

C(8)-O(9)  1.236(4) 
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C(8)-C(10)  1.515(3) 

C(10)-N(11)  1.340(3) 

C(10)-C(15)  1.382(4) 

N(11)-C(12)  1.354(3) 

C(12)-C(13)  1.382(4) 

C(12)-H(12)  0.95(3) 

C(13)-C(14)  1.381(6) 

C(13)-H(13)  0.99(3) 

C(14)-C(15)  1.382(4) 

C(14)-H(14)  0.91(4) 

C(15)-H(15)  0.84(4) 

C(16)-C(17)  1.490(3) 

C(16)-H(16A)  0.93(3) 

C(16)-H(16B)  0.97(3) 

C(17)-C(21)  1.351(4) 

C(17)-O(18)  1.370(3) 

O(18)-C(19)  1.375(3) 

C(19)-C(20)  1.337(5) 

C(19)-H(19)  0.95(5) 

C(20)-C(21)  1.428(4) 

C(20)-H(20)  0.93(4) 

C(21)-H(21)  1.02(3) 

C(22)-O(23)  1.225(3) 

C(22)-N(24)  1.368(3) 
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N(24)-C(25)  1.414(3) 

N(24)-H(24N)  0.86(4) 

C(25)-C(26)  1.394(4) 

C(25)-C(30)  1.396(3) 

C(26)-C(27)  1.392(4) 

C(26)-H(26)  0.99(3) 

C(27)-C(28)  1.379(4) 

C(27)-H(27)  0.90(4) 

C(28)-C(29)  1.379(4) 

C(28)-Br(31)  1.913(3) 

C(29)-C(30)  1.391(4) 

C(29)-H(29)  0.98(3) 

C(30)-H(30)  0.94(3) 

O(1W)-H(1W1)  0.85(4) 

O(1W)-H(1W2)  0.80(6) 

 

N(7)-C(1)-C(6) 110.49(19) 

N(7)-C(1)-C(22) 110.19(19) 

C(6)-C(1)-C(22) 109.09(19) 

N(7)-C(1)-C(2) 109.21(18) 

C(6)-C(1)-C(2) 110.51(19) 

C(22)-C(1)-C(2) 107.30(19) 

C(3)-C(2)-C(1) 115.0(2) 

C(3)-C(2)-H(2A) 108.6(15) 
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C(1)-C(2)-H(2A) 109.6(16) 

C(3)-C(2)-H(2B) 111.1(19) 

C(1)-C(2)-H(2B) 109(2) 

H(2A)-C(2)-H(2B) 103(3) 

C(5)-C(3)-C(4) 109.8(2) 

C(5)-C(3)-C(2) 109.9(2) 

C(4)-C(3)-C(2) 111.5(2) 

C(5)-C(3)-H(3) 106.9(18) 

C(4)-C(3)-H(3) 107.8(17) 

C(2)-C(3)-H(3) 110.9(18) 

C(3)-C(4)-H(4A) 109.5 

C(3)-C(4)-H(4B) 109.5 

H(4A)-C(4)-H(4B) 109.5 

C(3)-C(4)-H(4C) 109.5 

H(4A)-C(4)-H(4C) 109.5 

H(4B)-C(4)-H(4C) 109.5 

C(3)-C(5)-H(5A) 109.5 

C(3)-C(5)-H(5B) 109.5 

H(5A)-C(5)-H(5B) 109.5 

C(3)-C(5)-H(5C) 109.5 

H(5A)-C(5)-H(5C) 109.5 

H(5B)-C(5)-H(5C) 109.5 

C(1)-C(6)-H(6A) 109.5 

C(1)-C(6)-H(6B) 109.5 
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H(6A)-C(6)-H(6B) 109.5 

C(1)-C(6)-H(6C) 109.5 

H(6A)-C(6)-H(6C) 109.5 

H(6B)-C(6)-H(6C) 109.5 

C(8)-N(7)-C(16) 120.4(2) 

C(8)-N(7)-C(1) 117.4(2) 

C(16)-N(7)-C(1) 119.42(19) 

O(9)-C(8)-N(7) 123.0(2) 

O(9)-C(8)-C(10) 118.1(2) 

N(7)-C(8)-C(10) 118.9(3) 

N(11)-C(10)-C(15) 123.1(2) 

N(11)-C(10)-C(8) 117.7(2) 

C(15)-C(10)-C(8) 119.0(2) 

C(10)-N(11)-C(12) 117.5(2) 

N(11)-C(12)-C(13) 122.7(3) 

N(11)-C(12)-H(12) 115.0(18) 

C(13)-C(12)-H(12) 122.3(18) 

C(14)-C(13)-C(12) 118.8(3) 

C(14)-C(13)-H(13) 123(2) 

C(12)-C(13)-H(13) 118(2) 

C(13)-C(14)-C(15) 119.2(3) 

C(13)-C(14)-H(14) 125(2) 

C(15)-C(14)-H(14) 116(2) 

C(14)-C(15)-C(10) 118.7(3) 
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C(14)-C(15)-H(15) 118(2) 

C(10)-C(15)-H(15) 123(2) 

N(7)-C(16)-C(17) 112.5(2) 

N(7)-C(16)-H(16A) 110.3(15) 

C(17)-C(16)-H(16A) 111.1(14) 

N(7)-C(16)-H(16B) 105.2(18) 

C(17)-C(16)-H(16B) 112.3(16) 

H(16A)-C(16)-H(16B) 105(2) 

C(21)-C(17)-O(18) 110.3(2) 

C(21)-C(17)-C(16) 134.4(2) 

O(18)-C(17)-C(16) 115.3(2) 

C(17)-O(18)-C(19) 106.1(2) 

C(20)-C(19)-O(18) 110.5(2) 

C(20)-C(19)-H(19) 136.0(19) 

O(18)-C(19)-H(19) 113(2) 

C(19)-C(20)-C(21) 106.8(3) 

C(19)-C(20)-H(20) 124(2) 

C(21)-C(20)-H(20) 129(2) 

C(17)-C(21)-C(20) 106.3(3) 

C(17)-C(21)-H(21) 127.0(15) 

C(20)-C(21)-H(21) 126.6(15) 

O(23)-C(22)-N(24) 123.8(2) 

O(23)-C(22)-C(1) 120.3(2) 

N(24)-C(22)-C(1) 115.7(2) 
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C(22)-N(24)-C(25) 124.8(2) 

C(22)-N(24)-H(24N) 118(2) 

C(25)-N(24)-H(24N) 116(2) 

C(26)-C(25)-C(30) 119.3(2) 

C(26)-C(25)-N(24) 123.1(2) 

C(30)-C(25)-N(24) 117.6(3) 

C(27)-C(26)-C(25) 119.9(2) 

C(27)-C(26)-H(26) 118.9(18) 

C(25)-C(26)-H(26) 121.1(18) 

C(28)-C(27)-C(26) 119.6(3) 

C(28)-C(27)-H(27) 118(2) 

C(26)-C(27)-H(27) 123(2) 

C(27)-C(28)-C(29) 121.4(2) 

C(27)-C(28)-Br(31) 117.9(2) 

C(29)-C(28)-Br(31) 120.6(2) 

C(28)-C(29)-C(30) 118.9(3) 

C(28)-C(29)-H(29) 123.5(18) 

C(30)-C(29)-H(29) 117.6(18) 

C(29)-C(30)-C(25) 120.6(3) 

C(29)-C(30)-H(30) 120.4(17) 

C(25)-C(30)-H(30) 119.1(18) 

H(1W1)-O(1W)-H(1W2) 108(4) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A6.4. Anisotropic displacement parameters  (Å2x 103) for (S)-1.72. The anisotropic 

displacement factor exponent takes the form: -22[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

C(1) 32(1)  14(1) 26(1)  -1(1) 11(1)  -2(1) 

C(2) 34(1)  15(1) 30(1)  -3(1) 12(1)  -2(1) 

C(3) 39(1)  22(1) 29(1)  3(1) 9(1)  -4(1) 

C(4) 33(1)  32(1) 32(1)  -2(1) 7(1)  0(1) 

C(5) 46(2)  51(2) 32(1)  -5(1) 14(1)  -6(2) 

C(6) 37(1)  18(1) 29(1)  0(1) 16(1)  -5(1) 

N(7) 30(1)  16(1) 26(1)  -1(1) 13(1)  -2(1) 

C(8) 31(1)  18(1) 31(1)  -5(1) 16(1)  -6(1) 

O(9) 42(1)  15(1) 35(1)  -4(1) 15(1)  -3(1) 

C(10) 30(1)  25(1) 29(1)  -4(1) 14(1)  -2(1) 

N(11) 32(1)  27(1) 27(1)  -1(1) 11(1)  -2(1) 

C(12) 36(1)  34(2) 30(1)  1(1) 12(1)  4(1) 

C(13) 35(1)  46(2) 30(1)  -7(1) 8(1)  7(1) 

C(14) 33(1)  49(2) 38(1)  -12(2) 8(1)  -7(2) 

C(15) 40(1)  34(2) 38(1)  -6(1) 15(1)  -10(1) 

C(16) 33(1)  17(1) 28(1)  0(1) 13(1)  0(1) 

C(17) 28(1)  22(1) 31(1)  3(1) 10(1)  0(1) 

O(18) 31(1)  30(1) 35(1)  1(1) 7(1)  -8(1) 
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C(19) 29(1)  41(2) 48(2)  12(1) 12(1)  -8(1) 

C(20) 34(1)  42(2) 47(2)  8(1) 24(1)  2(1) 

C(21) 36(1)  26(1) 37(1)  -2(1) 18(1)  -1(1) 

C(22) 34(1)  13(1) 29(1)  0(1) 14(1)  -3(1) 

O(23) 47(1)  20(1) 41(1)  8(1) 24(1)  6(1) 

N(24) 32(1)  16(1) 25(1)  2(1) 11(1)  2(1) 

C(25) 24(1)  20(1) 25(1)  -3(1) 8(1)  -4(1) 

C(26) 29(1)  25(1) 29(1)  0(1) 9(1)  0(1) 

C(27) 28(1)  25(1) 38(1)  0(1) 10(1)  3(1) 

C(28) 27(1)  31(1) 33(1)  -10(1) 12(1)  -4(1) 

C(29) 32(1)  34(2) 28(1)  0(1) 12(1)  -4(1) 

C(30) 32(1)  24(1) 29(1)  2(1) 10(1)  -1(1) 

Br(31) 38(1)  34(1) 47(1)  -14(1) 23(1)  -5(1) 

O(1W) 33(1)  22(1) 37(1)  2(1) 9(1)  -4(1) 

______________________________________________________________________________ 
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Table A6.5. Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 

for (S)-1.72 

______________________________________________________________________________ 

 x  y  z  U(eq) 

______________________________________________________________________________ 

  

H(2A) 2600(20) -950(50) 1527(15) 22(7) 

H(2B) 3600(30) -690(70) 1066(19) 49(9) 

H(3) 1840(30) 2170(60) 375(17) 38(8) 

H(4A) 393 960 1027 43(9) 

H(4B) 540 -1479 750 39(8) 

H(4C) -106 348 150 35(8) 

H(5A) 2080 -2152 -87 35(7) 

H(5B) 2847 -117 -290 48(9) 

H(5C) 1352 -267 -633 50(10) 

H(6A) 4888 2675 1116 42(7) 

H(6B) 4618 4771 1572 44(9) 

H(6C) 3645 4105 791 39(8) 

H(12) 5540(30) -1570(60) 4958(16) 34(8) 

H(13) 7310(30) 370(60) 5665(18) 39(9) 

H(14) 7890(30) 3580(70) 5030(18) 45(9) 

H(15) 6790(30) 4390(70) 3895(17) 35(8) 

H(16A) 4610(20) -1800(50) 2215(13) 14(6) 

H(16B) 5450(30) -1000(50) 2947(17) 28(7) 
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H(19) 8330(30) 2650(80) 1922(17) 47(8) 

H(20) 7940(30) -390(70) 942(19) 48(9) 

H(21) 6090(20) -2760(50) 1184(15) 26(7) 

H(24N) 2130(30) 1350(70) 2564(19) 42(9) 

H(26) 530(30) 6300(50) 1940(17) 31(8) 

H(27) -640(30) 8090(60) 2674(16) 32(8) 

H(29) -90(20) 3230(50) 4204(15) 31(7) 

H(30) 1090(30) 1400(50) 3506(16) 28(7) 

H(1W1) 3470(40) -1060(70) 3510(20) 51(10) 

H(1W2) 2770(40) -2560(100) 3060(20) 60(13) 

______________________________________________________________________________
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Table A6.6. Torsion angles [°] for (S)-1.72 

________________________________________________________________  

N(7)-C(1)-C(2)-C(3) 170.02(19) 

C(6)-C(1)-C(2)-C(3) -68.2(3) 

C(22)-C(1)-C(2)-C(3) 50.6(3) 

C(1)-C(2)-C(3)-C(5) 133.8(2) 

C(1)-C(2)-C(3)-C(4) -104.2(3) 

C(6)-C(1)-N(7)-C(8) 75.7(2) 

C(22)-C(1)-N(7)-C(8) -44.9(3) 

C(2)-C(1)-N(7)-C(8) -162.49(19) 

C(6)-C(1)-N(7)-C(16) -85.6(2) 

C(22)-C(1)-N(7)-C(16) 153.82(19) 

C(2)-C(1)-N(7)-C(16) 36.2(3) 

C(16)-N(7)-C(8)-O(9) 161.8(2) 

C(1)-N(7)-C(8)-O(9) 0.7(3) 

C(16)-N(7)-C(8)-C(10) -21.6(3) 

C(1)-N(7)-C(8)-C(10) 177.26(19) 

O(9)-C(8)-C(10)-N(11) 124.9(3) 

N(7)-C(8)-C(10)-N(11) -51.8(3) 

O(9)-C(8)-C(10)-C(15) -50.9(3) 

N(7)-C(8)-C(10)-C(15) 132.4(2) 

C(15)-C(10)-N(11)-C(12) -0.4(4) 

C(8)-C(10)-N(11)-C(12) -175.9(2) 

C(10)-N(11)-C(12)-C(13) -0.2(4) 
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N(11)-C(12)-C(13)-C(14) 0.4(4) 

C(12)-C(13)-C(14)-C(15) -0.1(5) 

C(13)-C(14)-C(15)-C(10) -0.4(4) 

N(11)-C(10)-C(15)-C(14) 0.7(4) 

C(8)-C(10)-C(15)-C(14) 176.2(3) 

C(8)-N(7)-C(16)-C(17) -91.4(3) 

C(1)-N(7)-C(16)-C(17) 69.4(3) 

N(7)-C(16)-C(17)-C(21) -125.3(3) 

N(7)-C(16)-C(17)-O(18) 53.5(3) 

C(21)-C(17)-O(18)-C(19) 0.8(3) 

C(16)-C(17)-O(18)-C(19) -178.3(2) 

C(17)-O(18)-C(19)-C(20) -0.8(3) 

O(18)-C(19)-C(20)-C(21) 0.5(3) 

O(18)-C(17)-C(21)-C(20) -0.5(3) 

C(16)-C(17)-C(21)-C(20) 178.4(3) 

C(19)-C(20)-C(21)-C(17) 0.0(3) 

N(7)-C(1)-C(22)-O(23) 139.5(2) 

C(6)-C(1)-C(22)-O(23) 18.1(3) 

C(2)-C(1)-C(22)-O(23) -101.7(3) 

N(7)-C(1)-C(22)-N(24) -45.4(3) 

C(6)-C(1)-C(22)-N(24) -166.9(2) 

C(2)-C(1)-C(22)-N(24) 73.4(3) 

O(23)-C(22)-N(24)-C(25) -18.6(4) 

C(1)-C(22)-N(24)-C(25) 166.6(2) 
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C(22)-N(24)-C(25)-C(26) 15.9(4) 

C(22)-N(24)-C(25)-C(30) -162.9(2) 

C(30)-C(25)-C(26)-C(27) 6.2(4) 

N(24)-C(25)-C(26)-C(27) -172.6(2) 

C(25)-C(26)-C(27)-C(28) -2.0(4) 

C(26)-C(27)-C(28)-C(29) -3.5(4) 

C(26)-C(27)-C(28)-Br(31) 173.9(2) 

C(27)-C(28)-C(29)-C(30) 4.5(4) 

Br(31)-C(28)-C(29)-C(30) -172.88(19) 

C(28)-C(29)-C(30)-C(25) -0.1(4) 

C(26)-C(25)-C(30)-C(29) -5.2(4) 

N(24)-C(25)-C(30)-C(29) 173.6(2) 

________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A6.7.  Hydrogen bonds for (S)-1.72 [Å and °] 

____________________________________________________________________________  

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________  

 C(2)-H(2A)...O(23)#1 1.01(3) 2.49(3) 3.301(3) 137(2) 

 C(6)-H(6B)...O(9) 0.98 2.61 3.141(3) 114.5 

 C(15)-H(15)...Br(31)#2 0.84(4) 2.90(4) 3.619(3) 144(3) 

 C(16)-H(16A)...O(9)#1 0.93(3) 2.58(3) 3.205(3) 125.5(18) 

 C(16)-H(16B)...N(11) 0.97(3) 2.29(3) 3.048(3) 135(2) 

 N(24)-H(24N)...O(1W) 0.86(4) 2.09(4) 2.943(3) 169(3) 

 C(26)-H(26)...O(23) 0.99(3) 2.16(3) 2.785(3) 119(2) 

 C(29)-H(29)...Br(31)#3 0.98(3) 3.12(3) 3.919(3) 140(2) 

 C(30)-H(30)...O(1W) 0.94(3) 2.61(3) 3.384(4) 139(2) 

 O(1W)-H(1W1)...N(11) 0.85(4) 2.02(4) 2.860(3) 169(4) 

 O(1W)-H(1W2)...O(9)#1 0.80(6) 2.42(5) 3.079(3) 140(4) 

____________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 x,y-1,z    #2 x+1,y,z    #3 -x,y-1/2,-z+1       
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X-ray crystallographic data of (S)-1.73  

Table A7.1. Crystal data and structure refinement for (S)-1.73 

Identification code  q15e 

Empirical formula  C24 H28 Br N3 O4 

Formula weight  502.40 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  P21 

Unit cell dimensions a = 10.8713(2) Å = 90°. 

 b = 10.2542(2) Å = 99.8400(10)°. 

 c = 11.1197(2) Å  = 90°. 

Volume 1221.35(4) Å3 

Z 2 

Density (calculated) 1.366 Mg/m3 

Absorption coefficient 2.573 mm-1 

F(000) 520 

Crystal size 0.210 x 0.045 x 0.030 mm3 

Theta range for data collection 4.035 to 69.911°. 

Index ranges -13<=h<=13, -10<=k<=11, -13<=l<=12 

Reflections collected 13304 

Independent reflections 3648 [R(int) = 0.0219] 

Completeness to theta = 66.000° 98.8 %  

Absorption correction Multi-scan 
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Max. and min. transmission 1.000 and 0.809 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3648 / 1 / 401 

Goodness-of-fit on F2 1.067 

Final R indices [I>2sigma(I)] R1 = 0.0245, wR2 = 0.0608 

R indices (all data) R1 = 0.0250, wR2 = 0.0611 

Absolute structure parameter 0.037(6) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.515 and -0.265 e.Å-3 
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Table A7.2. Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters 

(Å2x 103) for (S)-1.73.  U(eq) is defined as one third of  the trace of the orthogonalized Uij 

tensor 

______________________________________________________________________________ 

 x y z U(eq) 

______________________________________________________________________________ 

C(1) -66(2) 2570(3) 1653(2) 17(1) 

C(2) -561(2) 3963(2) 1793(2) 19(1) 

C(3) -1982(2) 4073(3) 1610(2) 21(1) 

C(4) -2392(3) 5408(3) 1995(2) 24(1) 

C(5) -3804(3) 5523(3) 1881(3) 27(1) 

C(6) -291(2) 1687(3) 2709(2) 19(1) 

N(7) 1293(2) 2616(2) 1592(2) 16(1) 

C(8) 1799(2) 1493(2) 1239(2) 17(1) 

O(9) 1158(2) 540(2) 876(2) 20(1) 

C(10) 3192(2) 1398(3) 1284(2) 19(1) 

N(11) 3756(2) 2320(2) 720(2) 22(1) 

C(12) 4988(2) 2181(3) 743(3) 28(1) 

C(13) 5678(2) 1159(3) 1317(3) 31(1) 

C(14) 5080(3) 212(3) 1872(3) 32(1) 

C(15) 3806(3) 322(3) 1856(3) 25(1) 

C(16) 2081(2) 3609(3) 2322(2) 19(1) 

C(17) 2279(2) 3333(3) 3654(3) 22(1) 

O(18) 2801(2) 2144(2) 3991(2) 28(1) 

C(19) 2879(3) 2054(4) 5230(3) 36(1) 
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C(20) 2431(3) 3136(4) 5669(3) 37(1) 

C(21) 2042(3) 3986(3) 4650(3) 30(1) 

C(22) -798(2) 2038(2) 437(2) 16(1) 

O(23) -1686(2) 1297(2) 442(2) 21(1) 

N(24) -517(2) 2564(2) -601(2) 17(1) 

C(25) -1249(2) 2466(3) -1771(2) 17(1) 

C(26) -2500(2) 2073(2) -1989(2) 20(1) 

C(27) -3176(2) 2081(3) -3160(2) 23(1) 

C(28) -2616(2) 2487(4) -4118(2) 27(1) 

C(29) -1377(3) 2868(3) -3934(3) 30(1) 

C(30) -697(2) 2858(3) -2766(2) 25(1) 

Br(31) -3566(1) 2479(1) -5726(1) 43(1) 

O(1W) 1907(2) -6288(2) -1063(2) 26(1) 

______________________________________________________________________________
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Table A7.3. Bond lengths [Å] and angles [°] for  (S)-1.73 

_____________________________________________________  

C(1)-N(7)  1.492(2) 

C(1)-C(6)  1.536(3) 

C(1)-C(2)  1.544(4) 

C(1)-C(22)  1.546(3) 

C(2)-C(3)  1.527(3) 

C(2)-H(2A)  1.03(4) 

C(2)-H(2B)  0.99(4) 

C(3)-C(4)  1.524(4) 

C(3)-H(3A)  0.96(4) 

C(3)-H(3B)  0.91(4) 

C(4)-C(5)  1.523(4) 

C(4)-H(4A)  0.98(4) 

C(4)-H(4B)  0.90(5) 

C(5)-H(5A)  0.95(3) 

C(5)-H(5B)  0.97(4) 

C(5)-H(5C)  0.92(6) 

C(6)-H(6A)  0.97(4) 

C(6)-H(6B)  0.97(4) 

C(6)-H(6C)  0.87(4) 

N(7)-C(8)  1.363(3) 

N(7)-C(16)  1.481(3) 

C(8)-O(9)  1.228(3) 
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C(8)-C(10)  1.509(3) 

C(10)-N(11)  1.339(4) 

C(10)-C(15)  1.387(4) 

N(11)-C(12)  1.343(3) 

C(12)-C(13)  1.380(5) 

C(12)-H(12)  0.96(4) 

C(13)-C(14)  1.373(5) 

C(13)-H(13)  0.92(4) 

C(14)-C(15)  1.386(4) 

C(14)-H(14)  0.87(5) 

C(15)-H(15)  0.89(4) 

C(16)-C(17)  1.487(4) 

C(16)-H(16A)  0.96(3) 

C(16)-H(16B)  0.96(4) 

C(17)-C(21)  1.356(4) 

C(17)-O(18)  1.370(4) 

O(18)-C(19)  1.369(4) 

C(19)-C(20)  1.336(5) 

C(19)-H(19)  0.86(5) 

C(20)-C(21)  1.434(5) 

C(20)-H(20)  0.86(4) 

C(21)-H(21)  0.99(5) 

C(22)-O(23)  1.229(3) 

C(22)-N(24)  1.356(3) 
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N(24)-C(25)  1.408(3) 

N(24)-H(24N)  0.83(4) 

C(25)-C(26)  1.399(3) 

C(25)-C(30)  1.404(3) 

C(26)-C(27)  1.382(4) 

C(26)-H(26)  0.87(4) 

C(27)-C(28)  1.379(4) 

C(27)-H(27)  1.00(3) 

C(28)-C(29)  1.385(4) 

C(28)-Br(31)  1.906(2) 

C(29)-C(30)  1.380(4) 

C(29)-H(29)  1.00(4) 

C(30)-H(30)  0.99(4) 

O(1W)-H(1W1)  0.68(5) 

O(1W)-H(1W2)  0.94(5) 

 

N(7)-C(1)-C(6) 110.02(18) 

N(7)-C(1)-C(2) 109.9(2) 

C(6)-C(1)-C(2) 111.40(18) 

N(7)-C(1)-C(22) 109.69(16) 

C(6)-C(1)-C(22) 109.6(2) 

C(2)-C(1)-C(22) 106.19(18) 

C(3)-C(2)-C(1) 114.6(2) 

C(3)-C(2)-H(2A) 107(2) 
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C(1)-C(2)-H(2A) 110(2) 

C(3)-C(2)-H(2B) 110(2) 

C(1)-C(2)-H(2B) 110(2) 

H(2A)-C(2)-H(2B) 105(3) 

C(4)-C(3)-C(2) 111.5(2) 

C(4)-C(3)-H(3A) 111(2) 

C(2)-C(3)-H(3A) 109(2) 

C(4)-C(3)-H(3B) 108(2) 

C(2)-C(3)-H(3B) 110(2) 

H(3A)-C(3)-H(3B) 107(3) 

C(5)-C(4)-C(3) 112.6(2) 

C(5)-C(4)-H(4A) 109(2) 

C(3)-C(4)-H(4A) 110(2) 

C(5)-C(4)-H(4B) 113(3) 

C(3)-C(4)-H(4B) 108(3) 

H(4A)-C(4)-H(4B) 103(3) 

C(4)-C(5)-H(5A) 111.0(17) 

C(4)-C(5)-H(5B) 112(2) 

H(5A)-C(5)-H(5B) 105(3) 

C(4)-C(5)-H(5C) 112(3) 

H(5A)-C(5)-H(5C) 109(3) 

H(5B)-C(5)-H(5C) 108(4) 

C(1)-C(6)-H(6A) 110.1(18) 

C(1)-C(6)-H(6B) 110(2) 
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H(6A)-C(6)-H(6B) 109(3) 

C(1)-C(6)-H(6C) 112(2) 

H(6A)-C(6)-H(6C) 103(3) 

H(6B)-C(6)-H(6C) 113(3) 

C(8)-N(7)-C(16) 121.00(19) 

C(8)-N(7)-C(1) 116.0(2) 

C(16)-N(7)-C(1) 118.79(19) 

O(9)-C(8)-N(7) 122.2(2) 

O(9)-C(8)-C(10) 118.0(2) 

N(7)-C(8)-C(10) 119.8(2) 

N(11)-C(10)-C(15) 123.6(2) 

N(11)-C(10)-C(8) 118.4(2) 

C(15)-C(10)-C(8) 117.9(2) 

C(10)-N(11)-C(12) 116.8(2) 

N(11)-C(12)-C(13) 123.4(3) 

N(11)-C(12)-H(12) 111.7(19) 

C(13)-C(12)-H(12) 124.8(19) 

C(14)-C(13)-C(12) 118.9(2) 

C(14)-C(13)-H(13) 122(3) 

C(12)-C(13)-H(13) 119(3) 

C(13)-C(14)-C(15) 119.1(3) 

C(13)-C(14)-H(14) 122(3) 

C(15)-C(14)-H(14) 119(3) 

C(14)-C(15)-C(10) 118.2(3) 
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C(14)-C(15)-H(15) 125(2) 

C(10)-C(15)-H(15) 117(2) 

N(7)-C(16)-C(17) 112.8(2) 

N(7)-C(16)-H(16A) 108(2) 

C(17)-C(16)-H(16A) 111(2) 

N(7)-C(16)-H(16B) 110(2) 

C(17)-C(16)-H(16B) 108(2) 

H(16A)-C(16)-H(16B) 106(3) 

C(21)-C(17)-O(18) 110.1(3) 

C(21)-C(17)-C(16) 134.8(3) 

O(18)-C(17)-C(16) 115.1(2) 

C(19)-O(18)-C(17) 106.7(2) 

C(20)-C(19)-O(18) 110.3(3) 

C(20)-C(19)-H(19) 136(3) 

O(18)-C(19)-H(19) 114(3) 

C(19)-C(20)-C(21) 107.1(3) 

C(19)-C(20)-H(20) 122(3) 

C(21)-C(20)-H(20) 131(3) 

C(17)-C(21)-C(20) 105.8(3) 

C(17)-C(21)-H(21) 124(2) 

C(20)-C(21)-H(21) 130(2) 

O(23)-C(22)-N(24) 122.8(2) 

O(23)-C(22)-C(1) 120.1(2) 

N(24)-C(22)-C(1) 116.5(2) 
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C(22)-N(24)-C(25) 125.8(2) 

C(22)-N(24)-H(24N) 116(2) 

C(25)-N(24)-H(24N) 118(2) 

C(26)-C(25)-C(30) 118.7(2) 

C(26)-C(25)-N(24) 124.0(2) 

C(30)-C(25)-N(24) 117.2(2) 

C(27)-C(26)-C(25) 120.4(2) 

C(27)-C(26)-H(26) 120(2) 

C(25)-C(26)-H(26) 119(2) 

C(28)-C(27)-C(26) 119.7(2) 

C(28)-C(27)-H(27) 120.9(18) 

C(26)-C(27)-H(27) 119.2(18) 

C(27)-C(28)-C(29) 121.2(2) 

C(27)-C(28)-Br(31) 118.94(19) 

C(29)-C(28)-Br(31) 119.83(19) 

C(30)-C(29)-C(28) 119.2(2) 

C(30)-C(29)-H(29) 120(2) 

C(28)-C(29)-H(29) 121(2) 

C(29)-C(30)-C(25) 120.8(2) 

C(29)-C(30)-H(30) 119(2) 

C(25)-C(30)-H(30) 119(2) 

H(1W1)-O(1W)-H(1W2) 102(4) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A7.4. Anisotropic displacement parameters (Å2x 103) for (S)-1.73. The anisotropic 

displacement factor exponent takes the form: -22[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

C(1) 17(1)  13(1) 20(1)  1(1) 3(1)  -1(1) 

C(2) 22(1)  14(1) 21(1)  0(1) 4(1)  0(1) 

C(3) 24(1)  17(1) 22(1)  2(1) 6(1)  2(1) 

C(4) 27(1)  22(1) 24(1)  -4(1) 6(1)  4(1) 

C(5) 30(2)  25(2) 26(1)  0(1) 6(1)  8(1) 

C(6) 21(1)  19(1) 17(1)  2(1) 2(1)  0(1) 

N(7) 17(1)  13(1) 18(1)  0(1) 2(1)  -1(1) 

C(8) 21(1)  16(1) 15(1)  1(1) 1(1)  1(1) 

O(9) 20(1)  14(1) 26(1)  -2(1) 3(1)  -2(1) 

C(10) 18(1)  18(1) 21(1)  -6(1) 1(1)  -2(1) 

N(11) 19(1)  21(1) 27(1)  -4(1) 6(1)  -2(1) 

C(12) 21(1)  30(2) 34(1)  -10(1) 8(1)  -5(1) 

C(13) 18(1)  37(2) 37(2)  -16(1) 2(1)  0(1) 

C(14) 24(1)  30(2) 38(2)  -7(1) -5(1)  9(1) 

C(15) 23(1)  21(1) 31(1)  -1(1) 1(1)  1(1) 

C(16) 20(1)  15(1) 23(1)  -2(1) 3(1)  -2(1) 

C(17) 20(1)  22(1) 25(1)  -1(1) 3(1)  -4(1) 

O(18) 29(1)  32(1) 23(1)  5(1) 2(1)  4(1) 

C(19) 32(2)  53(2) 22(1)  9(1) 0(1)  -2(1) 
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C(20) 32(2)  57(2) 19(1)  -2(1) 1(1)  -15(1) 

C(21) 32(1)  34(2) 26(1)  -9(1) 7(1)  -10(1) 

C(22) 15(1)  13(1) 21(1)  1(1) 3(1)  2(1) 

O(23) 20(1)  19(1) 23(1)  2(1) 2(1)  -3(1) 

N(24) 17(1)  14(1) 20(1)  0(1) 2(1)  -1(1) 

C(25) 22(1)  11(1) 18(1)  -3(1) 3(1)  2(1) 

C(26) 20(1)  19(1) 23(1)  2(1) 6(1)  3(1) 

C(27) 21(1)  21(1) 26(1)  -2(1) 1(1)  0(1) 

C(28) 30(1)  31(1) 18(1)  -2(1) -3(1)  1(1) 

C(29) 33(1)  39(2) 20(1)  1(1) 7(1)  -6(1) 

C(30) 25(1)  26(2) 23(1)  2(1) 4(1)  -6(1) 

Br(31) 37(1)  69(1) 19(1)  4(1) -4(1)  -7(1) 

O(1W) 28(1)  17(1) 31(1)  0(1) -1(1)  -1(1) 

______________________________________________________________________________ 
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Table A7.5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 10 3) 

for (S)-1.73 

______________________________________________________________________________ 

 x  y  z  U(eq) 

______________________________________________________________________________ 

  

H(2A) -220(30) 4310(40) 2650(30) 27(9) 

H(2B) -230(30) 4560(40) 1230(30) 28(8) 

H(3A) -2320(30) 3900(30) 770(30) 22(8) 

H(3B) -2300(30) 3460(40) 2060(30) 22(8) 

H(4A) -2000(30) 5590(40) 2840(40) 29(9) 

H(4B) -2060(40) 6010(40) 1570(40) 39(10) 

H(5A) -4210(30) 5310(30) 1080(30) 11(6) 

H(5B) -4130(40) 4910(40) 2410(40) 34(9) 

H(5C) -4040(40) 6350(50) 2070(40) 52(12) 

H(6A) 10(30) 820(40) 2600(30) 15(7) 

H(6B) -1180(40) 1650(40) 2740(40) 35(9) 

H(6C) 150(30) 1930(30) 3400(30) 20(8) 

H(12) 5330(30) 2900(40) 350(30) 24(8) 

H(13) 6510(40) 1090(40) 1240(40) 39(10) 

H(14) 5480(40) -430(50) 2280(40) 49(12) 

H(15) 3350(30) -240(40) 2200(30) 22(7) 

H(16A) 2870(30) 3650(30) 2030(30) 22(8) 

H(16B) 1710(30) 4460(40) 2190(30) 26(8) 
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H(19) 3210(40) 1340(50) 5530(40) 50(12) 

H(20) 2440(40) 3250(40) 6440(40) 36(10) 

H(21) 1640(40) 4850(50) 4620(40) 43(10) 

H(24N) 140(30) 3000(30) -520(30) 19(8) 

H(26) -2860(30) 1870(40) -1370(40) 30(9) 

H(27) -4080(30) 1840(30) -3290(30) 19(7) 

H(29) -980(40) 3170(40) -4640(40) 40(10) 

H(30) 150(30) 3230(40) -2620(30) 28(8) 

H(1W1) 2360(40) -6540(40) -620(40) 31(11) 

H(1W2) 1800(40) -5450(50) -770(40) 44(10) 

______________________________________________________________________________
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Table A7.6. Torsion angles [°] for (S)-1.73 

________________________________________________________________  

N(7)-C(1)-C(2)-C(3) 168.29(18) 

C(6)-C(1)-C(2)-C(3) -69.5(3) 

C(22)-C(1)-C(2)-C(3) 49.7(2) 

C(1)-C(2)-C(3)-C(4) 169.2(2) 

C(2)-C(3)-C(4)-C(5) -177.2(2) 

C(6)-C(1)-N(7)-C(8) 69.0(2) 

C(2)-C(1)-N(7)-C(8) -168.04(19) 

C(22)-C(1)-N(7)-C(8) -51.7(3) 

C(6)-C(1)-N(7)-C(16) -88.2(3) 

C(2)-C(1)-N(7)-C(16) 34.8(3) 

C(22)-C(1)-N(7)-C(16) 151.2(2) 

C(16)-N(7)-C(8)-O(9) 163.6(2) 

C(1)-N(7)-C(8)-O(9) 7.0(3) 

C(16)-N(7)-C(8)-C(10) -16.6(3) 

C(1)-N(7)-C(8)-C(10) -173.22(19) 

O(9)-C(8)-C(10)-N(11) 126.7(2) 

N(7)-C(8)-C(10)-N(11) -53.1(3) 

O(9)-C(8)-C(10)-C(15) -50.0(3) 

N(7)-C(8)-C(10)-C(15) 130.1(2) 

C(15)-C(10)-N(11)-C(12) -1.2(4) 

C(8)-C(10)-N(11)-C(12) -177.8(2) 

C(10)-N(11)-C(12)-C(13) -0.5(4) 
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N(11)-C(12)-C(13)-C(14) 1.6(4) 

C(12)-C(13)-C(14)-C(15) -1.0(4) 

C(13)-C(14)-C(15)-C(10) -0.6(4) 

N(11)-C(10)-C(15)-C(14) 1.8(4) 

C(8)-C(10)-C(15)-C(14) 178.3(2) 

C(8)-N(7)-C(16)-C(17) -84.9(3) 

C(1)-N(7)-C(16)-C(17) 71.1(3) 

N(7)-C(16)-C(17)-C(21) -121.5(3) 

N(7)-C(16)-C(17)-O(18) 57.2(3) 

C(21)-C(17)-O(18)-C(19) 0.6(3) 

C(16)-C(17)-O(18)-C(19) -178.5(2) 

C(17)-O(18)-C(19)-C(20) -0.2(3) 

O(18)-C(19)-C(20)-C(21) -0.2(3) 

O(18)-C(17)-C(21)-C(20) -0.7(3) 

C(16)-C(17)-C(21)-C(20) 178.1(3) 

C(19)-C(20)-C(21)-C(17) 0.6(3) 

N(7)-C(1)-C(22)-O(23) 141.3(2) 

C(6)-C(1)-C(22)-O(23) 20.4(3) 

C(2)-C(1)-C(22)-O(23) -100.0(2) 

N(7)-C(1)-C(22)-N(24) -47.3(3) 

C(6)-C(1)-C(22)-N(24) -168.2(2) 

C(2)-C(1)-C(22)-N(24) 71.4(2) 

O(23)-C(22)-N(24)-C(25) 7.3(4) 

C(1)-C(22)-N(24)-C(25) -163.9(2) 
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C(22)-N(24)-C(25)-C(26) 15.6(4) 

C(22)-N(24)-C(25)-C(30) -168.1(2) 

C(30)-C(25)-C(26)-C(27) -0.4(4) 

N(24)-C(25)-C(26)-C(27) 175.9(2) 

C(25)-C(26)-C(27)-C(28) -0.5(4) 

C(26)-C(27)-C(28)-C(29) 1.1(5) 

C(26)-C(27)-C(28)-Br(31) 179.6(2) 

C(27)-C(28)-C(29)-C(30) -0.9(5) 

Br(31)-C(28)-C(29)-C(30) -179.4(2) 

C(28)-C(29)-C(30)-C(25) 0.0(4) 

C(26)-C(25)-C(30)-C(29) 0.6(4) 

N(24)-C(25)-C(30)-C(29) -175.9(3) 

________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A7.7. Hydrogen bonds for (S)-1.73 [Å and °] 

____________________________________________________________________________  

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________  

 C(2)-H(2B)...O(9)#1 0.99(4) 2.59(4) 3.345(3) 133(3) 

 C(6)-H(6A)...O(9) 0.97(4) 2.47(3) 3.020(3) 116(2) 

 C(13)-H(13)...O(23)#2 0.92(4) 2.30(4) 3.183(3) 160(3) 

 C(16)-H(16A)...N(11) 0.96(3) 2.32(4) 3.057(3) 132(3) 

 N(24)-H(24N)...O(1W)#30.83(4) 2.23(3) 3.010(3) 155(3) 

 C(26)-H(26)...O(23) 0.87(4) 2.28(4) 2.812(3) 120(3) 

 C(30)-H(30)...O(1W)#3 0.99(4) 2.40(4) 3.246(3) 144(3) 

 O(1W)-H(1W1)...N(11)#40.68(5) 2.27(5) 2.941(3) 171(5) 

 O(1W)-H(1W2)...O(23)#50.94(5) 1.83(5) 2.760(3) 169(4) 

____________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 -x,y+1/2,-z    #2 x+1,y,z    #3 x,y+1,z    #4 x,y-1,z       

#5 -x,y-1/2,-z       
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X-ray crystallographic data of 3.13 

Table A8.1. Crystal data and structure refinement for 3.13 

Identification code  x1605008  

Empirical formula  C21H33N5O3Cl2  

Formula weight  474.42  

Temperature/K  100  

Crystal system  orthorhombic  

Space group  C2221  

a/Å  14.8861(3)  

b/Å  14.8873(3)  

c/Å  21.3167(5)  

α/°  90  

β/°  90  

γ/°  90  

Volume/Å3  4724.08(17)  

Z  8  

ρcalcg/cm3  1.334  

μ/mm-1  2.738  

F(000)  2016.0  

Crystal size/mm3  0.27 × 0.148 × 0.108  

Radiation  CuKα (λ = 1.54178)  

2Θ range for data collection/°  8.296 to 144.632  

Index ranges  -18 ≤ h ≤ 16, -18 ≤ k ≤ 18, -26 ≤ l ≤ 25  

Reflections collected  22334  

Independent reflections  4587 [Rint = 0.0370, Rsigma = 0.0348]  

Data/restraints/parameters  4587/0/283  
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Goodness-of-fit on F2  1.037  

Final R indexes [I>=2σ (I)]  R1 = 0.0267, wR2 = 0.0653  

Final R indexes [all data]  R1 = 0.0278, wR2 = 0.0660  

Largest diff. peak/hole / e Å-3  0.25/-0.20  

Flack parameter 0.020(4) 
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Table A8.2. Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103) for 3.13. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ 

tensor. 

Atom x y z U(eq) 

C1 3705.3(13) 6790.6(14) 3030.9(9) 21.7(4) 

N2 2867.6(12) 7113.3(12) 2879.2(8) 22.5(4) 

C3 2357.4(14) 6900.6(14) 3357.0(9) 21.2(4) 

N4 2816.6(12) 6463.7(11) 3811.9(8) 18.5(3) 

C5 2449.5(15) 6117.5(14) 4401.7(10) 25.2(4) 

C6 3693.2(13) 6385.8(12) 3609.5(9) 17.9(4) 

C7 4424.1(14) 5984.2(13) 3999.2(10) 19.6(4) 

C8 5003.0(13) 6696.9(12) 4335.7(9) 17.0(4) 

C9 5552.6(12) 7200.2(12) 3844.5(8) 15.1(4) 

O10 6083.8(9) 6781.4(9) 3506.3(6) 17.7(3) 

N11 5488.9(10) 8097.7(11) 3802.5(7) 16.6(3) 

C12 4889.7(15) 8696.9(13) 4166.3(10) 22.8(4) 

C13 5295.6(15) 9626.7(14) 4055.9(10) 25.0(4) 

C14 5731.9(14) 9556.0(13) 3405.9(10) 22.5(4) 

C15 6098.7(13) 8588.3(12) 3378.4(8) 16.9(4) 

C16 7056.8(13) 8514.8(12) 3643.3(9) 16.6(4) 

O17 7229(1) 8828.5(9) 4164.8(7) 22.4(3) 

N18 7656.2(10) 8083.6(11) 3283.6(7) 16.8(3) 

C19 8567.9(13) 7871.3(13) 3504.0(9) 19.4(4) 

C20 9103.7(15) 8726.1(15) 3638.8(11) 29.0(5) 

C21 9034.4(13) 7323.0(16) 2992.6(10) 25.3(4) 

C22 8555.3(14) 7265.9(13) 4095.8(9) 19.6(4) 
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O23 9215.3(11) 7235.6(12) 4440.4(7) 31.4(4) 

N24 7835.4(11) 6741.0(11) 4168.6(7) 17.9(3) 

C25 7759.8(14) 6096.9(13) 4680.8(9) 20.1(4) 

C26 7253.0(14) 6467.7(13) 5252.3(9) 19.4(4) 

C27 6338.9(13) 6884.9(12) 5092.3(8) 18.1(4) 

C28 5671.6(14) 6231.2(13) 4782.4(9) 19.2(4) 

Cl1 6243.8(4) 5614.6(4) 6839.7(3) 35.18(14) 

Cl2 8169.8(4) 5257.0(4) 6866.9(3) 34.21(14) 

C29 7103.0(15) 4936.8(15) 7157.9(11) 26.8(4) 
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Table A8.3. Anisotropic Displacement Parameters (Å2×103) for 3.13. The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…] 

Atom U11 U22 U33 U23 U13 U12 

C1 19.2(9) 29.8(9) 16.1(9) 2.5(8) 1.0(7) -4.1(7) 

N2 23.6(8) 27.9(9) 16.0(7) 1.1(6) -1.1(7) -0.5(6) 

C3 21.5(10) 23.0(9) 19.2(9) -2.3(7) -0.5(7) 0.1(7) 

N4 22.5(8) 18.2(7) 14.8(7) -1.3(6) 3.1(7) -3.1(6) 

C5 31.6(11) 23.4(9) 20.5(10) 3.1(8) 10.9(8) 0.4(8) 

C6 19.0(9) 18.4(8) 16.3(9) -1.8(7) -0.4(7) -6.0(7) 

C7 21.0(9) 17.8(9) 20.1(9) 1.8(7) -2.1(7) -4.9(7) 

C8 18.5(9) 16.7(9) 15.9(8) 0.8(7) 0.6(7) -3.3(7) 

C9 15.1(8) 18.3(9) 12.0(8) 0.2(7) -3.4(7) -3.2(7) 

O10 21.1(7) 16.8(6) 15.1(6) -1.9(5) 2.1(5) -1.5(5) 

N11 19.0(7) 17.1(7) 13.9(7) 0.7(6) 2.5(6) -0.3(6) 

C12 26.3(10) 19.1(9) 23(1) 1.6(7) 8.3(8) 4.5(7) 

C13 32.1(11) 18.1(9) 24.8(10) 0.2(8) 7.6(8) 4.2(8) 

C14 27.5(11) 17.9(9) 22.1(9) 5.5(7) 1.8(8) 2.0(7) 

C15 20.8(9) 16.9(8) 13.1(8) 2.6(6) 0.8(7) -1.8(7) 

C16 22.7(10) 12.7(8) 14.4(9) 3.1(6) 0.2(7) -3.6(7) 

O17 30.2(8) 21.4(7) 15.7(7) -3.0(5) -4.0(6) 0.8(5) 

N18 17.0(7) 19.9(7) 13.3(7) 0.5(6) -1.1(6) -3.8(6) 

C19 16.1(9) 23.6(9) 18.5(9) 3.0(7) -1.8(7) -4.3(7) 

C20 23.2(10) 31.6(11) 32.1(12) 5.9(9) -6.9(9) -12.6(8) 

C21 17.9(9) 37.9(11) 20(1) 4.5(8) 1.8(8) 2.0(8) 

C22 20.7(9) 22.4(9) 15.6(9) -1.3(7) -1.8(7) -2.1(7) 
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O23 27.7(8) 41.5(9) 25.2(8) 9.3(6) -12.4(7) -11.1(7) 

N24 18.9(8) 18.9(8) 15.9(7) 1.3(6) -2.4(6) -0.2(6) 

C25 23.2(10) 17.2(9) 19.9(10) 3.2(7) -0.9(8) 1.2(7) 

C26 23.7(10) 19.2(9) 15.4(8) 1.8(7) -3.2(8) -1.3(7) 

C27 22.3(9) 18.2(8) 13.7(8) 0.3(7) -0.2(7) -0.2(8) 

C28 23.8(10) 17.1(8) 16.8(9) 3.0(7) -0.6(8) -3.0(7) 

Cl1 28.9(3) 36.3(3) 40.4(3) -6.2(2) -6.8(2) 5.1(2) 

Cl2 24.7(2) 43.7(3) 34.2(3) -3.2(2) 1.2(2) -4.9(2) 

C29 25.4(11) 28.7(11) 26.4(10) 0.8(8) -0.2(9) -2.0(8) 
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Table A8.4. Bond Lengths for 3.13 

Atom Atom Length/Å  Atom Atom Length/Å 

C1 N2 1.375(3)  C14 C15 1.542(3) 

C1 C6 1.373(3)  C15 C16 1.538(3) 

N2 C3 1.309(3)  C16 O17 1.233(2) 

C3 N4 1.353(3)  C16 N18 1.340(3) 

N4 C5 1.465(3)  N18 C19 1.471(2) 

N4 C6 1.379(3)  C19 C20 1.529(3) 

C6 C7 1.494(3)  C19 C21 1.529(3) 

C7 C8 1.544(3)  C19 C22 1.550(3) 

C8 C9 1.525(3)  C22 O23 1.227(3) 

C8 C28 1.542(3)  C22 N24 1.335(3) 

C9 O10 1.238(2)  N24 C25 1.458(2) 

C9 N11 1.343(3)  C25 C26 1.535(3) 

N11 C12 1.481(2)  C26 C27 1.534(3) 

N11 C15 1.475(2)  C27 C28 1.540(3) 

C12 C13 1.529(3)  Cl1 C29 1.765(2) 

C13 C14 1.534(3)  Cl2 C29 1.770(2) 
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Table A8.5. Bond Angles for 3.13 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

C6 C1 N2 110.66(18)  N11 C15 C14 102.80(15) 

C3 N2 C1 104.99(17)  N11 C15 C16 108.09(14) 

N2 C3 N4 112.38(18)  C16 C15 C14 112.40(16) 

C3 N4 C5 126.57(18)  O17 C16 C15 119.80(18) 

C3 N4 C6 107.11(16)  O17 C16 N18 123.99(18) 

C6 N4 C5 126.30(18)  N18 C16 C15 116.19(16) 

C1 C6 N4 104.86(18)  C16 N18 C19 122.31(16) 

C1 C6 C7 131.75(19)  N18 C19 C20 111.26(17) 

N4 C6 C7 123.28(17)  N18 C19 C21 107.82(16) 

C6 C7 C8 112.95(16)  N18 C19 C22 111.95(15) 

C9 C8 C7 108.55(15)  C20 C19 C22 109.71(16) 

C9 C8 C28 107.37(15)  C21 C19 C20 109.97(17) 

C28 C8 C7 109.77(15)  C21 C19 C22 105.98(16) 

O10 C9 C8 119.65(16)  O23 C22 C19 119.91(18) 

O10 C9 N11 120.48(17)  O23 C22 N24 123.46(19) 

N11 C9 C8 119.79(16)  N24 C22 C19 116.38(17) 

C9 N11 C12 127.38(16)  C22 N24 C25 122.27(17) 

C9 N11 C15 119.37(16)  N24 C25 C26 113.32(16) 

C15 N11 C12 113.17(15)  C27 C26 C25 113.88(16) 

N11 C12 C13 103.10(16)  C26 C27 C28 114.31(15) 

C12 C13 C14 104.14(17)  C27 C28 C8 113.40(15) 

C13 C14 C15 104.39(15)  Cl1 C29 Cl2 111.19(12) 
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Table A8.6. Hydrogen Bonds for 3.13 

D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 

N18 H18 N21 0.88 2.13 2.973(2) 161.3 

N24 H24 O10 0.88 2.12 2.966(2) 161.6 

11-X,+Y,1/2-Z 
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Table 7 Torsion Angles for 3.13 

A B C D Angle/˚  A B C D Angle/˚ 

C1 N2 C3 N4 0.4(2)  C12 N11 C15 C14 -9.8(2) 

C1 C6 C7 C8 77.3(3)  C12 N11 C15 C16 109.18(18) 

N2 C1 C6 N4 0.3(2)  C12 C13 C14 C15 -35.9(2) 

N2 C1 C6 C7 -175.89(19)  C13 C14 C15 N11 27.8(2) 

N2 C3 N4 C5 -178.82(18)  C13 C14 C15 C16 -88.16(19) 

N2 C3 N4 C6 -0.2(2)  C14 C15 C16 O17 51.1(2) 

C3 N4 C6 C1 0.0(2)  C14 C15 C16 N18 -130.33(17) 

C3 N4 C6 C7 176.54(17)  C15 N11 C12 C13 -12.1(2) 

N4 C6 C7 C8 -98.3(2)  C15 C16 N18 C19 -172.92(15) 

C5 N4 C6 C1 178.55(18)  C16 N18 C19 C20 -63.4(2) 

C5 N4 C6 C7 -4.9(3)  C16 N18 C19 C21 175.94(17) 

C6 C1 N2 C3 -0.4(2)  C16 N18 C19 C22 59.7(2) 

C6 C7 C8 C9 -69.1(2)  O17 C16 N18 C19 5.6(3) 

C6 C7 C8 C28 173.85(16)  N18 C19 C22 O23 -159.16(19) 

C7 C8 C9 O10 -59.6(2)  N18 C19 C22 N24 26.5(2) 

C7 C8 C9 N11 123.63(18)  C19 C22 N24 C25 176.00(17) 

C7 C8 C28 C27 174.54(16)  C20 C19 C22 O23 -35.1(3) 

C8 C9 N11 C12 -3.6(3)  C20 C19 C22 N24 150.49(18) 

C8 C9 N11 C15 172.90(16)  C21 C19 C22 O23 83.5(2) 

C9 C8 C28 C27 56.7(2)  C21 C19 C22 N24 -90.8(2) 

C9 N11 C12 C13 164.57(19)  C22 N24 C25 C26 94.8(2) 

C9 N11 C15 C14 173.18(16)  O23 C22 N24 C25 1.8(3) 

C9 N11 C15 C16 -67.8(2)  N24 C25 C26 C27 51.3(2) 

O10 C9 N11 C12 179.61(18)  C25 C26 C27 C28 59.9(2) 
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O10 C9 N11 C15 -3.9(3)  C26 C27 C28 C8 -150.55(16) 

N11 C12 C13 C14 29.1(2)  C28 C8 C9 O10 59.0(2) 

N11 C15 C16 O17 -61.7(2)  C28 C8 C9 N11 -117.77(18) 

N11 C15 C16 N18 116.93(17)       

 

  



384 
 

  

Table A8.8 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103) for 3.13 

Atom x y z U(eq) 

H1 4221 6841 2771 26 

H3 1735 7038 3382 25 

H5A 1817 6293 4439 38 

H5B 2790 6367 4755 38 

H5C 2496 5461 4406 38 

H7A 4816 5615 3727 24 

H7B 4153 5582 4317 24 

H8 4612 7124 4574 20 

H12A 4896 8539 4618 27 

H12B 4265 8666 4009 27 

H13A 5749 9770 4380 30 

H13B 4824 10096 4060 30 

H14A 6224 9999 3360 27 

H14B 5284 9659 3070 27 

H15 6067 8343 2942 20 

H18 7499 7922 2902 20 

H20A 9150 9085 3255 43 

H20B 9707 8565 3784 43 

H20C 8798 9076 3964 43 

H21A 8688 6776 2910 38 

H21B 9640 7160 3132 38 

H21C 9074 7681 2608 38 
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H24 7391 6785 3898 21 

H25A 8370 5913 4813 24 

H25B 7445 5555 4526 24 

H26A 7160 5974 5557 23 

H26B 7631 6929 5458 23 

H27A 6436 7400 4807 22 

H27B 6066 7121 5483 22 

H28A 5330 5916 5115 23 

H28B 6013 5774 4544 23 

H29A 6988 4300 7050 32 

H29B 7099 4992 7621 32 

 

 


