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Genome-wide prediction of DNase I
hypersensitivity using gene expression
Weiqiang Zhou 1, Ben Sherwood1,3, Zhicheng Ji1, Yingchao Xue2, Fang Du1, Jiawei Bai1, Mingyao Ying2

& Hongkai Ji 1

We evaluate the feasibility of using a biological sample’s transcriptome to predict its genome-

wide regulatory element activities measured by DNase I hypersensitivity (DH). We develop

BIRD, Big Data Regression for predicting DH, to handle this high-dimensional problem.

Applying BIRD to the Encyclopedia of DNA Elements (ENCODE) data, we found that to a

large extent gene expression predicts DH, and information useful for prediction is contained

in the whole transcriptome rather than limited to a regulatory element’s neighboring genes.

We show applications of BIRD-predicted DH in predicting transcription factor-binding sites

(TFBSs), turning publicly available gene expression samples in Gene Expression Omnibus

(GEO) into a regulome database, predicting differential regulatory element activities, and

facilitating regulome data analyses by serving as pseudo-replicates. Besides improving our

understanding of the regulome–transcriptome relationship, this study suggests that

transcriptome-based prediction can provide a useful new approach for regulome mapping.
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A fundamental question in functional genomics is how
genes’ activities are controlled temporally and spatially.
To answer this question, it is crucial to comprehensively

map activities of all genomic regulatory elements (i.e., regulome)
and understand the complex interplay between the regulome and
transcriptome (i.e., transcriptional activities of all genes). Reg-
ulome mapping has been accelerated by high-throughput tech-
nologies such as chromatin immunoprecipitation coupled with
high-throughput sequencing (ChIP-seq)1 and sequencing of
chromatin accessibility (e.g., DNase-seq2 for DNase I hypersen-
sitivity (DH), FAIRE-seq3 for formaldehyde-assisted isolation of
regulatory elements, and ATAC-seq4 for assaying transposase-
accessible chromatin). So far, these technologies have only been
applied to interrogate a small subset of all possible biological
contexts defined by different combinations of cell or tissue type,
disease state, time, environmental stimuli, and other factors. A
major limitation of these technologies is the difficulty in simul-
taneously analyzing a large number of different biological con-
texts. This limitation along with practical constraints such as lack
of materials, antibodies, resources, or expertise has hindered their
application by the vast majority of biomedical investigators from
small laboratories.

Numerous researchers have examined how genes’ transcrip-
tional activities can be predicted using activities of their asso-
ciated regulatory elements5–7. However, the interplay between
regulome and transcriptome is bidirectional due to feedback8, 9. A
systematic understanding of this relationship in the reverse
direction, to what extent regulatory elements’ activities can be
predicted by transcriptome, is still lacking.

Here we investigate the problem of using gene expression to
predict DH based on the data generated by the Encyclopedia of
DNA Elements (ENCODE) Project10. Besides creating a more
complete picture of the regulome–transcriptome relationship, this
investigation also has important practical implications for reg-
ulome mapping. Gene expression is the most widely measured
data type in high-throughput functional genomics. Measuring
expression does not require large amounts of materials and
complex protocols, and technologies for expression profiling are
relatively mature. Thus, expression data are routinely collected
when other functional genomic data types are difficult to generate
due to technical or resource constraints. Today, the Gene
Expression Omnibus (GEO) database11 contains 200,000+
human gene expression samples from a broad spectrum of bio-
logical contexts, as compared to only ~7000 human ChIP-seq,
DNase-seq, FAIRE-seq, and ATAC-seq samples. If one can use
the ENCODE data to build prediction models and apply them to
existing and new transcriptome data to predict regulome, the
catalog of biological contexts with regulome information may be
quickly expanded (Fig. 1a). This will provide a useful approach
for regulome mapping that is complementary to existing
experimental methods. It will also allow researchers to more
effectively use expression data to study gene regulation. Unlike a
recent study that imputes one functional genomic data type based
on multiple other data types, which are non-trivial to collect12,
prediction in this study is based on one single but widely available
data type and hence can have a substantially broader range of
applications. During our investigation, we develop a big data
regression approach, BIRD (Fig. 1b), to handle the prediction
problem where both predictors (i.e., transcriptome) and respon-
ses (i.e., regulome) are ultra-high-dimensional, which is an
emerging problem in the analysis of big data. We show that BIRD
can provide practically useful predictions of chromatin accessi-
bility using gene expression. BIRD-predicted DH can be used to
predict transcription factor-binding sites (TFBSs), turn publicly
available gene expression samples in GEO into a regulome
database, and serve as pseudo-replicates to facilitate regulome

data analyses. It can also be used to predict differential regulatory
element activities such as changes of chromatin accessibility
between different cell types or differentiation time points.

Results
Big data regression for predicting DH. Predicting DH using
gene expression can be formulated as a problem of building
millions of regression models, one per genomic locus, to describe
the relationship between the DH level at that locus (response) and
the expression levels of tens of thousands of genes (predictors).
For method development and evaluation, we compiled DNase-
seq and exon array (i.e., gene expression) data for 57 distinct
human cell types with normal karyotype from ENCODE (Sup-
plementary Data 1). They were randomly partitioned into a
training dataset (40 cell types) and a test dataset (17 cell types).
After filtering out genomic regions with weak or no DH signal
across all 40 training cell types, 912,886 genomic loci (referred to
as “DNase I hypersensitive sites” or “DHSs” hereinafter) with
unambiguous DNase-seq signal in at least one training cell type
were retained for subsequent analyses (“Methods”).

For each locus, prediction models were constructed using the
40 training cell types. Prediction performance was evaluated using
the 17 test cell types based on three types of statistics (Fig. 2a,
“Methods”). First, we evaluated a method’s ability to predict the
variation of DH levels across different genomic loci by computing
the Pearson’s correlation between the predicted and true DH
values (or P–T correlation) across all DHSs within the same cell
type (cross-locus correlation rL). Second, we evaluated a method’s
ability to predict the relative activities of the same DHS in
different cell types by computing the P–T correlation across
different cell types at each genomic locus (cross-cell-type
correlation rC). Third, we computed the total squared prediction
error normalized by the total DH data variance (τ) to characterize
the proportion of data variation not explained by the prediction.

The regression for each locus can be constructed using either
its neighboring genes or all genes as predictors (Supplementary
Fig. 1). We tested both strategies (see “Methods” and Supple-
mentary Figs. 2–6 for details). The latter strategy requires one to
deal with a challenging big data regression problem, which
involves fitting ~1 million high-dimensional regression models,
each with a large number (18,000+) of predictors and small
sample size. To cope with the high dimensionality and heavy
computation, we developed the BIRD algorithm. BIRD predicts
DH at each genomic locus by combining predictions from two
types of models, locus-level model and pathway-level model,
through model aggregation (Fig. 1b).

The locus-level model, denoted by BIR X;Y
� �

, groups corre-
lated predictors (i.e., co-expressed genes) into clusters and
transforms each cluster into one predictor. A small subset of
the transformed predictors informative for prediction is then
selected for each locus to construct a regression model
(“Methods”). Clustering reduces the predictor dimension,
mitigates co-linearity, and makes the predictors less sensitive to
measurement noise13. Compared to using individual genes as
predictors, clustering improved the prediction accuracy (“Meth-
ods”, Supplementary Fig. 4). Conceptually, constructing regres-
sion models using selected gene clusters is a group variable
selection approach applied in a prediction setting14. However,
unlike BIR X;Y

� �
, conventional group variable selection methods

are primarily developed for modeling a univariate response using
high-dimensional predictors15–17. They pay less attention to
important issues such as computational efficiency and robustness
to noisy predictors for handling complex big data where both
predictors and responses are high-dimensional. We compared
BIR X;Y

� �
with the popular group variable selection methods
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group lasso16 and composite minimax concave penalty regres-
sion17 (composite MCP). BIR X;Y

� �
was more accurate and

computationally efficient. We also compared BIR X;Y
� �

with
fused lasso15 based on 1% of the genome. Both methods yielded
similar prediction accuracy, but fused lasso was >105 times
slower than BIR X;Y

� �
(Supplementary Fig. 5; Supplementary

Note 1).
The pathway-level model, denoted by BIR X;Y

� �
, not only

clusters correlated predictors but also groups correlated responses
(i.e., co-activated DHSs) into clusters. It predicts the mean DH
level of each cluster. Each DHS cluster can be viewed as a
“pathway” consisting of co-activated regulatory elements18, 19,
and the mean DH level of all loci in a pathway can be viewed as
the pathway’s activity. Because using the cluster mean reduces the
variance of measurement noise, pathway activities are less noisy

than locus-level DH measurements. Thus, BIR X;Y
� �

was able to
predict pathway activities much more accurately than predicting
DH levels of individual loci using the locus-level model
BIR X;Y

� �
(Supplementary Fig. 7).

The final prediction by BIRD for each genomic locus is a
weighted average of the locus-level and pathway-level predictions.
The intuition is that the pathway activity predicted by BIR X;Y

� �
can also serve as a prediction of the DH level for each individual
locus within the pathway. Such a prediction may be biased but
less noisy than the locus-level prediction by BIR X;Y

� �
. Thus,

integrating the locus-level prediction from BIR X;Y
� �

and the
pathway-level prediction from BIR X;Y

� �
through model aggre-

gation may result in a better tradeoff between the prediction bias
and variance. In fact, the aggregated model robustly improved the
overall locus-level prediction accuracy (Supplementary Fig. 4,
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Fig. 1 Concepts of BIRD. a Outline of the study. ENCODE DNase-seq and exon array data are used to train BIRD. Users can apply BIRD to new or existing
gene expression samples to predict DH. The predicted DH can be used to predict TFBSs and differential DHSs, convert expression samples in GEO into a
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� �
predicts the DH level at each genomic locus. The pathway-level model BIR X;Y

� �
further groups correlated loci

(i.e., loci with co-varying DH) into different levels of clusters (i.e., DHS pathways) and predicts the DH level for each pathway. Finally, BIRD predicts DH at
each locus by combining the locus-level and pathway-level predictions via model averaging

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01188-x ARTICLE

NATURE COMMUNICATIONS |8:  1038 |DOI: 10.1038/s41467-017-01188-x |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


“Methods”). On the basis of these results, we used the aggregated
model, termed BIRD, in all subsequent analyses to predict DH
levels for each individual locus. A systematic benchmark analysis
shows that BIRD not only produces the best prediction
performance compared to other methods, but also offers
computational efficiency suitable for big data regression (Supple-
mentary Note 1; Supplementary Figs. 4–6).

Predicting DH based on gene expression. After building BIRD
prediction models using the 40 training cell types, we evaluated
their prediction performance in the 17 test cell types. Below is a
summary of the major findings.

Gene expression provides valuable information for predicting
DH. Compared to random prediction models, BIRD significantly
increased the P–T correlation (rL and rC) and substantially
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decreased the squared prediction error (τ) (Fig. 2b–d: BIRD vs.
BIRD-Permute; “Methods”). Here random prediction models were
constructed by applying BIRD to the training data after permuting
the link between DNase-seq and gene expression samples.

Prediction based on the whole transcriptome substantially
improves prediction based on a locus’ neighboring genes. We
tested the neighboring gene approach by gradually increasing the
number of neighboring genes (“Methods”, Supplementary Fig. 2).
Compared to the best performance of the neighboring gene
approach, BIRD produced substantially higher prediction accu-
racy (Fig. 2b–d), indicating that not all information useful for
prediction is contained in neighboring genes. This is reasonable as
many regulatory elements are known to control genes over a long
genomic distance, sometimes across many other genes. Also, DH
of a locus may be correlated in trans with expression of TFs that
bind to the locus, genes that co-express with these TFs, and genes
that co-express with the target gene controlled in cis by the locus.
Moreover, since cell-type-specific transcription of a gene may be
controlled by multiple cis-regulatory elements, a gene’s expression
may not always correlate well with the DH level of each individual
regulatory element in its neighborhood.

DH variation across different genomic loci within a cell type can
be accurately predicted. In the 17 test cell types, the mean cross-
locus P–T correlation rL for BIRD was 0.82 (Fig. 2b). Notably,
random prediction models were also able to produce large rL
(Fig. 2b, mean= 0.65). This is because different loci have different
DH propensity, consistent with observations in a previous study12.
For instance, some loci tend to show higher DH signal than other
loci in most cell types (Supplementary Fig. 8). Thus, using the
average DH profile of all training cell types can predict the cross-
locus DH variation in a new cell type with good accuracy12, even
though such predictions are cell-type-independent and remain the
same for all new cell types. Our random prediction models were
generated by permutations that did not perturb the locus-specific
DH propensity. Therefore, their rL was large. Since BIRD uses cell-
type-dependent information carried by transcriptome, its predic-
tions are more accurate (Fig. 2b).

DH variation across cell types can be predicted, although it is
more challenging than predicting cross-locus variation. Figure 2e
shows an example demonstrating that the true cross-cell-type DH
variation measured by DNase-seq can be captured by BIRD
predictions, but not by the mean DH profile of all training cell
types. Comparing the cross-locus P–T correlation (rL) in Fig. 2b
with the cross-cell-type P–T correlation (rC) in Fig. 2c, rL on
average was much larger than rC (0.82 vs. 0.50 for BIRD). Unlike
rL, the distribution of rC for random prediction models was
centered around zero (Fig. 2c, mean= −0.03) because the cross-
cell-type prediction accuracy was evaluated within each locus and
hence not affected by locus effects. Compared to random
prediction models, BIRD substantially increased rC (Fig. 2c).

Cross-cell-type prediction accuracy varies greatly among
different loci. For 6% of loci, BIRD predictions had rC< 0
(i.e., prediction did not help). On the other hand, 56 and 20% of
loci had rC> 0.5 and >0.75, respectively, indicating that DH
could be predicted with moderate to high accuracy for a
substantial fraction of loci. By examining the true DH levels
measured by DNase-seq in the training and test cell types, we
found that multiple factors may influence cross-cell-type predic-
tion accuracy of a locus. First, a subset of loci was not active in
any test cell type. For these loci, the true DH levels are essentially
noise. The cross-cell-type correlation between the predicted DH
levels and random noise is expected to be low. Therefore, these
noisy loci are not informative for evaluating the performance of
predicting biological variation across cell types. After excluding
these noisy loci, we found that loci with low signal range
(characterized by the difference between the maximal and

minimal DH values), low signal variability (characterized by
coefficient of variation (CV)), or high cell-type-specificity
(characterized by the number of cell types in which the locus is
active or inactive) tend to have lower rC (Fig. 3a; Supplementary
Fig. 9; Supplementary Methods). Altogether, these factors and
noisy loci explained the majority (85%) of loci with low rC (i.e., rC
< 0.25) (Fig. 3b–d). In real applications, BIRD is most useful for
making predictions in new cell types for which DNase-seq data
are not available. Therefore, we repeated this analysis by using
BIRD-predicted DH levels (instead of true DH levels) in the test
cell types and the true DH levels in training cell types for locus
stratification. The analysis produced similar results (Supplemen-
tary Fig. 10). In practice, one may use the factors discussed above
to screen for loci whose cross-cell-type prediction is likely to be
accurate. For instance, if one filters out the noisy loci and loci
with low max–min spread, low CV or high cell-type-specificity
based on true DH values in the training data and predicted DH
values in the test data, the mean rC would become 0.6 (compared
to the mean of 0.5 for all loci, and 0.43 for filtered loci), and 74
and 30% of loci would have rC> 0.5 and >0.75, respectively
(Fig. 3e; Supplementary Methods). We also investigated the
relationship between rC and the mean DH level of a locus but did
not find strong correlation between them (Supplementary
Methods; Supplementary Fig. 9e, f).

Cross-cell-type DH variation of regulatory element pathways
can be predicted with substantially higher accuracy than that of
individual loci. As a building block of BIRD, the pathway-level
model BIR X;Y

� �
groups correlated DHSs into clusters based on

the training data. Treating each cluster as a pathway, BIR X;Y
� �

predicts the activity of each pathway (i.e., the mean DH level of all
DHSs in each cluster) (“Methods”). When DHSs were grouped
into 1000 clusters, the cross-cell-type P–T correlation rC for the
pathway-level prediction by BIR X;Y

� �
was substantially higher

than rC for the locus-level prediction by BIRD (Fig. 3f, mean rC
for BIR X;Y

1000ð Þ� �
vs. BIRD= 0.71 vs. 0.50). For

BIR X;Y
ð1000Þ� �

, 84 and 55% clusters had rC> 0.5 and >0.75

respectively. Similar results were obtained when DHSs were

grouped into 2000 or 5000 clusters (Fig. 3f, BIR X;Y
2000ð Þ� �

and

BIR X;Y
5000ð Þ� �

). Thus, similar to gene set analyses20, the overall

cross-cell-type activity of a DHS pathway can be more reliably
studied using prediction than that of individual loci.

Prediction of differential DH is feasible. As one potential
application of BIRD is to predict differential DH between two
sample types, we further evaluated BIRD by conducting pairwise
comparisons of the 17 test cell types. Cell type pairs were
stratified into four equal-sized groups based on the similarity level
of the global DH profiles of two compared cell types. For each
pair of cell types, the correlation between the predicted and true
differential DH was computed across all loci and across
differential loci, respectively (“Methods”). For cell type pairs in
the highest similarity quartile, the mean correlation was 0.42 for
all loci and 0.55 for differential loci (Fig. 3g). For cell type pairs in
the other similarity quartiles, the mean correlation was higher:
0.60–0.66 for all loci and 0.69–0.75 for differential loci (Fig. 3g).
Again, compared to the prediction for individual loci, differential
DH prediction at pathway-level was more accurate (Fig. 3g, mean
correlation= 0.60–0.77; Supplementary Fig. 11).

The conclusions above do not depend on how the 57 cell types
are partitioned into the training and testing data. We repeated the
same analyses on four other random partitions (“Methods”,
Supplementary Data 1), and similar results were obtained. For
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instance, Supplementary Fig. 12 shows that rL, rC, and τ for BIRD
from different partitions were similar. The conclusions remained
qualitatively the same when Spearman’s rank correlation was
used instead of Pearson’s correlation (“Methods”; Supplementary
Figs. 13 and 14).

Comparisons of BIRD and ChromImpute. ChromImpute is a
method for imputing one functional genomic data type using

multiple other data types12. We compared DH predictions by
BIRD using only gene expression data with DH predictions by
ChromImpute using multiple functional genomic data types
(Supplementary Methods). Among 10 tested cell types, BIRD and
ChromImpute showed comparable cross-locus and cross-cell-
type prediction performance. Neither method consistently out-
performed the other (Fig. 3h, i; Supplementary Fig. 15a–f). We
further applied both methods to predict differential DH between
each pair of the 10 test cell types. BIRD outperformed
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Fig. 3 Cross-cell-type prediction performance and a comparison with ChromImpute. a Distribution and mean of rC for different loci classes. DHSs were
categorized into noisy loci and non-noisy loci based on test data (Supplementary Methods). The non-noisy loci were divided into two groups (low or high)
based on different factors: max–min spread, coefficient of variation (CV), cell-type-specificity. The grouping was done separately using the true DH values
from the test data and from the training data. b–d Percentage of loci with low cross-cell-type prediction accuracy (rC< 0.25) explained by noisy loci, low
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between locus-level and pathway-level predictions in terms of cross-cell-type prediction accuracy. For each method, rC distribution of all genomic loci or
pathways (5000, 2000, and 1000) are shown. g Accuracy for predicting differential DH between two cell types. The 136 pairs of test cell types were
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and Q3 (lower and upper whiskers), respectively

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01188-x

6 NATURE COMMUNICATIONS |8:  1038 |DOI: 10.1038/s41467-017-01188-x |www.nature.com/naturecommunications

www.nature.com/naturecommunications


ChromImpute substantially for comparing cell types with high
similarity (i.e., cell-type pairs whose similarity level was above the
median), and ChromImpute performed slightly better than BIRD
for comparing cell types with lower similarity levels (Fig. 3j;
Supplementary Fig. 15g–i). Note that ChromImpute used ChIP-
seq data for multiple histone modifications as predictors (these
are the best predictors selected by ChromImpute for imputing
DH12), which are non-trivial to generate. By contrast, BIRD was
based on gene expression data, which are easier to generate and
widely available.

Predictors selected by BIRD. Predictors of each DHS in BIRD
consist of predictors from the locus-level model and the pathway-
level models. Analyses of these predictors show that only a small
proportion of DHSs had their closest genes or target genes con-
tained in the predictors, although this proportion was sig-
nificantly larger than random expectation (permutation test
p-values < 0.001) (Supplementary Note 2; Supplementary
Fig. 16a–c). For DHSs with phylogenetically conserved DNA
sequences, we did not found their predictors to be more con-
served (Supplementary Note 3; Supplementary Fig. 17).

We further analyzed predictors selected by the pathway-level
models (i.e., BIR X;Y

� �
) for each DHS pathway. We found that

TFs that potentially regulate the pathways were enriched in
pathways’ predictors (Supplementary Note 2; Supplementary
Fig. 16d–j; Supplementary Data 2). The complete catalog of
BIRD-selected predictor genes for each DHS and pathway, and the
DNA motifs and GO terms enriched in the predictors are
provided at https://zhiji.shinyapps.io/CABS/ as an online resource.

Predicting TFBSs. One demonstrated application of DNase-seq
is to predict TFBSs by coupling DH with DNA motif
information21, 22. We asked whether the BIRD-predicted DH can
be used for this task when experimental DNase-seq data are not
available. Using BIRD models based on the 40 training cell types,
we predicted TFBSs for nine TFs in GM12878 cell line, which was
not in the training data. For evaluation, reproducible binding
peaks from the corresponding ENCODE TF ChIP-seq data in the
same cell line were downloaded. As it is unrealistic to expect a
prediction algorithm to identify which TFs bind to a genomic site
without motif information, we made our predictions for each TF
at its motif sites (Supplementary Data 3). Correspondingly,
reproducible ChIP-seq peaks that contained the TF’s motif were
used as gold standard for evaluation. We used motif-containing
peaks as gold standard also because ChIP-seq peaks without
motifs may correspond to indirect TF-DNA association. As
controls, we predicted TFBSs using motif sites alone (“Motif”;
negative control), the mean DH profile of all training cell types at
motif sites (“Mean”), and true DNase-seq data at motif sites
(“True”; positive control). Different methods were compared
based on the sensitivity at different false discovery rate (FDR)
levels (Fig. 4a; Supplementary Fig. 18), the receiver operating
characteristics (ROC, i.e., true-positive rate vs. false-positive rate)
(Fig. 4b; Supplementary Fig. 19), and the number of predicted
binding sites at different FDR levels (Fig. 4c; Supplementary
Fig. 20). Figure 4d–f shows the area under the sensitivity–FDR
curve (AUSFC), the area under the ROC curve (AUROC), and
the number of predicted TFBSs at the 50% FDR level. Here the
50% FDR was merely used to provide a snapshot to compare
different methods. One can reduce FDR by reducing the number
of predictions and sensitivity as shown in Fig. 4a, c and Supple-
mentary Figs. 18 and 20. As expected, TFBS prediction based on
true DNase-seq data was more accurate than BIRD (Fig. 4d–f).
However, BIRD substantially improved TFBS prediction based on
the motif only or mean DH methods.

Taking ELF1 as an example, at 10, 25, and 50% FDR level,
BIRD (UW) predictions gave a sensitivity of 0.43, 0.64, and 0.88,
respectively, as compared to 0.27, 0.64, and 0.94 by the true
DNase-seq approach, 0, 0.02, and 0.11 by the motif only
approach, and 0.09, 0.36, and 0.62 by the mean DH approach
(Fig. 4a). At these FDR levels, BIRD generated 5000, 9000, and
19,000 predicted ELF1 binding sites, which were close to the true
DNase-seq approach (3000, 9000, and 20,000) and substantially
more than the number of the predicted sites by the motif only (0,
250, and 2000) and mean DH (1000, 5000, and 13,000) methods
(Fig. 4c). The area under the sensitivity–FDR curve and ROC
curve (AUSFC and AUROC, Fig. 4d, e) for BIRD (AUSFC= 0.61,
AUROC= 0.93) were also close to the true DNase-seq approach
(AUSFC= 0.62, AUROC= 0.95) and substantially better than the
motif only (AUSFC= 0.16, AUROC= 0.65) or the mean DH
(AUSFC= 0.43, AUROC= 0.82) approach. Figure 4g and h
shows predictions in two genomic regions, which illustrate how
BIRD better predicts TFBSs than the mean DH and motif only
methods.

In our analyses, BIRD predictions were made using exon array
data generated by three different laboratories. The lab difference
turned out to be smaller than the differences between prediction
methods (Fig. 4a–c; Supplementary Figs. 18–20). We also
compared our methods with two state-of-the-art TFBS prediction
methods PIQ22 and CENTIPEDE21. Both PIQ and CENTIPEDE
use true DNase-seq data and motif information to make
predictions. PIQ showed comparable performance with our true
DNase-seq method, whereas CENTIPEDE performed worse than
BIRD (Supplementary Methods; Supplementary Figs. 21–24).
Thus, replacing our true DNase-seq method by PIQ or
CENTIPEDE as positive controls did not change the main
conclusion regarding the usefulness of BIRD.

We conducted similar analyses to three TFs in another cell line,
K562, and obtained similar results (Supplementary Figs. 25–28).
In addition, we applied BIRD to a non-ENCODE cell line, P493-6
B cell lymphoma, to predict MYC binding sites. For this dataset,
no corresponding DNase-seq data were available. Thus, PIQ,
CENTIPEDE, and prediction based on true DH were not
applicable. We compared BIRD with the mean DH and motif
only methods. BIRD again outperformed the other two methods
(Supplementary Methods; Supplementary Fig. 29).

Our analyses indicate that when experimental regulome data
are not available, BIRD-predicted DH can be used to predict
TFBSs. One limitation of this approach is that it requires accurate
motif information and the prediction is contingent on the
presence of TF binding motifs. This limitation, however, is not
unique to BIRD. It is common to methods such as PIQ and
CENTIPEDE that use chromatin accessibility to predict TFBSs.
Despite this limitation, BIRD can generate a substantial amount
of information (e.g., thousands of predicted TFBSs) one would
not have without BIRD. We note that the prediction performance
presented above does not represent the upper limit one can
achieve using BIRD. It is possible to further improve TFBS
prediction by incorporating other information (e.g., by using a
more sophisticated motif model that accounts for intra-motif
correlation) (Supplementary Note 4; Supplementary Fig. 30).
However, systematically exploring the optimal use of non-DH
predictors is beyond the scope of this study.

Regulome prediction using public expression samples in GEO.
The vast amounts of gene expression data from diverse biological
contexts in GEO represent a resource that no single laboratory
can generate. We next asked whether one can use BIRD to turn
this resource on gene expression into a resource on regulome
studies. As a proof of concept, we collected 2000 human exon
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array samples from GEO and applied BIRD trained using all 57
ENCODE cell types for 1,108,603 loci to these samples to predict
regulome. These predictions are made available as a web resource
PDDB (Predicted DNase I hypersensitivity database). A user
interface is provided for data query, display and download (Fig. 5,
“Methods”).

Researchers can use PDDB to explore regulatory element
activities in biological contexts for which they do not have
available regulome data. As a feasibility test, we first queried
predicted DH for three genes FBL, LIN28A and BLMH in P493-6
B cell lymphoma (for which no public DNase-seq data are
available) and H9 human embryonic stem cells. Promoters of
these genes are known to be bound by MYC in a cell type-
dependent fashion23. FBL is bound in both P493-6 and H9,
LIN28A is bound in H9 but not in P493-6, and BLMH is bound in
P493-6 but not in H923–25. PDDB successfully predicted
these known cell-type-dependent binding patterns (Fig. 6a–c;
Supplementary Fig. 31).

Next, we obtained SOX2 binding sites in human embryonic
stem cells from a published ChIP-seq study26 (Supplementary
Methods; Supplementary Data 4). Figure 6d shows the predicted
DH at these sites across the 2000 GEO samples. The samples were
ordered based on the overall DH enrichment level at all SOX2
binding sites relative to random genomic sites (Supplementary
Methods; Fig. 6e). Samples with strong predicted DH at SOX2
binding sites include stem cells (green bar in Fig. 6d) and brain
(brown bar), consistent with known roles of SOX2 in these
sample types27–30. Interestingly, PDDB contained differentiating
H7 embryonic stem cells collected at day 2, 5, and 9 after
initiation of differentiation. Our 57 training cell types contained
undifferentiated H7 cells and H7 cells at differentiating day 14.
Altogether, these samples formed a time course. Examination of
the predicted DH for day 2, 5, and 9 along with the true DH for
day 0 and 14 shows that the predicted DH at SOX2 binding sites
decreased as the differentiation progressed (Fig. 6f, g), consistent
with the known role of SOX2 in maintaining the undifferentiated

status of stem cells27, 28. Thus, the differential activities of SOX2
binding were correctly predicted in PDDB.

The above examples show that expression samples in GEO can
be used to meaningfully predict DH. With ChIP-seq data for a TF
from one biological context, one may use PDDB to systematically
explore in what other biological contexts each binding site might
be active, and group TFBSs into functionally related subclasses
accordingly. For instance, we obtained MEF2A ChIP-seq binding
sites in GM12878 lymphoblastoid cells from ENCODE. MEF2A is
a TF involved in muscle development31 and neuronal differentia-
tion32. Using PDDB (Supplementary Methods; Fig. 6h, i;
Supplementary Fig. 32; Supplementary Data 5–7), a group of
MEF2A binding sites associated with genes involved in cell
motion, cell migration and regulation of metabolic processes were
found to be more active in muscle-related samples (including
coronary artery smooth muscle and cardiac precursor cell which
are not covered by ENCODE) than in lymphoblastoid (Fig. 6h, i).
Another group of sites associated with neuron differentiation and
neurogenesis genes were found to be more active in neuron and
brain-related samples (including non-ENCODE sample types
such as entorhinal cortex and motor neuron) (Fig. 6h, i). This
demonstrates how PDDB can provide a detailed view of TFBSs
not offered by the original experiment in GM12878, and how
PDDB can be used to investigate many biological contexts not
covered by ENCODE.

Predicting differential signals in a differentiation system. To
test the application of BIRD to studying differential DH, we
analyzed a differentiation system in which human induced plur-
ipotent stem cells (iPSCs) were treated to differentiate into
dopaminergic neurons33 (Supplementary Methods). For this sys-
tem, exon array samples were established from iPSCs and iPSC-
derived neurons, but no corresponding experimental regulome
data were available. This represents a typical scenario for which
BIRD is useful. Using BIRD, we predicted differential DH and

a b

c

How to use PDDB

Step 1

Step 2

Results

Sample
annotation

Visualized
signal

Predicted
DNase-seq

Input
genomic loci

Input sample
keyword

(e.g., stem cell)

Fig. 5 The predicted DNase I hypersensitivity database (PDDB). a Flowchart illustrating how to use PDDB. Step 1: provide a list of genomic loci of interest.
Step 2: provide keywords in one or multiple annotation fields (e.g., type “stem cell” in the “Cell Type” column) to search for samples of interest. PDDB will
return predicted DH for the queried loci and samples along with sample annotation and data for visualization. b Web interface of PDDB. Users can
download the predicted DH data by clicking the “Download DNase-seq” button. The sample annotation data can be downloaded by clicking the “Get
Annotation Data” button. c By clicking the “Visualization of Predicted DNase-Seq data in UCSC Browser” link in the PDDB web interface (red circle in b),
one can display the predicted DH signal in the UCSC genome browser
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identified 76,495 DHSs with predicted log2 fold change δj j>1.
Most (97%) of these differential DHSs were located outside pro-
moter regions (±1 kb from transcription start sites (TSS)), repre-
senting a slightly higher propensity to occur outside promoters
compared to random DHSs (Supplementary Fig. 33, 97% vs. 92%,
p-value <10−15 by one-sided Fisher’s exact test).

For evaluation, we randomly sampled 26 DHSs at different
predicted fold change levels (12, 10, and 4 DHSs with δj j>2, 1
< δj j ≤ 2, and 0.1< δj j≤ 1, respectively) along with five non-
differential DHSs ( δj j< 0.1) as controls. As most of the DHSs
were located outside promoter regions, we conducted ChIP-qPCR

on histone modification H3K4me1 to test the predictions. High
H3K4me1 level is known to be associated with active enhancers,
whereas differential H3K4me1 has been observed previously in
both enhancers and promoters34. For DHSs with predicted log2
fold change δj j>2, 1< δj j≤ 2, and 0.1< δj j≤ 1, ChIP-qPCR
detected differential H3K4me1 levels in 7/12, 8/10 and 1/4 cases
respectively, compared to 0/5 for control DHSs (Fig. 7a, b;
Supplementary Fig. 34; Supplementary Data 8). The predicted
DH difference correlated well with the ChIP-qPCR measured
H3K4me1 difference (Fig. 7c, Pearson’s correlation= 0.67, Spear-
man’s rank correlation= 0.61). On the basis of ChIP-qPCR, using
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δj j>1 as the cutoff yielded a good empirical validation rate (15/22
= 68%). The 76,495 differential DHSs are generated using this
cutoff. They represent a significant amount of new information
generated by BIRD.

The differential DHSs predicted by BIRD were enriched in
flanking regions of differentially expressed genes, and differential
genes associated with differential DHSs were enriched in neuron
development and neuron differentiation functions (Supplemen-
tary Methods; Supplementary Fig. 35; Supplementary Data 9).
DNA motifs enriched in DHSs downregulated in iPSC-derived
neurons were linked to TFs closely involved in stem cell
maintenance, such as SOX2, OCT4 (aka POU5F1), KLF4, and
NANOG (Supplementary Data 10). For DHSs upregulated in
iPSC-derived neurons, enriched motifs contained TFs involved in
neuronal differentiation. These include important regulators of
neurogenesis and neural development such as NEUROG2,
NEUROD2, and ZBTB18 (aka RP58)33, 35, as well as ATOH1, a
TF recently reported to have an important role in the
differentiation of dopaminergic neurons36 (Supplementary
Data 10).

Altogether, this analysis demonstrates how BIRD can be used
in practice to predict differential regulatory signals. When

experimental regulome data are not available, the predicted
differential DHSs and their potential regulators suggested by the
enriched motifs may be used as candidates to guide follow-up
functional experiments (e.g., knock-out experiments) to accel-
erate the study of regulatory circuitry.

Prediction as pseudo-replicate to improve regulome analysis.
In applications of high-throughput regulome profiling technolo-
gies, it is common to encounter data with low signal-to-noise
ratio (SNR) or a small replicate number. Both can lead to low-
signal detection power. However, if one has gene expression data,
BIRD predictions may be used as pseudo-replicates to enhance
the signal. To demonstrate, we analyzed DNase-seq data for
GM12878 generated by ENCODE. The data had two replicates.
We reserved one replicate as “truth” and used the other one as the
“observed” data. Applying the BIRD prediction models trained
using the 40 training cell types (GM12878 not included), we
predicted DH in GM12878 and treated the prediction as a
pseudo-replicate. We then estimated “true” DH using either the
“observed” data alone (obs-only) or the average of the “observed”
data and pseudo-replicate (BIRD + obs). After adding the pseudo-
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replicate, the correlation between the predicted and true DH
increased (Fig. 8a, b, rL for BIRD + obs vs. obs-only= 0.82 vs.
0.76). Replacing BIRD predictions with the mean DH profile of
40 training cell types in this analysis (mean + obs) did not yield
similar increase in the P–T correlation (rL= 0.76). We carried out
the same analyses on 16 test cell types, and BIRD predictions
improved signal in 12 of them (Fig. 8c; Supplementary Methods).
Similarly, we tested whether the predicted DH can boost ChIP-
seq signals using ChIP-seq data for nine TFs in GM12878 and
three TFs in K562 (Supplementary Methods). BIRD improved
signal in 9/12 cases (Fig. 8d–f). In Supplementary Note 5, Sup-
plementary Figs. 36–42, and Supplementary Data 11, we show
that one may also use the correlation between the BIRD-predicted
pseudo-replicates and experimental DNase-seq data to check data
quality. Collectively, these results demonstrate that predictions
can serve as a bridge to integrate expression and regulome data.

Discussion
In summary, this study for the first time examined systematically
to what extent regulatory element activities can be predicted by
gene expression alone. This is a problem with a large number of
predictors and responses. We developed BIRD for this big data
prediction problem. The study also demonstrates the feasibility of
using gene expression to predict TFBSs and differential regulatory
element activities, applying BIRD to GEO to expand the current
regulome catalog, and using predictions to facilitate data inte-
gration. BIRD is a novel approach that can be used to extract
information from gene expression data to study regulome. In the
absence of experimental regulome data (e.g., ChIP-seq or DNase-
seq data), BIRD predictions can provide valuable information to
guide hypothesis generation, target prioritization, and design of
follow-up experiments. When experimental regulome data are
available, BIRD predictions can also serve as pseudo-replicates to
improve the data analysis. Although predictions in this study
were made using exon arrays, BIRD is a general approach and can
be applied to other types of gene expression data when training
data are available. For instance, in a separate study we observe
that applying BIRD to RNA-seq allows one to predict genome-
wide chromatin accessibility not only for bulk samples but also
for RNA-seq samples generated using small number of cells37.

Our results have important practical implications for the
analysis of existing and future gene expression data. Con-
ventionally, gene expression data are mainly collected to study
transcriptome. The method and software developed in this study
now allow one to conveniently utilize such data to study gene
regulation. By adding a new component to the standard analysis
pipeline of expression data, expression-based regulome prediction
can bring added value to an enormous number of new and
existing gene expression experiments. Given the wide application
of gene expression profiling, this will greatly impact how
expression data are most effectively used.

In our analyses, prediction models were trained for DHSs
found in the training data. Thus, one limitation of BIRD is that it
will not discover new locations of DHSs when applied to analyze
a new gene expression sample. However, the number of cell types
with both regulome and expression data continues to increase. As
more training data become available in the near future, one can
expect that most DHSs in the genome will be covered by the
training data, and new DHSs uniquely present in a new sample
will account for only a small fraction of the regulome (Supple-
mentary Note 6; Supplementary Fig. 43). Importantly, knowing
the genomic locations of cis-regulatory elements does not mean
that activities of each element in all biological contexts are
known. In this regard, BIRD has its unique advantages compared
with the conventional regulome-mapping technologies. As gene

expression profiling experiments are more widely conducted than
regulome-mapping experiments, the number of biological con-
texts with available gene expression data is orders of magnitude
larger than that with experimental regulome data. BIRD can be
readily applied to massive amounts of existing and new gene
expression data to generate regulome information for a large
number of biological contexts without experimental regulome
data. In the near future, no other experimental regulome mapping
technology can achieve similar level of comprehensiveness in
terms of biological context coverage.

Our current study may be extended in multiple directions in
the future. For instance, it is important to extend BIRD to other
gene expression platforms. It also remains to be answered whe-
ther gene expression can be similarly used to predict other
functional genomic data types.

Methods
DNase-seq data processing. The bowtie38 aligned (alignment based on hg19)
DNase-seq data for 57 human cell types with normal karyotype were downloaded
from the ENCODE in bam format (download link: http://hgdownload.cse.ucsc.
edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase). The human genome was
divided into 200 base pair (bp) non-overlapping bins. The number of reads falling
into each bin was counted for each DNase-seq sample. To adjust for different
sequencing depths, bin read counts for each sample i were first divided by the
sample’s total read count Ni and then scaled by multiplying a constant N
(N ¼ min

i
Nif g ¼ 17; 002; 867, which is the minimum sample read count of all

samples). After this procedure, the raw read count nli for bin l and sample i was
converted into a normalized read count ~nli ¼ Nnli=Ni. The normalized read counts
from replicate samples were averaged to characterize the DH level for each bin in
each cell type. The DH level was then log2 transformed after adding a pseudocount
of 1. The transformed data were used for training and testing prediction models,
treating each bin as a genomic locus. As chromosome Y was not present in all
samples, we excluded this chromosome from our subsequent analyses.

Gene expression data processing. The Affymetrix Human Exon 1.0 Array
(i.e., exon array) data for the same 57 ENCODE cell types were downloaded from
GEO (GEO accession number: GSE19090). In addition, we downloaded 2000 exon
array samples from GEO for constructing the PDDB database (GEO accession
numbers for these samples are available at PDDB). All samples were processed using
the GeneBASE39 software to compute gene-level expression. The output of Gene-
BASE was expression levels of 18,524 genes in each sample. The GeneBASE gene
expression levels were log2 transformed after adding a pseudocount of 1 and then
quantile normalized40 across samples. For the 57 ENCODE cell types, replicate
samples within each cell type were averaged and the averaged mean expression
profile of each cell type was used for training and testing the prediction models.

Training-test data partitioning and genomic loci filtering. The 57 ENCODE cell
types were randomly partitioned into a training dataset with 40 cell types and a test
dataset with 17 cell types (Supplementary Data 1, partition #1). As not all genomic
loci are regulatory elements, we first screened for genomic loci with unambiguous
DH signal in at least one cell type in the training data as follows. Genomic bins
with normalized read count >10 in at least one cell type were identified and
retained, and the other genomic bins were excluded. Among the retained loci, bins
with normalized read count >10,000 in any cell type were considered abnormal
and these bins were also excluded from subsequent analyses. Finally, for each
remaining bin, a SNR was computed in each cell type, and bins with small SNR in
all cell types were filtered out. To compute SNR of a genomic bin in a cell type, we
first collected 500 bins in the neighborhood of the bin in question. Then, we
computed the average DH level of these bins. Next, the DH level was log2 trans-
formed after adding a pseudocount of 1 to serve as the background. The log2(SNR)
was defined as the difference between the normalized and log2 transformed DH
level of the bin in question and the background. Genomic bins with log2(SNR) >2
in at least one cell type were identified and retained for subsequent analyses, and
the other genomic bins were excluded. After applying this filtering procedure to the
40 training cell types, 912,886 genomic bins were retained and used for training
and testing prediction models for results presented in Figs. 2 and 3. Bins selected by
this procedure were referred to as DNase I hypersensitive sites (DHSs) in this
article. We note that the above filtering procedure only uses the training cell types.
This allows one to objectively evaluate the prediction performance in real appli-
cations where models trained using the training cell types are applied to make
predictions in new cell types for which DNase-seq data are not available.

To evaluate the robustness of our conclusions, we repeated the same random
partitioning procedure five times, resulting in five different training-test data
partitions (Supplementary Data 1). For each partition, genomic loci were filtered
using the same protocol described above, and the retained loci (which depend on
the training data and therefore are different for different partitions) were used to
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train and test BIRD. Results from the first partition were presented in the main
article, and results from the other four random partitions were similar
(Supplementary Fig. 12).

Prediction models were retrained using all 57 ENCODE cell types as training
data for predicting TFBSs in K562, analyzing 2000 GEO exon array samples used
for constructing PDDB, and predicting differential DH in dopaminergic neuron
differentiation. Applying the genomic loci filtering protocol described above to
these 57 cell types resulted in 1,108,603 genomic bins for which prediction models
were constructed and evaluated.

Notations and problem formulation. For a biological sample, let Yl be the DH
level of genomic locus l (¼ 1; ¼ ; L), and let Xg be the expression level of gene g
(¼ 1; ¼ ;G). The genome-wide DH profile and gene expression profile are
represented by two vectors Y = Y1; ¼ ;YLð ÞT and X ¼ X1; ¼ ;XGð ÞT respectively.
Here, the superscript T indicates matrix or vector transpose. Both the DH and gene
expression profiles are assumed to be normalized and at log2 scale. Our goal is to
use X to predict Y. This can be formulated as a problem of building a regression
Yl ¼ fl Xð Þ þ ϵl for each genomic locus. Here ϵl represents random noise, and flð:Þ
is the function that describes the systematic relationship between the DH level of
locus l (i.e., Yl) and the gene expression profile (i.e., X).

The function fl(X) is unknown. We train it using X and Y observed from a
number of different cell types. The training data are organized into two matrices: a
gene expression matrix X ¼ ðxgcÞG ´C and a DH matrix Y= ylcð ÞL ´C . Rows in these
matrices are genes and genomic loci, respectively. Columns in these matrices are cell
types. C is the number of training cell types. Each column ofX andY is a realization
of the random vector X and Y in a specific cell type. Building the prediction model for
each locus l is a challenging high-dimensional regression problem as the
dimensionality of the predictor X is much bigger than the sample size of the training
data (i.e., G � C). What makes this problem even more challenging than the
conventional high-dimensional problems in statistics is that one needs to solve a
massive number of such high-dimensional regression problems (one for each locus)
simultaneously. Thus, it is important to consider both statistical efficiency and
computational efficiency when developing solutions.

In subsequent sections, various methods for training fl(X). will be described.
Each method has a training component and prediction component. Before training
prediction models, we standardize each row of X and Y in the training data to
have zero mean and unit standard deviation (SD). More precisely, each DH value
in Y is standardized using ~ylc ¼ ylc � ayl

� �
=syl , where ayl and syl are the mean and

SD of the DH signals at locus l (i.e., row l of Y). Similarly, each expression value in
X is standardized using ~xgc ¼ xgc � axg

� �
=sxg , where a

x
g and sxg are the mean and SD

of the gene expression for gene g (i.e., row g of X). The prediction models are then
constructed using the standardized values ~X and ~Y.

Once the models are constructed using the training data, they can be applied to
new samples to make predictions. To do so, the expression profile X of the new
sample is first quantile normalized to the quantiles of the training exon array data.
The log2-transformed expression value of each gene Xg in the new sample is then
standardized using ~Xg ¼ Xg � axg

� �
=sxg , where axg and sxg are the pre-computed

mean and SD of the gene expression for gene g in the training data. After applying
the trained model to the standardized gene expression profile ~X to make
predictions, the predicted DH value for each locus, ~Yl , is transformed back using
Ŷl ¼ syl � ~Yl þ ayl , where a

y
l and syl are the pre-computed mean and SD of the DH

signals for locus l in the training data. The unstandardized Ŷl gives the prediction
for Yl, the DH level of genomic locus l in the new sample.

Measures for method evaluation. In order to evaluate prediction performance of
a prediction method, the method can be applied to a number of test cell types to
predict their DH profiles based on their gene expression profiles. Let ŷlm be the
predicted DH level of locus l in test cell type m (¼ 1; ¼ ;M), and let ylm be the true
DH level measured by DNase-seq (both are at log2 scale). Three performance
statistics were used in this study (Fig. 2a):

(1) Cross-locus correlation (rL). This is the Pearson’s correlation between the
predicted signals by�m ¼ ŷ1m; ¼ ; ŷLm

� �T
and the true signals y�m ¼

y1m; ¼ ; yLmð ÞT across different loci for each test cell type m. The cross-
locus correlation measures the extent to which the DH signal within each cell
type can be predicted.

(2) Cross-cell-type correlation (rC). This is the Pearson’s correlation between the
predicted signals byl� ¼ ŷl1; ¼ ; ŷlM

� �
. and the true signals

yl� ¼ yl1; ¼ ; ylMð Þ. across different cell types for each locus l. The cross-
cell-type correlation measures how much of the DH variation across cell
types can be predicted.

(3) Squared prediction error (τ). This is measured by the total squared
prediction error scaled by the total DH data variance in the test dataset:

τ ¼
P

l

P
m

ylm�ŷlmð Þ2P
l

P
m

ylm�yð Þ2 , where y is the mean of ylm across all DHSs and test cell

types.

In addition to Pearson’s correlation, we also computed Spearman’s rank
correlation as the correlation measure and obtained similar results (Supplementary

Figs. 13 and 14). For simplicity, the results based on Pearson’s correlation were
presented in the main article unless stated otherwise.

Prediction based on neighboring genes. For each genomic locus l, the N closest
genes were identified (gene annotation based on RefSeq genes of human genome hg19
downloaded from UCSC genome browser: http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/database/refFlat.txt.gz). The closeness was defined by the distance
between the gene’s transcription start site and the locus center. Using the selected
genes ð~Xl1 ; ¼ ; ~XlN Þ as predictors, a multiple linear regression ~Yl ¼ βl0 þ βl1 ~Xl1 þ
� � � þ βlN ~XlN þ ϵl is fit. On the basis of the fitted model, the standardized DH level of
locus l in a new sample is predicted using ~Yl ¼ fl ~X

� � ¼ βl0 þ βl1 ~Xl1 þ � � � þ βlN ~XlN .
We tested different values of N (=1, 2, …, 20) on a randomly selected set of DHSs
(n= 9128; ~1% of the 912,886 DHSs obtained from the 40 training cell types). The
performance for the neighboring gene approach shown in Fig. 2b and c was based
on the performance achieved at the optimal N. For instance, Supplementary Fig. 2a
shows the rC distribution for different N based on the 9128 DHSs. At N= 15, the
mean rC reached its maximum. Correspondingly, the rC distribution shown in
Fig. 2c was based on N= 15.

We also tested whether nonlinear regression can improve the prediction.
Generalized additive model with smoothing splines (GAM) were applied (using the
R package “gam”41) to the same 1% of DHSs. However, the best prediction
performance of GAM was worse than the best prediction performance of the linear
regression (Supplementary Fig. 2a, see the best performance of GAM achieved at N
= 17 vs. the best performance of linear model achieved at N= 15). This indicates
that using non-linear model did not improve prediction accuracy. Moreover, the
computational time required by GAM was substantially longer than linear
regression (Supplementary Fig. 2b), making it difficult to apply to the whole
genome. On the basis of this, linear regression was used to perform our genome-
wide analysis.

BIRD. BIRD predicts DH at each genomic locus l by combining predictions from
two types of models, locus-level model and pathway-level model, through model
aggregation. Details are provided below.

Locus-level model BIRðX;YÞ. BIR X;Y
� �

stands for “big data regression using
clustered predictor X and original response Y”. It is the basic building block of
BIRD. This locus-level model begins with grouping-correlated genes into clusters.
This is achieved by clustering rows of the standardized training data matrix ~X into
K clusters using k-means clustering42 (Euclidean distance used as similarity mea-
sure). On the basis of the clustering result, the gene expression profile ~X of each
sample is converted into a lower dimensional vector X ¼ ðX1; ¼ ;XK Þ, where Xk

is the mean expression level of genes in cluster k. BIRD will use gene clusters’ mean
expression X instead of the expression of individual genes ~X as predictors to build
prediction models. Clustering serves multiple purposes. It reduces the dimension of
the predictor space. By combining correlated genes, it also reduces the co-linearity
among predictors. Additionally, the cluster mean is less sensitive to measurement
noise and therefore can reduce the impact of measurement error of a gene on the
prediction.

After clustering, the G×C matrix ~X is converted into a K×C matrixX (G � 104,
K � 102 � 103). The predictor dimension is reduced, but it is still high compared
to sample size. Borrowing the idea from recent high-dimensional regression
literature43, we further reduce the predictor dimension using a fast variable
screening procedure: for each DHS locus l, the Pearson’s correlation between its
DH signal (i.e., row l of ~Y) and the expression of each gene cluster k (i.e., row k of
X) across the training cell types is computed, and the top N (� 101) clusters with
the largest correlation coefficients are selected. Using the selected clusters
Xl1 ; ¼ ;XlN

� �
as predictors, a multiple linear regression ~Yl ¼ βl0 þ βl1Xl1 þ � � � þ

βlNXlN þ ϵl is then fit. On the basis of the fitted model, the standardized DH level
of locus l in a new sample is predicted by ~Yl ¼ fl ~X

� � ¼ βl0 þ βl1Xl1 þ � � � þ βlNXlN .
Of note, although each regression model only contains a small number of
predictors, these predictors are selected after examining information from all genes.
Therefore, training the prection model utilizes information from all genes.

BIR X;Y
� �

has two parameters: the cluster number K and the predictor number
N. In this study, we set K= 1500 and N= 7. These parameters were chosen based
on testing different values of K and N (K= 100, 200, 500, 1000, 1500, 2000; N = 1,
2, 3, 4, 5, 6, 7, 8) using a fivefold cross-validation conducted within the 40 training
cell types (i.e., the same training cell types used for Figs. 2 and 3) on a random
subset of genomic loci (1% of all DHSs). As cross-cell-type prediction is more
difficult than cross-locus prediction, we identified the optimal parameter
combination as the one that maximizes the mean cross-cell-type correlation rC.
Supplementary Fig. 3a shows that the optimal combination was K= 1500 and N =
7. This parameter combination was then used in all subsequent BIR X;Y

� �
,

BIR X;Y
� �

, and BIRD models throughout this study.
In BIR X;Y

� �
, clustering co-expressed genes is an important step since it

improves prediction performance. In fact, Supplementary Figs. 3 and 4 compare
BIR X;Y

� �
with a modified version of BIR X;Y

� �
that skips the clustering step. This

modified version, denoted by BIR X;Yð Þ, uses individual genes rather than gene
clusters as predictors. It is a special case of BIR X;Y

� �
when the gene cluster

number K is equal to the gene number G. BIR X;Yð Þ was not used in BIRD, but the
comparison between BIR X;Yð Þ and BIR X;Y

� �
allowed us to study the effect of
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gene clustering on prediction. BIR X;Yð Þ only has one parameter: the number of
predictors N. We first compared BIR X;Yð Þ and BIR X;Y

� �
(K = 1500) when both

methods used the same N and found that BIR X;Y
� �

consistently outperformed
BIR X;Yð Þ (Supplementary Fig. 3b). Next, based on fivefold cross-validation
performed on the 40 training cell types using 1% of all DHSs from these training
cell types, we identified N= 5 as the optimal value for BIR X;Yð Þ (Supplementary
Fig. 3a). We then compared BIR X;Yð Þ based on this optimal N (N= 5) to
BIR X;Y

� �
with its optimal parameter (K= 1500 and N= 7) in Supplementary

Fig. 4. BIR X;Y
� �

again outperformed BIR X;Yð Þ by producing higher P–T
correlations and lower squared prediction error.

In Supplementary Note 1 and Supplementary Figs. 5 and 6, we further
compared BIR X;Y

� �
with a number of alternative prediction methods including

lasso44, fused lasso15, group lasso16, composite minimax concave penal regression
(composite MCP)17, linear regression with stepwise predictor selection45 (SPS),
k-nearest neighbors46 (KNN), random forest47 (RF), and principal component
regression48 (PCR). This benchmark analysis shows that BIR X;Y

� �
not only offers

the best prediction accuracy but also is computationally efficient. On the basis of
this result, BIR X;Y

� �
was used as the basic building block for subsequent

modeling.

Pathway-level model BIRðX;YÞ. BIR X;Y
� �

stands for “big data regression using
clustered predictor X and clustered response Y”. In addition to clustering co-
expressed genes, BIR X;Y

� �
also groups genomic loci with similar DH patterns into

clusters. This is done by clustering rows of the standardized matrix ~Y into H
clusters using k-means clustering (Euclidean distance used as similarity measure).
Each cluster of genomic loci is viewed as a pathway. Based on the clustering result,
the DH profile ~Y of each sample can be converted into a lower dimensional vector
Y ¼ Y1; ¼ ;YH

� �
, where Yh is the mean DH level of DHSs in cluster h. Instead of

predicting the DH level ~Y of individual loci, BIR X;Y
� �

uses the cluster-level gene
expression X to predict cluster-level DH Y (also called pathway activities). The
prediction models are constructed using linear regression in a way similar to how
the regression models are constructed in BIR X;Y

� �
. In Supplementary Fig. 7, the

pathway-level model BIR X;Y
� �

was compared with the locus-level model
BIR X;Y

� �
to illustrate that cluster-level DH (i.e., pathway activities) can be pre-

dicted with higher accuracy than DH at individual genomic loci. The same para-
meter combination K= 1500 and N= 7 was set for both BIR X;Y

� �
and BIR X;Y

� �
.

For BIR X;Y
� �

, H was set to 1000, 2000, and 5000, respectively.

Model aggregation. To produce the final prediction for a genomic locus, BIRD
combines the locus-level and pathway-level models through a weighted average.
The rationale is as follows. BIR X;Y

� �
is a special case of BIR X;Y

� �
when DHSs are

not clustered (i.e., H= L). As using the cluster mean can reduce the variance of
measurement noise, pathway activities are expected to be less noisy than locus-level
DH measurements. As a result, BIR X;Y

� �
was able to predict pathway activities

much more accurately than using the locus-level model BIR X;Y
� �

to predict DH
levels of individual loci (Supplementary Fig. 7). The pathway activity predicted by
BIR X;Y

� �
can also serve as a prediction of the DH level for each individual locus

within the pathway. This locus-level prediction may be biased, but it is usually
associated with smaller variance. By contrast, predictions by BIR X;Y

� �
for each

locus may be less biased but has larger variance. By combining these two types of
predictions, one may improve the overall locus-level prediction accuracy via a
better tradeoff between the prediction bias and variance.

BIRD adopts this idea and implements it by combining multiple BIR X;Y
� �

models with different H values through model averaging. Consider making
predictions for a sample. Let H be the set of H values used by BIR X;Y

� �
. In this

study, H ¼ 1000; 2000; 5000; Lf g. For each DHS locus l, let Ŷ Hð Þ
l denote the locus-

level DH predicted by BIR X;Y
� �

using cluster number H. Ŷ Lð Þ
l represents the

locus-level DH predicted by BIR X;Y
� �

. The final locus-level DH prediction by
BIRD for locus l is a weighted average

P
H2H dHl Ŷ

Hð Þ
lP

H2H dHl
;

where dHl is the weight. For given cluster number H, the weight dHl is
determined using training data as follows. Let ~yl ¼ ~yl1; ¼ ;~ylM

� �
be the

standardized locus-level DH for locus l observed in M training cell types. Each

locus l is associated with a cluster. Let ~y Hð Þ
l ¼ ~y Hð Þ

l1 ; ¼ ;~y Hð Þ
lM

� �
represent the

average of the standardized DH level of all loci within the cluster corresponding to
locus l in the M training cell types. Define dHl as the Pearson’s correlation between

the two vectors ~y Hð Þ
l and ~yl . Note that when H= L, BIR X;Y

� �
reduces to

BIR X;Y
� �

, and we have ~y Lð Þ
l ¼ ~yl and dLl ¼ 1. Thus, the weight for BIR X;Y

� �
is 1.

Comparisons between the final BIRD prediction for individual genomic loci and
the locus-level prediction by BIR X;Y

� �
in Supplementary Fig. 4 show that model

aggregation (i.e., BIRD) consistently improved the locus-level DH prediction
compared to BIR X;Y

� �
. Therefore, the aggregated model is used as our final BIRD

prediction model for each genomic locus.

Random prediction models by permutation. To construct random prediction
models, we permuted the cell type labels of DNase-seq data in the training dataset.
This permutation broke the connection between DNase-seq and gene expression
data. BIRD was then trained using the permuted training dataset, and the trained
model was applied to predict DH in the test dataset. The permutation was per-
formed 10 times. The statistics rL, rC, and τ were computed to evaluate the pre-
diction performance of each permutation. The average values of these three
statistics from the 10 permutations were used to represent the prediction perfor-
mance of random prediction models.

Wilcoxon signed-rank test for comparing different methods. In order to
compare the prediction accuracy of each pair of methods in Fig. 2b and c, a two-
sided Wilcoxon signed-rank test was performed to obtain p-values. For instance, to
test whether two methods A and B perform equally in terms of rL, the paired rL
values from these two methods for each cell type was obtained. Then the rL pairs
from all cell types are used for the Wilcoxon signed-rank test. Similarly, to compare
methods A and B in terms of rC, the paired rC values for each locus was obtained,
and rC pairs from all genomic loci were used for the Wilcoxon signed-rank test.
p-values < 10−4 were marked with “*” and p-values < 10−15 were marked with
“**” in Fig. 2b and c. We did not perform similar test for the squared prediction
error (τ) since there is only one τ for each method.

Predicting differential DH. In order to evaluate the ability of a method to predict
differential DH signals between two sample types, we first computed the difference
in predicted DH value (at log2 scale) between two cell types at each locus. We then
computed the Pearson’s correlation between the predicted DH difference and true
DH difference (determined by DNase-seq) for each pair of test cell types. The
analysis was applied to all DHSs and differential DHSs respectively. The differential
DHSs were obtained by first filtering out loci without significant DH signals
(defined as log2 DH level smaller than 2) in both cell types and then collecting all
remaining DHSs with |True DH difference (at log2 scale) between the two com-
pared cell types |>1. To investigate how the prediction performance depends on the
similarity level of the two compared cell types, we calculated the similarity between
the cell types using the Pearson’s correlation of their DH profiles (i.e., true DH
levels across all loci). We then grouped all pairs of cell types into four strata based
on the quartiles of the correlation coefficients. Figure 3g shows the prediction
performance for each stratum. We also used the pathway-level model to predict
differential pathway activities and evaluated the pathway-level prediction perfor-
mance in a similar fashion (Fig. 3g; Supplementary Fig. 11).

Construction of the PDDB database. BIRD prediction models trained using the
57 ENCODE cell types were applied to predict DH levels at the 1,108,603 genomic
loci for 2000 human exon array samples obtained from GEO. Each GEO sample in
PDDB was annotated using its GSE number, GSM number, cell type, cell status,
gender and other information such as age. The predicted DH and the annotation
data were both stored in PDDB. A track data hub49 was set up in the UCSC
genome browser for visualizing the predicted DH signal.

Using the PDDB user interface (Fig. 5b), users can retrieve the predicted DH
profile from user-specified genomic regions and samples. For instance, one can
input a list of genomic regions (Fig. 5a, “Step 1”) and enter a keyword such as
“stem cell” in the “Cell Type” searching field (Fig. 5a, “Step 2”). After clicking the
“Search” button, a list of samples matching the keyword will be returned (Fig. 5b).
One can then choose to download the predicted DH profile from the input
genomic regions and selected samples, download sample annotation data, and
visualize the predicted DH profiles in the UCSC genome browser (Fig. 5b, c).

PDDB is available at http://jilab.biostat.jhsph.edu/~bsherwo2/bird/index.php.

Protocols for other analyses and examples. The detailed methods for the analysis
of factors affecting cross-cell-type prediction accuracy, comparison of BIRD and
ChromImpute, analysis of predictors selected by BIRD, predicting TFBSs, regulome
prediction using public expression samples in GEO, predicting differential signals in
a differentiation system, and prediction as pseudo-replicate to improve regulome
analysis can be found in Supplementary Methods and Supplementary Notes.

Code availability. The BIRD software and its source code are available at https://
github.com/WeiqiangZhou/BIRD. Models trained using the 57 ENCODE cell types
have been stored in the software package. With these pre-compiled prediction
models, making predictions on new samples provided by users is computationally
fast. On a computer with 2.5 GHz CPU and 10 Gb RAM, it took <2 min to make
predictions for ~1 million DHSs in 100 samples.

Data availability. Exon array data used for training and testing BIRD models are
all available in GEO (accession numbers: GSE19090, GSE15805, GSE9703,
GSE24976, GSE32219, and GSE93012), and the dataset or sample accession
numbers used for each example are provided in “Methods” and Supplementary
Methods. Accession numbers of the 2000 GEO exon array samples used for con-
structing PDDB are available at the PDDB website (http://jilab.biostat.jhsph.edu/
~bsherwo2/bird/index.php). MYC ChIP-seq data in P493-6 cells are available in
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GEO (accession number: GSE51004). SOX2 ChIP-seq data in H9 human
embryonic stem cells are available in GEO (accession number: GSE46837). The
other TF ChIP-seq data and DNase-seq data used in this study are available from
the ENCODE (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC), and
the download links for each analysis are provided in “Methods” and Supplemen-
tary Methods.
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