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Abstract 

Ming-Hsiu Yang 

Department of Medicinal Chemistry, April 2017 

The University of Kansas 

      Fluorine plays an important role in drug design, because of some unique features imparted by fluorine. 

The incorporation of fluorine into small molecules can modulate molecular physicochemical properties, 

metabolic stability, lipophilicity, and binding affinity to the target proteins. However, few fluorinated 

molecules are biosynthesized by enzymes. This means incorporating fluorine into the molecules relies on 

synthetic methods. Thus, efficient synthetic strategies to access the molecules bearing a variety of 

privileged fluorinated moieties are important for drug discovery. 

      Fluoroalkenes are an isopolar and isosteric mimic of an amide bond with distinct biophysical 

properties, including decreased H-bond donating and accepting abilities, increased lipophilicity, and 

metabolic stability. Moreover, fluoroalkenes can also serve as probes for conducting conformational 

analyses of amides. These potential applications require the development of efficient methods to access 

fluoroalkenes. In chapter 2, a Shapiro fluorination strategy to access peptidomimetic fluoroalkenes is 

demonstrated. The Shapiro fluorination reactions convert a ketone into a fluoroalkene in one or two steps. 

Moreover, this method uses inexpensive and readily available reagents, and no transition metals are 

involved in the reactions. Thus, it provides an operation-simple alternative to access fluoroalkenes in 

medicinal chemistry.  

      ,-difluoroketones represent a privileged substructure in medicinal chemistry, and serves as 

inhibitors to many hydrolytic enzymes, such as serine and aspartyl proteases. From chapters 3 to 5, 

palladium-catalyzed decarboxylative methods are developed for accessing -alkyl- and -aryl-,-

difluoroketones. This decarboxylative strategy overcomes two major challenges associated with 

alkylation reactions of ,-difluoroketone enolates. Chapter 3 demonstrates that decarboxylation 

regioselectively generates ,-difluoroketone enolates, which are difficult to access by base 



 

iv 
 

deprotonation. Moreover, palladium catalysis enables the coupling of the ,-difluoroketone enolate with 

benzylic electrophiles to form a key C()–C(sp3) bond. In chapter 4, an orthogonal catalytic system is 

developed for accessing linear and branched -allyl-,-difluoroketones. Two distinct mechanisms are 

involved in the formation of the regioisomers. Chapter 5 describes a base-mediated selective para-C–H 

difluoroalkylation of arenes, which represents a different strategy for para-C–H functionalization of 

arenes compared to the known methods. These decarboxylative coupling reactions provide structurally 

diverse ,-difluoroketone derivatives, and should be useful for accessing potential biological probes and 

therapeutics. 
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Chapter 1. Importance and Application of Fluorine in Drug Design 

      Before the discovery of fluorinated drugs in 1950s, fluorine was regarded as a dangerous and 

negligible element. In 1953, Fried and Sabo reported the first synthetic fluorinated agent, fludrocortisone, 

possessing glucocorticoid activity.1 Later, in 1957, Heidelberger and coworkers invented the anti-cancer 

drug, 5-fluorouracil, a mechanism-based inhibitor that irreversibly bound to thymidylate synthase and 

inhibited DNA biosynthesis of cancer cells.2 These two breakthroughs changed the stereotype of fluorine 

as a trivial element and demonstrated its importance and potential applications in drug discovery. The 

continuing research of fluorine in drug design caused a flourish in the development of fluorinated drugs.3 

Nowadays, many drug (~20%) candidates in clinical trials and marketed drugs contain at least one 

fluorine or fluorinated group.4 

      Fluorine plays an important role in the campaign of drug discovery, because of some unique features 

imparted by fluorine. For example, the use of fluorine and fluorinated groups as isosteres in drug design,5 

(i.e., F vs H, CF3 vs i-Bu, and CF2Me vs OMe), can modulate molecular properties, including the 

lipophilicity and conformations, and improve metabolic stability. Moreover, the incorporation of fluorine 

into small molecule drugs modifies ADMET (absorption, distribution, metabolism, excretion, and toxicity) 

properties, in which it is possible to convert a bad drug candidate to a potential therapeutic. Because of 

these potential applications of fluorine on drug design, the following sections elaborate the influence of 

fluorine substitution on physicochemical properties, molecular conformations, metabolic stability, 

binding affinity, and potency of therapeutic agents. 

1.1 The Effect of F on Physicochemical Properties 

      Fluorine is the most electronegative element ( = 4.0), and its incorporation into molecules strongly 

affects the acidity or basicity of the neighboring groups, thus lowering pKa values (Table 1.1).5,6 
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      The -inductive effect of fluorine atoms decreases the basicity of the amine group. For acyclic amines, 

the extent of pKa change depends on the distance of fluorine to the amine group, and the number of 

fluorine atoms.7 For example, in the case of alkyl amines, the pKa is lowered by 1.7 for -F, and by 0.3 

for  -F, thus demonstrating the impact of the fluorinated position on the pKa shift (Table 1.2A). Moreover, 

the trifluoroethyl amine has an attenuated pKa of 5.7 due to the additive effect of three F atoms compared 

to the monofluoroethyl amine with a pKa of 9.0 (Table 1.2B). However, the influence of fluorine on 

basicity of cyclic amines also requires the consideration of conformational factors (axial F vs. equatorial F) 

in addition to the calculation of distances of fluorine to amine functionality (Table 1.2C).7 For example, in 

the case of 3-fluoropiperidine, an equatorial F substituent causes a pKa shift of 2.3 (pKa = –2.3), while an 

axial F substituent only reduces pKa of 1.4 (pKa = –1.4). This pKa difference between these two 

conformations of 3-fluoropiperidine derives from a preferential conformation of the protonated base, in 

which the dipole of the H–N+ bond presents antiparallel to the dipole of the C–F bond. This 

conformational alignment stabilizes protonated 3-fluoropiperidine, thus causing a higher pKa value and 

smaller pKa. Similarly, fluorine on an axial or equatorial position of 4-fluoropiperidine also causes 

different pKa change with pKa of –1.7 for an axial F atom and pKa of –0.9 for an equatorial F atom. 

Moreover, for aromatic amines, pKa alteration by fluorine depends on the position of fluorine atoms and 

the degree of fluorination (Table 1.2D). Generally, fluorine on an ortho-position causes a larger impact on 

pKa than a meta-F atom does (pKa of 1 < pKa of 2; pKa of 3 < pKa of 4), and highly fluorinated amines 

have lower pKa than mono- or difluorinated counterparts (pKa of 1 > pKa of 3; pKa of 2 > pKa of 4). 
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      The perturbation of pKa alters pharmacokinetic properties of drug candidates. For example, alkyl 

amines, anilines and N-containing heterocycles are common structural components in bioactive molecules 

or drug candidates. However, excessive number of basic amine groups in the amine-containing 

therapeutics cause low oral bioavailability, which decreases the potency and limits their development as 

potential drugs. To modulate these properties, the introduction of fluorine in N-bearing molecules 

decreases the basicity of the amine groups by the inductive effect and improves the bioavailability,7 as 

exemplified in the case of 3-piperidinylindole antipsychotics (Table 1.3).6a,8 These fluorinated analogues 

express much better bioavailability than the non-fluorinated counterpart. Thus, fluorine substitution can 

be utilized in tuning the basicity of amine-type molecules in drug design to achieve the expected 

physicochemical properties and distribution.6a,8 
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Table 1.3. Fluorination Decreases Basicity of Amine-Type Drugs and Improves Bioavailability

 

      On the other hand, fluorine substitution increases the acidity of carboxylic acids and phenol 

derivatives, and changes physicochemical features that can also bring beneficial applications to drug 

design. For example, methotrexate is used to treat rheumatoid arthritis and cancer, but it possesses high 

toxicity associated with the formation of poly--glutamate metabolites. Fluorination of the -glutamate 

moiety of methotrexate increases the acidity of -carboxyl group and causes labile amide linkages, which 

disfavor the accumulation of poly--glutamate metabolites inside the cells, and significantly reduce the 

toxicity (Figure 1.1A).9a Another example is the utilization of 2,6-difluorophenol as a lipophilic isostere 

of a carboxylic acid. The inductive effect of two fluorine atoms remarkably reduces pKa of 2,6-

difluorophenol to 7.1 from pKa of 9.8 of phenol, and causes its ionization to form phenoxides at pH = 8.5, 

where a carboxylic acid also exists as the ionized form (Figure 1.1B).9b Thus, 2,6-difluorophenols can 

efficiently mimic a carboxylic acid functionality, and this idea has been applied in designing inhibitors of 

GABA aminotransferases. 
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1.2 The Effect of F on Lipophilicity 

      Lipophilicity is an important parameter in evaluating drug-like molecules.10 This property affects the 

absorption of orally administrated drugs into the intestinal system, protein-ligand non-specific binding 

interactions, and the solubility. High lipophilicity increases oral absorption of drugs and lipophilic 

binding interactions, but excessive lipophilicity can also cause poor solubility and undesired side effects. 

Thus, moderate lipophilicity is required for ideal drugs. Fluorine substitution can modulate molecular 

lipophilicity, as shown in Figure 1.2.11 a Generally, the incorporation of fluorine into the molecules 

increases the lipophilicity (positive log D difference in Figure 1.2A). Herein, log D means the logarithmic 

coefficient of the distribution of a charge-bearing molecule between water and octanol at a specific pH. 

Increased lipophilicity usually occurs in molecules bearing fluorine adjacent to a  system, such as aryl or 

vinyl fluorides.11a,b In these molecules bearing C(sp2)–F bonds, good overlap of lone pair orbitals of 

fluorine with  orbital of the C=C bond depolarizes the C–F bond and decreases molecular polarity.11a,b 

However, in some cases, fluorine substitution actually decreases the lipophilicity (negative log D 

difference in Figure 1.2A). Specifically, the presence of fluorine close to an oxygen atom polarizes the 
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adjacent oxygen atom and enhances the solvation of the molecule in water, thus leading to a decrease of 

the lipophilicity (Figure 1.2B).11a,b Moreover, the strong electron-withdrawing effect of fluorine atoms 

polarizes C–F bonds of saturated fluoroalkanes, which decreases lipophilicity compared to their non-

fluorinated counterparts.11b,c 

 

1.3 The Effect of F on Molecular Conformations 

      Fluorine substitution alters the dipole moment of molecules, and provides electrostatic interactions 

with the adjacent groups, both of which affect molecular conformations. A change in the conformation 

affects protein-ligand binding interactions, which in turn modifies the potency and selectivity.  

      For vicinally fluorinated aliphatic systems, such as 1,2-difluoroalkanes, the two vicinal fluorine atoms 

adapt a gauche conformation (Figure 1.3A).12 The preference of the gauche conformer derives from the 

stabilization by hyperconjugative interactions between  orbitals of C–H bonds and low-lying * orbitals 

of C–F bonds (C–H *
C–F). The gauche alignment of these two C–F bonds enables the C–F and the C–

H bonds to an anti-arrangement that causes a good orbital overlap and overcomes the electronic repulsion 

of the two fluorine atoms. Additionally, the molecules, in which one fluorine atom is replaced with an 

electron-withdrawing group, also prefer the gauche conformation (Figure 1.3B).12 This gauche effect has 
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been applied in designing fluorinated analogues of HIV-1 protease inhibitor indinavir with comparable 

inhibitory activity (Figure 1.3C).13 
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      However, the gauche arrangement is not always the preferential conformation for some fluorinated 

molecules. For example, N--fluoroethylamides (F–C–C–NHC=O) prefer the gauche conformation,14a,b 

while -fluoroamides (F–C–C=O–NH) prefer to exist in the trans conformation.14a,c In these cases, the 

trans conformer is more stable than the gauche conformer by 6 kcal/mol, due to the synergistic dipole-

dipole interaction between the C–F and C=O bonds, and the electrostatic interaction between 

electronegative F atom and electropositive H atom of the amide bond (Figure 1.4A).14a,c Such a 

conformational perturbation due to fluorine substitution near an amide has been applied to probe the 

bioactive conformation of an amide ligand bound to the target protein. As in the case of fluorinated 

ligands for the calcitonin gene-related peptide receptor(CGRP), the two regioisomers, both of which bear 

a fluorine atom adjacent to the amide bond, represent distinct CGRP binding affinity (Figure 1.4B).15 The 
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extended structure expresses lower Ki (red color in Figure 1.4B), and it is the bioactive conformation that 

the ligand adapts when binding to the CGRP receptor. The conformational information in protein-ligand 

binding modes enables development of more potent CGRP inhibitors. 

 

      Moreover, the introduction of trifluoromethyl or difluoromethene groups on a heteroatom also 

changes molecular structures. For example, the three-dimensional structures of fluorinated alkyl aryl 

ethers (Ar-OCF3 or Ar-OCF2H) are different from their non-fluorinated counterparts (Ar-OCH3). 

Specifically, anisole (PhOCH3) adapts a planar conformation, in which the methoxy group is coplanar 

with the phenyl ring (left, Figure 1.5A). 16 a The planar conformation comes from the resonance 

stabilization of lone pair electrons of the oxygen atom into the phenyl ring. In contrast, the 

trifluoroanisole counterpart (PhOCF3) adapts a non-planar conformation, in which the trifluoromethoxy 

group is orthogonal to the plane of the phenyl ring (right, Figure 1.5A).16b–d This conformational change is 

attributed to the decreased resonance stabilization of oxygen lone pair electrons into the phenyl ring as a 

result of the hyperconjugation between lone-pair orbitals of the O atom and low-lying * orbitals of C–F 

bonds and the inductive effect of the CF3 group. The same conformational alteration due to fluorination 

also occurs in difluoroanisoles (PhOCF2H), but they represent more flexible conformational exchange 

between the coplanar and perpendicular structures.16d,e Such a conformational modification of fluoroalkyl 
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aryl ethers plays an important role in protein-ligand binding interactions, and has been exploited in drug 

design. As in the case of developing potent inhibitors of the cholesteryl ester transfer protein (CETP) to 

reduce the incidence of coronary heart disease, the tetrafluoroethyl substituted analog reveals an 8-fold 

increase in the CETP inhibitory activity compared to ethyl substituted counterparts (Figure 1.5B).17 

 

1.4 The Effect of F on Metabolic or in vivo Stability 

      The metabolic or in vivo stability, expressed as the half-life, is a key factor in determining a successful 

drug molecule. An ideal and safe drug should possess a moderate half-life that enables it to reach the 

action site, maintain efficient drug concentration for a desired period of time, and be excreted out of the 

body.18 However, many drug candidates possess short half-lives as a result of bearing chemical structures 

or functional groups that undergo enzymatic metabolism or hydrolysis. The short half-life can cause low 

efficacy, and produce metabolites that may interact with other proteins, which in turn can lead to toxicity. 

To address these stability issues, the introduction of fluorine on the metabolically labile sites can improve 

chemical stability, enhance the potency, and decrease the toxicity. 

      An example demonstrating the impact of fluorination on chemical stability of potential therapeutics 

involves prostacyclins. Prostacyclin inhibits platelet aggregation, but has limited clinical application due 

to the in vivo degradation. The chemical instability derives from the presence of the enol ether 

functionality in the molecule, which undergoes hydrolysis to form inactive metabolites under neutral or 

acidic conditions (Figure 1.6A),19 a thus revealing a t1/2 = 10 mins at pH = 7.4. However, fluorine 

introduction on the position adjacent to the enol ether destabilizes the cationic intermediate formed during 
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hydrolysis, and enhances chemical stability in vivo, as represented t1/2 > 1 month at pH = 7.4 for 

monofluorinated analog19b and t1/2 = 90 days at pH = 7.4 for difluorinated analog (Figure 1.6B).19c 
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      The improved efficacy as a result of fluorine substitution to block metabolic pathways is exemplified 

in the development of Ezetimibe as a cholesterol-lowering agent (Figure 1.7). 20  Initially, the lead 

underwent extensive CYP450-catalyzed metabolism, including benzylic oxidation, para-hydroxylation of 

the aromatic ring, dealkylation of two OMe groups, and ring-opening of the cyclic lactam to produce 

many metabolites. Thus, high doses were required to maintain sustained in vivo action (left in Figure 1.7, 

shown in red color). SAR studies found that some of the metabolites are more potent than the parent drug 

(oxidative activation), while some of them are not (oxidative deactivation). The redesign of the drug aims 

on installing beneficial groups that are generated by oxidative bioactivation and blocking the sites that 

potentially undergo oxidative deactivation. Thus, the modification, including the incorporation of 

hydroxyl groups on the benzylic and the para-position, and the placement of two fluorine atoms on para-

positions of the two lower aromatic rings, inhibited metabolic labile sites, and produced the drug 

Ezetimibe that expresses high potency in lower doses (right in Figure 1.7, shown in blue color). 
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      Fluorine substitution can also reduce toxicity derived from the intrinsically chemical properties of 

therapeutic agents. For example, the drug thalidomide possesses an acidic hydrogen atom on -carbon 

vicinal to a carbonyl group, which undergoes the in vivo epimerization (Figure 1.8A).21a Thus, the single 

enantiomer does not exist in the body, and thalidomide instead exists as a racemic mixture. However, 

only the (R)-enantiomer provides the desired sedative hypnotic activity, while the (S)-enantiomer 

produces the teratogenic side effects. For this drug, the replacement of the -hydrogen atom by an F atom 

inhibits the in vivo epimerization (Figure 1.8B), and enables to access individual enantiomers for the 

biological evaluation of other potential pharmacological activities.21b 

 

 



 

12 
 

      Other examples illustrating fluorination on chemically or metabolically labile sites to improve the 

stability of drug candidates are presented in Figure 1.9.22 The difluorooxetane acetal moiety (a) is more 

stable than the parent acetal under neutral and acidic conditions, thus providing a potential application in 

designing drug molecules bearing labile acetal functionality.22a Moreover, the benzodioxole is an 

undesired motif on drug molecules, because it undergoes CYP450 oxidative metabolism to form a 

metabolite ortho-quinone, which can react with nucleophilic residues of other proteins, and cause the 

toxicity. However, incorporating two fluorine atoms into the methylene position of the benzodioxole 

inhibits the metabolic pathway and reduces the toxicity (b).22b Another example of fluorination to block 

metabolism is the replacement of the ethyl group on a nitrogen atom by a trifluoroethyl moiety (c), which 

retards oxidative dealkylation.22c Additionally, unique fluorinated motifs are utilized as metabolically 

stable isosteres of certain functional groups, such as the trifluoroethylamine moiety as a mimic of an 

amide bond (d),22d the trifluoromethylcyclopropyl and 1,1,1-trifluoro-2-methylpropyl as bioisosteres of a 

tert-butyl group (e and f),22e,f and the replacement of the C=O group by a C–F bond in acid-labile lactones 

(g).22g 
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1.5 The Effect of F on Protein-Ligand Binding Interactions 

      Fluorine can play a direct role in modulating protein-ligand binding affinity. The strongly 

electronegative fluorine atom enables participation in polar interactions with the electropositive residues 

on the target protein and increase the binding affinity. An example representing such a direct effect of 

fluorine on binding affinity involved fluorinated thrombin inhibitors (Figure 1.10).23a,b The analog bearing 

a fluorine atom on aromatic C4 position of the N-benzyl moiety provided better potency (Ki = 0.057 M) 

than the non-fluorinated counterpart (Ki = 0.27 M). The X-ray crystal structure of the fluorinated ligand 

bound to thrombin revealed a close contact between the fluorine on aromatic C4 of the ligand and the 

amide moiety of the Asn 98 residue in the hydrophobic pocket of thrombin. In this region, the C–F bond 

represents an orthogonal arrangement to the C=O group of the amide moiety. Specifically, the fluorine 

atom formed non-covalently multipolar interactions with the partially positive charged C of the C=O 

group (C–FC=O) and -H adjacent to the C=O group (C–FH–C), which enhanced the protein-

ligand binding interactions, and the potency.  

 

      Additionally, fluorine substitution can directly enhance the binding affinity via lipophilic interactions. 

For example, in the series of human fXa inhibitors (Figure 1.11), the fluorinated analog (Ki = 11 nM, R= 

F) was more potent than non-fluorinated counterpart (Ki = 19 nM, R = H).23c Moreover, the potency 

(lower Ki values) increased with increasing sizes of the lipophilic R group on the analogues, then 

remarkably decreased with the analog bearing a CF3 group. In this case, the improved potency 
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presumably derived from the increased non-specific (lipophilic) binding interactions between the fluorine 

atom and the fXa hydrophobic pocket. In the CF3-substituted analog, the decreased potency was due to a 

steric clash between a large CF3 group and the hydrophobic pocket.  
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      Fluorine can also interact indirectly with the protein by inductively modulating the polarity of 

neighboring functional groups, and affecting their binding to the target protein. An example representing 

the indirect effect of fluorine on the binding affinity involves carbonic anhydrase II (CAII) inhibitors 

(Figure 1.12A).24a The inhibitors usually possess a sulfonamide group that can ionize and bind to the zinc 

center of carbonic anhydrase II. The non-fluorinated inhibitor CH3SO2NH2 is a weak acid (pKa = 10.5) 

and cannot ionize and bind to the enzyme efficiently. However, the fluorinated inhibitor CF3SO2NH2 is a 

stronger acid (pKa = 5.8), and easily dissociated to form the anion that bound to the enzyme strongly. 

Thus, CF3SO2NH2 revealed much higher potency (Ki = 2 nM) than CH3SO2NH2 (Ki = 100 M). The 

distinction between these two Ki values demonstrated the strong fluorine effect on modulating molecular 

polarity and binding affinity. Additionally, the indirect effect of fluorine can also in perturb binding 

affinity through the modification of the protein-ligand binding mode (Figure 1.12B). As in the case of 

carbonic anhydrase II (CAII) inhibitor SBB, the non-fluorinated analog binds to the enzyme differently 

from the fluorinated counterpart.24b,c The X-ray structure of the non-fluorinated analog bound to CAII 

represented an atom-to-face interaction, in which the electropositive hydrogen atom on the aromatic ring 

of the Phe-131 residue interacted with the ring current of the benzyl moiety of the inhibitor.24b In contrast, 

a face-to-face interaction dominated the fluorinated ligand to CAII binding. Specifically, the 

fluoroaromatic ring of the inhibitor interacted with the phenyl ring of the Phe-131 residue, and 
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demonstrated a – stacking interaction.24b,c These two binding modes provided slightly different binding 

affinities (CAII Kd = 2.1 nM for non-fluorinated inhibitor vs. CAII Kd = 1.5 nM for fluorinated inhibitor). 

 

1.6 Fluorine as a Key Component of Drugs 

      Because of the beneficial influences of fluorine on physicochemical properties, lipophilicity, 

conformational modulation, metabolic stability, and binding affinity, fluorine atoms or fluorinated groups 

represent key structural components of therapeutic agents. Many drugs on the market contain fluorinated 

motifs, including but not limited to single fluorine atom, difluoromethylene CF2 unit, trifluoromethyl CF3 

group. Moreover, these fluorine-containing drugs range from the derivatives of natural products to small 

molecules, and comprise a variety of pharmacological activities as shown in Figure 1.13.4 For example, 

flurithromycin is a fluorinated analog of the antibiotic erythromycin. Erythromycin undergoes an acid-

induced degradation to generate the ketal side product on the C9 position.25a However, Fluorination on the 

C8 position of erythromycin disfavors the degradative pathway and inhibits the formation of the ketal side 

product.25b Thus, flurithromycin displays higher stability under acidic conditions than erythromycin.25b 

Moreover, Efavirenz is an antiretroviral drug that acts at an allosteric site of NNRT (non-nucleoside 
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reverse transcriptase), and inhibits the synthesis of viral DNA. The presence of a strong electron-

withdrawing CF3 group lowers pKa, and increases the ionization of the N–H bond of the cyclic carbamate, 

which improves the solubility of the drug.25c In other drugs, fluorinated groups serve different purposes, 

such as conformational modification (Fluoxetine),25d enhanced potency and selectivity (Celecoxib),25e and 

the modulation of pharmacological activity (Faslodex),25f while some of them bear fluorine for unclear 

reasons. 
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1.7 Conclusion 

      Fluorine atoms or fluorinated groups are popular structural motifs in drug design because of unique 

features transmitted by fluorine. However, fluorine atoms need to be installed on the appropriate positions 

to achieve maximum beneficial effects. Incorporating fluorine into the improper position can result in 

reverse effects, as observed in 3-fluoropyrrolidine. 26  In this case, the 3-fluoropyrrolidine analog 

undergoes metabolic activation followed by elimination of HF to generate the Michael acceptor, which 

reacts with the protein to form covalent adducts, and causes the toxicity (Figure 1.14).  

 

      In order to place fluorine atoms on the correct position, a fluorine scan is a common method for SAR 

(structure-activity relationship) studies unless key metabolic hot spots are already known. Fluorine scans 

require a series of analogues with fluorine or fluorinated groups on different positions of the molecules 

for the bioassays. Thus, the strategies to synthesize the designed fluorinated molecules are important. 

However, few fluorinated molecules are biosynthesized by enzymes, because 1) high oxidation potential 

of fluorine prevents the formation of the hypohalous species, which are key intermediates involved in the 

enzymatic halogenation; and 2) high hydration energy makes fluoride a poor nucleophile, which cannot 

attack epoxides generated in biological systems.27 This means the introduction of fluorine into molecules 

exclusively relies on chemically synthetic pathways. Thus, chemical methodologies to access fluorinated 

building blocks are necessary, and they benefit the development of fluorinated drugs, and biological 

probes.  
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Chapter 2. Preparation of Peptidomimetic Fluoroalkenes via a Shapiro Reaction 

2.1 Introduction to Fluoroalkenes 

      Fluoroalkenes represent an underappreciated functional group with applications in medicinal, 

synthetic, and materials chemistry. In medicinal chemistry, the fluoroalkene motif is broadly found in a 

variety of bioactive compounds with distinct pharmacological profiles, including antimicrobial, anti-

cancer, anti-diabetic, and anti-HIV activities (Figure 2.1).1 
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Figure 2.1. Representative Examples of Bioactive Fluoroalkene-Containing Molecules

 

      Moreover, the fluoroalkene group serves as an isopolar and isosteric mimic of an amide (Figure 2.2), 

and provides an alternative in the design of peptidomimetic drugs.2 First, amide molecules and 

fluoroalkenes have similar electrostatic potential maps, which mean a similar charge distribution between 

the two molecules. Second, the dipole moment of fluoroalkenes is closer to that of amides, indicating 

fluoroalkenes and amides have similar molecular polarity and geometry. Third, fluorine on fluoroalkenes 

has an atomic size that is similar to the size of oxygen of an amide bond. Additionally, because of the 

electronegative similarity between the oxygen and fluorine atoms, fluorinated alkenes preserve the dipolar 

nature of an amide bond, and may participate in weak H-bond or polar interactions with the receptors 

compared to nonpolar and H-bond lacking olefins.2  
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      However, amide bonds and fluoroalkenes have some distinct biophysical properties. Compared to 

amides, fluoroalkenes possess decreased H-bond donating and accepting abilities,3 and they can pass 

through the lipid bilayers with less expenditure of the desolvation energy. 4  Thus, the strategic 

incorporation of a fluoroalkene into a biological probe can increase lipophilicity and membrane 

permeability.4 Additionally, fluorinated peptidomimetics are not subject to hydrolysis by proteases,5a and 

the electron-withdrawing effect of fluorine can prevent or slow chemical decomposition of a chemically 

labile molecule imposed by adjacent reactive groups in the structure.5b,c Therefore, the incorporation of 

this fluorinated group can improve the metabolic and chemical stability of a peptide.5  
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      Additionally, amide bonds can exist in the equilibrium of cis- and trans-isomers; however, 

fluoroalkenes do not undergo the isomerization and are conformationally locked (Figure 2.3A). Thus, 

fluoroalkenes can serve as probes for conducting conformational analyses of amides by selective 

preparation of E- and Z-fluoroalkene isomers (Figure 2.3B).6  

 

      In addition to these biological applications, fluoroalkenes also function as useful intermediates in 

synthetic sequences. For example, they have been used as precursors for elaborating fluoroalkene 

derivatives,7 employed as dienophiles in Diels-Alder reactions,8 converted to cyclopropane derivatives,9 

and polymerized to access fluorinated materials.10 

2.2 Literature Review to Access Fluoroalkenes 

      Fluoroalkenes broadly comprise monofluoroalkenes and gem-difluoroalkenes. Generally, 

monofluoroalkenes are considered amide isosteres, and gem-difluoroalkenes are precursors to access 

monofluoroalkene derivatives. According to the substitution pattern, monofluoroalkenes are divided into 

several subtypes, including di-, tri-, and tetra-substituted fluoroalkenes, each of which can be accessed by 

preferable synthetic methods (Table 2.1).7b The following sections present several conventional strategies 

for preparing various fluoroalkenes. 



 

25 
 

FF

R

disubstitution

F R

R'

F

R

R'

R'

R R"

F

-fluoro -E-fluoro

substitution pattern structure common synthetic methods

trisubstitution

tetrasubstitution

R

addition-elimination
electrophilic fluorination
transition metal-catalyzed coupling reactions

addition-elimination
olefination reactions
transition metal-catalyzed coupling reactions
reactions of allylic gem-difluorides

olefination reactions
transition metal-catalyzed coupling reactions

Table 2.1. Classification of Fluoroalkenes and Synthetic Methods

Structures bearing wavy bonds possess E/Z isomers, and which isomer depends on R and R'.
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      2.2.1 Elimination of Fluoroalkanes 

      The elimination strategy of fluoroalkanes bearing a leaving group provides an alternative to 

synthesize fluoroalkene derivatives. In the literature, many elimination methods were disclosed by 

different research groups, and major reactions, including oxidative deselenenylation, 11 a,b HX 

elimination,11c-f sulfoxide/sulfone elimination11g-k and deoxyfluorination,11l are summarized in the Scheme 

2.1. However, the reactions possess some drawbacks: 1) prefunctionalization of fluoroalkanes as reactants; 

2) harsh reaction conditions; 3) narrow substrate scope; and 4) substrate-dependent E/Z selectivity, all of 

which restrict the development and utilization of the method.  
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      2.2.2 Allylic Gem-Difluorides Oriented Methods 

      The allylic gem-difluoride oriented strategy utilizes pre-functionalized allylic gem-difluorides as 

starting materials to access fluoroalkene derivatives via 1) transition metal-catalyzed reactions; 2) 

transition metal-free reductive defluorination; or 3) nucleophilic defluorination. First, the Nemoto lab 

reported substitution reactions of allylic gem-difluorides with phenylzinc chloride or tributylphenyl tin via 

a gem-difluoro Pd--allyl intermediate (Scheme 2.2A).12a Subsequently, the Fujii and Paquin groups 

applied allylic C–F bond activation to generate a similar fluorinated Pd--allyl complex, which reacts 

with hydrides and N-based nucleophiles to access fluoroalkenes (Scheme 2.2B).12b,c In addition to 

palladium catalysts, other transition metals have been explored for coupling reactions. For example, the 

Gu lab used rhodium (I) to couple -(difluoromethyl)styrenes with arylboronic esters via 1,2-addition of 

phenylrhodium(I) species followed by -fluoride elimination to generate fluoroalkenes (Scheme 2.2C),12d 
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and a similar rhodium(I) catalyst has been employed in synthesizing ketone-substituted fluoroalkenes by a 

different mechanism in the Murakami group (Scheme 2.2D).12e In 2012, the Qing lab demonstrated a 

regio- and diastereoselective nickel-catalyzed reductive coupling strategy of dienes and aldehydes to 

access fluoroolefinic alcohols (Scheme 2.2E).12f 
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      The Fujii and Taguchi labs utilized reductive defluorination of -amino-,-difluoro-,-enoates for 

accessing -alkyl--fluoro-,-enoates. These methods involved Me2CuLi- and SmI2-mediated single 

electron transfer followed by electrophilic alkylation on the  position and Cu(I)-mediated alkyl transfer 

with trialkylaluminum to generate fluoroalkene products, respectively (Scheme 2.3A).13a–c Later, the 
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Otaka group extended this strategy to the reactions of ,-difluoro-,-enoylsilanes with N-heterocyclic 

carbenes and cyanide ions as nucleophiles to generate ester-type and amide-type fluoroalkenes via a 

Brook rearrangement (Scheme 2.3B).13d,e The Paquin lab reported a series of SN2' reactions of allylic gem-

difluorides with C-, N-, and S-based nucleophiles for the construction of C–C, C–N, and C–S bonds, 

which enabled to access heteroatom-containing fluoroalkene products (Scheme 2.3C).13f 
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      2.2.3 Addition-Elimination of Gem-Difluoroalkenes 

      Nucleophilic addition of gem-difluoroalkenes (CF2 unit on the vinylic position) followed by 

elimination of a fluoride anion provides a common approach to generate fluoroalkenes. For these 

transformations, intermolecular reactions required the use of hydrides, and carbon-based nucleophiles 

(Scheme 2.4A),14a–g while intramolecular additions were limited to heteroatom-based nucleophiles and 

formed five-membered heterocycles (Scheme 2.4B).14h 

 

      2.2.4 Olefination Reactions 

      The reactions of fluorinated phosphorus ylides with carbonyl compounds represent conventional 

methods for accessing tri- and tetra-substituted functionalized fluoroalkenes, which enable further 

modifications to generate complex fluoroolefin-containing molecules. However, the selectivity for E- and 

Z-isomers of olefination reactions is difficult to predict, and depends on many factors, including reaction 

conditions, ylides, and substituents of carbonyl groups. To ameliorate the E/Z selectivity, several subtypes 

of olefination reactions were developed, including Wittig, Horner-Wadsworth-Emmons (HWE), Julia-

Kocienski, and Peterson olefinations, each of which bears different auxiliary groups on the ylides. In 1985, 

the Burton lab reported Wittig reactions of a stabilized ylide CF(PBu3)2Cl with aldehydes, and the 

stereoselectivity was controlled by structure of the aldehydes with aliphatic substrates providing the E-

isomer and aromatic substrates forming the Z-isomer. The formation of less common Z-isomers in the 
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Wittig reaction was attributed to two possible reasons: 1) through-space cation- attraction between the 

phosphonium center of ylides and the aromatic ring of aldehydes or 2) electron-electron repulsion 

between the electronegative fluorine atom and -electrons in an aromatic aldehyde (Scheme 2.5).15 

 

      In modified HWE reactions, the Penne group applied the fluorinated phosphonate 

(EtO)2P(O)CHFCO2Me to HWE reactions, and the selectivity was influenced by the reaction temperature, 

with E-fluoroalkenes dominating at –78 °C.16a Additionally, many research groups developed similar 

HWE reactions using sulfone-,16b nitrile-,16c phenyl-,16d and alkyne16e-substituted fluorinated phosphonates 

for accessing a variety of functionalized fluoroalkenes in good yield with low to modest stereoselectivity 

(Scheme 2.6). 
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      Julia-Kocienski olefinations represent common approaches for the formation of fluoroalkene 

derivatives. The use of electron-withdrawing aryl sulfones increases the reactivity of reagents toward 

carbonyl compounds and allows the reaction to proceed under mild conditions. Various fluorinated aryl 

sulfone reagents have been explored for realizing the transformation. The Zajc group prepared a series of 

-EWG-embedded -fluorobenzothiazolyl (BT)-derived sulfones and condensed these reagents with 

aldehydes to generate fluoroalkenes as a mixture of E/Z isomers (Scheme 2.7A).17a In 2015, the same 

group reported a stereoselective synthesis of 4-(1-fluorovinyl)triazoles using a second-generation Julia-

Kocienski reagent, -triazole-BT sulfone, which provided the E-isomer with DBU as a base and the Z-

isomer with LHMDS as a base.17b Additionally, the Nájera17c and Hu17d labs independently developed 3,5-

bis(trifluoromethyl)phenyl (BTFP)- and 1-tert-butyl-1H-tetrazol-5-yl (TBT)-sulfones for accessing 

functionalized fluoroalkenes with low to modest stereoselectivity. To improve E/Z selectivity, the 

Lequeux17e and Hu17f groups applied a pyrimidinylsulfone-directed condensation with aldehydes and a 

synergistic cooperation of fluorosulfoximines and nitrones for realizing stereoselective synthesis of Z-

fluoroalkenes (>98%), respectively (Scheme 2.7B). 
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      Peterson olefination reactions generally provide comparable yields and stereoselectivity compared to 

HWE and Julia reactions, and therefore they are less discussed in literature. The Welch lab employed a 

bulky -fluoro--(trimethylsilyl)acetate in coupling reactions of carbonyl groups to access Z-selective 

fluoroalkenes through a open transition state irregardless of the enolate geometry (Scheme 2.8).18a,b The 

Iio group reported the reactions of -fluoro--silyl sulfones with aldehydes to generate E-selective 

fluoroalkenes via a chelated four-centered transition state.18c In 2008, Mukaiyama disclosed a Lewis base-
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catalyzed fluoroolefination of fluoro(trimethylsilyl)ketene trimethylsilyl acetal for constructing Z-

fluoroalkenes (>98%).18d 

 

      2.2.5 Electrophilic Fluorination of Alkenylmetal Species 

      This type of reactions utilizes alkenylmetal species, including alkenyllithiums,19a alkenylstannanes,19b 

alkenylsilanes,19c and alkenylboronic acid derivatives,19d to couple with electrophilic fluorinating reagents 

XeF2, Selectfluor®, and N-fluoro-sulfonamides for accessing fluorinated alkenes (Scheme 2.9). However, 

these methods typically encounter two problems: 1) the formation of protonated alkenes and 2) low E/Z 

selectivity, which increases the difficulty of compound purification.  
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      2.2.6 Monofluorofunctionalization of Alkynes 

      Monofluorofunctionalization of alkynes concurrently incorporates a fluorine atom and a functional 

group into the molecules, and represents an important and efficient strategy for accessing highly 

functionalized fluorinated alkenes, which enable further elaboration to produce complex fluorine-

containing molecules. Many research groups have explored this area and developed a variety of methods 

including, fluorosulfenylation,20a fluoroselenation,20a halofluorination,20a hydrofluorination,20b–d and 

transition metal-catalyzed processes for introducing a fluorine atom followed by forming a C–C bond,20a 

whose methods were reviewed in 2015 (Scheme 2.10).20a However, these transformations have some 

deficiencies. While aromatic unsymmetric alkynes followed Markovnikov’s rule to generate one 

regioisomer rather than the other one, aliphatic unsymmetric alkynes provided a mixture of regioisomers 

in most cases. Moreover, the reactions with unactivated alkynes require the use of a strong fluoride source 

such as pyridinium poly(hydrogen fluoride), and the use of excess HF reagents cause the formation of 

gem-difluorides (-CF2CH2-) instead of fluoroalkenes (-CF=CH-). 
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a The regioselectivity (Markovnikov's rule) and stereoselectivity (E and Z isomers) of products depended on the reaction conditions.
 

      To solve these problems associated with regioselectivity, the Sadighi lab developed an electrophilic 

catalyst, (NHC)Au(I), to activate internal alkynes, which in turn allowed the use of less acidic Et3N.3HF 

reagent as a fluoride source.21a In 2009, the Miller group further introduced the carbamate as a directing 

group on the substrate to control the regioselective addition of HF to internal alkynes with high 

regioselectivity under the Sadighi reaction conditions (Scheme 2.11A).21b In 2016, the Zhu lab 

demonstrated an auxiliary group-mediated orthogonal catalyst system for regioselective formation of a C–

F bond on  and -position of ynamides, in which the combination of the copper(I) catalyst and an 

oxazolidinone group generated -fluoroenamides, while the use of the silver(I) catalyst with a 

sulfonamide group afforded -fluorinated products (Scheme 2.11B).21c 
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      2.2.7 Transition Metal-Catalyzed Cross-Coupling Reactions 

      Transition metal-catalyzed carbon-carbon forming strategies represent an important direction for 

accessing fluorinated alkenes, because these methods possess high functional-group compatibility and 

good stereoselectivity. Many coupling reactions, including Stille, Kumada, Suzuki, and Negishi reactions, 

have been applied in the synthesis of a variety of fluoroalkenes with fluorovinyl components serving as 

either nucleophiles 22 a–c or electrophiles22d–i (Scheme 2.12A and 2.12B). Moreover, transition metals 

enabled coupling reactions of fluorovinyl moieties with alkynes22j,k and alkenes22l,m via the 

functionalization of C–H bonds (Scheme 2.12C and 2.12D). However, these methods require 

prefunctionalization of a single isomer of fluorovinyl substrates, which in turn increases the number of 

synthetic steps, and greatly reduces the use of the methods. In 2016, the Buchwald lab developed a Pd-

catalyzed coupling reaction of cyclic vinyl triflates with KF as a fluoride source using bulky and electron-

donating phosphine ligands.22n This method used easily prepared vinyl triflates as coupling components, 

and didn’t require the manipulation of fluorovinyl species, which significantly increased the synthetic 

efficiency and ease of application. 
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      2.2.8 Miscellaneous Methods 

      In addition to the conventional methods, fluoroalkenes were accessed by alternative routes. For 

example, ring-closing metathesis (RCM) of fluorinated dienes provided a good method for the formation 

of cyclic fluoroalkenes that are difficult to access by other methods.23a,b Moreover, [3,3′]-sigmatropic 

rearrangement of vinyl fluorides,23c,d ring-opening of cyclopropanes,23e,f and fluorination of substituted 

allenes23g,h enabled the access of fluoroalkenes from structurally diverse starting materials. Recently, 

transition metal catalysis has been utilized in accessing fluoroalkenes via C–H activation,23i,j transition 

metal-mediated coupling,23k and defluorination reactions,23l which afforded better stereoselective control 

and high tolerance of functional groups under mild conditions.  
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2.3 Shapiro Fluorination to Access Fluoroalkenes 

      Despite the many methods that have been developed to access fluoroalkenes, convergent and 

straightforward strategies are desirable, especially for introducing the fluoroalkene motif at a late stage of 

a synthesis through modification of a compound already in hand and using commercially available 

fluorinating reagents (Scheme 2.13).  

 

      It was envisaged that fluoroolefins could be accessed through a Shapiro fluorination reaction (Scheme 

2.14).24  The Shapiro reaction has been widely applied in the synthesis of natural products,25 and for the 

preparation of polysubstituted alkenes,26  many of which are not easily accessed by other means. A 

prototypical Shapiro reaction involves: 1) condensation of an N-sulfonyl hydrazide with a ketone to 

provide a sulfonyl hydrazone; 2) treatment of the sulfonyl hydrazone with a base to provide a vinyl 

lithium intermediate; and 3) trapping of the vinyl anion with H+ to afford an alkene-based product.24 

Alternatively, the in situ formed alkenyllithium intermediate can also be trapped with a variety of 

electrophiles to generate allylic alcohols, acrylic acids, acrylic aldehydes, vinylsilanes, and vinyl iodides 

and bromides.27 However, the Shapiro reaction has not been employed to access fluoroakenes. Herein, we 

describe a Shapiro fluorination reaction to provide fluoroalkenes in high diastereoselectivity (Scheme 

2.14). 
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      The Shapiro fluorination reaction was scouted using a variety of commercially available electrophilic 

fluorinating reagents,28 and biphenyl 2,4,6-triisopropylbenzenesulfonyl (trisyl) hydrazone (2.1a or also 

called (E)-N'-(1-([1,1'-biphenyl]-4-yl)ethylidene)-2,4,6-triisopropylbenzenesulfonohydrazide) as a test 

substrate. Trisyl hydrazones were employed instead of tosylsulfonyl or mesitylsulfonyl moieties, because 

the former group: 1) does not undergo ortho-lithiation or -lithiation, which allows for the reaction to 

proceed using fewer equivalents of base and electrophilic trapping agent (Scheme 2.15A); 29  and 2) 

decomposes more easily than unhindered aryl hydrazones, a phenomenon that likely arises from the 

release of steric compression at the transition state (Scheme 2.15B).30  
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      The preparation of trisyl hydrazones involved condensation reactions of ketones with 2,4,6-

triisopropylbenzenesulfonyl hydrazide in the presence of catalytic amount of hydrochloric acid, and the 

conventional procedure provided hydrazone products in reasonable yields (Scheme 2.16).24  

Scheme 2.16. General Procedure for Preparing Acetophenone-Derived and Aliphatic Trisyl Hydrazones
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      Decomposition of the trisyl hydrazone (2.1a) was accomplished by lithiation with 2.5 equivalents of 

n-butyllithium (n-BuLi) in THF from –78 to 0 °C, followed by cooling to –78 °C for the addition of the 

electrophilic fluorinating reagents. No fluorinated product was observed by 19F NMR when the in situ 

formed vinyl anion was allowed to react with N-fluoropyridinium salts or selectfluor. Potentially, the poor 

reactivity of these reagents arose from the low solubility of the ionic reagents in THF at low temperature. 

In contrast, employment of N-fluorobenzenesulfonimide (NFSI), a neutral fluorinating agent that 

maintains good solubility in ethers and hydrocarbon solvents at lower temperature,31 provided the desired 

fluoroalkene product in 70% yield based on 19F NMR spectroscopy (Scheme 2.17). 
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      Optimization of the Shapiro fluorination reaction by the evaluation of alternate bases, solvents and 

additives provided an increased yield of product (Table 2.2). The use of THF as a solvent (entry 1) proved 

superior to the use of TMEDA, DME, and hexane/TMEDA (entries 5–7), although the use of a mixture of 

THF/TMEDA provided a comparable yield (entry 4). The addition of NFSI as a solid provided a lower 

yield of product (entry 3) compared to addition of NFSI as a solution in THF (entry 1). The use of n-BuLi 

and s-BuLi afforded higher yields than that of MeLi (entries 1, and 8–9). The use of cation-chelating 

agents, such as HMPA, did not improve the yield of 2.2a (entry 10). Further optimization of the reaction 

concentration and stoichiometry of base did not improve the yield (entries 11–12). Finally, the highest 

yield was obtained by decreasing the quantity of base employed to 2.2 equivalents (entry 13). 
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      Using the optimized reaction sequence, several acetophenone-derived substrates afforded fluoroalkene 

products (Scheme 2.18). Electron-rich aryl-substituted trisyl hydrazones including para-morpholine, –

SMe and –OMe were converted to fluoroalkenes 2.4a–d. The para-chloro-substituted fluorostyrene (2.4e) 

was provided in 52% yield. Reactions of substrates bearing substituents at the -position provided Z-

fluoroalkene products in good to excellent diastereoselectivitites (2.4g–i). Presumably, the 

stereochemistry of these reactions was dictated by the unfavorable steric repulsion of the syn arrangement 

of the organic substituents. In contrast, the E-fluoroalkene was accessed for a cyclic ketone (2.4f). 

However, no fluoroalkene products were obtained in reactions of substrates bearing para- and meta-CF3 

and meta-chloro electron-withdrawing groups. As control experiments, subjection of these three 

substrates to the Shapiro conditions and quenching of the presumed vinyllithium intermediate with D2O 

did not provide the anticipated deuterated or protonated alkenes (GC-MS), indicating that these three 

substrates were not compatible with the lithiation step.32 
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Scheme 2.18. Shapiro Fluorination of Acetophenone-Derived Trisyl Hydrazones to

Provide Fluorostyrenesa
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      Aliphatic N-trisyl hydrazones also provided the corresponding fluoroalkene analogues (Scheme 2.19). 

Using t-BuLi, the reaction of 2-phenyl cyclohexanone trisyl hydrazone provided two regioisomers, 2.6aA 

and 2.6aB in a 15:1 ratio (crude reaction mixture), and 60% of the pure tetra-substituted fluoroalkene 

2.6aA, an amide mimic of a -lactam.  

  

      The substrate 2.5c afforded E-fluoroalkene in 5.7:1 diastereoselectivity. In contrast to the Z-selectivity 

observed for products 2.4g–i, the reaction to selectively generate E-2.6c seems to be controlled by a syn-

dianion chelation effect, which is frequently observed in Shapiro reactions (Scheme 2.20).24 The chelation 

of lithium bases to nitrogen of the hydrazone enables syn-deprotonation, which puts the alkyl group away 

from the hydrazone to reduce allylic strain. Subsequently, the release of nitrogen gas from the dianion 

forms the configurationally stable Z-vinyl anion that generates the E-fluoroalkene upon trapping with 

electrophilic F sources (Scheme 2.20).24,27b  
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      Additionally, amines protected with benzyl groups were compatible with the reaction conditions, and 

afforded 28%–70% yields, depending on the substrates (2.6d–e in Scheme 2.19).33 Pyrrolidine-based 

derivative 2.6e could prove useful for strategic replacement of proline-based residues to form fluorinated 

peptide-based probes with distinct biophysical properties. Finally, the method was used to rapidly access 

new fluorinated analogues of natural products, including camphor and a protected steroid (2.6b and 2.6f). 

However, the silyl protecting group was not necessary, and the steroid substrate bearing an unprotected 

hydroxyl group provided 33% yield by 19F NMR analysis (not shown in Scheme 2.19, 3.2 equiv n-BuLi 

employed). Thus, the present reaction provides a new entrypoint for the preparation of fluorinated steroids, 

which are clinically employed for the treatment of various disease states.34 
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      In order to accomplish the direct conversion of ketones to fluoroalkenes, a one-pot reaction sequence 

was developed (Scheme 2.21). The use of an acid catalyst, in combination with molecular sieves, 

facilitated the initial condensation reaction, and was compatible with the subsequent lithiation and 

fluorination steps. Using this one-pot procedure, yields of the fluoroalkene products were comparable 

with those from the isolated hydrazones (2.8a vs. 2.2a; 2.8b vs. 2.4e; 2.8c vs. 2.4c). This sequence 

enables easy access to a variety of fluoroalkenes from ketones without purification of intermediates, and it 

is anticipated that this one-pot procedure could be optimized to access nonstyrenyl fluoroalkenes by 

improving the efficiency of condensation reactions of ketones with trisyl hydrazides. 

  

2.4 Conclusion 

      A procedure was developed for converting a ketone into a fluoroalkene analog through a Shapiro 

fluorination reaction. The reaction employs inexpensive and readily available reagents, and no expensive 

transition metal catalysts/reagents and ligands are required. Compared with many currently available 

methods, the Shapiro fluorination reaction provides improved diastereoselectivities (dr > 5.5:1), and 

represents an orthogonal strategy that should be useful for preparing fluoroalkene analogues that might be 

difficult to access otherwise. Moreover, the extensive number of ketone functional groups that exist in 

natural products and pharmaceutically important building blocks provides a wide variety of potential 

substrates for this transformation. 



 

48 
 

2.5 References for Chapter 2 

 
1 (a) Sciotti, R. J.; Pliushchev, M.; Wiedeman, P. E.; Balli, D.; Flamm, R.; Nilius, A. M.; Marsh, K.; 
Stolarik, D.; Jolly, R.; Ulrich, R.; Djuric, S. W. “The Synthesis and Biological Evaluation of A Novel 
Series of Antimicrobials of the Oxazolidinone Class” Bioorg. Med. Chem. Lett. 2002, 12, 2121–2123. (b) 
Asahina, Y.; Iwase, K.; Iinuma, F.; Hosaka, M.; Ishizaki, T. “Synthesis and Antibacterial Activity of 1-(2-
Fluorovinyl)-7-Substituted-4-Quinolone-3-Carboxylic Acid Derivatives, Conformationally Restricted 
Analogues of Fleroxacin” J. Med. Chem. 2005, 48, 3194–3202. (c) Osada, S.; Sano, S.; Ueyama, M.; 
Chuman, Y.; Kodama, H.; Sakaguchi, K. “Fluoroalkene Modification of Mercaptoacetamide-Based 
Histone Deacetylase Inhibitors” Bioorg. Med. Chem. 2010, 18, 605–611. (d) Kanazawa, J.; Takahashi, T.; 
Akinaga, S.; Tamaoki, T.; Okabe, M. “The Relationship between the Antitumor Activity and the 
Ribonucleotide Reductase Inhibitory Activity of (E)-2'-Deoxy-2'-(fluoromethylene) Cytidine, MDL 101,
731” Anti-Cancer Drugs, 1998, 9, 653–657. (e) Edmondson, S. D.; Wei, L.; Xu, J.; Shang, J.; Xu, S.; 
Pang, J.; Chaudhary, A.; Dean, D. C.; He, H.; Leiting, B.; Lyons, K. A.; Patel, R. A.; Patel, S. B.; Scapin, 
G.; Wu, J. K.; Beconi, M. G.; Thornberry, N. A.; Weber, A. E. “Fluoroolefins as Amide Bond Mimics in 
Dipeptidyl Peptidase IV Inhibitors” Bioorg. Med. Chem. Lett. 2008, 18, 2409–2413. (f) Deng, T.; Shan, 
S.; Li, Z.-B.; Wu, Z.-W.; Liao, C.-Z.; Ko, B.; Lu, X.-P.; Cheng, J.; Ning, Z.-Q. “A New Retinoid-like 
Compound That Activates Peroxisome Proliferator-Activated Receptors and Lowers Blood Glucose in 
Diabetic Mice” Biol. Pharm. Bull. 2005, 28, 1192–1196. (g) Oishi, S.; Kamitani, H.; Kodera, Y.; 
Watanabe, K.; Kobayashi, K.; Narumi, T.; Tomita, K.; Ohno, H.; Naito, T.; Kodama, E.; Matsuoka, M.; 
Fujii, N. “Peptide Bond Mimicry by (E)-Alkene and (Z)-Fluoroalkene Peptide Isosteres: Synthesis and 
Bioevaluation of -Helical Anti-HIV Peptide Analogues” Org. Biomol. Chem. 2009, 7, 2872–2877. 
2  (a) Abraham, R. J.; Ellison, S. L. R.; Schonholzer, P.; Thomas, W. A. “A Theoretical and 
Crystallographic Study of the Geometries and Conformations of Fluoro-Olefins as Peptide Analogs” 
Tetrahedron 1986, 42, 2101–2110. (b) Cieplack, P.; Kollmann, P. A.; Radomski, J. P. “Molecular Design 
of Fluorine-Containing Peptide Mimetics” ACS Symposium Series 1996, 639, 143–156. (c) Wipf, P.; 
Henninger, T. C.; Geib, S. J. “Methyl- and (Trifluoromethyl)alkene Peptide Isosteres: Synthesis and 
Evaluation of Their Potential as -Turn Promoters and Peptide Mimetics” J. Org. Chem. 1998, 63, 6088–
6089. (d) Taguchi, T.; Yanai, H. Fluorinated Moieties for Replacement of Amide and Peptide Bonds, in: 
Fluorine in Medicinal Chemistry and Chemical Biology (Ed.: I. Ojima), Wiley-Blackwell, Chichester, 
UK, 2009, pp. 257–290. 
3 (a) O’Hagan, D.; Rzepa, H. S. “Some Influences of Fluorine in Bioorganic Chemistry” Chem. Commun. 
1997, 645–652. (b) Bégué. J.-P., Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine; 
John Wiley & Sons: Hoboken, NJ, 2008. 
4 Urban, J. J.; Tillman, B. G.; Cronin, W. A. “Fluoroolefins as Peptide Mimetics: A Computational Study 
of Structure, Charge Distribution, Hydration, and Hydrogen Bonding” J. Phys. Chem. A 2006, 110, 
11120–11129. 
5 (a) Gante, J. “Peptidomimetics-Tailored Enzyme Inhibitors” Angew. Chem. Int. Ed. Engl. 1994, 33, 
1699–1720. (b) Lin, J.; Toscano, P. J.; Welch, J. T. “Inhibition of Dipeptidyl Peptidase IV by 
Fluoroolefin-Containing N-Peptidyl-O-Hydroxylamine Peptidomimetics” Proc. Natl. Acad. Sci. U. S. A. 
1998, 95, 14020–14024. (c) Van der Veken, P.; Senten, K.; Kertesz, I.; De Meester, I.; Lambeir, A.-M.; 
Maes, M.-B.; Scharpe, S.; Haemers, A.; Augustyns, K. “Fluoro-Olefins as Peptidomimetic Inhibitors of 
Dipeptidyl Peptidases” J. Med. Chem. 2005, 48, 1768–1780. 
6 Niida, A.; Tomita, K.; Mizumoto, M.; Tanigaki, H.; Terada, T.; Oishi, S.; Otaka, A.; Inui, K. I.; Fujii, N. 
“Unequivocal Synthesis of (Z)-Alkene and (E)-Fluoroalkene Dipeptide Isosteres to Probe Structural 
Requirements of the Peptide Transporter PEPT1” Org. Lett. 2006, 8, 613–616. 
7 (a) Yanai, H.; Taguchi, T. “Synthetic Methods for Fluorinated Olefins” Eur. J. Org. Chem. 2011, 5939–
5954. (b) Landelle, G.; Bergeron, M.; Turcotte-Savard, M.-O.; Paquin, J.-F. “Synthetic Approaches to 
Monofluoroalkenes” Chem. Soc. Rev. 2011, 40, 2867–2908. 



 

49 
 

 
8 (a) Ernet, T.; Maulitz, A. H.; Wurthwein, E.-U.; Haufe, G. “Dienophilic Reactivity of Perfluoroalkenyl 
Ketones in Diels-Alder Reactions” J. Chem. Soc., Perkin Trans. 1 2001, 1929–1938. (b) Haufe, G. “Vinyl 
Fluorides in Cycloadditions” ACS Symposium Series 2005, 911, 155–172. (c) Lam, Y.-H.; Stanway, S. J.; 
Gouverneur, V. “Recent Progress in the Use of Fluoroorganic Compounds in Pericyclic Reactions” 
Tetrahedron 2009, 65, 9905–9933.  
9 (a) Haufe, G.; Rosen, T. C.; Meyer, O. G. J.; Frohlich, R.; Rissanen, K. “Synthesis, Reactions and 
Structural Features of Monofluorinated Cyclopropanecarboxylates” J. Fluorine Chem. 2002, 114, 189–
198. (b) Rosen, T. C.; Yoshida, S.; Kirk, K. L.; Haufe, G. “Fluorinated Phenylcyclopropylamines as 
Inhibitors of Monoamine Oxidases” ChemBiochem 2004, 5, 1033–1043. (c) David, E.; Milanole, G.; 
Ivashkin, P.; Couve-Bonnaire, S.; Jubault, P.; Pannecoucke, X. “Syntheses and Applications of 
Monofluorinated Cyclopropanes” Chem. Eur. J. 2012, 18, 14904–14917. (d) Hirotaki, K.; Takehiro, Y.; 
Kamaishi, R.; Yamada, Y.; Hanamoto, T. “Synthesis of Mono-Fluorinated Functionalized Cyclopropanes 
and Aziridines Using the -Fluorovinyl Diphenyl Sulfonium Salt” Chem. Commun. 2013, 49, 7965–7967. 
(e) Pons, A.; Beucher, H.; Ivashkin, P.; Lemonnier, G.; Poisson, T.; Charette, A. B.; Jubault, P.; 
Pannecoucke, X. “Rhodium-Catalyzed Cyclopropanation of Fluorinated Olefins: A Straightforward Route 
to Highly Functionalized Fluorocyclopropanes” Org. Lett. 2015, 17, 1790–1793. 
10 (a) Souzy, R.; Ameduri, B.; Boutevin, B. “Synthesis and (Co)polymerization of Monofluoro, Difluoro, 
Trifluorostyrene and ((Trifluorovinyl)oxy)benzene” Prog. Polym. Sci. 2004, 29, 75–106. (b) Babudri, F.; 
Cardone, A.; Farinola, G. M.; Martinelli, C.; Mendichi, R.; Naso, F.; Striccoli, M. “Synthesis of 
Poly(arylenevinylene)s with Fluorinated Vinylene Units” Eur. J. Org. Chem. 2008, 1977–1982. (c) 
Walkowiak-Kulikowska, J.; Boschet, F.; Kostov, G.; Gouverneur, V.; Ameduri, B. “On the Reactivity of 
-Trifluoromethylstyrene in Radical Copolymerizations with Various Fluoroalkenes” European Polymer 
Journal 2016, 84, 612–621. 
11  (a) McCarthy, J. R.; Matthews, D. P.; Barney, C. L. “A New Synthesis of 2-Fluoro-1-olefins” 
Tetrahedron Lett. 1990, 31, 973–976. (b) Usuki, Y.; Iwaoka, M.; Tomoda, S. “A New Synthesis of -
Fluoro-,-unsaturated Ketones and Esters Based on Organoselenium Methodology” J. Chem. Soc., 
Chem. Commun. 1992, 1148–1150. (c) Nguyen, T.; Leroy, J.; Wakselman, C. “An Expeditious Synthesis 
of 3-Fluoroacrylic Acid” J. Org. Chem. 1993, 58, 3772–3774. (d) Hedhli, A.; Baklouti, A. “Action of 
Potassium Fluoride and DBU on -Fluoro-,-unsaturated p-Toluenesulfonates: A Convenient Route to 
Conjugated 2-Fluoroalkadienes” Tetrahedron Lett. 1995, 36, 4433–4436. (e) Sasson, R.; Rozen, S. 
“Bromofluorination of Olefins Using BrF3; An Efficient Route for Fluoroalkenes and Fluoroamines” J. 
Fluorine Chem. 2006, 127, 962–965. (f) Wong, O. A.; Shi, Y. “Asymmetric Epoxidation of Fluoroolefins 
by Chiral Dioxirane. Fluorine Effect on Enantioselectivity” J. Org. Chem. 2009, 74, 8377–8380. (g) 
Reutrakul, V.; Rukachaisirikul, V. “Fluoromethyl Phenyl Sulfoxide: Highly Convenient Synthesis of 
Vinyl Fluorides and Fluoromethyl Ketones” Tetrahedron Lett. 1983, 24, 725–728. (h) Uno, H.; Semba, F.; 
Tasaka, T.; Suzuki, H. “A Novel Generation and Behavior of Alkylfluorocarbenoids from ,-
Chlorofluoroalkyl Sulfoxides” Chem. Lett. 1989, 309–312. (i) Krishnan, G.; Sampson, P. Tetrahedron 
Lett. 1990, 31, 5609–5612. (j) Allmendinger, T. “Ethyl Phenylsulfinylfluoroacetate, A New and Versatile 
Reagent for the Preparation of -Fluoro-,-unsaturated Carboxylic Acid Esters” Tetrahedron 1991, 47, 
4905–4914. (k) Prakash, G. K. S.; Chacko, S.; Vaghoo, H.; Shao, N.; Gurung, L.; Mathew, T.; Olah, G. A. 
“Efficient Nucleophilic Fluoromethylation and Subsequent Transformation of Alkyl and Benzyl Halides 
Using Fluorobis(phenylsulfonyl)methane” Org. Lett. 2009, 11, 1127–1130. (l) Sano, K.; Fukuhara, T.; 
Hara, S. J. Fluorine Chem. 2009, 130, 708–713. 
12 (a) Kirihara, M.; Takuwa, T.; Okumura, M.; Wakikawa, T.; Takahata, H.; Momose, T.; Takeuchi, Y.; 
Nemoto, H. “-Bromo-,-difluoroallyl Derivatives as Synthetic Intermediates: Nucleophilic 
Substitution of -Bromo-,-difluoroallyl Derivatives in the Presence of Palladium Catalysts” Chem. 
Pharm. Bull. 2000, 48, 885–888. (b) Narumi, T.; Tomita, K.; Inokuchi, E.; Kobayashi, K.; Oishi, S.; 
Ohno, H.; Fujii, N. “Facile Synthesis of Fluoroalkenes by Palladium-Catalyzed Reductive Defluorination 
of Allylic gem-Difluorides” Org. Lett. 2007, 9, 3465–3468. (c) Pigeon, X.; Bergeron, M.; Barabé, F.; 



 

50 
 

 
Dubé, P.; Frost, H. N.; Paquin, J.-F. “Activation of Allylic C–F Bonds: Palladium-Catalyzed Allylic 
Amination of 3,3-Difluoropropenes” Angew. Chem. Int. Ed. 2010, 49, 1123–1127. (d) Zhang, H.; Lin, J.-
H.; Xiao, J.-C.; Gu, Y.-C. “Rh-Catalyzed Allylic C–F Bond Activation: the Stereoselective Synthesis of 
Trisubstituted Monofluoroalkenes And a Mechanism Study” Org. Biomol. Chem. 2014, 12, 581–588. (e) 
Miura, T.; Ito, Y.; Murakami, M. “Synthesis of Gem-Difluoroalkenes via -Fluoride Elimination of 
Organorhodium(I)” Chem. Lett. 2008, 37, 1006–1007. (f) Lin, X.; Zheng, F.; Qing, F.-L. “Regio- and 
Diastereoselective Nickel-Catalyzed Allylation of Aromatic Aldehydes with -Halo-,-difluoropropene 
Derivatives” J. Org. Chem. 2012, 77, 8696–8704. 
13 (a) Otaka, A.; Watanabe, H.; Yukimasa, A.; Oishi, S.; Tamamura, H.; Fujii, N. “New Access to -
Substituted (Z)-Fluoroalkene Dipeptide Isosteres Utilizing Organocopper Reagents under 'Reduction-
Oxidative Alkylation (R-OA)' Conditions” Tetrahedron Lett. 2001, 42, 5443–5446. (b) Otaka, A.; 
Watanabe, J.; Yukimasa, A.; Sasaki, Y.; Watanabe, H.; Kinoshita, T.; Oishi, S.; Tamamura, H.; Fujii, N. 
“SmI2-Mediated Reduction of ,-Difluoro-,-enoates with Application to the Synthesis of 
Functionalized (Z)-Fluoroalkene-Type Dipeptide Isosteres” J. Org. Chem. 2004, 69, 1634–1645. (c) 
Okada, M.; Nakamura, Y.; Saito, A.; Sato, A.; Honkawa, H.; Taguchi, T. “Synthesis of -Alkylated (Z)- 
-Fluoro-,-enoates through Organocopper Mediated Reaction of ,-Difluoro-,-enoates: A Different 
Reactivity of R3Al-Cu(I) and Me2CuLi” Chem. Lett. 2002, 28–29. (d) Yamaki, Y.; Shigenaga, A.; Tomita, 
K.; Narumi, T.; Fujii, N.; Otaka, A. “Synthesis of Fluoroalkene Dipeptide Isosteres by An Intramolecular 
Redox Reaction Utilizing N-Heteorocyclic Carbenes (NHCs)” J. Org. Chem. 2009, 74, 3272–3277. (e) 
Yamaki, Y.; Shigenaga, A.; Li, J.; Shimohigashi, Y.; Otaka, A. “Synthesis of Amide-Type Fluoroalkene 
Dipeptide Isosteres by An Intramolecular Redox Reaction” J. Org. Chem. 2009, 74, 3278–3285. (f) 
Drouin, M.; Hamel, J.-D.; Paquin, J.-F. “Exploiting 3,3-Difluoropropenes for the Synthesis of 
Monofluoroalkenes” Synlett 2016, 27, 821–830. 
14 (a) Hayashi, S.; Nakai, T.; Ishikawa, N.; Burton, D. J.; Naae, D. G.; Kesling, H. S. “Convenient 
Procedures for Conversion of Carbonyl Compounds to Gem-Difluoroolefins and Their Selective 
Reductions to Monofluoroolefins” Chem. Lett. 1979, 983–986. (b) Landelle, G.; Turcotte-Savard, M.-O.; 
Angers, L.; Paquin, J.-F. “Stereoselective Synthesis of Both Stereoisomers of -Fluorostyrene Derivatives 
from a Common Intermediate” Org. Lett, 2011, 13, 1568–1571. (c) Wu, J.; Xiao, J.; Dai, W.; Cao, S. 
“Synthesis of Monofluoroalkenes through Selective Hydrodefluorination of gem-Difluoroalkenes with 
Red-Al” RSC Adv. 2015, 5, 34498–34501. (d) Landelle, G.; Champagne, P. A.; Barbeau, X.; Paquin, J.-F. 
“Stereocontrolled Approach to Bromofluoroalkenes and Their Use for the Synthesis of Tri- and 
Tetrasubstituted Fluoroalkenes” Org. Lett, 2009, 11, 681–684. (e) Jin, G.; Zhang, J.; Wu, W.; Cao, S. 
“Stereoselective Synthesis of -Fluoroenyne by the Reaction of gem-Difluoroalkenes with Terminal 
Alkynes” J. Fluorine Chem. 2014, 168, 240–246. (f) Dai, W.; Shi, H.; Zhao, X.; Cao, S. “Sterically 
Controlled Cu-Catalyzed or Transition-Metal-Free Cross-Coupling of gem-Difluoroalkenes with Tertiary, 
Secondary, and Primary Alkyl Grignard Reagents” Org. Lett. 2016, 18, 4284–4287. (g) Zhang, J.; Xu, C.; 
Wu, W.; Cao, S. “Mild and Copper-Free Stereoselective Cyanation of gem-Difluoroalkenes by Using 
Benzyl Nitrile as a Cyanating Reagent” Chem. Eur. J. 2016, 22, 9902–9908. (h) Ichikawa, J.; Wada, Y.; 
Fujiwara, M.; Sakoda, K. “The Nucleophilic 5-Endo-trig Cyclization of 1,1-Difluoro-1-alkenes: Ring-
Fluorinated Hetero- and Carbocycle Synthesis and Remarkable Effect of the Vinylic Fluorines on the 
Disfavored Process” Synthesis, 2002, 1917–1936. 
15 Cox, D. G.; Gurusamy, N.; Burton, D. J. “Surprising Stereochemical Control of Wittig Olefination 
Involving Reaction of Fluorine-Containing Phosphoranium Salt and Aldehydes” J. Am. Chem. Soc. 1985, 
107, 2811–2812. 
16 (a) Moghadam, G. E.; Penne, J. S. “Stereoselective Synthesis of E--Fluoro-,-unsaturated Esters by 
Wittig-Horner Reaction from Methyl -(O,O-Diethylphosphono)--fluoroacetate. Comparison with 
Methyl -(diphenylphosphinyl)--fluoroacetate” Bull. Soc. Chim. Fr. 1985, 448–454. (b) Koizumi, T.; 
Hagi, T.; Horie, Y.; Takeuchi, Y. “Diethyl 1-Fluoro-1-phenylsulfonylmethanephosphonate, a Versatile 
Agent for the Preparation of Monofluorinated Building Blocks” Chem. Pharm. Bull. 1987, 35, 3959–3962. 



 

51 
 

 

(c) Xu, Z.-Q.; Desmarteau, D. D. “A Convenient One-Pot Synthesis of -Fluoro-,-unsaturated Nitriles 
from Diethyl Cyanofluoromethanephosphonate” J. Chem. Soc., Perkin Trans. 1. 1992, 313–315. (d) Tsai, 
H.-J. “Synthesis of Phenyl-Substituted Fluoro-Olefins” Tetrahedron Lett. 1996, 37, 629–632. (e) Zapata, 
A. J.; Gu, Y. H.; Hammond, G. B. “The First -Fluoroallenylphosphonate, the Synthesis of Conjugated 
Fluoroenynes, and the Stereoselective Synthesis of Vinylfluorophosphonates Using a New 
Multifunctional Fluorine-Containing Building Block” J. Org. Chem. 2000, 65, 227–234. 
17 (a) Zajc, B.; Kumar, R. “Synthesis of Fluoroolefins via Julia-Kocienski Olefination” Synthesis 2010, 
1822–1836. (b) Kumar, R.; Singh, G.; Todaro, L. J.; Yang, L.; Zajc, B. “E- or Z-Selective Synthesis of 4-
Fluorovinyl-1,2,3-triazoles with Fluorinated Second-Generation Julia-Kocienski Reagents” Org. Biomol. 
Chem. 2015, 13, 1536–1549. (c) Alonso, D. A.; Fuensanta, M.; Gomez-Bengoa, E.; Nájera, C. “Highly 
Efficient and Stereoselective Julia-Kocienski Protocol for the Synthesis of -Fluoro-,-unsaturated 
Esters and Weinreb Amides Employing 3,5-Bis(trifluoromethyl)phenyl (BTFP) Sulfones” Adv. Synth. 
Catal. 2008, 350, 1823–1829. (d) Zhu, L.; Ni, C.; Zhao, Y.; Hu, J. “1-tert-Butyl-1H-tetrazol-5-yl 
Fluoromethyl Sulfone (TBTSO2CH2F): A Versatile Fluoromethylidene Synthon and Its Use in the 
Synthesis of Monofluorinated Alkenes via Julia-Kocienski Olefination” Tetrahedron 2010, 66, 5089–
5100. (e) Larnaud, F.; Pfund, E.; Linclau, B.; Lequeux, T. “Stereoselective Formation of (Z)-2-
Fluoroalkenoates via Julia-Kocienski Reaction of Aldehydes with Pyrimidinyl-fluoro-sulfones” 
Tetrahedron, 2014, 70, 5632–5639. (f) Zhang, W.; Huang, W.; Hu, J. “Highly Stereoselective Synthesis 
of Monofluoroalkenes from -Fluorosulfoximines and Nitrones” Angew. Chem. Int. Ed. 2009, 48, 9858–
9861. 
18 (a) Welch, J. T.; Herbert, R. W. “The Stereoselective Construction of (Z)-3-Aryl-2-fluoroalkenoates” J. 
Org. Chem. 1990, 55, 4782–4784. (b) Lin, J.; Welch, J. T. “The Stereoselective Construction of 
Fluoroalkenoates via the Peterson Olefination Reaction Using tert-Butyl -Fluoro--(trialkylsilyl)
acetates” Tetrahedron Lett. 1998, 39, 9613–9616. (c) Asakura, N.; Usuki, Y.; Iio, H. “A New Synthesis 
of -Fluorovinylsulfones Utilizing the Peterson Olefination Methodology” J. Fluorine Chem. 2003, 124, 
81–88. (d) Michida, M.; Mukaiyama, T. “A Convenient Method for the Synthesis of (Z)--
Fluoroacrylates. Lewis Base-Catalyzed Carbonyl Fluoroolefination Using Fluoro(trimethylsilyl)ketene 
Ethyl Trimethylsilyl Acetal” Chem. Lett. 2008, 37, 890–891. 
19  (a) Lee, S. H.; Schwartz, J. “Stereospecific Synthesis of Alkenyl Fluorides (with Retention) via 
Organometallic Intermediates” J. Am. Chem. Soc. 1986, 108, 2445–2447. (b) Tius, M. A.; Kawakami, J. 
K. “The Reaction of XeF2 with Trialkylvinylstannanes: Scope and Some Mechanistic Observations” 
Tetrahedron 1995, 51, 3997–4010. (c) Greedy, B.; Gouverneur, V. “Fluorodesilylation of 
Alkenyltrimethylsilanes: A New Route to Fluoroalkenes and Difluoromethyl-Substituted Amides, 
Alcohols or Ethers” Chem. Commun. 2001, 233–234. (d) Petasis, N. A.; Yudin, A. K.; Zavialov, I. A.; 
Prakash, G. K. S.; Olah, G. A. “Facile Preparation of Fluorine-Containing Alkenes, Amides, and Alcohols 
via the Electrophilic Fluorination of Alkenylboronic Acids and -Trifluoroborates” Synlett. 1997, 606–608.  
20  (a) Besset, T.; Poisson, T.; Pannecoucke, X. “Direct Vicinal Difunctionalization of Alkynes: An 
Efficient Approach towards the Synthesis of Highly Functionalized Fluorinated Alkenes” Eur. J. Org. 
Chem. 2015, 2765–2789. (b) Bello, D.; O’Hagan, D. “Lewis Acid-Promoted Hydrofluorination of 
Alkynyl Sulfides to Generate -Fluorovinyl Thioethers” Beilstein J. Org. Chem. 2015, 11, 1902–1909. (c) 
Nahra, F.; Patrick, S. R.; Bello, D.; Brill, M.; Obled, A.; Cordes, D. B.; Slawin, A. M. Z.; O’Hagan, D.; 
Nolan, S. P. “Hydrofluorination of Alkynes Catalyzed by Gold Bifluorides” ChemCatChem 2015, 7, 240–
244. (d) Okoromoba, O. E.; Han, J.; Hammond, G. B.; Xu, B. “Designer HF-Based Fluorination Reagent: 
Highly Regioselective Synthesis of Fluoroalkenes and gem-Difluoromethylene Compounds from Alkynes” 
J. Am. Chem. Soc. 2014, 136, 14381–14384. 
21 (a) Akana, J. A.; Bhattacharyya, K. X.; Mueller, P.; Sadighi, J. P. “Reversible C–F Bond Formation and 
the Au-Catalyzed Hydrofluorination of Alkynes” J. Am. Chem. Soc. 2007, 129, 7736–7737. (b) Gorske, B. 
C.; Mbofana, C. T.; Miller, S. J. “Regio- and Stereoselective Synthesis of Fluoroalkenes by Directed Au(I) 
Catalysis” Org. Lett. 2009, 11, 4318–4321. (c) He, G.; Qiu, S.; Huang, H.; Zhu, G.; Zhang, D.; Zhang, R.; 



 

52 
 

 
Zhu, H. “Cu(I)- or Ag(I)-Catalyzed Regio- and Stereocontrolled trans-Hydrofluorination of Ynamides” 
Org. Lett. 2016, 18, 1856–1859. 
22 (a) Chen, C.; Wilcoxen, K.; Zhu, Y.-F.; Kim, K.-I.; McCarthy, J. R. “Coupling of 2-Substituted 1-
Fluorovinylstannanes with Organic Halides Catalyzed by Palladium(0)/Copper(I) Iodide. A Mild and 
Stereospecific Method to Monofluoro Olefins” J. Org. Chem. 1999, 64, 3476–3482. (b) Wang, Z.; 
Gonzalez, A.; Wnuk, S. F. “Pd-Catalyzed Couplings of (-Fluoro)vinyl Tris(trimethylsilyl)germanes” 
Tetrahedron Lett. 2005, 46, 5313–5316. (c) Hanamoto, T.; Kobayashi, T. J. Org. Chem. 2003, 68, 6354–
6359. (d) Qiu, J.; Gyorokos, A.; Tarasow, T. M.; Guiles, J. “Grignard Cross-Coupling Amenable to Large 
Scale Production of -Fluorostyryl and -Fluorovinylthiophenes” J. Org. Chem. 2008, 73, 9775–9777. (e) 
Andrei, D.; Wnuk, S. F. “Synthesis of the Multisubstituted Halogenated Olefins via Cross-Coupling of 
Dihaloalkenes with Alkylzinc Bromides” J. Org. Chem. 2006, 71, 405–408. (f) Yoshida, M.; Komata, A.; 
Hara, S. “Stereoselective Synthesis of Fluoroalkenes via (Z)-2-Fluoroalkenyliodonium Salts” Tetrahedron 
2006, 62, 8636–8645. (g) Chen, C.; Wilcoxen, K.; Huang, C. Q.; Strack, N.; McCarthy, J. R. “New 
Methods for the Synthesis of Fluoroolefins via the Palladium Catalyzed Cross-Coupling Reaction of 1-
Fluorovinyl Halides with Organoboranes and Organostannanes” J. Fluorine Chem. 2000, 101, 285–290. 
(h) Azad Hossain, M. “-Fluoroenol Triflates: Synthesis and Some Palladium Catalyzed Reactions” 
Tetrahedron Lett. 1997, 38, 49–52. (i) Zhang, H.; Zhou, C.-B.; Chen, Q.-Y.; Xiao, J.-C.; Hong, R. 
“Monofluorovinyl Tosylate: A Useful Building Block for the Synthesis of Terminal Vinyl Monofluorides 
via Suzuki-Miyaura Coupling” Org. Lett. 2011, 13, 560–563. (j) Yoshida, M.; Yoshikawa, S.; Fukuhara, 
T.; Yoneda, N.; Hara, S. “Stereoselective Synthesis of (E)-1-Fluoro-1,3-enynes” Tetrahedron 2001, 57, 
7143–7148. (k) Fujino, T.; Hinoue, T.; Usuki, Y.; Satoh, T. “Synthesis of Difluorinated Enynes through 
Sonogashira-Type Coupling” Org. Lett. 2016, 18, 5688–5691. (l) Xu, J.; Burton, D. J. “Stereospecific 
Preparation of (2E,4Z)-Monofluorodienyl Esters by the Heck Reaction of high E/Z Ratio 1-Bromo-1-
fluorostyrenes” J. Fluorine Chem. 2004, 125, 725–730. (m) Li, Y.; Tu, D.-H.; Gu, Y.-J.; Wang, B.; Wang, 
Y.-Y.; Liu, Z.-T.; Liu, Z.-W.; Lu, J. “Oxidative Heck Reaction of Fluorinated Olefins with Arylboronic 
Acids by Palladium Catalysis” Eur. J. Org. Chem. 2015, 4340–4343. (n) Ye, Y.; Takada, T.; Buchwald, S. 
L. “Palladium-Catalyzed Fluorination of Cyclic Vinyl Triflates: Effect of TESCF3 as an Additive” Angew. 
Chem. Int. Ed. 2016, 55, 15559–15563. 
23 (a) Salim, S. S.; Bellingham, R. K.; Satcharoen, V.; Brown, R. C. D. “Synthesis of Heterocyclic and 
Carbocyclic Fluoro-olefins by Ring-Closing Metathesis” Org. Lett. 2003, 5, 3403–3406. (b) Guérin, D.; 
Gaumont, A.-C.; Dez, I.; Mauduit, M.; Couve-Bonnaire, S.; Pannecoucke, X. “Access to Fluorinated 
Lactams through Ring-Closing Metathesis of Reluctant Fluoroalkenes Promoted by Appropriate 
Substitution of a Double Bond” ACS Catal. 2014, 4, 2374–2378. (c) Allmendinger, T.; Angst, C.; 
Karfunkel, H. “Fluorinated Allylic Alcohols as Building Blocks” J. Fluorine Chem. 1995, 72, 247–253. 
(d) Tranel, F.; Haufe, G. “Claisen Rearrangements Based on Vinyl Fluorides” J. Fluorine Chem. 2004, 
125, 1593–1608. (e) Fu, W.; Zou, G.; Zhu, M.; Hong, D.; Deng, D.; Xun, C.; Ji, B. “Stereoselective 
Fluorination of Methylenecyclopropanes with N-F Reagents: A Modular Entry to -Fluorohomoallylic 
Sulfonimides and -Fluorohomoallylic Amides” J. Fluorine Chem. 2009, 130, 996–1000. (f) Jiang, M.; 
Shi, M. “Reactions of Methylenecyclopropanes and Vinylidenecyclopropanes with N-
Fluorodibenzenesulfonimide” Tetrahedron 2009, 65, 5222–5227. (g) Pacheco, M. C.; Gouverneur, V. 
“Electrophilic Fluorodesilylation of Allenylmethylsilanes: A Novel Entry to 2-Fluoro-1,3-dienes” Org. 
Lett. 2005, 7, 1267–1270. (h) Bo, L.; Fu, C.; Ma, S. “Study on the Selectivity in the Electrophilic 
Monofluorination of 2,3-Allenoates with SelectfluorTM: An Efficient Synthesis of 4-Fluoro-2(5H)-
furanones and 3-Fluoro-4-oxo-2(E)-alkenoates” Org. Biomol. Chem. 2010, 8, 274–281. (i) Rousee, K.; 
Schneider, C.; Bouillon, J.-P.; Levacher, V.; Hoarau, C.; Couve-Bonnaire, S.; Pannecoucke, X. “Copper-
Catalyzed Direct C–H Fluoroalkenylation of Heteroarenes” Org. Biomol. Chem. 2016, 14, 353–357. (j) 
Tian, P.; Feng, C.; Loh, T.-P. “Rhodium-Catalyzed C(sp2)–C(sp2) Bond Formation via C–H/C–F 
activation” Nature Communications 2015, 6, 7472pp. (k) Furuya, T. Ritter, T. “Fluorination of Boronic 
Acids Mediated by Silver(I) Triflate” Org. Lett. 2009, 11, 2860–2863. (l) Thornbury, R. T.; Toste, F. D. 



 

53 
 

 
“Palladium-Catalyzed Defluorinative Coupling of 1-Aryl-2,2-difluoroalkenes and Boronic Acids: 
Stereoselective Synthesis of Monofluorostilbenes” Angew. Chem. Int. Ed. 2016, 55, 11629–11632.  
24 Chamberlin, A. R.; Bloom, S. H. “Lithioalkenes from Arenesulfonylhydrazones” Org. React. 1990, 39, 
1–83. 
25 (a) Harrowven, D. C.; Pascoe, D. D.; Demurtas, D.; Bourne, H. O. “Total Synthesis of (-)-Colombiasin 
A and (-)-Elisapterosin B” Angew. Chem. Int. Ed. 2005, 44, 1221–1222. (b) Zhu, C.; Cook, S. P. “A 
Concise Synthesis of (+)-Artemisinin” J. Am. Chem. Soc. 2012, 134, 13577–13579. (c) Granger, K.; 
Casaubon, R. L.; Snapper, M. L. “Concise Synthesis of Norrisolide” Eur. J. Org. Chem. 2012, 2308–2311. 
26 (a) Corey, E. J.; Roberts, B. E. “Application of a Shapiro Reaction-Suzuki Coupling Sequence to the 
Stereoselective Synthesis of (E)-Trisubstituted Olefins” Tetrahedron Lett. 1997, 38, 8919–8920. (b) 
Fabris, F.; De Martin, A.; De Lucchi, O. “The Cyclotrimerisation of (+)-Camphor” Tetrahedron Lett. 
1999, 40, 9121–9124. 
27  (a) Chamberlin, A. R.; Stemke, J. E.; Bond, F. T. “Vinyllithium Reagents from 
Arenesulfonylhydrazones” J. Org. Chem. 1978, 43, 147–154. (b) Paquette, L. A.; Fristad, W. E.; Dime, D. 
S.; Bailey, T. R. “Silanes in Organic Synthesis. 8. Preparation of Vinylsilanes from Ketones and Their 
Regiospecific Cyclopentenone Annulation” J. Org. Chem. 1980, 45, 3017–3028. (c) Mislankar, D. G.; 
Mugrage, B.; Darling, S. D. “Enephosphinylation” Tetrahedron Lett. 1981, 22, 4619–4622. (d) Adlington, 
R. M.; Barrett, A. G. M. “Recent Applications of the Shapiro Reaction” Acc. Chem. Res. 1983, 16, 55–59. 
(e) Rauniyar, V.; Zhai, H.; Hall, D. G. “Convenient Preparation of Cycloalkenyl Boronic Acid Pinacol 
Esters” Synth. Commun. 2008, 38, 3984–3995. 
28 (a) Baudoux, J.; Cahard, D. “Electrophilic Fluorination with N–F Reagents” Org. React. 2007, 69, 347–
672. 
29 Rosiak, A.; Hoenke, C.; Christoffers, J. “Synthesis of 3-Phenyl-4-piperidones from Acetophenone by 
Shapiro and aza-Michael Reactions and Their Further Derivatization” Eur. J. Org. Chem. 2007, 4376–
4382. 
30  Cusack, N. J.; Reese, C. B.; Risius, A. C.; Roozpeikar, B. “2,4,6-Tri-isopropylbenzenesulfonyl 
Hydrazide: A Convenient Source of Di-imide” Tetrahedron 1976, 32, 2157–2162. 
31 (a) Barnette, W. E. “N-Fluoro-N-alkylsulfonamides: Useful Reagents for the Fluorination of Carbanions” 
J. Am. Chem. Soc. 1984, 106, 452–454. (b) Lee, S. H.; Schwartz, J. “Stereospecific Synthesis of Alkenyl 
Fluorides (with Retention) via Organometallic Intermediates” J. Am. Chem. Soc. 1986, 108, 2445–2447. 
32  Kerr, W. J.; Morrison, A. J.; Pazicky, M.; Weber, T. “Modified Shapiro Reactions with 
Bismesitylmagnesium as an Efficient Base Reagent” Org. Lett. 2012, 14, 2250–2253. 
33 For the 4-piperidone trisylhydrazone, N-Bn and N-PMP protected substrates provided similar yields of 
fluoroalkene products. 
34 Schimmer, B. P., Funder, J. W. ACTH, Adrenal Steroids, and Pharmacology of the Adrenal Cortex. In 
Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 12th ed. [Online]; Brunton, L. L., 
Chabner, B. A., Knollmann, B. C., Eds.; McGraw-Hill: New York, 2011; Chapter 42, 
http://www.accesspharmacy.com/content.aspx?aID=16674048 (accessed July 12, 2013). 
 
 



 

54 
 

 

Chapter 2 Appendix 

Experimental Procedures and Spectral Analyses for Compounds in Chapter 2 

 

 

  



 

55 
 

Table of Contents 

General Information….............................................................................................................................56 

Preparation of 2,4,6-Triisopropylbenzenesulfonyl Hydrazide (TPSH)..................................................57 

General Procedure for Preparation of Trisyl Hydrazones via Ketone Condensation ..…………………..57 

Preparation of Trisyl Hydrazone 2.3h.......................................................................................................64 

Preparation of Trisyl Hydrazone 2.3i……………….……………………....…………………………...65 

Preparation of Trisyl Hydrazone 2.5c……………………….…………………………………………..66 

Preparation of Trisyl Hydrazone 2.5e…………………………………………………….……………..67 

Preparation of Trisyl Hydrazone 2.5f………………………...……….………………………………...68 

General Procedure for the Shapiro Fluorination of Trisyl Hydrazones 2.1a, 2.3a–i and 2.5a–f………..70 

One-Pot Sequence Converting Ketones to Fluoroalkenes 2.8a–c……………………………………..78 

References for Chapter 2 Experimental Section…………………………..…................…………………79 

 

 

   



 

56 
 

General Information 

Unless otherwise noted, reactions were performed under nitrogen atmosphere using oven-dried glassware. 

The Shapiro fluorination reactions were performed in the round-bottom flasks, which were sealed with 

three-way valves for transferring nitrogen and reagents, and all other reactions were performed in round-

bottom flasks that were sealed with rubber septa. Stainless steel syringes were used to transfer air- and 

moisture-sensitive liquid reagents. Unless otherwise noted, reagents purchased from commercial sources 

were used without further purification. THF was dried by passage through activated alumina columns. All 

alkyllithium bases were titrated prior to each reaction using diphenylacetic acid as an indicator.1 

Reactions were monitored by thin-layer chromatography (TLC) on UNIPLATE Silica Gel HLF plates, 

visualizing with fluorescence quenching, KMnO4 solution, nihydrins, or ceric ammonium molybdate 

solution (CAM). 19F NMR yields reported in the manuscript represent an average of at least two 

independent runs. Isolated yields reported in the manuscript represent either the result of one purification, 

or of an average of two independent purifications. Yields reported in the supporting information refer to a 

single experiment. Proton nuclear magnetic resonance (1H NMR) spectra, carbon nuclear magnetic 

resonance (13C NMR) spectra were recorded on Bruker 400 AVANCE spectrometer (400 and 100 MHz, 

respectively) or Bruker 500 AVANCE spectrometer (500 and 125 MHz, respectively). Chemical shifts () 

for protons are reported in parts per million downfield from tetramethylsilane and are referenced to proton 

resonance of residual CHCl3 in the NMR solvent (CHCl3 = 7.27 ppm). Chemical shifts () for carbon are 

reported in parts per million downfield from tetramethylsilane, and are referenced to the carbon 

resonances of the solvent residual peak (CDCl3 = 77.23 ppm). Fluorine nuclear magnetic resonance (19F 

NMR) spectra were recorded on a Bruker 400 AVANCE spectrometer (376 MHz); chemical shifts () are 

reported in parts per millions, and are referenced to ,,-trifluorotoluene (= –63.72 ppm). NMR data 

are represented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = 

quartet, quin = quintet, sept = septet, m = multiplet), coupling constant in Hertz (Hz), integration. High-

resolution mass data were recorded on a high-resolution mass spectrometer in the ESI mode. Infrared 
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spectra were measured at a Shimadzu FTIR-8400S Fourier Transform Infrared Spectrometer. Melting 

points were uncorrected and measured on Thomas Hoover Capillary Melting Point apparatus. 

Preparation of 2,4,6-Triisopropylbenzenesulfonyl Hydrazide (TPSH)2 

Using a syringe pump, hydrazine (2.3 mL, 2.2 mmol) was added dropwise over a period of 15 min to a 

pre-cooled solution of 2,4,6-triisopropylbenzenesulfonyl chloride (10 g, 33 mmol) in THF (30 mL) at –

10 °C (ice-salt freezing mixture). The reaction solution was warmed to 0 °C, and stirred for additional 3 h 

at this temperature. Water (15 mL) was added to dissolve the precipitated solids. The products were then 

transferred to a separation funnel. The organic layer was separated, and the aqueous layer was extracted 

with ether (2 x 30 mL). The organic layers were washed with ice-cold brine (2 x 30 mL), dried over 

anhydrous Na2SO4, filtered, and then concentrated under reduced pressure below room temperature 

(25 °C). Pentane was added to the solid obtained, and the mixture was sonicated at rt for 3 min until fine 

solids formed. The solid was collected by filtration, washed with cold pentane, and dried in vacuo to give 

TPSH as a colorless solid (9.6 g, 97%). 1H NMR (CDCl3, 400 MHz)  7.21 (s, 2 H), 5.52 (s, 1 H), 4.16 

(sept, J = 6.7 Hz, 2 H), 3.65 (br, 2 H), 2.92 (sept, J = 6.9 Hz, 1 H), 1.28 (d, J = 6.7 Hz, 12 H), 1.27 (d, J = 

6.9 Hz, 6 H) ppm. 13C NMR (CDCl3, 125 MHz)  154.0, 152.0, 128.9, 124.2, 34.4, 30.0, 25.1, 23.7 ppm. 

HRMS (ESI, m/z): calcd for C15H27N2O2S [M+H]+ 299.1793, found 299.1794. 

General Procedure for Preparation of Trisyl Hydrazones via Ketone Condensation 

A ketone (1.0 equiv) was added to a suspension of 2,4,6-triisopropylbenzenesulfonyl hydrazide TPSH (> 

1.0 equiv) in THF or MeOH (generally c = 1.0 M) at room temperature, and stirred for several hours 

(generally 1–5 h) under N2. In some cases (hindered substrates), the addition of several drops of 

concentrated HCl or the heating facilitated the reaction.  

Workup A: The reaction was quenched with a solution of aqueous NaHCO3, and the aqueous layer was 

extracted with dichloromethane. The combined organic layers were dried over anhydrous Na2SO4, and 

concentrated to provide the crude product. The residue was triturated with MeOH (or a minimal amount 
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of CH2Cl2 and a large amount of pentane) and sonicated until white solid precipitated. The solid was 

filtered, washed with pentane, and dried in vacuo. 

Workup B: The extraction procedure was the same as workup A, but the crude products were purified by 

column chromatography using gradient elution. 

Workup C: The solvent was removed under reduced pressure, and the residue dissolved in MeOH or 

pentane/CH2Cl2, and sonicated until solids precipitated. The solid was filtered, washed with pentane and 

dried in vacuo. (In some cases, compounds were purified by column chromatography using gradient 

elution). 

 

(E)-N'-(1-([1,1'-biphenyl]-4-yl)ethylidene)-2,4,6-triisopropylbenzenesulfonohydrazide (2.1a) 

The general procedure was followed using TPSH (3.35 g, 11.2 mmol), 4-phenylacetophenone (2.00 g, 

10.2 mmol), and 4 drops of HCl with THF (0.010 L) as solvent for 1.5 h at rt. Workup A (precipitation in 

MeOH) afforded the title compound 2.1a as a colorless solid (4.46 g, 92%). 1H NMR (CDCl3, 400 MHz) 

 7.74–7.72 (m, 3 H), 7.60–7.54 (m, 4 H), 7.46–7.43 (m, 2 H), 7.38–7.34 (m, 1 H), 7.19 (s, 2 H), 4.35 

(sept, J = 6.7 Hz, 2 H), 2.91 (sept, J = 6.9 Hz, 1 H), 2.22 (s, 3 H), 1.32 (d, J = 6.7 Hz, 12 H), 1.26 (d, J = 

6.9 Hz, 6 H) ppm. 13C NMR (CDCl3, 125 MHz)  153.6, 151.6, 150.6, 142.4, 140.5, 136.4, 131.6, 129.0, 

127.8, 127.2, 127.0, 126.9, 124.0, 34.4, 30.2, 25.1, 23.7, 13.3 ppm. IR (film) 3225, 2959, 1599, 1383, 

1362, 1331, 1313, 1165, 1153, 1059, 1038, 910, 841, 766, 704, 660 cm-1. HRMS (ESI, m/z): calcd for 

C29H36N2O2SNa [M+Na]+ 499.2395, found 499.2387. mp 164–165 °C. 

 

(E)-2,4,6-triisopropyl-N'-(1-(4-morpholinophenyl)ethylidene)benzenesulfonohydrazide (2.3a) 
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The general procedure was followed using TPSH (1.74 g, 5.84 mmol), 4-morpholinoacetophenone (1.00 

g, 4.87 mmol) and 4 drops of HCl with MeOH (4.50 mL) as solvent for 6.0 h at rt. Workup B followed by 

chromatographic purification (CH2Cl2/MeOH) provided the title compound 2.3a as a colorless solid (1.41 

g, 60%). 1H NMR (CDCl3, 400 MHz)  7.58 (d, J = 9.0 Hz, 2 H), 7.42 (s, 1 H), 7.16 (s, 2 H), 6.81 (d, J = 

9.0 Hz, 2 H), 4.32 (sept, J = 6.8 Hz, 2 H), 3.85 (t, J = 4.8 Hz, 4 H), 3.19 (t, J = 4.8 Hz, 4 H), 2.89 (sept, J 

= 6.9 Hz, 1 H), 2.13 (s, 3 H), 1.30 (d, J = 6.8 Hz, 12 H), 1.25 (d, J = 6.9 Hz, 6 H) ppm. 13C NMR (CDCl3, 

125 MHz)  153.4, 152.2, 151.5, 150.9, 131.8, 128.7, 127.6, 123.9, 114.6, 66.9, 48.7, 34.4, 30.2, 25.0, 

23.7, 13.0 ppm. IR (film) 3180, 2959, 2864, 1603, 1518, 1425, 1377, 1331, 1306, 1232, 1167, 928, 739, 

704 cm-1. HRMS (ESI, m/z): calcd for C27H39N3O3SNa [M+Na]+ 508.2610, found 508.2596. mp 186 °C 

(dec). 

 

(E)-2,4,6-triisopropyl-N'-(1-(4-(methylthio)phenyl)ethylidene)benzenesulfonohydrazide (2.3b) 

The general procedure was followed using TPSH (1.97 g, 6.62 mmol), 4-(methylthio)acetophenone (1.00 

g, 6.02 mmol) with MeOH (7.00 mL) as solvent for 6.0 h at rt. Workup C (precipitation in MeOH) 

provided the title compound 2.3b as a light yellow solid (2.39 g, 89%). 1H NMR (CDCl3, 400 MHz)  

7.56 (d, J = 8.0 Hz, 2 H), 7.49 (s, 1 H), 7.17 (s, 2 H), 7.16 (d, J = 8.0 Hz, 2 H), 4.30 (sept, J = 6.8 Hz, 2 

H), 2.90 (sept, J = 6.9 Hz, 1 H), 2.48 (s, 3 H), 2.14 (s, 3 H), 1.30 (d, J = 6.8 Hz, 12 H), 1.25 (d, J = 6.9 Hz, 

6 H) ppm. 13C NMR (CDCl3, 125 MHz)  153.5, 151.6, 150.3, 140.7, 134.2, 131.6, 126.8, 125.8, 124.0, 

34.4, 30.2, 25.0, 23.7, 15.6, 13.1 ppm. IR (film) 3227, 2959, 1599, 1383, 1310, 1165, 1153, 1059, 910, 

820, 770, 675 cm-1. HRMS (ESI, m/z): calcd for C24H34N2O2S2Na [M+Na]+ 469.1959, found 469.1955. 

mp 143–144 °C. 
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(E)-2,4,6-triisopropyl-N'-(1-(4-methoxyphenyl)ethylidene)benzenesulfonohydrazide (2.3c)3 

The general procedure was followed using TPSH (2.20 g, 7.33 mmol), p-methoxyacetophenone (1.00 g, 

6.66 mmol), 2 drops of HCl with THF (0.010 L) as solvent for 5.0 h at rt. Workup A (precipitation in 

pentane/CH2Cl2) provided the title compound 2.3c as a colorless solid (2.59 g, 90%). 1H NMR (CDCl3, 

400 MHz)  7.61–7.59 (m, 3 H), 7.17 (s, 2 H), 6.83 (d, J= 9.0 Hz, 2 H), 4.32 (sept, J = 6.8 Hz, 2 H), 3.81 

(s, 3 H), 2.90 (sept, J = 6.9 Hz, 1 H), 2.15 (s, 3 H), 1.30 (d, J = 6.8 Hz, 12 H), 1.25 (d, J = 6.9 Hz, 6 H) 

ppm.13C NMR (CDCl3, 125 MHz)  160.9, 153.5, 151.6, 150.9, 131.7, 130.2, 127.9, 124.0, 113.7, 55.5, 

34.4, 30.2, 25.0, 23.7, 13.2 ppm. HRMS (ESI, m/z): calcd for C24H34N2O3SNa [M+Na]+ 453.2188, found 

453.2187. 

 

(E)-2,4,6-triisopropyl-N'-(1-(3-methoxyphenyl)ethylidene)benzenesulfonohydrazide (2.3d) 

The general procedure was followed using TPSH (2.09 g, 6.99 mmol), m-methoxyacetophenone (1.00 g, 

6.66 mmol) with MeOH (7.00 mL) as solvent for 3.0 h at rt. Workup C (precipitation in MeOH) provided 

the title compound 2.3d as a colorless solid (2.44 g, 85%). 1H NMR (CDCl3, 400 MHz)  7.61 (s, 1 H), 

7.23–7.17 (m, 5 H), 6.88 (dt, J = 7.3, 2.0 Hz, 1 H), 4.31 (sept, J = 6.8 Hz, 2 H), 3.77 (s, 3 H), 2.89 (sept, J 

= 6.9 Hz, 1 H), 2.16 (s, 3 H), 1.30 (d, J = 6.8 Hz, 12 H), 1.25 (d, J = 6.9 Hz, 6 H) ppm. 13C NMR (CDCl3, 

125 MHz)  159.7, 153.5, 151.5, 150.5, 139.1, 131.5, 129.3, 124.0, 119.1, 115.4, 111.8, 55.4, 34.4, 30.1, 

23.7, 13.5 ppm. IR (film) 3246, 2961, 2928, 1597, 1585, 1462, 1467, 1364, 1329, 1232, 1165, 1155, 1059, 

856, 785, 721, 663 cm-1. HRMS (ESI, m/z): calcd for C24H34N2O3SNa [M+Na]+ 453.2188, found 

453.2194. mp 147–148 °C. 
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(E)-N'-(1-(4-chlorophenyl)ethylidene)-2,4,6-triisopropylbenzenesulfonohydrazide (2.3e) 

The general procedure was followed using TPSH (2.12 g, 7.12 mmol), 4'-chloroacetophenone (1.00 g, 

6.47 mmol) with THF (6.00 mL) as solvent for 3.0 h at rt. Workup A (precipitation in pentane/CH2Cl2) 

provided the title compound 2.3e as a colorless solid (0.900 g, 32%). 1H NMR (CDCl3, 400 MHz)  7.66 

(br, 1 H), 7.57 (dd, J = 1.9, 6.8 Hz, 2 H), 7.28 (dd, J = 6.8, 1.9 Hz, 2 H), 7.18 (s, 2 H), 4.30 (sept, J = 6.8 

Hz, 2 H), 2.90 (sept, J = 6.9 Hz, 1 H), 2.15 (s, 3 H), 1.30 (d, J = 6.8 Hz, 12 H), 1.25 (d, J = 6.9 Hz, 6 H) 

ppm. 13C NMR (CDCl3, 125 MHz)  153.7, 151.6, 149.5, 136.1, 135.6, 131.5, 128.6, 127.7, 124.0, 34.4, 

30.2, 25.0, 23.7, 13.3 ppm. IR (film) 3244, 2961, 2926, 1599, 1462, 1383, 1362, 1331, 1306, 1265, 1165, 

1099, 908, 831, 739, 679 cm-1. HRMS (ESI, m/z): calcd for C23H31ClN2O2SNa [M+Na]+ 457.1692, found 

457.1689. mp 150–151 °C. 

 

(E)-N'-(3,4-dihydronaphthalen-1(2H)-ylidene)-2,4,6-triisopropylbenzenesulfonohydrazide (2.3f)4 

The general procedure was followed using TPSH (2.24 g, 7.52 mmol), alpha-tetralone (1.00 g, 6.84 mmol) 

with MeOH (7.00 mL) as solvent for 5.0 h at rt. Workup C (precipitation in MeOH) provided the title 

compound 2.3f as a colorless solid (1.40 g, 48%). 1H NMR (CDCl3, 400 MHz)  7.94 (dd, J = 7.9, 1.0 Hz, 

1 H), 7.50 (s, 1 H), 7.23 (ddd, J = 7.4, 7.4, 1.4 Hz, 1 H), 7.17 (s, 2 H), 7.16–7.09 (m, 2 H), 4.32 (sept, J = 

6.8 Hz, 2 H), 2.90 (sept, J = 6.9 Hz, 1 H), 2.74 (t, J = 6.0 Hz, 2 H), 2.46 (t, J = 6.6 Hz, 2 H), 1.97–1.90 (m, 

2 H), 1.32 (d, J = 6.8 Hz, 12 H), 1.25 (d, J = 6.9 Hz, 6 H) ppm. 13C NMR (CDCl3, 125 MHz)  153.4, 

151.6, 150.8, 139.7, 132.0, 131.8, 129.4, 128.5, 126.3, 125.3, 123.9, 34.3, 30.2, 29.5, 25.5, 25.0, 23.7, 

21.6 ppm. HRMS (ESI, m/z): calcd for C25H34N2O2SNa [M+Na]+ 449.2239, found 449.2237. 
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(E)-N'-(1,2-diphenylethylidene)-2,4,6-triisopropylbenzenesulfonohydrazide (2.3g)5 

The general procedure was followed using TPSH (1.67 g, 5.60 mmol), deoxybenzoin (1.00 g, 5.09 mmol), 

4 drops of HCl with THF (0.010 L) as solvent for 1.5 h at rt. Workup A (precipitation in pentane/CH2Cl2) 

provided the title compound 2.3g as a colorless solid (1.14 g, 48%). 1H NMR (CDCl3, 400 MHz)  7.72 

(d, J = 8.0 Hz, 2 H), 7.59 (s, 1 H), 7.35–7.27 (m, 6 H), 7.18–7.15 (m, 4 H), 4.13 (sept, J = 6.8 Hz, 2 H), 

4.06 (s, 2 H), 2.90 (sept, J = 7.0 Hz, 1 H), 1.25 (d, J = 7.0 Hz, 6 H), 1.23 (d, J = 6.8 Hz, 12 H) ppm. 13C 

NMR (CDCl3, 125 MHz)  153.6, 152.9, 151.8, 137.3, 134.1, 131.6, 129.8, 129.7, 128.5, 128.1, 127.6, 

126.8, 124.0, 34.4, 33.6, 30.4, 25.1, 23.7 ppm. HRMS (ESI, m/z): calcd for C29H36N2O2SNa [M+Na]+ 

499.2395, found 499.2392. 

 

(E)-2,4,6-triisopropyl-N'-(2-phenylcyclohexylidene)benzenesulfonohydrazide (2.5a) 

The general procedure was followed using TPSH (1.72 g, 5.76 mmol), 2-phenylcyclohexanone (1.00 g, 

5.74 mmol), 4 drops of HCl with MeOH (6.00 mL) as solvent for 3.0 h at rt. Workup C (precipitation in 

MeOH) provided the title compound 2.5a as a colorless solid (2.09 g, 80%). 1H NMR (CDCl3, 400 MHz) 

 7.45 (s, 1 H), 7.18 (s, 2 H), 7.12–7.05 (m, 3 H), 6.87 (d, J = 6.5 Hz, 2 H), 4.18 (sept, J = 6.7 Hz, 2 H), 

3.60 (t, J = 5.0 Hz, 1 H), 2.95 (sept, J = 6.9 Hz, 1 H), 2.35–2.24 (m, 2 H), 2.00–1.88 (m, 2 H), 1.78–1.60 

(m, 4 H), 1.30 (dd, J = 6.9, 2.1 Hz, 6 H), 1.21 (d, J = 6.7 Hz, 6 H), 1.18 (d, J = 6.8 Hz, 6 H) ppm. 13C 

NMR (CDCl3, 125 MHz)  160.2, 153.2, 151.4, 140.2, 131.7, 128.3, 127.6, 126.2, 123.8, 47.9, 34.4, 30.8, 

29.9, 25.9, 24.9, 23.8, 22.5 ppm. IR (film) 3232, 2955, 2359, 1643, 1599, 1427, 1393, 1327, 1263, 1167, 
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1009, 926, 883, 729, 702, 669 cm-1. HRMS (ESI, m/z): calcd for C27H39N2O2S [M+H]+ 455.2732, found 

455.2747. mp 130–131 °C. 

 

(E)-2,4,6-triisopropyl-N'-((1S,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-

ylidene)benzenesulfonohydrazide (2.5b)6 

The general procedure was followed using TPSH (2.16 g, 7.23 mmol), camphor (1.00 g, 6.57 mmol), 2 

drops of HCl with acetonitrile (0.010 L) as solvent for 6.0 h at rt. Workup C (precipitation in 

pentane/CH2Cl2) provided the title compound 2.5b as a colorless solid (0.860 g, 30%). 1H NMR (CDCl3, 

400 MHz)  7.15 (s, 2 H), 6.97 (br, 1 H), 4.21 (sept, J = 6.8 Hz, 2 H), 2.91 (sept, J = 6.9 Hz, 1 H), 2.23 

(dt, J = 16.6, 3.6 Hz, 1 H), 1.96 (t, J = 4.4 Hz, 1 H), 1.85–1.78 (m, 1 H), 1.73 (d, J = 16.7 Hz, 1 H), 1.63 

(td, J = 12.2, 4.2, 1 H), 1.28–1.25 (m, 19 H), 1.17–1.10 (m, 1 H), 0.87 (d, J = 1.5 Hz, 6 H), 0.62 (s, 3 H) 

ppm. 13C NMR (CDCl3, 125 MHz)  169.1, 153.1, 151.5, 131.7, 123.7, 53.0, 48.1, 44.2, 34.3, 33.8, 32.5, 

30.0, 27.4, 25.0, 23.7, 19.5, 18.8, 11.1 ppm HRMS (ESI, m/z): calcd for C25H40N2O2SNa [M+Na]+ 

455.2708, found 455.2692. 

 

N'-(1-benzylpiperidin-4-ylidene)-2,4,6-triisopropylbenzenesulfonohydrazide (2.5d) 

The general procedure was followed using TPSH (0.870 g, 2.90 mmol), N-benzyl-4-piperidone (0.500 g, 

2.64 mmol) and 2 drops of HCl with THF (3.00 mL) as solvent for 3.5 h at rt. Workup B followed by 

chromatographic purification (CH2Cl2/MeOH) provided the title compound 2.5d as a colorless solid 

(0.800 g, 65%). 1H NMR (CDCl3, 400 MHz)  7.73 (br, 1 H), 7.30–7.22 (m, 5 H), 7.15 (s, 2 H), 4.24 (sept, 

J = 6.7 Hz, 2 H), 3.48 (s, 2 H), 2.89 (sept, J = 6.9 Hz, 1 H), 2.50 (t, J = 5.7 Hz, 2 H), 2.46 (t, J = 5.7 Hz, 2 
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H), 2.36–2.31 (m, 4 H), 1.24 (d, J = 6.6 Hz, 18 H) ppm. 13C NMR (CDCl3, 125 MHz)  156.9, 153.1, 

151.4, 138.2, 131.6, 129.0, 128.4, 127.3, 123.8, 62.4, 53.5, 52.0, 34.6, 34.2, 29.9, 26.7, 24.9, 23.7 ppm. IR 

(film) 3236, 2959, 2868, 1599, 1458, 1425, 1364, 1319, 1165, 1151, 1032, 739, 698, 660 cm-1. HRMS 

(ESI, m/z): calcd for C27H39N3O2SNa [M+Na]+ 492.2661, found 492.2638. mp 136–138 °C. 

Preparation of Trisyl Hydrazone 2.3h 

   

(E)-2,4,6-triisopropyl-N'-(1-phenylethylidene)benzenesulfonohydrazide (2.3h')4 

The general procedure was followed using TPSH (5.96 g, 20.0 mmol), acetophenone (2.00 g, 16.7 mmol) 

with MeOH (0.020 L) as solvent for 3.0 h at rt. Workup C (precipitation in MeOH) provided the title 

compound 2.3h' as a colorless solid (4.75 g, 71%). 1H NMR (CDCl3, 400 MHz)  7.75 (br, 1 H), 7.66–

7.63 (m, 2 H), 7.34–7.29 (m, 3 H), 7.18 (s, 2 H), 4.33 (sept, J = 6.8 Hz, 2 H), 2.90 (sept, J = 6.9 Hz, 1 H), 

2.18 (s, 3 H), 1.31 (d, J = 6.8 Hz, 12 H), 1.25 (d, J = 6.9 Hz, 6 H) ppm. 13C NMR (CDCl3, 125 MHz)  

153.6, 151.6, 150.9, 137.6, 131.6, 129.6, 128.4, 126.5, 124.0, 34.4, 30.2, 25.0, 23.7, 13.3 ppm. HRMS 

(ESI, m/z): calcd for C23H32N2O2SNa [M+Na]+ 423.2082, found 423.2086. 

(E)-2,4,6-triisopropyl-N'-(1-phenylnonylidene)benzenesulfonohydrazide (2.3h) 

n-BuLi (2.26 ml, 5.50 mmol) was added dropwise via syringe pump over a period of 15 min to a cooled 

solution of 2.3h' (1.00 g, 2.50 mmol) in THF (12.5 mL) at –78 °C. The reaction solution was stirred at –

78 °C for 30 min, and then 1-bromoheptane (0.590 ml, 3.75 mmol) was added dropwise to the solution 

over a period of 5 min at –78 °C. The resulting solution was stirred at –78 °C for 1 h. Water was added at 

–78 °C, and then the solution was allowed to warm to rt. The aqueous layer was extracted with EtOAc (2 

x 0.015 L), and combined organic layer was dried over anhydrous Na2SO4 and concentrated. The crude 

product was purified by column chromatography using gradient hexane / ethyl acetate for elution to 

afford the compound 2.3h as a colorless solid (1.50 g, 60%). 1H NMR (CDCl3, 400 MHz)  7.65–7.62 (m, 
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3 H), 7.34–7.28 (m, 3 H), 7.17 (s, 2 H), 4.29 (sept, J = 6.8 Hz, 2 H), 2.90 (sept, J = 6.9 Hz, 1 H), 2.57 (t, J 

= 7.9 Hz, 2 H), 1.56–1.49 (m, 2 H), 1.44–1.36 (m, 2 H), 1.30 (d, J = 6.8 Hz, 12 H), 1.25 (d, J = 6.9 Hz, 6 

H), 1.36–1.24 (m, 8 H), 0.89 (t, J = 6.9 Hz, 3 H) ppm. 13C NMR (CDCl3, 125 MHz)  154.6, 153.5, 151.7, 

136.9, 131.6, 129.7, 129.5, 128.4, 127.1, 126.6, 124.0, 123.9, 38.4, 34.4, 32.0, 30.2, 29.5, 29.3, 27.0, 26.0, 

25.1, 23.7, 22.8, 21.4 ppm. IR (film) 3196, 2957, 2928, 1599, 1464, 1383, 1317, 1165, 1153, 941, 922, 

764, 692, 662 cm-1. HRMS (ESI, m/z): calcd for C30H46N2O2SNa [M+Na]+ 521.3178, found 521.3162. mp 

97–98 °C. 

Preparation of Trisyl Hydrazone 2.3i 

 

(E)-N'-(1,3-diphenylpropylidene)-2,4,6-triisopropylbenzenesulfonohydrazide (2.3i) 

n-BuLi (3.40 ml, 8.18 mmol) was added dropwise to a solution of 2.3h' (1.49 g, 3.72 mmol) in THF (20.0 

mL) over a period of 15 min at –78 °C via syringe pump. The reaction solution was stirred at –78 °C for 1 

h, and then benzyl bromide (0.670 ml, 5.58 mmol) was added dropwise to the solution over a period of 5 

min at –78 °C. The resulting solution was stirred at –78 °C for 1.5 h, water was added at –78 °C, and then 

the solution was recovered to rt. The aqueous layer was extracted with EtOAc (2 x 0.015 L), and 

combined organic layer was dried over anhydrous Na2SO4 and concentrated. The crude product was 

purified by column chromatography using gradient hexane / ethyl acetate for elution to afford the 

compound 2.3i as a colorless solid (1.25 g, 69%). 1H NMR (CDCl3, 400 MHz)  7.68–7.65 (m, 2 H), 7.47 

(s, 1 H), 7.37–7.28 (m, 6 H), 7.24–7.22 (m, 2 H), 7.17 (s, 2 H), 4.30 (sept, J = 6.8 Hz, 2 H), 2.93–2.82 (m, 

5 H), 1.30 (d, J = 6.8 Hz, 12 H), 1.25 (d, J = 6.9 Hz, 6 H) ppm. 13C NMR (CDCl3, 125 MHz)  153.5, 

151.8, 140.3, 136.6, 131.4, 129.6, 129.0, 128.5, 128.4, 126.9, 126.6, 124.0, 34.4, 31.8, 30.2, 29.0, 25.1, 

23.7 ppm. IR (film) 3233, 2961, 2928, 1599, 1458, 1425, 1383, 1315, 1165, 1153, 1036, 916, 740, 694, 
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660 cm-1. HRMS (ESI, m/z): calcd for C30H38N2O2SNa [M+Na]+ 513.2552, found 513.2540. mp 155–

157 °C. 

Preparation of Trisyl Hydrazone 2.5c 

   

(E)-N'-(1-cyclohexylethylidene)-2,4,6-triisopropylbenzenesulfonohydrazide (2.5c')7 

The general procedure was followed using TPSH (1.28 g, 4.29 mmol), 1-cyclohexylethanone (0.540 g, 

4.29 mmol with MeOH (4.00 mL) as solvent for 5.0 h at rt. Workup C (precipitation in MeOH) provided 

the title compound 2.5c' as a colorless solid (1.33 g, 76%). 1H NMR (CDCl3, 400 MHz)  7.16 (s, 3 H), 

4.21 (sept, J = 6.7 Hz, 2 H), 2.91 (sept, J = 6.9 Hz, 1 H), 2.10–2.05 (m, 1 H), 1.73 (s, 3 H), 1.67–1.59 (m, 

5 H), 1.28–1.25 (m, 18 H), 1.22–1.08 (m, 5 H) ppm. 13C NMR (CDCl3, 125 MHz)  159.7, 153.2, 151.4, 

131.8, 123.7, 46.8, 34.3, 30.0, 26.2, 26.0, 25.0, 23.7, 14.0 ppm. HRMS (ESI, m/z): calcd for C23H42N3O2S 

[M+NH4]+ 424.2998, found 424.2990. 

(E)-N'-(1-cyclohexyl-3-phenylpropylidene)-2,4,6-triisopropylbenzenesulfonohydrazide (2.5c) 

n-BuLi (0.480 ml, 1.08 mmol) was added dropwise to a solution of 2.5c' (0.200 g, 0.490 mmol) in THF 

(2.50 mL) over a period of 5 min at –78 °C via syringe pump. The reaction solution was stirred at –78 °C 

for 1 h, and then benzyl bromide (0.090 ml, 0.735 mmol) was added dropwise to the solution over a 

period of 2 min at –78 °C. The resulting solution was stirred at –78 °C for 1 h. Water was added at –78 °C, 

and then the solution was allowed to warm to rt. The aqueous layer was extracted with EtOAc (2 x 0.003 

L), and combined organic layer was dried over anhydrous Na2SO4 and concentrated. The crude product 

was purified by column chromatography using gradient hexane / ethyl acetate for elution to afford the 

compound 2.5c as a colorless solid (0.155 g, 64%). 1H NMR (CDCl3, 400 MHz)  7.34–7.31 (m, 2 H), 

7.25–7.23 (m, 1 H), 7.20–7.14 (m, 5 H), 4.19 (sept, J = 6.7 Hz, 2 H), 2.92 (sept, J = 6.9 Hz, 1 H), 2.78–

2.74 (m, 2 H), 2.43–2.39 (m, 2 H), 2.01 (br, 1 H), 1.67–1.60 (m, 5 H), 1.27 (d, J = 6.7 Hz, 12 H), 1.26 (d, 
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J = 6.9 Hz, 6 H), 1.19–1.11 (m, 5 H) ppm. 13C NMR (CDCl3, 125 MHz)  162.3, 153.3, 151.6, 140.5, 

131.7, 128.9, 128.3, 126.8, 123.7, 45.8, 34.4, 31.2, 30.6, 30.5, 30.1, 26.2, 25.1, 23.8 ppm. IR (film) 3236, 

2959, 2928, 2866, 1601, 1454, 1383, 1323, 1163, 1153, 941, 881, 746, 700, 660 cm-1. HRMS (ESI, m/z): 

calcd for C30H44N2O2SNa [M+Na]+ 519.3021, found 519.3018. mp 135–136 °C. 

Preparation of Trisyl Hydrazone 2.5e 

 

(S)-1-benzyl-N-methoxy-N-methylpyrrolidine-2-carboxamide (2.5e″) 

(L)–N-Benzyl–proline (2.98 g, 15.5 mmol) was suspended in CH2Cl2 (0.070 L), and HN(OMe)Me•HCl 

(1.42 g, 14.5 mmol), diisopropylethylamine (2.40 mL, 14.5 mmol) and EDCI (2.78 g, 14.5 mmol) were 

added into the reaction mixture sequentially at 0 °C. The resulting reaction solution was stirred at 0 °C for 

2 h, and then water was added to quench the reaction. The organic layer was collected, and the aqueous 

layer was extracted further with CH2Cl2 (2 x 0.030 L). The combined organic layer was dried over 

anhydrous Na2SO4, concentrated, and the residue was purified by column chromatography using gradient 

MeOH in CH2Cl2 (2% to 5%) for elution to offer 2.5e″ as a liquid (1.41 g, 39%). 1H NMR (CDCl3, 400 

MHz)  7.36–7.22 (m, 5 H), 3.94 (d, J = 12.8 Hz, 1 H), 3.57–3.56 (m, 4 H), 3.55 (d, J = 12.8 Hz, 1 H), 

3.17 (s, 3 H), 3.13–3.08 (m, 1 H), 2.44 (q, J = 8.2 Hz, 1 H), 2.19–2.10 (m, 1 H), 1.96–1.75 (m, 3 H) ppm. 

13C NMR (CDCl3, 125 MHz)  175.0, 138.5, 129.4, 128.1, 127.0, 62.0, 61.2, 58.0, 53.0, 32.4, 29.1, 23.0 

ppm.IR (film) 2964, 2939, 2874, 2359, 2341, 1663, 1454, 1387, 1312, 1177, 999, 745, 700 cm-1. HRMS 

(ESI, m/z): calcd for C14H21N2O2 [M+H]+ 249.1603, found 249.1591. 

(S)-1-(1-benzylpyrrolidin-2-yl)ethanone (2.5e')8 

2.5e″ (1.34 g, 5.40 mmol) was dissolved in dry ether (0.050 L) and cooled to 0 °C. Methylmagnesium 

bromide (2.52 mL, 7.56 mmol) was added dropwise into the solution over 10 min at 0 °C. The solution 

was stirred at this temperature for 1 h and quenched with NH4Cl (sat'd). The organic layer was collected 
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and the aqueous layer was extracted further with EtOAc (2 x 0.025 L). The combined organic layer was 

dried over anhydrous Na2SO4, concentrated, and the residue was purified by column chromatography 

using gradient MeOH in CH2Cl2 (2% to 4%) for elution to offer 2.5e' as a liquid (0.930 g, 85%). 1H NMR 

(CDCl3, 400 MHz)  7.35–7.24 (m, 5 H), 3.82 (d, J = 13.0 Hz, 1 H), 3.45 (d, J = 13.0 Hz, 1 H), 3.13–3.07 

(m, 2 H), 2.33–2.27 (m, 1 H), 2.15 (s, 3 H), 2.13–2.06 (m, 1 H), 1.90–1.76 (m, 3 H) ppm. HRMS (ESI, 

m/z): calcd for C13H18NO [M+H]+ 204.1388, found 204.1392. 

(S,E)-N'-(1-(1-benzylpyrrolidin-2-yl)ethylidene)-2,4,6-triisopropylbenzenesulfonohydrazide (2.5e) 

The general procedure was followed using TPSH (1.39 g, 4.65 mmol), 2.5e' (0.860 g, 4.23 mmol) with 

THF (4.5 mL) as solvent for 4.0 h at rt. Workup B followed by chromatographic purification 

(CH2Cl2/MeOH) provided the title compound 2.5e as a colorless solid (1.79 g, 88%). 1H NMR (CDCl3, 

400 MHz)  7.34 (s, 1 H), 7.23–7.18 (m, 3 H), 7.14 (s, 2 H), 7.06 (dd, J = 7.6, 2.1 Hz, 2 H), 4.26 (sept, J 

= 6.7 Hz, 2 H), 3.44 (d, J = 13.4 Hz, 1 H), 3.04–3.01 (m, 2 H), 2.93–2.88 (m, 1 H), 2.84 (sept, J = 6.9 Hz, 

1 H), 2.12 (q, J = 8.4 Hz, 1 H), 1.92–1.82 (m, 1 H), 1.76 (s, 3 H), 1.75–1.61 (m, 3 H), 1.30 (d, J = 6.7 Hz, 

6 H), 1.25 (d, J = 6.8 Hz, 6 H), 1.18 (t, J = 6.7 Hz, 6 H) ppm. 13C NMR (CDCl3, 125 MHz)  157.3, 153.3, 

151.4, 138.9, 131.5, 129.0, 128.2, 126.9, 123.8, 69.6, 57.6, 53.2, 34.3, 30.0, 28.7, 25.1, 25.0, 23.6, 23.3, 

10.7 ppmIR (film) 3231, 2959, 2868, 2359, 2341, 1599, 1458, 1425, 1383, 1364, 1323, 1165, 1153, 

1038, 912, 739, 698, 667 cm-1. HRMS (ESI, m/z): calcd for C28H41N3O2SNa [M+Na]+ 506.2817, found 

506.2793. mp 134–135 °C. 

Preparation of Trisyl Hydrazone 2.5f 

 

(3S,10R,13S)-3-((tert-butyldiphenylsilyl)oxy)-10,13-dimethyl-3,4,7,8,9,10,11,12,13,14,15,16-

dodecahydro-1H-cyclopenta[a]phenanthren-17(2H)-one (2.5f')9 
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(+)-Dehydroepiandrosterone (0.300 g, 1.04 mmol) was dissolved in dry DMF (0.010 L) at rt, and then 

imidazole (177 mg, 2.60 mmol) was added at 0 °C. The resulting solution was stirred at 0 °C for 15 min, 

and then TBDPSCl (0.540 mL, 2.08 mmol) was added dropwise. The solution was stirred at 50 °C 

overnight. A solution of saturated NH4Cl (5.0 mL) was added at rt and stirred for additional 30 min. DMF 

was removed under reduced pressure, and the aqueous layer was extracted with EtOAc (3 x 5 mL). The 

organic layer was dried over anhydrous NaSO4, concentrated and purified by column chromatography 

using gradient elution (EtOAc/hexanes) to furnish 2.5f' as a colorless foam (500 mg, 91%). 1H NMR 

(CDCl3, 400 MHz)  7.71–7.68 (m, 4 H), 7.42–7.38 (m, 6 H), 5.17 (d, J = 5.3 Hz, 1 H), 3.59–3.52 (m, 1 

H), 1.48–2.45 (m, 17 H), 1.27–1.19 (m, 2 H), 1.08 (s, 9 H), 1.03 (s, 3 H), 0.87 (s, 3 H) ppm. HRMS (ESI, 

m/z): calcd for C35H47O2Si [M+H]+ 527.3345, found 527.3337. 

(E)-N'-((3S,10R,13S)-3-((tert-butyldiphenylsilyl)oxy)-10,13-dimethyl-3,4,7,8,9,11,12,13,15,16-

decahydro-1H-cyclopenta[a]phenanthren-17(2H,10H,14H)-ylidene)-2,4,6-

triisopropylbenzenesulfonohydrazide (2.5f) 

The general procedure was followed using TPSH (401 mg, 1.34 mmol), 2.5f' (590 mg, 1.12 mmol) with 

THF (1.0 mL) as solvent for 6.0 h at 40 °C. Workup C followed by chromatographic purification (EtOAc 

/ hexanes) provided the title compound 2.5f as a colorless solid (230 mg, 25%). 1H NMR (CDCl3, 400 

MHz)  7.69–7.66 (m, 4 H), 7.44–7.35 (m, 6 H), 7.15 (s, 2 H), 6.92 (s, 1 H), 5.12–5.11 (m, 1 H), 4.19 

(sept, J = 6.7 Hz, 2 H), 3.54–3.48 (m, 1 H), 2.90 (sept, J = 6.9 Hz, 1 H), 2.19–2.35 (m, 2 H), 2.04–2.15 (m, 

2 H), 1.94–1.96 (m, 1 H), 1.76–1.86 (m, 2 H), 1.69–1.36 (m, 8 H), 1.27–1.24 (m, 19 H), 1.06–0.97 (m, 13 

H), 0.86–0.80 (m, 2 H), 0.73 (s, 3 H) ppm. 13C NMR (CDCl3, 125 MHz)  169.8, 153.2, 151.5, 141.7, 

136.0, 135.0, 131.7, 129.7, 127.7, 123.7, 120.6, 73.3, 53.9, 50.4, 44.8, 42.6, 37.3, 36.8, 34.3, 33.8, 32.0, 

31.5, 31.4, 30.1, 27.2, 26.0, 25.1, 25.0, 23.8, 23.6, 20.6, 19.6, 19.3, 16.8 ppm. IR (film) 3441, 2959, 2932, 

2359, 1653, 1636, 1427, 1381, 1325, 1165, 1153, 1109, 1086, 741, 702, 667 cm-1. HRMS (ESI, m/z): 

calcd for C50H74N3O3SSi [M+NH4]+ 824.5220, found 824.5190. mp 117–118 °C. 
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General Procedure for the Shapiro Fluorination of Trisyl Hydrazones 2.1a, 2.3a–i, 2.5a–f 

An oven-dried round bottom flask was charged with the trisylhydrazone 2.1a, 2.3a–i, and 2.5a–f (1.0 

equiv) and a magnetic stir bar. The reaction vessel was equipped with a three-way valve, evacuated and 

backfilled with nitrogen. Dry THF (c = 0.20 M) was added and the mixture was stirred at room 

temperature until the trisylhydrazone dissolved. The solution was cooled to –78 °C, and then base (2.2 

equiv) was added dropwise to the stirred solution. The resulting solution was stirred at –78 °C for 30 min 

to generate the dianion, and then at 0 °C for 20 min to release N2. Subsequently, the reaction was cooled 

to –78 °C, and then a solution of NFSI (1.5 equiv, c = 0.49 ~ 0.5 M in THF) was added dropwise over 2 

min. Additional THF (0.1 mL) was used to wash the vial, and added successively. The resulting solution 

was stirred at –78 °C for 30 min, and then at rt for 2 h. A 1 N solution of ,,-trifluorotoluene in EtOAc 

(100 µL, 0.10 mmol) was added as an internal standard, and the resulting mixture was stirred at rt for 5 

min. After standing for 3 min, an aliquot of the upper clear solution was removed and subjected to 19F 

NMR analysis to determine the yield of fluoroalkene  2.2a, 2.4a–i, and 2.6a–f. After the 19F NMR analysis, 

the NRM sample was returned to the bulk of the reaction mixture, and the combined mixture was 

concentrated under reduced pressure. The resulting residue was added to a solution of NaHCO3 (1.0 mL), 

stirred, and extracted with ether (3 x 5 mL). (In some cases, EtOAc was used for extraction.) The organic 

layers were dried over anhydrous Na2SO4, and concentrated. Purification by flash chromatography 

provided the desired product. 

 

4-(1-fluorovinyl)-1,1'-biphenyl (2.2a) 

The general procedure was followed using 2.1a (119 mg, 0.250 mmol), n-BuLi (0.240 mL, 0.550 mmol), 

and NFSI (118 mg, 0.375 mmol). Workup and chromatographic purification (hexanes) provided the title 

compound 2.2a as a colorless solid (38.4 mg, 75%). 1H NMR (CDCl3, 400 MHz)  7.67–7.62 (m, 6 H), 
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7.50–7.46 (m, 2 H), 7.41–7.38 (m, 1 H), 5.10 (dd, J = 49.7, 3.5 Hz, 1 H), 4.90 (dd, J = 17.8, 3.5 Hz, 1 H) 

ppm. 13C NMR (CDCl3, 125 MHz)  163 (d, J = 248.5 Hz), 142.3, 140.5, 131.1 (J = 29.3 Hz), 129.1, 

127.9, 127.4, 127.2, 125.3 (J = 6.9 Hz), 89.8 (J = 22.3 Hz) ppm. 19F NMR (CDCl3, 376 MHz)  –107.9 

(dd, 3JF–H = 49.6, 18.1 Hz, 1 F) ppm. IR (film) 2359, 2341, 1647, 1404, 1292, 928, 843, 766, 689 cm-1. 

HRMS (ESI, m/z): calcd for C14H11FNa [M+Na]+ 221.0742, found 221.0748. mp 120–121 °C. 

 

4-(4-(1-fluorovinyl)phenyl)morpholine (2.4a) 

The general procedure was followed using 2.3a (121 mg, 0.250 mmol), n-BuLi (0.240 mL, 0.550 mmol), 

and NFSI (86.7 mg, 0.275 mmol). Workup and chromatographic purification (2% EtOAc in hexanes) 

provided the title compound 2.4a as a colorless solid (35.0 mg, 68%). 1H NMR (CDCl3, 400 MHz)  7.48 

(d, J = 8.8 Hz, 2 H), 6.89 (d, J = 8.5 Hz, 2 H), 4.87 (dd, J = 50.4, 3.4 Hz, 1 H), 4.71 (dd, J = 18.2, 3.4 Hz, 

1 H), 3.87 (t, J = 4.9 Hz, 4 H), 3.22 (t, J = 4.9 Hz, 4 H) ppm. 13C NMR (CDCl3, 125 MHz)  163.3 (d, J = 

247.1 Hz), 152.0, 125.9 (d, J = 7.0 Hz), 123.4 (d, J = 29.8 Hz), 114.9 (d, J = 1.5 Hz), 87.2 (d, J = 22.8 

Hz), 66.9, 48.8 ppm. 19F NMR (CDCl3, 376 MHz)  –107.7 (dd, 3JF–H = 50.4, 18.1 Hz, 1 F) ppm. IR (film) 

2856, 2359, 1645, 1518, 1279, 1265, 1123, 920, 849, 822 cm-1. HRMS (ESI, m/z): calcd for C12H15FNO 

[M+H]+ 208.1138, found 208.1129. mp 111–112 °C. 

F

MeS
2.4b

 

(4-(1-fluorovinyl)phenyl)(methyl)sulfane (2.4b) 

The general procedure was followed using 2.3b (223 mg, 0.500 mmol), n-BuLi (0.470 mL, 1.10 mmol), 

and NFSI (237 mg, 0.750 mmol). Workup and chromatographic purification (hexanes) provided the title 

compound 2.4b as a light yellow solid (60.0 mg, 67%). 1H NMR (CDCl3, 400 MHz)  7.48 (d, J = 8.4 Hz, 
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2 H), 7.24 (d, J = 8.4 Hz, 2 H), 4.99 (dd, J = 49.9, 3.5 Hz, 1 H), 4.82 (dd, J = 17.9, 3.5 Hz, 1 H), 2.51 (s, 3 

H) ppm. 13C NMR (CDCl3, 125 MHz)  162.8 (d, J = 248 Hz), 140.6, 128.8 (d, J = 29.6 Hz), 126.1 (d, J 

= 1.5 Hz), 125.1 (d, J = 7.0 Hz), 89.1 (d, J= 22.6 Hz), 15.6 ppm. 19F NMR (CDCl3, 376 MHz)  –108.1 

(dd, 3JF–H = 50.0, 18.1 Hz, 1 F) ppm. IR (film) 2922, 2361, 1647, 1493, 1396, 1288, 1107, 922, 821, 739 

cm-1. HRMS (ESI, m/z): calcd for C9H9FSNa [M+Na]+ 191.0307, found 191.0316. mp 48–49 °C.

MeO

F

2.4c
 

1-(1-fluorovinyl)-4-methoxybenzene (2.4c)10 

The general procedure was followed using 2.3c (215 mg, 0.500 mmol), n-BuLi (0.490 mL, 1.10 mmol), 

and NFSI (237 mg, 0.750 mmol). Workup and chromatographic purification (hexanes) provided the title 

compound 2.4c as a colorless liquid (41.0 mg, 54%). 1H NMR (CDCl3, 400 MHz)  7.50 (d, J = 8.8 Hz, 2 

H), 6.90 (d, J = 8.7 Hz, 2 H), 4.89 (dd, J = 50.2, 3.4 Hz, 1 H), 4.74 (dd, J = 18.1, 3.4 Hz, 1 H), 3.84 (s, 3 

H) ppm. 19F NMR (CDCl3, 376 MHz)  –107.2 (dd, 3JF–H = 50.0, 18.1 Hz, 1 F) ppm. HRMS (ESI, m/z): 

calcd for C9H13FON [M+NH4]+ 170.0981, found 170.0977. 

 

1-(1-fluorovinyl)-3-methoxybenzene (2.4d)11 

The general procedure was followed using 2.3d (86.1 mg, 0.200 mmol), n-BuLi (0.220 mL, 0.500 mmol), 

and NFSI (110 mg, 0.350 mmol). Workup and chromatographic purification (hexanes) provided the title 

compound 2.4d as a colorless liquid (13.0 mg, 43%). 1H NMR (CDCl3, 400 MHz)  7.32–7.28 (m, 1 H), 

7.17 (d, J = 7.8 Hz, 1 H), 7.10–7.09 (m, 1 H), 6.92 (dd, J = 8.2, 2.6 Hz, 1 H), 5.04 (dd, J = 49.6, 3.5 Hz, 1 

H), 4.87 (dd, J = 17.8, 3.5 Hz, 1 H), 3.84 (s, 3 H) ppm. 19F NMR (CDCl3, 376 MHz)  –107.4 (dd, 3JF–H = 

49.6, 18.1 Hz, 1 F) ppm. HRMS (ESI, m/z): calcd for C9H10FO [M+H]+ 153.0716, found 153.0720. 
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1-chloro-4-(1-fluorovinyl)benzene (2.4e)12 

The general procedure was followed using 2.3e (218 mg, 0.500 mmol), n-BuLi (0.470 mL, 1.10 mmol), 

and NFSI (237 mg, 0.750 mmol). Workup and chromatographic purification (hexanes) provided the title 

compound 2.4e as a colorless liquid (60.0 mg, 67%). 1H NMR (CDCl3, 400 MHz)  7.50 (d, J = 8.7 Hz, 2 

H), 7.36 (d, J = 8.7 Hz, 2 H), 5.03 (dd, J = 49.4, 3.6 Hz, 1 H), 4.89 (dd, J = 17.8, 3.6 Hz, 1 H) ppm. 19F 

NMR (CDCl3, 376 MHz)  –107.9 (dd, 3JF–H = 49.3, 17.7 Hz, 1 F) ppm. HRMS (ESI, m/z): calcd for 

C8H6ClFNa [M+Na]+ 179.0040, found 179.0032.

 

4-fluoro-1,2-dihydronaphthalene (2.4f)13 

The general procedure was followed using 2.3f (213 mg, 0.500 mmol), n-BuLi (0.470 mL, 1.10 mmol), 

and NFSI (237 mg, 0.750 mmol). Workup and chromatographic purification (hexanes) provided the title 

compound 2.4f as a colorless liquid (37.0 mg, 50%). 1H NMR (CDCl3, 400 MHz)  7.39–7.37 (m, 1 H), 

7.26–7.20 (m, 2 H), 7.17–7.15 (m, 1 H), 5.49 (dt, J = 14.0, 4.6 Hz, 1 H), 2.84 (t, J = 8.1 Hz, 2 H), 2.44–

2.37 (m, 2 H) ppm. 19F NMR (CDCl3, 376 MHz)  –127.0 (ddt, 3JF–H = 13.9 Hz, 4JF–H = 5.1, 2.1 Hz, 1 F) 

ppm. HRMS (ESI, m/z): calcd for C10H9FNa [M+Na]+ 171.0586, found 171.0593. 

 

(Z)-(1-fluoroethene-1,2-diyl)dibenzene (2.4g)14 
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The general procedure was followed using 2.3g (238 mg, 0.500 mmol), s-BuLi (1.00 mL, 1.10 mmol), 

and NFSI (237 mg, 0.750 mmol). Workup and chromatographic purification (hexanes) provided the title 

compound 2.4g as a colorless solid (82.3 mg, 83%). 1H NMR (CDCl3, 400 MHz)  7.69–7.67 (m, 4 H), 

7.46–7.37 (m, 5 H), 7.31–7.27 (m, 1 H), 6.34 (d, J = 39.5 Hz, 1 H) ppm. 19F NMR (CDCl3, 376 MHz)  –

114.2 (d, 3JF–H = 39.9 Hz, 1 F) ppm. HRMS (ESI, m/z): calcd for C14H11FNa [M+Na]+ 221.0742, found 

221.0749. 

  

(Z)-(1-fluoronon-1-en-1-yl)benzene (2.4h)15 

The general procedure was followed using 2.3h (249 mg, 0.500 mmol), n-BuLi (0.45 mL, 1.10 mmol), 

and NFSI (237 mg, 0.750 mmol). Workup and chromatographic purification (hexanes) provided the title 

compound 2.4h as a colorless liquid (85.3 mg, 77%).16  1H NMR (CDCl3, 400 MHz)  7.52–7.50 (m, 2 H), 

7.38–7.28 (m, 3 H), 5.41 (dt, J = 37.6, 7.6 Hz, 1 H), 2.32–2.26 (m, 2 H), 1.50–1.23 (m, 10 H), 0.90 (t, J = 

6.8 Hz, 3 H) ppm. 19F NMR (CDCl3, 376 MHz)  –121.5 (d, 3JF–H (trans) = 37.2 Hz, 1 F, Z isomer), –102.8 

(d, 3JF–H (cis) = 22.9 Hz, 1 F, E isomer) ppm. HRMS (ESI, m/z): calcd for C15H21FNa [M+Na]+ 243.1525, 

found 243.1531. 

 

(Z)-(1-fluoroprop-1-ene-1,3-diyl)dibenzene (2.4i)17 

The general procedure was followed using 2.3i (245 mg, 0.500 mmol), n-BuLi (0.49 mL, 1.10 mmol), 

and NFSI (237 mg, 0.750 mmol). Workup and chromatographic purification (hexanes) provided the title 

compound 2.4i as a colorless liquid (46.0 mg, 43%).16 1H NMR (CDCl3, 400 MHz)  7.56–7.22 (m, 10 H), 

5.61 (dt, J = 36.3, 7.7 Hz, 1 H), 3.66 (dd, J = 7.7, 1.4 Hz, 2 H) ppm. 19F NMR (CDCl3, 376 MHz)  –
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121.0 (d, 3JF–H (trans) = 36.5 Hz, 1 F, Z isomer), –100.1 (d, 3JF–H (cis) = 21.4 Hz, 1 F, E isomer) ppm. HRMS 

(ESI, m/z): calcd for C15H13FNa [M+Na]+ 235.0899, found 235.0891. 

Ph

F

2.6aA
 

6-fluoro-2,3,4,5-tetrahydro-1,1'-biphenyl (2.6aA) 

The general procedure was followed using 2.5a (114 mg, 0.250 mmol), t-BuLi (0.400 mL, 0.550 mmol), 

and NFSI (118 mg, 0.375 mmol). Workup and chromatographic purification (hexanes) provided 

compound 2.6aA as a colorless liquid (29.0 mg, 61%). 1H NMR (CDCl3, 400 MHz)  7.43–7.41 (m, 2 H), 

7.37–7.32 (m, 2 H), 7.26–7.21 (m, 1 H), 2.46–2.40 (m, 2 H), 2.39–2.34 (m, 2 H), 1.87–1.80 (m, 2 H), 

1.78–1.71 (m, 2 H) ppm. 13C NMR (CDCl3, 125 MHz)  155.8 (d, J = 257 Hz), 137.8, 128.2, 127.9 (d, J 

= 4.3 Hz), 126.8, 113.7 (d, J = 6.9 Hz), 28.4 (d, J = 4.4 Hz), 26.7 (d, J = 23.9 Hz), 23.0 (d, J = 9.5 Hz), 

22.9 ppm. 19F NMR (CDCl3, 376 MHz)  –104.0 (s, 1 F) ppm. IR (film) 2934, 1686, 1493, 1445, 1360, 

1117, 760, 696 cm-1. HRMS (ESI, m/z): calcd for C12H14F [M+H]+ 177.1080, found 177.1078. 

 

(1S,4S)-2-fluoro-1,7,7-trimethylbicyclo[2.2.1]hept-2-ene (2.6b) 

The general procedure was followed using 2.5b (433 mg, 1.00 mmol), s-BuLi (1.64 mL, 2.20 mmol), and 

NFSI (473 mg, 1.50 mmol). Workup and chromatographic purification (pentane) provided compound 

2.6b as a colorless liquid (68.0 mg, 44%). 1H NMR (CDCl3, 500 MHz)  4.96 (d, J = 3.6 Hz, 1 H), 2.32–

2.28 (m, 1 H), 1.91–1.85 (m, 1 H), 1.64–1.59 (m, 1 H), 1.34–1.29 (m, 1 H), 1.16–1.11 (m, 1 H), 1.00 (s, 3 

H), 0.94 (s, 3 H), 0.76 (s, 3 H) ppm. 13C NMR (CDCl3, 125 MHz)  168.4 (d, J = 293.6 Hz), 103.2 (d, J = 

2.1 Hz), 56.3 (d, J = 3.6 Hz), 52.2 (d, J = 17.6 Hz), 49.0 (d, J = 6.0 Hz), 31.5 (d, J = 4.1 Hz), 26.7 (d, J = 
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3.5 Hz), 20.0, 19.6, 9.3 ppm. 19F NMR (CDCl3, 376 MHz)  –131.7 (s, 1 F) ppm. HRMS (ESI, m/z): calcd 

for C10H15FNa [M+Na]+ 177.1055, found 177.1053. 

 

(E)-(3-cyclohexyl-3-fluoroallyl)benzene (2.6c) 

The general procedure was followed using 2.5c (124 mg, 0.250 mmol), n-BuLi (0.240 mL, 0.550 mmol), 

and NFSI (118 mg, 0.375 mmol). Workup and chromatographic purification (hexanes) provided 

compound 2.6c (E) as a colorless liquid (25.0 mg, 46%).16 1H NMR (CDCl3, 400 MHz)  7.33–7.29 (m, 2 

H), 7.24–7.19 (m, 3 H), 5.12 (dt, J = 22.000, 8.2 Hz, 1 H), 3.33 (d, J = 8.2 Hz, 2 H), 2.51 (dtt, J = 30.8, 

11.9, 3.4 Hz, 1 H), 1.84–1.80 (m, 2 H), 1.74–1.70 (m, 3 H), 1.59–1.49 (m, 2 H), 1.34–1.15 (m, 3 H) ppm. 

13C NMR (CDCl3, 125 MHz)  164 (d, J = 249.6 Hz), 140.8, 128.7, 128.3, 126.3, 102.8 (d, J = 24.4 Hz), 

37.4 (d, J = 26 Hz), 31.4 (d, J = 10.1 Hz), 29.6, 26.3, 25.9 ppm. 19F NMR (CDCl3, 376 MHz)  –114.6 

(dd, J = 30.8, 22.2 Hz, 1 F, E isomer), –113.8 (dd, J = 38.0, 13.9 Hz, 1 F, Z isomer) ppm. IR (film) 2930, 

2855, 1693, 1493, 1450, 1148, 1130, 735, 696 cm-1. HRMS (ESI, m/z): calcd for C15H19FNa [M+Na]+ 

241.1368, found 241.1366. 

 

1-benzyl-4-fluoro-1,2,3,6-tetrahydropyridine (2.6d) 

The general procedure was followed using 2.5d (117 mg, 0.250 mmol), n-BuLi (0.240 mL, 0.550 mmol), 

and NFSI (118 mg, 0.375 mmol). Workup and chromatographic purification (10% ether in hexanes) 

provided compound 2.6d as a colorless liquid (11.0 mg, 23%). 1H NMR (CDCl3, 400 MHz)  7.36–7.28 

(m, 5 H), 5.17 (dtt, J = 15.0, 7.1, 1.2 Hz, 1 H), 3.63 (s, 2 H), 3.04–3.01 (m, 2 H), 2.69 (td, J = 5.8, 2.1 Hz, 

2 H), 2.34–2.31 (m, 2 H) ppm. 13C NMR (CDCl3, 125 MHz)  158.4 (d, J = 256 Hz), 138.4, 129.2, 128.5, 
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127.4, 100.5 (d, J = 14.6 Hz), 62.0 (d, J = 2.5 Hz), 50.3 (d, J = 9.1 Hz), 49.5 (d, J = 10.1 Hz), 26.7 (d, J = 

22.4 Hz) ppm. 19F NMR (CDCl3, 376 MHz)  –104.3 (d, J = 15.4 Hz, 1 F) ppm. IR (film) 2928, 2802, 

1713, 1454, 1375, 1119, 1028, 741, 700 cm-1. HRMS (ESI, m/z): calcd for C12H15FN [M+H]+ 192.1189, 

found 192.1186. 

 

(S)-1-benzyl-2-(1-fluorovinyl)pyrrolidine (2.6e) 

The general procedure was followed using 2.5e (121 mg, 0.250 mmol), n-BuLi (0.230 mL, 0.550 mmol), 

and NFSI (118 mg, 0.375 mmol). Workup and chromatographic purification (hexanes) provided 

compound 2.6e as a colorless liquid (37.0 mg, 72%). 1H NMR (CDCl3, 400 MHz)  7.26–7.17 (m, 5 H), 

4.60 (dd, J = 17.1, 2.5 Hz, 1 H), 4.52 (dd, J = 49.7, 2.5 Hz, 1 H), 4.02 (d, J = 13.1 Hz, 1 H), 3.25 (d, J = 

13.1 Hz, 1 H), 3.07–2.99 (m, 1 H), 2.91 (t, J = 7.9 Hz, 1 H), 2.18 (q, J = 8.6 Hz, 1 H), 2.01–1.84 (m, 2 H), 

1.80–1.66 (m, 2 H) ppm. 13C NMR (CDCl3, 125 MHz)  166.8 (d, J = 258.8 Hz), 139.4, 129.0, 128.4, 

127.1, 91.1 (d, J = 18.8 Hz), 64.5 (d, J = 29.1 Hz), 58.3, 53.4, 29.3, 23.0 ppm. 19F NMR (CDCl3, 376 

MHz)  –108.3 (dt, J = 49.6, 17.7 Hz, 1 F) ppm. IR (film) 2970, 2797, 1672, 1495, 1454, 1277, 1202, 910, 

854, 739, 698 cm-1. HRMS (ESI, m/z): calcd for C13H16FNNa [M+Na]+ 228.1164, found 228.1158. 

 

tert-butyl(((3S,10R,13S)-17-fluoro-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-

cyclopenta[a]phenanthren-3-yl)oxy)diphenylsilane (2.6f) 

The general procedure was followed using 2.5f (121 mg, 0.150 mmol), n-BuLi (0.150 mL, 0.330 mmol), 

and NFSI (71 mg, 0.225 mmol). Workup and chromatographic purification (hexanes) provided compound 

2.6f as a colorless liquid (29.0 mg, 38%). 1H NMR (CDCl3, 400 MHz)  7.70–7.67 (m, 4 H), 7.45 –7.35 
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(m, 6 H), 5.15 (d, J = 5.3 Hz, 1 H), 4.88–4.87 (m, 1 H), 3.58–3.50 (m, 1 H), 2.38–2.32 (m, 1 H), 2.18–

2.13 (m, 1 H), 2.06–1.99 (m, 1 H), 1.97–1.80 (m, 2 H), 1.77–1.67 (m, 3 H), 1.65–1.57 (m, 2 H), 1.52–

1.46 (m, 2 H), 1.41–1.34 (m, 1 H), 1.27 (br, 1 H), 1.07 (s, 9 H), 1.03 (s, 3 H), 0.97 (s, 3 H), 0.96–0.83 (m, 

3 H) ppm. 13C NMR (CDCl3, 125 MHz)  172.0 (d, J = 287.1 Hz), 141.9, 136.0, 135.0, 129.7 (d, J = 2.3 

Hz), 127.7 (d, J = 2.8 Hz), 120.8, 100.7 (d, J = 10.1 Hz), 73.4, 54.8 (d, J = 5.6 Hz), 50.9, 42.7, 42.5, 37.3, 

36.9, 33.0, 32.1, 30.8, 30.1, 27.2, 27.1 (d, J = 7.0 Hz), 20.4, 19.5, 19.4, 15.3 (d, J = 4.0 Hz) ppm. 19F 

NMR (CDCl3, 376 MHz)  –131.9 (d, J = 4.5 Hz, 1 F) ppm. IR (film) 2932, 2856, 1651, 1462, 1427, 

1371, 1109, 799, 739, 702, 613, 509 cm-1. HRMS (ESI, m/z): calcd for C35H45FOSiNa [M+Na]+ 551.3121, 

found 551.3145. 

One-Pot Sequence Converting Ketones to Fluoroalkenes 2.8a–c 

An oven-dried round flask (25 mL) was charged with ketone 2.7a–c (0.50 mmol), TPSH (0.50 mmol) and 

a magnetic stir bar. The reaction vessel was equipped with a three-way valve, evacuated and backfilled 

with nitrogen. A pre-prepared stock solution of TFA (0.050 mmol) in THF (1.0 mL) was added and the 

reaction mixture was stirred at rt for 1.5 h. Then, the reaction solution was diluted with additional THF 

(1.5 mL) followed by the addition of activated 4Å molecular sieves (400 mg) and stirred at rt for 10 min. 

The solution was cooled to –78 °C, and then n-BuLi (1.5 mmol) was added dropwise into the pre-cooled 

and stirred solution at –78 °C. The resulting solution was stirred at –78 °C for 30 min to generate the 

dianion and at 0 °C for 20 min to release N2. Subsequently, the reaction solution was cooled to –78 °C, 

and then a solution of NFSI (0.75 mmol, c = 0.50 M in THF) was added dropwise over 4 min. Additional 

THF (0.1 mL) was used to wash the vial, and added successively. The resulting solution was stirred at –

78 °C for 30 min, and then at rt for 2 h. 0.50 N ,,-trifluorotoluene in EtOAc (200 µL, 0.10 mmol) was 

added as an internal standard and the resulting mixture was stirred at rt for 5 min. After standing for 3 min, 

an aliquot of the upper clear solution was removed and subjected to 19F NMR analysis to determine yields 

of fluoroalkene 2.8a–c. 
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Chapter 3. Palladium-Catalyzed Decarboxylative Benzylation of 

 ,-Difluoroketone Enolates 

3.1 Introduction to ,-Difluoroketones 

      The ,-difluoroketone represents a privileged substructure in medicinal chemistry, and serves as 

inhibitors to many hydrolytic enzymes, such as serine and aspartyl proteases.1 For this substructure, the 

electron-withdrawing difluorinated group increases electrophilicity of the carbonyl group and encourages 

rehybridization of the sp2-hybridized C=O to form sp3-hybridized hydrates or hemi-hydrates (Figure 3.1).2 

In the hydrates, sp3-hybridized carbon forms more stable bonding with electron-deficient fluorinated 

groups based on Bent’s rule, which requires that an atom uses more p-character in forming a bond with an 

electronegative substituent. Thus, the equilibrium constant shifts toward the direction of hydrates. The 

stabilized tetrahedral hydrate intermediates mimic the transition state of hydrolytic processes catalyzed by 

proteases and inhibit enzymes from acting on their peptide substrates. This tendency of favorable 

rehybridization to generate stabilized tetrahedral intermediates enables ,-difluoroketones an important 

motif in the design of protease inhibitors. 
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      In serine proteases, the hydroxyl group of serine amino acids attacks the carbonyl group of an amide 

bond on the substrates to form a tetrahedral intermediate, and then the collapse of the intermediate cleaves 

an amide bond and regenerates the enzymes (Figure 3.2A). Similarly, ,-difluoroketone-bearing 

inhibitors react with the nucleophilic hydroxyl residue of serine proteases to covalently form a stabilized 

intermediate that is trapped in the active site through interactions with surrounding residues of the 

proteases, and inhibit the enzymes through reversible covalent interactions (Figure 3.2B).1,3  

 

      In aspartyl proteases, a water molecule activated by two aspartyl residues in the active site of the 

enzymes attacks carbonyl group of an amide bond on the substrates to form a tetrahedral intermediate, 

and then the collapse of the intermediate cleaves an amide bond and releases the water molecule (Figure 

3.3A). For ,-difluoroketone inhibitors, the activated water molecule reacts with the carbonyl group of 

,-difluoroketones to form a long-lasting stabilized adduct, which occupies in the active site of aspartyl 

proteases and prevents the peptide substrates from entering the hydrolytic site. Herein, ,-

difluoroketones react with a water molecule and inhibit aspartyl proteases via non-covalent H-bonding 

networks (Figure 3.3B).1,3a  
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      Based on these mechanisms, ,-difluoroketones serve as inhibitors of hydrolytic enzymes, some of 

which exhibit subnanomolar Ki constants, including inhibitors of HIV proteases, human renin, and 

acetylcholinesterases (Figure 3.4).3,4  
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      Furthermore, this substructure can be introduced into natural products,5a and in inhibitors of non-

protease targets that provide distinct pharmacological profiles (Figure 3.5).5b–f Additionally, this 

substructure can serve as an intermediate for further functionalization; for example, olefination reaction to 

generate ,-difluoroalkenes in the structure of arginine vasopressin antagonists (Figure 3.5).5g  

 

3.2 Literature Review to Access ,-Difluoroketones 

      Few efficient methods have been developed for introducing the ,-difluoroketone motif on the 

molecules. Current methods to access ,-difluoroketones focus on the manipulation of building blocks, 

deoxyfluorination and electrophilic fluorination, and most of them possess several limitations, including 

long synthetic sequences, the use of harsh reagents, and narrow substrate scope, which impede their 

universal applications in accessing therapeutic candidates. 

      3.2.1 Building Block Strategy 

      The building block strategy is a common method to access ,-difluoroketone derivatives in 

medicinal chemistry. This method uses commercially available halodifluoroacetates as difluoromethyl 

synthons to access the final ,-difluoroketone targets via multistep synthetic transformations (Scheme 

3.1).5f,6 However, these conversions of functional groups cause a time- and labor-consuming process, 

which is a major disadvantage of this method.  
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      Difluoroenoxysilanes and difluorinated enol ethers are important reactants that enable access to ,-

difluoroketone derivatives through a variety of reactions (Scheme 3.2). For example, difluoroenoxysilanes 

serve as nucleophiles and react with protons (path a, Scheme 3.2),7a carbonyl groups (path b, Scheme 

3.2),7b imines (path b, Scheme 3.2),7c,d and carbon-based electrophiles in the presence of Lewis acids (path 

c, Scheme 3.2),7e,f to provide ,-difluoroketone derivatives. On the other hand, difluorinated enol ethers 

act as electrophiles and undergo SN2′ attack by Grignard reagents to generate enol ethers, which afford the 

,-difluoroketone products after acidic hydrolysis (path d, Scheme 3.2).7g Additionally, 

difluoroenoxysilanes are used as coupling components in transition metal-mediated coupling reactions 

(path e, Scheme 3.2), in which difluoroenoxysilanes act as nucleophiles to react with electrophiles,7h or to 

couple with nucleophiles in the presence of oxidants7i to form -substituted ,-difluoroketones. 

Moreover, difluoroenoxysilanes serve as fluorinated Danishefsky’s dienes in hetero Diels-Alder reactions 

and react with aldehydes and imines to generate N- and O-containing six-membered ,-difluoroketones 

(path f, Scheme 3.2).7j A recent report demonstrates the participation of difluoroenoxysilanes in radical 

addition reactions (path g, Scheme 3.2).7k In the reactions, difluoroenoxysilanes play a role of electron 

sink and receive a aryl radical generated from arene diazonium salts via a photo-initiated nitrogen-

releasing process. Subsequent oxidation of the resulting radicals followed by removal of a TMS group 

produce -arylated ,-difluoroketones. Conclusively, these versatile synthetic transformations, based on 

difluorinated enol (silyl) ethers, provide a variety of ,-difluoroketone-bearing molecules. 
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      3.2.2 Deoxyfluorination Strategy 

      This method utilizes deoxyfluorinating reagents to convert the carbonyl group C=O of 2-oxoacetic 

acid derivatives to the difluoromethylene CF2 group. Subsequent addition of organolithium or Grignard 

reagents to the resulting ,-difluoracetic acid derivatives provides ,-difluoroketone products (Scheme 

3.3).5d–e,8 However, the reactions require the use of strong deoxyfluorinating reagents, which are not 

compatible with many important functional groups and suffer from side reactions, such as eliminations, 

thus leading to limited substrate scope. 

 

      3.2.3 Electrophilic Fluorination Strategy 

      Electrophilic fluorination has been developed for synthesizing ,-difluoroketones from carbonyl 

compounds,9a,b imines,9c alkynes9d–f and activated aromatics9f,g using Selectfluor®, N-fluorosulfonimides, 
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CF3OF and FOSO2OCs as fluorinating reagents (Scheme 3.4). However, most of the reactions require the 

use of strong bases to facilitate difluorination of less reactive mono-carbonyl substrates (Scheme 3.4A), 

which are not suitable for base-sensitive and highly functionalized molecules. Although the use of imines 

and benzophenol derivatives provides ,-difluoroketones under mild conditions, extra synthetic steps 

are required to acquire these pre-functionalized precursors (Scheme 3.4B and 3.4D). These drawbacks 

detract its wide application in the late stage fluorination to access ,-difluoroketones. 

 

      3.2.4 Miscellaneous Strategies 

      Other methods, including nucleophilic fluorination of -diazo- and -hydrazone ketones (path a, 

Scheme 3.5),10a,b Brook rearrangement of the ,-difluoroacylsilanes with primary diazoalkanes (path b, 

Scheme 3.5),10c radical addition of halodifluoroketone to alkenes (path c, Scheme 3.5),10d and Claisen 

rearrangement of the vinylsilanes or -stannanes followed by fluoride-mediated alkylation or Stille 
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coupling (path d, Scheme 3.5)10e provided a variety of ,-difluoroketone products. Recently, different 

types of reactions have been created for accessing -aryl and -alkyl substituted ,-difluoroketones, 

such as desulfurization-fluorination (path e, Scheme 3.5),10f transition metal-catalyzed coupling reactions 

of the difluoromethyl ketones with aryl halides (path f, Scheme 3.5),10g,h difluorohomologation of ketones 

(path g, Scheme 3.5),10i and addition of difluoroalkyl anions to esters (path h, Scheme 3.5).10j However, 

most of these reactions are illustrated by the limited examples, characterized by a narrow range of 

substrates, thus they are not extensively applied in preparing ,-difluoroketone derivatives.  

 

      3.2.5 Strategies to Access -Benzyl-,-difluoroketones 

      Despite the many methods described above that have been reported in synthesizing ,-

difluoroketones, most of them rely on multiple transformations to access the final targets, which are not 

convergent strategies. Furthermore, efficient methods to generate -alkyl-,-difluoroketones are less 

explored. Several alternative strategies for accessing -benzyl-,-difluoroketones have been developed, 
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including: 1) deoxyfluorination of -ketoesters using strong fluorinating reagents, followed by addition of 

organolithium or Grignard reagents to the resulting ,-difluoroester (Scheme 3.6A), for which the strong 

bases and harsh reagents destroy many functional groups;5d 2) 1,2-addition of -lithio-,-difluorovinyl 

ethers to aldehydes/ketones followed by cyclization of the resulting alcohol (Scheme 3.6B), which only 

accesses a small subset of products;11a 3) 1,2-addition of ethyl halodifluoroacetate to aldehydes followed 

by deoxygenation (Scheme 3.6C);5f 4) a single radical addition reaction of an aldehyde to a (2,2-

difluorovinyl)benzene (Scheme 3.6D);11b and 5) a late-stage electrophilic difluorination of 

prefunctionalized imines using Selectfluor/NFSI followed by acid-mediated hydrolysis (Scheme 3.6E)-

not a convergent strategy,9c which also generates a mixture of fluorinated products for substrates bearing 

two sites capable of undergoing imine-enamine isomerization. However, none of these reactions 

convergently generate the -benzyl-,-difluoroketones. 
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3.3 Challenges to Access -Alkyl-,-Difluoroketones 

      A convergent preparation of -alkyl-,-difluoroketones would involve a transformation capable of 

generating a C()–C(sp3) bond, presumably by reacting a nucleophilic ,-difluoroketone enolate with an 

sp3-hybridized electrophile (Scheme 3.7).  

R2

O

F F
R1 R2

OM

F

F

R1
–

Scheme 3.7. Desired Retrosynthetic Disconnection of the Critical C( )–C(sp3) Bond

C(sp3)-electrophile
, -difluoroketone

enolate  

      Alkylation of ketone enolates with sp3-based electrophiles is a fundamental transformation for 

accessing a broad spectrum of -functionalized ketones.12 However, nucleophilic substitution reactions of 

,-difluorinated ketone enolates with sp3-based electrophiles have not been generally developed, 

because of two problems. First, chemoselective formation of ,-difluoroketone enolates presents 

challenges, because deprotonation of ,-difluoromethyl ketones produces enolates at the nonfluorinated 

position under both thermodynamic and kinetic conditions (Scheme 3.8A),13 and upon trapping, cannot 

afford -functionalized-,-difluoroketones. Second, ,-difluoroketone enolates possess unique 

physicochemical properties that preclude formation of the C()–C(sp3) bond. Specifically, the strong 

inductive effect of the two fluorine atoms 14 a decreases the charge density of an enolate at the -

position,14b and thus reduces the nucleophilicity of the anion and disfavors reactions with sp3-based 

electrophiles (Scheme 3.8B). As a result, ,-difluoroketone enolates react by SN2 reactions at the O to 

generate difluorovinyl ethers, instead of at C() (Scheme 3.8C).15 
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      Because of these two factors, only two manuscripts describe SN1- or SN2-like alkylation reactions of 

,-difluoroketones, and both require stoichiometric amount of metal reagents to promote the reactions 

(Scheme 3.9).16 

 

3.4 Palladium-Catalyzed Decarboxylative Difluoroalkylation to Access -Benzyl-,-difluoroketones 

      Because of the previously discussed challenges with forming ,-difluoroketone enolates by 

conventional base deprotonation and alkylation, an alternative strategy is necessary for accessing the 

reactive enolates. It has been reported that non-fluorinated ketone enolates can be generated in situ via a 

decarboxylative coupling process, which enables the regioselective formation of reactive enolate 
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nucleophiles that might be difficult to access otherwise,17 followed by a C–C bond-forming event. Thus, 

we predicted that a decarboxylative protocol could generate ,-difluoroketone enolates. Moreover, we 

assumed the low reactivity of ,-difluoroketone enolates could be overcome by a transition metal 

mediator that can link the nucleophilic enolate with the electrophile and facilitate the reaction. Combining 

these thoughts, a Pd-catalyzed decarboxylative strategy was explored to  address two major challenges 

associated with alkylation reactions of ,-difluoroketone enolates, and to generate -alkyl-,-

difluoroketones (Scheme 3.10). Although recently reported reactions have coupled ,-difluoroketone 

enolates with aryl halides,7h,10g,h rarely has a Pd-based catalytic system effectively promoted the alkylation 

reaction of ,-difluoroketone enolates. In this proposed reaction, a decarboxylative strategy would 

chemoselectively generate the appropriate ,-difluoroketone enolate, and the critical C()–C(sp3) bond 

would form by reductive elimination from a high-energy [LnPd(benzyl)(,-difluoroenolate)] 

intermediate (Scheme 3.10).  

 

      To begin the study, benzylic electrophiles were selected because they possess higher reactivity 

compared to alkyl electrophiles, and the ,-difluoroketone enolates would be generated in situ via 

decarboxylation of ,-difluoro--keto-esters. Thus, benzyl ,-difluoro--keto-esters were identified as 

test substrates, and they were prepared through four steps, comprising 1) Reformatsky addition of  ethyl 

bromodifluoroacetate to aldehydes; 2) oxidation of alcohols to ketones; 3) basic hydrolysis of ethyl esters; 

and 4) esterification of -keto-,-difluoroacetate with benzyl alcohols (Scheme 3.11). 
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      Initial screening was performed by Niusha Sharifi,18 who focused on the identification of appropriate 

ligands that form metal catalysts to activate the substrate, stabilize the [LnPd(benzyl)(,-difluoroenolate)] 

intermediate, and facilitate the C–C bond formation. Our screening identified certain 

biarylmonophosphine-based ligands derived from RuPhos, SPhos, PhXPhos, XPhos and BrettPhos 

scaffolds,19 and bidentate phosphine ligands such as Xantphos and DPEPhos that could generate the 

coupled product 3.2a in modest yields (Scheme 3.12A). Other ligands failed to produce at least 15% of 

the coupled product 3.2a (Scheme 3.12B). 



 

93 
 

 

      Subsequent thorough and systematic screening of palladium-based catalysts and precatalysts 

identified Pd(PPh3)4 as an efficient catalyst for the present transformation that afforded comparable yields 

as other systems containing Pd/ligands (entry 8, Table 3.1). After further optimization of solvent, 

temperature, Pd loading, and concentration, the final conditions [2.5% [Pd(PPh3)4]/o-xylene/120 °C] 

readily generated the desired -benzyl-,-difluoroketone (entry 15, Table 3.2), thus confirming our 

hypothesis that transition metal catalysis should form the critical C()–C(sp3) bond. 
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O

O O

F F

O

F F

Pd(PPh3)4 (X mol%)
solvent (M)

15 h, T (°C)

Pd (%) solvent T (°C) yield (%)a

5

5

5

5

5

5

5

toluene 110

DME 100

2-Me-THF 80

DMF 80

1,4-dioxane 100

CH3CN 80

o-xylene 120

o-xylene 1305

2.5

1.0

o-xylene

o-xylene

120

120

45

4

10

1

41

0

78

76

(74)

58

100

100

98

94

100

69

100

100

100

100

entry

1

2

3

4

5

6

7

8

9

10

a Yields were determined by GC using dodecane as an internal standard. The value in parentheses was
19F NMR yields using -trifluorotoluene as an internal standard.

b We acknowledged Niusha Sharifi for the initial screening of Pd-catalyzed difluorobenzylation.

conc. (M)

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

1.0

0.5

0.3

0.1

0.05

120

120

120

120

120

(55)

(70)

(75)

(87)

100

100

100

100

100

o-xylene

o-xylene

o-xylene

o-xylene

o-xylene

2.5

2.5

2.5

2.5

2.5

11

12

13

14

15

(66)

Table 3.2. Optimization of Pd(PPh3)4-Catalyzed Decarboxylative Difluorobenzylation

3.1a 3.2a

conv. (%)
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      As previously noted, alkylation reactions of ,-difluoroketone enolates suffer from two classical 

problems, namely, generation of the appropriate enolate13 and alkylation at C() instead of at O.15 

Although the example 3.2a (Table 3.2) confirms the ability of the palladium-catalyzed system to generate 

the C()–C(sp3) bond, the substrate 3.1a does not bear enolizable H-atoms at the nonfluorinated -

position of the ketone, and therefore cannot form a nonfluorinated enolate. As such, 3.1a does not confirm 

whether the Pd-catalyzed decarboxylative protocol would selectively generate the fluorinated ketone 

enolate. To address this concern, the reaction of aliphatic substrate 3.1b, which could theoretically 

decarboxylate and isomerize to generate the undesired enolate 3.1ba at nonfluorinated position (Scheme 

3.13), was explored. Subjection of 3.1b to [Pd(PPh3)4] at 140 °C, generated product 3.2b in 53% isolated 

yield, with no detectable products arising from alkylation at the nonfluorinated position (Scheme 3.13). 

Thus, the present decarboxylative reaction overcomes both previously presented challenges associated 

with alkylation reactions of ,-difluoroketone enolates. 

 

      A variety of substrates bearing electron-rich, -neutral, and -deficient benzylic moieties underwent the 

decarboxylative reaction to generate -benzyl-,-difluoroketones (Scheme 3.14). Generally, the 

optimized conditions converted electron-rich, and -neutral substrates into products 3.4a–b and 3.2a in 

high yields. However, moderately electron-deficient substrates required higher catalyst loading and/or 

reaction temperatures to provide good yields of products 3.4c–d. Further, substrates bearing strong 
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electron-withdrawing groups were less active, and generated products 3.4e–f in lower yields, even after 

optimization. This trend implicates the intermediacy of [Pd-(-benzyl)(,-difluoroenolate)], as electron-

donating groups stabilize the intermediate and facilitate the reaction, and electron-withdrawing groups 

destabilize the intermediate and retard the reaction (Scheme 3.15).20  While the electronic nature of 

substrates affected the outcome of the reaction, steric effects did not impede the reaction. Reactions of 

ortho-substituted benzyl esters afforded products in comparably high yields to the analogous para-

substituted substrates (3.4g–h versus 3.4a–b). 
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      The decarboxylative reaction also successfully produced products bearing a variety of aryl- and alkyl 

,-difluoroketone moieties (Scheme 3.16). Reactions of substrates bearing electron-rich, -neutral and -

withdrawing aryl ,-difluoroketones provided the corresponding products 3.6a–c in high yields under 

the standard conditions. Further, both S- and N-containing heteroaryl ,-difluoroketone moieties were 

tolerated (3.6d–e), and at an increased temperature, the reaction of an aliphatic ,-difluoroketone 

substrate afforded product 3.6f in reasonable yield. 

O

O

R

O

F F
R

O

F F

Pd(PPh3)4 (2.5 mol%)

o-xylene, 120 °C, 15 h

3.5a–f 3.6a–f

MeO

OMe

MeO

OMe

OMe F

S
Me

N
N

Ph

3.6a, 89% (75%) 3.6b, 93% (80%)

3.6d, 92% (83%) 3.6f 61% (57%)b3.6e, 76% (66%)c

a Standard reaction conditions: 3.5a f (1.0 equiv), Pd(PPh3)4 (2.5 mol%), o-xylene (0.05

M), 120 °C, 15 h. 19F NMR Yields were determined using , , -trifluorotoluene as an

internal standard (average of two runs). The value in parentheses indicates the isolated

yield (average of two runs). b 130 °C, 24 h. c 24 h.

R =

Scheme 3.16. Decarboxylative Difluorobenzylation of Substrates Bearing

Distinct Ketone Moietiesa

CF3

3.6c, 85% (75%)b

 

      This catalyst system only coupled the ,-difluorinated substrate (entry 1, Table 3.3), while the 

mono- and nonfluorinated substrates did not provide the expected products (entries 2–3, Table 3.3). This 

dramatic fluorine effect facilitated the present reaction with neutral and even electron-deficient benzyl 

esters, while some other transformations involving oxidative addition of Pd(PPh3)4 into nonfluorinated 

benzyl esters typically require an extended conjugated system or an electron-rich benzylic moiety.21 This 

phenomenon likely reflects the strong -withdrawing inductive effect of the two fluorine atoms, which 

increases the electrophilicity of the substrate, and accelerates the oxidative addition step to generate the 

high-energy dearomatized -benzyl intermediate (A,22 Table 3.3).17a,23 In contrast, we believe that the 
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fluorine substituents likely do not accelerate the decarboxylation step of the reaction. Despite the 

increased stability of the ,-difluorinated enolate (ketone-CF2H pKa = 20.2; ketone-CFH2 pKa = 21.7; 

ketone-CH3 pKa = 24.7),24 rehybridization of ,-difluorinated enolate carbanions from C(sp3) to C(sp2) 

actually occurs more slowly than nonfluorinated enolates,25 which contradicts the trend observed (Table 

3.3). 

 

3.5 Conclusion 

      A palladium-catalyzed decarboxylative coupling reaction generated an unfavourable enolate and 

formed a key C()–C(sp3) bond. Compared to building block and deoxyfluorination strategies, this 

method 1) facilitated the preparation of -benzyl-,-difluoroketones under neutral conditions; 2) 

tolerated molecules bearing sensitive functional groups and N-containing heterocycles on both of benzylic 

and ,-difluoroketone moieties;26 and 3) avoided multistep synthetic manipulations. Moreover, this 

strategy should not only provide a straightforward route to access biologically important -benzyl-,-

difluoroketone-based compounds, but also enable the development of additional transition metal-

catalyzed coupling reactions of functionalized fluoroalkyl anions with sp3-based electrophiles. 
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Chapter 3 Appendix  

Experimental Procedures and Spectral Analyses for Compounds in Chapter 3 
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General Information 

Unless otherwise noted, reactions were performed under an atmosphere of N2 using oven-dried 

glassware. Palladium-catalyzed reactions were performed in 20 mL pressure-resistant scintillation vials, 

which were sealed with PTFE-lined silicone septa, and all other reactions were performed in round-

bottom flasks that were sealed with rubber septa. Stainless steel syringes were used to transfer air- and 

moisture-sensitive liquid reagents. Reactions were monitored by thin-layer chromatography (TLC) on 

UNIPLATE Silica Gel HLF plates, visualizing by quenching of fluorescence, or by staining with KMnO4, 

anisaldehyde or iodine. Column chromatography was conducted using an automated system. 19F NMR 

yields and isolated yields reported in the manuscript represent an average of at least two independent runs 

of material deemed to be at least 95% pure by NMR. Yields reported in the supporting information refer 

to a single experiment. 

Unless otherwise noted, reagents were purchased from commercial sources, and used as received. o-

Xylene (anhydrous) and Pd(PPh3)4 (reagent grade, 99%) were purchased from Sigma Aldrich. Solvents 

including DMF, PhMe, CH2Cl2, THF, MeOH were used directly from a solvent purification system, in 

which solvent was dried by passage through two columns of activated alumina under argon. 

Proton nuclear magnetic resonance (1H NMR) spectra and carbon nuclear magnetic resonance (13C NMR) 

spectra were recorded on Bruker 400 AVANCE spectrometer (400 and 100 MHz, respectively) or Bruker 

500 AVANCE spectrometer (500 and 125 MHz, respectively). Chemical shifts () for protons are 

reported in parts per million (ppm) downfield from tetramethylsilane, and are referenced to proton 

resonance of residual CHCl3 in the NMR solvent (CDCl3:  = 7.27 ppm or DMSO-d6:  = 2.50 ppm). 

Chemical shifts () for carbon are reported in ppm downfield from tetramethylsilane, and are referenced 

to the carbon resonances of the solvent residual peak (CDCl3:  = 77.23 ppm or DMSO-d6:  = 39.51 

ppm). Fluorine nuclear magnetic resonance (19F NMR) spectra were recorded on a Bruker 400 AVANCE 

spectrometer (376 MHz). 19F NMR chemical shifts () are reported in ppm upfield from 

trichlorofluoromethane (0 ppm). NMR data are represented as follows: chemical shift (ppm), multiplicity 
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(s = singlet, d = doublet, t = triplet, q = quartet, p = pent, m = multiplet), coupling constant in Hertz (Hz), 

integration. High-resolution mass determinations were obtained either by electrospray ionization (ESI) on 

a Waters LCT PremierTM mass spectrometer or by atmospheric-pressure chemical ionization (APCI–

hexane/PhMe) on a Waters Q-Tof PremierTM, for which sample plus near mass internal exact mass 

standard were dissolved in hexane, and hexane or PhMe/hexane were used as ionization solvent. Infrared 

spectra were measured at a Shimadzu FTIR-8400S Fourier Transform Infrared Spectrometer. Uncorrected 

melting points were measured on Thomas Hoover Capillary Melting Point apparatus. 

Preparation of Compound 3.1a 

 

ethyl 2,2-difluoro-3-hydroxy-3-phenylpropanoate (3.1a-3) 

An oven-dried three-neck flask was charged with activated Zn (6.40 g, 98.4 mmol). The reaction vessel 

was equipped with a reflux condenser and two rubber septa, evacuated and backfilled with N2(g) three 

times. Dry THF (0.10 L) was added, followed by addition of the initiator 1,2-dibromoethane (0.50 mL, 

5.8 mmol) under N2(g). To activate the Zn, the reaction mixture was heated with a heat gun until the THF 

boiled suddenly. Heating was stopped, and the mixture was cooled to rt. This heating/cooling sequence 

for activation of Zn was repeated four more times (5 total). Subsequently, the reaction mixture was heated 

to 70 °C (oil-bath), and a solution of aldehyde (5.0 mL, 49 mmol) and ethyl bromodifluoroacetate (6.4 

mL, 49 mmol) was added dropwise at a rate that maintained a gentle reflux. The resulting reaction 

mixture was stirred at 70 °C for 1 h, and then cooled to 50 °C and stirred overnight. The reaction mixture 

was cooled to 0 °C, and 1 N HCl(aq) was added until the residual Zn was consumed (roughly 100 mL). The 

reaction mixture was warmed to rt, and transferred to a separation funnel. The phases were separated, and 
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the aqueous layer was extracted with EtOAc (3 x 100 mL). The combined organic layers were dried over 

anhydrous Na2SO4, filtered, and concentrated. The crude product was purified by column chromatography 

using a gradient of EtOAc / hexanes (10% to 15%) for elution to provide the compound 3.1a-3 as a 

colorless oil (10.5 g, 93%). 1H NMR (CDCl3, 400 MHz)  7.47–7.39 (m, 5 H), 5.18 (ddd, J = 15.6, 8.0, 

5.2 Hz, 1 H), 4.32 (q, J = 7.2 Hz, 2 H), 2.66 (d, J = 5.2 Hz, 1 H), 1.30 (t, J = 7.2 Hz, 3 H). 19F NMR 

(CDCl3, 376 MHz)  –120.4 (dd, J = 263.2, 15.4 Hz, 1 F), –113.9 (dd, J = 263.2, 7.9 Hz, 1 F). HRMS 

(ESI, m/z): calcd for C11H12F2O3Na [M+Na]+ 253.0652, found 253.0663. Spectroscopic data matched that 

from the previous report.1 

ethyl 2,2-difluoro-3-oxo-3-phenylpropanoate (3.1a-2) 

An oven-dried three-neck flask was equipped with a liquid addition funnel, a three-way valve and two 

rubber septa, evacuated and backfilled with N2(g) three times. Dry CH2Cl2 (130 mL) and oxalyl chloride 

(6.1 mL, 71 mmol) were added sequentially at rt, and the reaction solution was cooled to –78 °C. A 

solution of anhydrous DMSO (6.7 mL, 94 mmol) in dry CH2Cl2 (13 mL) was added dropwise at –78 °C, 

and then the reaction solution was stirred at this temperature for 1 h. Next, a solution of 3.1a-3 (5.42 g, 

23.5 mmol) dissolved in dry CH2Cl2 (13 mL) was added dropwise at –78 °C, and then the resulting 

reaction solution was stirred at this temperature for 1 h. Et3N (0.020 L, 0.14 mol) was added dropwise at –

78 °C, and the reaction mixture was stirred at –78 °C for 30 min. The reaction mixture was gradually 

warmed to rt, and stirred at rt for 2 h. H2O (100 mL) was added to quench the reaction, and CH2Cl2 was 

removed under reduced pressure. The aqueous layer was extracted with ether (3 x 100 mL), and the 

combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated. The crude 

product was purified by column chromatography using a gradient of EtOAc / hexanes (2% to 5%) for 

elution to afford the compound 3.1a-2 as a as a light yellow oil (4.40 g, 82%). 1H NMR (CDCl3, 400 

MHz)  8.09 (d, J = 7.6 Hz, 2 H), 7.71–7.67 (m, 1 H), 7.56–7.52 (m, 2 H), 4.40 (q, J = 7.2 Hz, 2 H), 1.33 

(t, J = 7.2 Hz, 3 H). 19F NMR (CDCl3, 376 MHz)  –107.6 (s, 2 F). HRMS (ESI, m/z): calcd for 
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C11H10F2O3Na [M+Na]+ 251.0496, found 251.0490. Spectroscopic data matched that from the previous 

report.2 

potassium 2,2-difluoro-3-oxo-3-phenylpropanoate (3.1a-1) 

A one-neck round-bottom flask was charged with 3.1a-2 (3.10 g, 13.6 mmol), and MeOH (7.0 mL) was 

added at rt. The resulting solution was cooled to 0 °C. A pre-cooled solution of KOH (0.760 g, 13.6 mmol) 

dissolved in MeOH (7.0 mL) was added dropwise, and then the reaction solution was warmed to rt, and 

stirred at rt for 6 h. MeOH was removed under reduced pressure. EtOAc (5 mL) and ether (5 mL) were 

added, and the mixture was sonicated at rt until fine solids formed. The solid was collected by filtration, 

washed with ether, and dried in vacuo to give the compound 3.1a-1 as a colorless solid (2.72 g, 84%). 1H 

NMR (DMSO-d6, 400 MHz)  8.00 (d, J = 8.0 Hz, 2 H), 7.65 (t, J = 7.6 Hz, 1 H), 7.52 (t, J = 7.6 Hz, 2 H). 

13C NMR (DMSO-d6, 125 MHz)  189.6 (t, J = 27.5 Hz), 162.4 (t, J = 23.8 Hz), 133.8, 132.6, 129.2, 

128.5, 111.3 (t, J = 261.9 Hz). 19F NMR (DMSO-d6, 376 MHz)  –105.2 (s, 2 F). IR (film) 3061, 1720, 

1697, 1682, 1645, 1599, 1450, 1412, 1381, 1281, 1169, 1132, 1101, 922, 912, 816, 729, 708, 685, 584 

cm-1. HRMS (ESI, m/z): calcd for C9H5F2K2O3 [M+K]+ 276.9481, found 276.9492. mp 154–155 ºC 

decomposed. 

benzyl 2,2-difluoro-3-oxo-3-phenylpropanoate (3.1a) 

An oven-dried one-neck round-bottom flask was charged with potassium 2,2-difluoro-3-oxo-3-

phenylpropanoate 3.1a-1 (4.3 g, 18 mmol), and the system was evacuated and backfilled with N2(g) three 

times. Dry CH2Cl2 (0.090 L) and DMF (0.46 mL) were added via a syringe, and the reaction mixture was 

cooled to 0 °C. Oxalyl chloride (1.4 mL, 17 mmol) was added dropwise, and then the reaction mixture 

was stirred at 0 °C for 30 min, and rt for 3.0 h. Next, benzyl alcohol (1.5 mL, 15 mmol) was added 

dropwise at 0 °C followed by dropwise addition of Et3N (4.2 mL, 30 mmol). The resulting reaction 

mixture was stirred at 0 °C for 30 min, and rt for 3.0 h. H2O (15 mL) was added to quench the reaction, 

and CH2Cl2 was removed under reduced pressure. The aqueous layer was extracted with ether (3 x 15 

mL), and the combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated. The 
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crude product was purified by column chromatography using a gradient of EtOAc / hexanes (2% to 5%) 

for elution to furnish the compound 3.1a as a colorless oil (3.5 g, 80%). 1H NMR (CDCl3, 400 MHz)  

8.04 (d, J = 8.0 Hz, 2 H), 7.67 (t, J = 7.4 Hz, 1 H), 7.49 (t, J = 7.6 Hz, 2 H), 7.36–7.30 (m, 5 H), 5.35 (s, 2 

H). 13C NMR (CDCl3, 125 MHz)  185.4 (t, J = 27.5 Hz), 161.9 (t, J = 30.6 Hz), 135.3, 133.9, 131.1 (t, J 

= 2.5 Hz), 130.1 (t, J = 2.5 Hz), 129.2, 129.1, 128.9, 128.6, 110.0 (t, J = 263.1 Hz), 69.2. 19F NMR 

(CDCl3, 376 MHz)  –107.4 (s, 2 F). IR (film) 3068, 3036, 1778, 1715, 1699, 1597, 1499, 1450, 1381, 

1308, 1259, 1157, 1101, 1080, 920, 798, 746, 712, 696, 687, 579 cm-1. HRMS (ESI, m/z): calcd for 

C16H12F2O3Na [M+Na]+ 313.0652, found 313.0666. 

 

 

Initial Screening and Optimization of Reaction Conditions3 

An oven-dried 1 dram vial was charged with substrate 3.1a (0.100 mmol), Pd catalysts or precatalysts, 

ligand, and a magnetic stir bar. The dry solvent was added via a syringe. Subsequently, the vial was 

transferred out of the glove box and placed on a pre-heated reaction block at the indicated temperature, 

and stirred for the indicated time. The vial was cooled to rt, and the mixture was diluted with EtOAc. An 

internal standard ,,-trifluorotoluene (for 19F NMR analysis) or dodecane (for GC analysis) was added, 

and the reaction mixture was stirred at rt for 30 min to ensure thorough mixing in prior to 19F NMR or GC 

analysis. 
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Table S1. Screening Conditions of Pd2dba3-Catalyzed Decarboxylative Difluorobenzylation: 

Ligandsa,b,c 

PCy2

i-PrO Oi-Pr

RuPhos

PCy2

MeO OMe

SPhos

PPh2

i-Pr i-Pr

i-Pr

PhXPhos

PCy2

i-Pr i-Pr

i-Pr

OMe

MeO

BrettPhos

O

PPh2 PPh2

Me Me

Xantphos

O

PPh2 PPh2

DPEPhos

O

O O

F F

O

F F

Pd2dba3 (5 mol%)
Ligand (10 mol%)

toluene (0.2 M)
110 °C, 15 h

66% 69% 66% 48% 44% 50%

PCy2

i-Pr i-Pr

i-Pr

XPhos
53%

Fe

Ph
Ph

Ph

PhPh

Pt-Bu2

QPhos

PPh2

PPh2

rac-BINAP

PCy2

Me2N

DavePhos

PCy2

Me

MePhos

Pt-Bu2

i-Pr i-Pr

i-Pr
t-BuXPhos

Pt-Bu2

Me

t-BuMePhos

Pt-Bu2

Me2N

t-BuDavePhos

Pt-Bu2

JohnPhos

PCy2

CyJohnPhos

Fe

PPh2

Ph2P

dppf

P

P

Ph
Ph

Ph
Ph

dppe

O

Me Me

Pt-Bu2 Pt-Bu2

t-BuXantphos

P

PPh3

P

OMe

OMeMeO

Tris(4-methoxyphenyl)
phosphine

P

Me

MeMe

Tri(p-tolyl)phosphine

P

PCy3

P

Me

Me

Me

Pn-Bu3

P

O

O

O

Tri(2-furyl)phosphine

P

Me

Me

Me

Me
Me

Me

Me

MeMe

Pt-Bu3

N

N

i-Pr

i-Pr

i-Pr i-Pr

BF4

1,3-Bis(2,6-diisopropylphenyl)-
4,5-dihydroimidazolium

tetrafluoroborate

N N

2,2'-Bipyridine

N N
Me Me

Neocuproine

N N

1,10-phenanthroline

N N
Me

Me

Me

Me

3,4,7,8-Tetramethyl-
1,10-phenanthroline

a Yields were determined by 19F NMR using -trifluorotoluene as an internal standard.
b The conversion for all reactions above was more than 99%.

Other ligands screened that produced < 15% product by GC are shown below.

c We acknowledged Niusha Sharifi for the initial screening of Pd-catalyzed difluorobenzylation reactions.  
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Table S2. Screening Conditions of Pd-Catalyzed Decarboxylative Difluorobenzylation: Pd Sources, 

Temperature and Concentration 

 

  

XPhos (%) T (°C) conv (%)entry

Pd2dba3

Pd(acac)2

Pd(3-C2H5)2Cl2

1

2

3

4

5

6

7

8

9

10

15

15

15

15

15

15

15

15

110

110

110

110

110

110

110

100

90

100

56

100

95

78

35

100

100

99

Pd

PdCl2

Pd(OAc)2

Pd(TFA)2

Pd(CH3CN)2Cl2

Pd(OAc)2

Pd(OAc)2

Pd(OAc)2

Pd(OAc)2

10c

11d

Pd(OAc)2

Pd(OAc)2

12

13

15

15

15

15

100

100

110

110

conc. (M)

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.5

0.1

43

7

43

21

23

0

37

41

36

42

13

36

46

100

100

99

100

yield (%)b

a Pd (5 mol%) indicates dimeric Pd (2.5 mol%) and monomeric Pd (5 mol%).
b Yields were determined by GC using dodecane as an internal standard.
c Solvent: 1,4-dioxane
d Solvent: DMF

O

O O

F F

O

F F

Pd (5 mol%)a

XPhos (%)

toluene 
T (°C), 15 h
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Table S3. Screening Conditions of PdCp(1-η3-1-Ph-C3H4)-Catalyzed Decarboxylative 

Difluorobenzylation: Catalyst Loading, Temperature and Reaction Time 

 

  

O

O O

F F

O

F F

PdCp(1-3-1-Ph-C3H4) (%)
XPhos (%)

o-xylene (0.3 M)
time (h), T (°C)

Pd (%) XPhos (%) T (°C) yield (%)a conv (%)

5

3

2

1

1

1

1

10 120

6 120

4 120

2 120

2 120

2 120

2 140

2

2

130

110

1

1

1 2 100

54

62

69

70

64

65

73

72

64

50

100

100

100

100

100

100

100

100

100

90

entry

1

2

3

4

5

6

7

8

9

10

time (h)

6

6

6

6

15

24

6

6

6

6

a Yields were determined by 19F NMR using -trifluorotoluene as an internal standard.
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Table S4. Screening Conditions of PdCp(1-η3-1-Ph-C3H4)-Catalyzed Decarboxylative 

Difluorobenzylation: Concentration and Ligands 

 

  

O

O O

F F

O

F F

PdCp(1-3-1-Ph-C3H4) (1 mol%)
ligand (%)

o-xylene (M)
6 h, 120 °C

ligand (%) yield (%)a conv (%)

XPhos (2)

XPhos (2)

73

77

100

100

entry

1

2

conc. (M)

0.2

0.1

XPhos (2)

XPhos (2)

XPhos (2)

RuPhos (2)

SPhos (2)

PhXPhos (2)

tBuXPhos (2)

4MetBuXPhos (2)

0.05

0.5

1.0

0.1

0.1

0.1

0.1

0.1

3

4

5

6

7

8

9

10

19

63

58

43

35

77

0

0

22

100

100

61

48

100

0

0

PPh3 (3)

P(o-Tol)3 (2)

P(p-C6H4OMe)3 (2)

P(2-furyl)3 (2)

PCy3 (2)

0.1

0.1

0.1

0.1

0.1

11

12

13

14

15

75

0

18

0

0

77

0

28

0

0

a Yields were determined by 19F NMR using -trifluorotoluene as an internal standard.
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Table S5. Optimization of Pd(PPh3)4-Catalyzed Decarboxylative Difluorobenzylation-Screening 

Conditions: Catalyst Loading, Solvent and Temperature 

 

  

O

O O

F F

O

F F

Pd(PPh3)4 (%)
solvent (0.2 M)

15 h
T (°C)

Pd (%) solvent T (°C) yield (%)a conv (%)

5

5

5

5

5

5

5

toluene 110

DME 100

2-Me-THF 80

DMF 80

1,4-dioxane 100

CH3CN 80

o-xylene 120

o-xylene

o-xylene

130

140

5

5

2.5

1.0

10

o-xylene

o-xylene

o-xylene

120

120

120

45

4

10

1

41

0

78

76

74

95 (74)

58

66

100

100

98

94

100

69

100

100

100

100

100

100

entry

1

2

3

4

5

6

7

8

9

10

11

12

a Yields were determined by GC using dodecane as an internal standard. The value in 
   parentheses was 19F NMR yields using -trifluorotoluene as an internal standard.
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Table S6. Optimization of Pd(PPh3)4-Catalyzed Decarboxylative Difluorobenzylation-Screening 

Conditions: Concentration and Reaction Time 

 

 

Characterization of Compound 3.2a 

 

2,2-difluoro-1,3-diphenylpropan-1-one (3.2a) 

1H NMR (CDCl3, 400 MHz)  8.04 (d, J = 7.6 Hz, 2 H), 7.62 (t, J = 7.6 Hz, 1 H), 7.48 (t, J = 7.6 Hz, 2 H), 

7.32 (br, 5 H), 3.53 (t, J = 17.8 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  189.7 (t, J = 30.6 Hz), 134.4, 

132.3 (t, J = 2.5 Hz), 131.5 (t, J = 3.1 Hz), 131.1, 130.3 (t, J = 3.7 Hz), 128.8, 128.6, 127.8, 118.6 (t, J = 

253.1 Hz), 40.3 (t, J = 23.1 Hz). 19F NMR (CDCl3, 376 MHz)  –98.6 (t, J = 16.9 Hz, 2 F). IR (film) 3063, 

3032, 2937, 1701, 1597, 1497, 1450, 1279, 1173, 1115, 1084, 1049, 1032, 943, 901, 727, 715, 698, 669, 

600 cm-1. HRMS (ESI, m/z): calcd for C15H12F2ONa [M+Na]+ 269.0754, found 269.0742. m.p. 45 °C. 

Spectroscopic data matched that from the previous report.4 

1.0

0.5

0.3

0.1

0.05

0.05

0.05

0.05

1

2

3

4

5

6

7

8

15

15

15

15

15

6

10

24

55

66

70

75

87

76

83

88

100

100

100

100

100

100

100

100

O

O O

F F

O

F F

Pd(PPh3)4 (2.5 mol%)
o-xylene (M)

time (h)
120 °C

yield (%)a conv (%)entry conc. (M) time (h)

a Yields were determined by 19F NMR using -trifluorotoluene as 
   an internal standard.
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Experimental Procedures and Characterization of Compounds in Scheme 3.13 

 

ethyl 2,2-difluoro-3-hydroxyundecanoate (3.1b-3) 

An oven-dried three-neck flask was charged with activated Zn (3.20 g, 49.2 mmol). The reaction vessel 

was equipped with a reflux condenser and two rubber septa, evacuated and backfilled with N2(g) three 

times. Dry THF (0.05 L) was added, followed by addition of the initiator 1,2-dibromoethane (0.25 mL, 

2.9 mmol) under N2(g). To activate the Zn, the reaction mixture was heated with a heat gun until the THF 

boiled suddenly. Heating was stopped, and the mixture was cooled to rt. This heating/cooling sequence 

for activation of Zn was repeated four more times (5 total). Subsequently, the reaction mixture was heated 

to 70 °C (oil-bath), and a solution of nonyl aldehyde (4.3 mL, 25 mmol) and ethyl bromodifluoroacetate 

(3.2 mL, 25 mmol) was added dropwise at a rate that maintained a gentle reflux. The resulting reaction 

mixture was stirred at 70 °C for 1 h, and then cooled to 50 °C and stirred overnight. The reaction mixture 

was cooled to rt, and the residual Zn was filtered through a pad of celite and washed with EtOAc. The 

filtrate was acidified with 1 N HCl(aq) to pH 3–4, and the solution was transferred to a separation funnel. 

The phases were separated, and the aqueous layer was extracted with EtOAc (3 x 60 mL). The combined 

organic layers were dried over anhydrous Na2SO4, filtered, and concentrated. The crude product was 

purified by column chromatography using a gradient of EtOAc / hexanes (5% to 10%) for elution to 

provide the compound 3.1b-3 as a colorless liquid (4.0 g, 61%). 1H NMR (CDCl3, 400 MHz)  4.37 (q, J 

= 7.2 Hz, 2 H), 4.08–3.97 (m, 1 H), 1.98 (d, J = 7.2 Hz, 1 H), 1.72–1.65 (m, 1 H), 1.64–1.50 (m, 2 H), 

1.43–1.27 (m, 14 H), 0.89 (t, J = 6.6 Hz, 3 H). 13C NMR (CDCl3, 125 MHz)  163.9 (t, J = 31.9 Hz), 

114.9 (dd, J = 255.0, 252.5 Hz), 72.0 (dd, J = 26.2, 25.0 Hz), 63.2, 32.0, 29.6, 29.5, 29.4, 29.3, 25.4, 22.9, 
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14.3, 14.1. 19F NMR (CDCl3, 376 MHz)  –122.4 (dd, J = 267.0, 15.0 Hz, 1 F), –115.0 (dd, J = 267.0, 7.5 

Hz, 1 F). IR (film) 3477, 2957, 2928, 2856, 1759, 1468, 1396, 1375, 1315, 1217, 1122, 1092, 856, 783, 

721 cm-1. HRMS (ESI, m/z): calcd for C13H24F2O3Na [M+Na]+ 289.1591, found 289.1581. 

ethyl 2,2-difluoro-3-oxoundecanoate (3.1b-2) 

Dess-Martin periodinane (7.38 g, 17.4 mmol) was added into a solution of compound 3.1b-3 (3.56 g, 13.4 

mmol) dissolved in CH2Cl2 (0.100 L) at 0 °C, and the solution was stirred at rt for 2 h. The solvent was 

removed under reduced pressure, and the residue was stirred in EtOAc / hexanes (1:10, 100 mL) and 

sonicated. The white solid was filtered through a pad of celite, and washed with EtOAc / hexanes (1:10). 

The filtrate was concentrated to provide the title compound 3.1b-2 as a colorless liquid (3.49g, 98%). 1H 

NMR (CDCl3, 400 MHz)  4.38 (q, J = 7.2 Hz, 2 H), 2.74 (t, J = 7.2 Hz, 2 H), 1.66 (p, J = 7.0 Hz, 2 H), 

1.38–1.28 (m, 13 H), 0.89 (t, J = 6.8 Hz, 3 H). 13C NMR (CDCl3, 125 MHz)  197.7 (t, J = 27.5 Hz), 

161.7 (t, J = 30.0 Hz), 108.4 (t, J = 262.5 Hz), 63.9, 36.8, 32.0, 29.4, 29.2, 29.0, 22.8, 22.6, 14.3, 14.1. 19F 

NMR (CDCl3, 376 MHz)  –113.9 (s, 2 F). IR (film) 2957, 2930, 2858, 1782, 1747, 1468, 1402, 1373, 

1313, 1203, 1140, 1014, 959 cm-1. HRMS (ESI, m/z): calcd for C13H22F2O3Na [M+Na]+ 287.1435, found 

287.1421. 

potassium 2,2-difluoro-3-oxoundecanoate (3.1b-1) 

A one-neck round-bottom flask was charged with 3.1b-2 (2.84 g, 10.7 mmol), and MeOH (18 mL) was 

added at rt. The resulting solution was cooled to 0 °C. A pre-cooled solution of KOH (0.600 g, 10.7 mmol) 

dissolved in MeOH (5.0 mL) was added dropwise, and then the reaction solution was warmed to rt, and 

stirred for 6 h. The solvent was removed under reduced pressure. Ether (15 mL) was added, and the 

mixture was sonicated at rt until fine solids formed. The solid was collected by filtration, washed with 

ether, and dried in vacuo to give the compound 3.1b-1 as an off-white solid (2.4 g, 82%). 1H NMR 

(DMSO-d6, 400 MHz)  2.57 (t, J = 7.2 Hz, 2 H), 1.46 (p, J = 7.0 Hz, 2 H), 1.29–1.23 (m, 10 H), 0.85 (t, 

J = 6.6 Hz, 3 H). 13C NMR (DMSO-d6, 125 MHz)  201.6 (t, J = 26.9 Hz), 162.1 (t, J = 25.0 Hz), 111.0 (t, 

J = 262.5 Hz), 36.6, 31.3, 28.8, 28.6, 28.4, 22.5, 22.1, 14.0. 19F NMR (DMSO-d6, 376 MHz)  –111.4 (s, 
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2 F). IR (film) 2955, 2922, 2854, 1742, 1661, 1468, 1398, 1194, 1124, 1082, 818 cm-1. HRMS (ESI, m/z): 

calcd for C11H17F2O3K2 [M+K]+ 313.0420, found 313.0435. mp 155 °C (decomposed). 

3,5-dimethoxybenzyl 2,2-difluoro-3-oxoundecanoate (3.1b) 

An oven-dried one-neck round-bottom flask was charged with potassium 2,2-difluoro-3-oxoundecanoate 

3.1b-1 (1.6 g, 6.0 mmol), and the system was evacuated and backfilled with N2(g) three times. Dry CH2Cl2 

(0.030 L) and DMF (0.17 mL) were added via a syringe, and the reaction mixture was cooled to 0 °C. 

Oxalyl chloride (0.50 mL, 5.8 mmol) was added dropwise, and then the reaction mixture was stirred at 

0 °C for 30 min, and rt for 3.0 h. Next, 3,5-dimethoxybenzyl alcohol (0.92 g, 5.5 mmol) was added 

dropwise at 0 °C followed by dropwise addition of Et3N (1.5 mL, 11 mmol). The resulting reaction 

mixture was stirred at 0 °C for 30 min, and rt for 3.0 h. H2O (15 mL) was added to quench the reaction, 

and CH2Cl2 was removed under reduced pressure. The aqueous layer was extracted with ether (3 x 30 

mL), and the combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated. The 

crude product was purified by column chromatography using a gradient of EtOAc / hexanes (5% to 10%) 

for elution to furnish the compound 3.1b as a colorless oil (1.5 g, 71%). 1H NMR (CDCl3, 400 MHz)  

6.49 (d, J = 2.0 Hz, 2 H), 6.45 (t, J = 2.2 Hz, 1 H), 5.26 (s, 2 H), 3.80 (s, 6 H), 2.71 (t, J = 7.2 Hz, 2 H), 

1.63 (p, J = 7.0 Hz, 2 H), 1.32–1.23 (m, 10 H), 0.89 (t, J = 6.6 Hz, 3 H). 13C NMR (CDCl3, 125 MHz)  

197.5 (t, J = 28.1 Hz), 161.5 (t, J = 31.2 Hz), 161.2, 136.1, 108.5 (t, J = 262.5 Hz), 106.2, 101.0, 68.9, 

55.6, 36.8, 32.0, 29.4, 29.2, 29.0, 22.8, 22.6, 14.3. 19F NMR (CDCl3, 376 MHz)  –113.6 (s, 2 F). IR (film) 

2953, 2930, 2856, 1780, 1747, 1599, 1464, 1431, 1379, 1346, 1302, 1207, 1155, 1068, 991, 947, 920, 837, 

696 cm-1. HRMS (ESI, m/z): calcd for C20H29F2O5 [M+H]+ 387.1983, found 387.1981.  

3.2b

F F

O

Me6

MeO

OMe

 

1-(3,5-dimethoxyphenyl)-2,2-difluoroundecan-3-one (3.2b) 
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An oven-dried 20 mL scintillation vial was charged with substrate 3.1b (193 mg, 0.500 mmol), Pd(PPh3)4 

(20.2 mg, 0.0175 mmol), and a magnetic stir bar. Dry o-xylene (0.010 L) was added via a syringe. 

Subsequently, the vial was transferred out of the glove box and placed on a pre-heated reaction block at 

140 °C, and stirred for 24 h. The vial was cooled to rt, and the mixture was diluted with EtOAc (2 mL). 

,,-Trifluorotoluene (30 µL, 0.2443 mmol) was added as an internal standard, and the reaction mixture 

was stirred at rt at least 20 min to ensure thorough mixing. An aliquot was taken from the vial for 19F 

NMR analysis. After determining the 19F yield, the aliquot was recombined with the reaction mixture. The 

total reaction mixture was passed through a plug of silica gel, and eluted with EtOAc. Removal of the 

solvents in vacuo and chromatographic purification (0% to 5% EtOAc in hexanes) afforded the title 

compound 3.2b as a colorless oil (95 mg, 55%). 1H NMR (CDCl3, 400 MHz)  6.39 (s, 3 H), 3.78 (s, 6 H), 

3.24 (t, J = 16.8 Hz, 2 H), 2.48 (t, J = 7.2 Hz, 2 H), 1.56–1.48 (m, 2 H), 1.30–1.19 (m, 10 H), 0.89 (t, J = 

6.8 Hz, 3 H). 13C NMR (CDCl3, 125 MHz)  202.1 (t, J = 30.6 Hz), 160.9, 133.3 (t, J = 4.4 Hz), 117.3 (t, 

J = 253.1 Hz), 108.8, 99.9, 55.5, 39.8 (t, J = 23.7 Hz), 37.4, 32.0, 29.4, 29.3, 29.0, 22.8, 22.6, 14.3. 19F 

NMR (CDCl3, 376 MHz)  –105.2 (t, J = 16.9 Hz, 2 F). IR (film) 2928, 2854, 1742, 1599, 1462, 1431, 

1294, 1205, 1153, 1070, 835 cm-1. HRMS (ESI, m/z): calcd for C19H28F2O3Na [M+Na]+ 365.1904, found 

365.1920. 

Experimental Procedures and Characterization of Compounds in Scheme 3.14 

General Procedure A: An oven-dried one-neck round-bottom flask was charged with aldehyde (14 mmol). 

Methanol (30 mL) was added as solvent, followed by the addition of NaBH4 (21 mmol) as solid portion. 

The reaction mixture was stirred at 0 °C for 30 min. H2O was added to quench the reaction, and methanol 

was removed under reduced pressure. The aqueous layer was extracted with CH2Cl2 (3 x 20 mL) three 

times and the combined organic phases were dried over anhydrous MgSO4 or Na2SO4, filtered and 

concentrated. The crude product was purified by column chromatography using a gradient of EtOAc / 

hexanes (0% to 30%) for elution to afford the desired benzyl alcohol. 
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General Procedure B: An oven-dried one-neck round-bottom flask was charged with potassium 2,2-

difluoro-3-oxo-3-phenylpropanoate 3.1a-1 (7.2 mmol), and the system was evacuated and backfilled with 

N2(g) three times. Dry CH2Cl2 (35 mL) and DMF (0.19 mL) were added via a syringe, and the reaction 

mixture was cooled to 0 °C. Oxalyl chloride (6.9 mmol) was added dropwise, and then the reaction 

mixture was stirred at 0 °C for 30 min, and rt for 2.5 h. Next, a solution of benzyl alcohol derivative (6.0 

mmol) dissolved in dry CH2Cl2 (3.0 mL) was added dropwise at 0 °C, followed by dropwise addition of 

Et3N (12 mmol). The resulting reaction mixture was stirred at 0 °C for 30 min, and rt for 2.5 h. H2O (10 

mL) was added to quench the reaction, and the CH2Cl2 was removed under reduced pressure. The 

aqueous layer was extracted with ether (3 x 25 mL), and the combined organic layers were dried over 

anhydrous MgSO4 or Na2SO4, filtered, and concentrated. Purification by flash chromatography provided 

the desired product. 

General Procedure C: An oven-dried 20 mL scintillation vial was charged with substrate 3.3a–h (0.500 

mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), and a magnetic stir bar. Dry o-xylene (0.010 L) was added via 

a syringe. Subsequently, the vial was transferred out of the glove box and placed on a pre-heated reaction 

block at 120 °C, and stirred for 15 h. The vial was cooled to rt, and the mixture was diluted with EtOAc 

(2 mL). ,,-Trifluorotoluene (30 µL, 0.2443 mmol) or 2,2,2-trifluoroethanol (20 µL, 0.2745 mmol) 

was added as an internal standard, and the reaction mixture was stirred at rt at least 20 min to ensure 

thorough mixing. An aliquot was taken from the vial for 19F NMR analysis. After determining the 19F 

yield, the aliquot was recombined with the reaction mixture. The total reaction mixture was passed 

through a plug of silica gel, and eluted with EtOAc. Removal of the solvents in vacuo and 

chromatographic purification provided the desired product 3.4a–h. 

 

(4-methoxyphenyl)methanol (3.3a-1) 
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General procedure A was followed using p-anisaldehyde (3.6 mL, 30 mmol), NaBH4 (1.7 g, 45 mmol), 

and MeOH (75 mL). Workup and chromatographic purification (20% to 30% EtOAc in hexanes) afforded 

the title compound 3.3a-1 as a colorless solid (4.1 g, 99%). 1H NMR (CDCl3, 400 MHz)  7.29 (d, J = 8.8 

Hz, 2 H), 6.90 (d, J = 8.8 Hz, 2 H), 4.61 (s, 2 H), 3.82 (s, 3 H), 1.77 (br, 1 H). Spectroscopic data matched 

that from the previous report.5 mp 25–26 °C (lit.6 25 °C). 

 

4-methoxybenzyl 2,2-difluoro-3-oxo-3-phenylpropanoate (3.3a) 

General procedure B was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate 3.1a-1 (2.0 g, 

8.4 mmol), oxalyl chloride (0.68 mL, 8.0 mmol), 3.3a-1 (0.97 g, 7.0 mmol), Et3N (1.9 mL, 14 mmol), 

DMF (0.22 mL), and CH2Cl2 (45 mL). Workup and chromatographic purification (0% to 10% EtOAc in 

hexanes) afforded the title compound 3.3a as a colorless oil (1.67 g, 74%). 1H NMR (CDCl3, 400 MHz)  

8.02 (d, J = 7.6 Hz, 2 H), 7.66 (t, J = 7.4 Hz, 1 H), 7.48 (t, J = 7.8 Hz, 2 H), 7.25 (d, J = 8.4 Hz, 2 H), 

6.85 (d, J = 8.4 Hz, 2 H), 5.28 (s, 2 H), 3.81 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  185.4 (t, J = 26.9 

Hz), 161.9 (t, J = 30.6 Hz), 160.3, 135.2, 131.1, 130.7, 130.1 (t, J = 2.5 Hz), 129.1, 126.0, 114.2, 109.9 (t, 

J = 263.1 Hz), 69.2, 55.5. 19F NMR (CDCl3, 376 MHz)  –107.5 (s, 2 F). IR (film) 2945, 2908, 2835, 

1770, 1699, 1597, 1502, 1464, 1450, 1290, 1250, 1159, 1124, 1034, 920, 987, 816, 771, 715, 685, 667 

cm-1. HRMS (ESI, m/z): calcd for C17H14F2O4Na [M+Na]+ 343.0758, found 343.0765. 

 

2,2-difluoro-3-(4-methoxyphenyl)-1-phenylpropan-1-one (3.4a) 

General procedure C was followed using 3.3a (160 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

and o-xylene (0.010 L). Workup and chromatographic purification (0% to 5% EtOAc in hexanes) 
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afforded the title compound 3.4a as an off-white solid (116 mg, 84%). 1H NMR (CDCl3, 400 MHz)  8.04 

(dd, J = 8.4, 1.6 Hz, 2 H), 7.62 (t, J = 7.4 Hz, 1 H), 7.47 (t, J = 7.8 Hz, 2 H), 7.23 (d, J = 8.4 Hz, 2 H), 

6.86 (d, J = 8.0 Hz, 2 H), 3.80 (s, 3 H), 3.47 (t, J = 17.6 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  189.9 (t, 

J = 31.2 Hz), 159.3, 134.4, 132.4 (t, J = 1.9 Hz), 132.1, 130.3 (t, J = 3.1 Hz), 128.8, 123.3 (t, J = 3.7 Hz), 

118.6 (t, J = 252.5 Hz), 114.1, 55.4, 39.6 (t, J = 23.1 Hz). 19F NMR (CDCl3, 376 MHz)  –98.9 (t, J = 

16.9 Hz, 2 F). IR (film) 3003, 2935, 2837, 1699, 1612, 1599, 1514, 1448, 1279, 1252, 1178, 1115, 1034, 

945, 903, 845, 822, 779, 714, 687, 663, 598 cm-1. HRMS (ESI, m/z): calcd for C16H14F2O2Na [M+Na]+ 

299.0860, found 299.0847. mp 49–50 °C. 

 

p-tolylmethanol (3.3b-1) 

General procedure A was followed using p-tolualdehyde (3.5 mL, 30 mmol), NaBH4 (1.7 g, 45 mmol), 

and MeOH (75 mL). Workup and chromatographic purification (10% to 20% EtOAc in hexanes) afforded 

the title compound 3.3b-1 as an off-white solid (3.3 g, 90%). 1H NMR (CDCl3, 400 MHz)  7.27 (d, J = 

8.0 Hz, 2 H), 7.19 (d, J = 8.0 Hz, 2 H), 4.66 (d, J = 5.6 Hz, 2 H), 2.37 (s, 3 H), 1.66 (t, J = 5.8 Hz, 1 H). 

Spectroscopic data matched that from the previous report.5 mp 57–58 °C (lit.7 59 °C). 

 

4-methylbenzyl 2,2-difluoro-3-oxo-3-phenylpropanoate (3.3b) 

General procedure B was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate 3.1a-1 (2.0 g, 

8.4 mmol), oxalyl chloride (0.68 mL, 8.0 mmol), 3.3b-1 (0.85 g, 7.0 mmol), Et3N (1.9 mL, 14 mmol), 

DMF (0.22 mL), and CH2Cl2 (45 mL). Workup and chromatographic purification (2% to 5% EtOAc in 

hexanes) afforded the title compound 3.3b as a colorless oil (1.57 g, 74%). 1H NMR (CDCl3, 400 MHz)  
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8.03 (d, J = 8.0 Hz, 2 H), 7.68–7.64 (m, 1 H), 7.49 (t, J = 8.0 Hz, 2 H), 7.20 (d, J = 8.0 Hz, 2 H), 7.14 (d, 

J = 8.0 Hz, 2 H), 5.30 (s, 2 H), 2.35 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  185.5 (t, J = 27.5 Hz), 161.9 

(t, J = 30.6 Hz), 139.1, 135.2, 131.2 (t, J = 1.9 Hz), 130.9, 130.1 (t, J = 2.5 Hz), 129.5, 129.1, 128.8, 

110.0 (t, J = 263.7 Hz), 69.3, 21.4. 19F NMR (CDCl3, 376 MHz)  –107.5 (s, 2 F). IR (film) 3032, 2960, 

1776, 1715, 1699, 1599, 1520, 1450, 1379, 1306, 1257, 1157, 1126, 1101, 1080, 922, 810, 754, 714, 685 

cm-1. HRMS (ESI, m/z): calcd for C17H14F2O3Na [M+Na]+ 327.0809, found 327.0794. 

 

2,2-difluoro-1-phenyl-3-(p-tolyl)propan-1-one (3.4b) 

General procedure C was followed using 3.3b (152 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

and o-xylene (0.010 L). Workup and chromatographic purification (0% to 5% EtOAc in hexanes) 

afforded the title compound 3.4b as an off-white solid (110 mg, 85%). 1H NMR (CDCl3, 400 MHz)  

8.04 (d, J = 8.0 Hz, 2 H), 7.62 (t, J = 7.4 Hz, 1 H), 7.47 (t, J = 7.6 Hz, 2 H), 7.20 (d, J = 8.0 Hz, 2 H), 

7.14 (d, J = 7.6 Hz, 2 H), 3.49 (t, J = 17.8 Hz, 2 H), 2.34 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  189.8 (t, 

J = 31.2 Hz), 137.5, 134.4, 132.4 (t, J = 3.1 Hz), 130.9, 130.3 (t, J = 3.1 Hz), 129.4, 128.8, 128.3 (t, J = 

3.7 Hz), 118.6 (t, J = 252.5 Hz), 40.0 (t, J = 23.1 Hz), 21.3. 19F NMR (CDCl3, 376 MHz)  –98.8 (t, J = 

18.8 Hz, 2 F). IR (film) 3028, 2924, 1703, 1599, 1516, 1448, 1279, 1171, 1115, 1040, 937, 903, 769, 714, 

687, 663, 600 cm-1. HRMS (ESI, m/z): calcd for C16H14F2ONa [M+Na]+ 283.0910, found 283.0901. mp 

67–68 °C. 

 

methyl 3-(hydroxymethyl)benzoate (3.3c-1) 
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The preparation was followed according to literature report8 using 3-(methoxycarbonyl)benzoic acid (1.8 

g, 0.010 mol), BH3.SMe2 (0.020 L, 0.020 mol), and THF (20 mL). Workup and chromatographic 

purification (20% to 50% EtOAc in hexanes) afforded the title compound 3.3c-1 as a colorless liquid 

(1.55 g, 93%). 1H NMR (CDCl3, 400 MHz)  8.04 (t, J = 1.6 Hz, 1 H), 7.97 (dt, J = 7.6, 1.2 Hz, 1 H), 

7.58 (d, J = 7.6 Hz, 1 H), 7.44 (t, J = 7.6 Hz, 1 H), 4.76 (s, 2 H), 3.93 (s, 3 H), 1.91 (br, 1 H). HRMS (ESI, 

m/z): calcd for C9H11O3 [M+H]+ 167.0708, found 167.0705. Spectroscopic data matched that from the 

previous report.8  

O

O O

F F

MeO2C

3.3c
 

methyl 3-(((2,2-difluoro-3-oxo-3-phenylpropanoyl)oxy)methyl)benzoate (3.3c) 

General procedure B was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate 3.1a-1 (1.4 g, 

6.0 mmol), oxalyl chloride (0.46 mL, 5.5 mmol), 3.3c-1 (0.83 g, 5.0 mmol), Et3N (1.4 mL, 0.010 mol), 

DMF (0.15 mL), and CH2Cl2 (30 mL). Workup and chromatographic purification (10% to 15% EtOAc in 

hexanes) afforded the title compound 3.3c as a colorless oil (1.17 g, 67%). 1H NMR (CDCl3, 400 MHz)  

8.05–7.99 (m, 4 H), 7.66 (tt, J = 7.4, 1.2 Hz, 1 H), 7.53–7.46 (m, 3 H), 7.43 (td, J = 7.6, 0.4 Hz, 1 H), 5.38 

(s, 2 H), 3.93 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  185.4 (t, J = 26.9 Hz), 166.6, 161.8 (t, J = 31.2 Hz), 

135.4, 134.3, 133.0, 131.0, 130.9, 130.3, 130.1 (t, J =2.5 Hz), 129.8, 129.2, 129.1, 110.0 (t, J = 263.7 Hz), 

68.5, 52.5. 19F NMR (CDCl3, 376 MHz)  –107.3 (s, 2 F). IR (film) 2955, 1778, 1722, 1597, 1450, 1435, 

1308, 1290, 1207, 1159, 1103, 922, 750, 712, 687 cm-1. HRMS (ESI, m/z): calcd for C18H14F2O5Na 

[M+Na]+ 371.0707, found 371.0706. 

 

methyl 3-(2,2-difluoro-3-oxo-3-phenylpropyl)benzoate (3.4c) 
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General procedure C was followed using 3.3c (174 mg, 0.500 mmol), Pd(PPh3)4 (28.9 mg, 0.0250 mmol), 

and o-xylene (0.010 L). Workup and chromatographic purification (0% to 5% EtOAc in hexanes) 

afforded the title compound 3.4c as an off-white solid (123 mg, 81%). 1H NMR (CDCl3, 400 MHz)  8.07 

(dd, J = 8.8, 1.6 Hz, 2 H), 8.02 (s, 1 H), 7.99 (dd, J = 7.8, 1.4 Hz, 1 H), 7.65–7.61 (m, 1 H), 7.54 (d, J = 

7.6 Hz, 1 H), 7.49 (t, J = 7.6 Hz, 2 H), 7.42 (t, J = 7.6 Hz, 1 H), 3.93 (s, 3 H), 3.58 (t, J = 17.8 Hz, 2 H). 

13C NMR (CDCl3, 125 MHz)  189.2 (t, J = 30.6 Hz), 167.0, 135.6, 134.6, 132.2, 132.1 (t, J = 2.5 Hz), 

132.0 (t, J = 3.1 Hz), 130.6, 130.4 (t, J = 3.1 Hz), 129.1, 128.9, 128.7, 118.3 (t, J = 253.1 Hz), 52.4, 39.9 

(t, J = 22.5 Hz). 19F NMR (CDCl3, 376 MHz)  –98.6 (t, J = 16.9 Hz, 2 F). IR (film) 3065, 2953, 1724, 

1703, 1597, 1448, 1435, 1288, 1203, 1173, 1111, 1086, 1040, 908, 741, 715, 694, 665, 604 cm-1. HRMS 

(ESI, m/z): calcd for C17H14F2O3Na [M+Na]+ 327.0809, found 327.0800. mp 44–45 °C. 

 

(3-(trifluoromethyl)phenyl)methanol (3.3d-1) 

General procedure A was followed using 3-(trifluoromethyl)benzaldehyde (1.3 mL, 10 mmol), NaBH4 

(0.57 g, 15 mmol), and MeOH (25 mL). Workup and chromatographic purification (10% to 30% EtOAc 

in hexanes) afforded the title compound 3.3d-1 as a colorless oil (1.73 g, 98%). 1H NMR (CDCl3, 400 

MHz)  7.65 (s, 1 H), 7.57–7.55 (m, 2 H), 7.49 (dd, J = 8.4, 6.8 Hz, 1 H), 4.78 (d, J = 5.6 Hz, 2 H), 1.83–

1.79 (m, 1 H). 19F NMR (CDCl3, 376 MHz)  –62.6 (s, 3 F). HRMS (ESI, m/z): calcd for C8H6F3O [M-

H]+ 175.0371, found 175.0372. Spectroscopic data matched that from the previous report.9 

 

3-(trifluoromethyl)benzyl 2,2-difluoro-3-oxo-3-phenylpropanoate (3.3d) 
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General procedure B was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate 3.1a-1 (2.0 g, 

8.4 mmol), oxalyl chloride (0.68 mL, 8.0 mmol), 3.3d-1 (1.2 g, 7.0 mmol), Et3N (1.9 mL, 14 mmol), 

DMF (0.22 mL), and CH2Cl2 (45 mL). Workup and chromatographic purification (5% to 10% EtOAc in 

hexanes) afforded the title compound 3.3d as a colorless oil (1.58 g, 63%). 1H NMR (CDCl3, 400 MHz)  

8.05 (d, J = 8.0 Hz, 2 H), 7.70–7.65 (m, 1 H), 7.61 (d, J = 7.2 Hz, 1 H), 7.57 (s, 1 H), 7.53–7.46 (m, 4 H), 

5.40 (s, 2 H). 13C NMR (CDCl3, 125 MHz)  185.4 (t, J = 27.5 Hz), 161.8 (t, J = 30.6 Hz), 135.5, 134.9, 

131.8, 131.4 (q, J = 32.5 Hz), 131.0 (t, J = 2.5 Hz), 130.1 (t, J = 2.5 Hz), 129.5, 129.2, 125.9 (q, J = 3.7 

Hz), 125.3 (q, J = 3.7 Hz), 123.9 (q, J = 271.2 Hz), 110.1 (t, J = 264.4 Hz), 68.1. 19F NMR (CDCl3, 376 

MHz)  –107.3 (s, 2 F), –62.7 (s, 3 F). IR (film) 3070, 1780, 1715, 1701, 1599, 1450, 1333, 1310, 1205, 

1165, 1128, 1099, 1074, 920, 885, 802, 700, 685, 661, 588 cm-1. HRMS (ESI, m/z): calcd for C17H12F5O3 

[M+H]+ 359.0707, found 359.0704. 

 

2,2-difluoro-1-phenyl-3-(3-(trifluoromethyl)phenyl)propan-1-one (3.4d) 

General procedure C was followed using 3.3d (179 mg, 0.500 mmol), Pd(PPh3)4 (28.9 mg, 0.0250 mmol), 

and o-xylene (0.010 L). The reaction was run at 140 °C. Workup and chromatographic purification (0% to 

5% EtOAc in hexanes) afforded the title compound 3.4d as an off-white solid (95.0 mg, 60%). 1H NMR 

(CDCl3, 400 MHz)  8.07 (d, J = 7.6 Hz, 2 H), 7.64 (t, J = 7.6 Hz, 1 H), 7.60–7.44 (m, 6 H), 3.59 (t, J = 

17.6 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  189.1 (t, J = 30.6 Hz), 134.7, 134.5, 132.6 (t, J = 3.7 Hz), 

132.0 (t, J = 3.1 Hz), 131.0 (q, J = 32.5 Hz), 130.4 (t, J = 3.1 Hz), 129.1, 128.9, 127.8 (q, J = 3.7 Hz), 

124.7 (q, J = 3.4 Hz), 124.2 (q, J = 270.9 Hz), 118.2 (t, J = 253.7 Hz), 39.9 (t, J = 23.1 Hz). 19F NMR 

(CDCl3, 376 MHz)  –98.5 (t, J = 16.9 Hz, 2 F), –62.7 (s, 3 F). IR (film) 3068, 2928, 1699, 1599, 1450, 

1329, 1279, 1169, 1126, 1076, 1040, 920, 771, 715, 702, 658 cm-1. HRMS (ESI, m/z): calcd for 

C16H12F5O [M+H]+ 315.0808, found 315.0794. mp 49–50 °C. 
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4-(hydroxymethyl)benzonitrile (3.3e-1) 

General procedure A was followed using 4-cyanobenzaldehyde (3.0 g, 23 mmol), NaBH4 (1.3 g, 34 

mmol), and MeOH (60 mL). Workup and chromatographic purification (20% to 50% EtOAc in hexanes) 

afforded the title compound 3.3e-1 as an off-white solid (2.8 g, 91%). 1H NMR (CDCl3, 400 MHz)  7.65 

(d, J = 8.0 Hz, 2 H), 7.48 (d, J = 8.0 Hz, 2 H), 4.79 (d, J = 3.6 Hz, 2 H), 2.05–2.01 (m, 1 H). 

Spectroscopic data matched that from the previous report.10a mp 41–42 °C (lit.10b 41–42 °C). 

 

4-cyanobenzyl 2,2-difluoro-3-oxo-3-phenylpropanoate (3.3e) 

General procedure B was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate 3.1a-1 (2.0 g, 

8.4 mmol), oxalyl chloride (0.68 mL, 8.0 mmol), 3.3e-1 (0.93 g, 7.0 mmol), Et3N (1.9 mL, 14 mmol), 

DMF (0.22 mL), and CH2Cl2 (45 mL). Workup and chromatographic purification (10% to 30% EtOAc in 

hexanes) afforded the title compound 3.3e as a pale yellow solid (1.3 g, 59%). 1H NMR (CDCl3, 400 

MHz)  8.06 (d, J = 8.0 Hz, 2 H), 7.70 (t, J = 7.6 Hz, 1 H), 7.64 (d, J = 8.0 Hz, 2 H), 7.52 (t, J = 7.6 Hz, 2 

H), 7.43 (d, J = 8.0 Hz, 2 H), 5.40 (s, 2 H). 13C NMR (CDCl3, 125 MHz)  185.4 (t, J = 27.5 Hz), 161.7 (t, 

J = 30.6 Hz), 139.1, 135.6, 132.7, 130.9 (t, J = 2.5 Hz), 130.1 (t, J = 2.5 Hz), 129.3, 128.7, 118.5, 112.9, 

110.1 (t, J = 264.4 Hz), 67.7. 19F NMR (CDCl3, 376 MHz)  –107.0 (s, 2 F). IR (film) 3068, 2231, 1778, 

1715, 1699, 1597, 1450, 1308, 1159, 1099, 926, 823, 714, 685, 669 cm-1. HRMS (ESI, m/z): calcd for 

C17H12F2NO3 [M+H]+ 316.0785, found 316.0778. mp 79–80 °C. 
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4-(2,2-difluoro-3-oxo-3-phenylpropyl)benzonitrile (3.4e) 

General procedure C was followed using 3.3e (157.6 mg, 0.500 mmol), Pd(PPh3)4 (116 mg, 0.100 mmol), 

and o-xylene (0.050 L) in 100 mL Schlenk tube. The reaction was run at 140 °C for 24 h. Workup and 

chromatographic purification (20% to 50% CH2Cl2 in hexanes) afforded the title compound 3.4e as a pale 

yellow solid (44.0 mg, 32%). 1H NMR (CDCl3, 400 MHz)  8.07 (d, J = 8.0 Hz, 2 H), 7.67–7.62 (m, 3 H), 

7.52–7.45 (m, 4 H), 3.59 (t, J = 17.6 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  188.7 (t, J = 31.2 Hz), 

137.2 (t, J = 3.7 Hz), 134.8, 132.3, 131.9, 131.7 (t, J = 2.5 Hz), 130.4 (t, J = 3.1 Hz), 129.0, 118.8, 118.1 

(t, J = 254.4 Hz), 111.9, 40.1 (t, J = 23.1 Hz). 19F NMR (CDCl3, 376 MHz)  –97.9 (t, J = 18.8 Hz, 2 F). 

IR (film) 3068, 2926, 2230, 1703, 1597, 1506, 1448, 1279, 1209, 1171, 1115, 1038, 943, 904, 777, 714, 

656, 602, 552 cm-1. HRMS (ESI, m/z): calcd for C16H12F2NO [M+H]+ 272.0887, found 272.0875. mp 

79 °C. 

 

4-nitrobenzyl 2,2-difluoro-3-oxo-3-phenylpropanoate (3.3f) 

General procedure B was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate 3.1a-1 (1.7 g, 

7.2 mmol), oxalyl chloride (0.58 mL, 6.9 mmol), 4-nitrobenzyl alcohol (0.92 g, 6.0 mmol), Et3N (1.7 mL, 

12 mmol), DMF (0.19 mL), and CH2Cl2 (35 mL). Workup and chromatographic purification (10% to 30% 

EtOAc in hexanes) afforded the title compound 3.3f as an off-white solid (1.03 g, 51%). 1H NMR (CDCl3, 

400 MHz)  8.21 (d, J = 8.4 Hz, 2 H), 8.07 (dd, J = 8.6, 1.4 Hz, 2 H), 7.70 (tt, J = 7.4, 1.5 Hz, 1 H), 7.54–

7.48 (m, 4 H), 5.45 (s, 2 H). 13C NMR (CDCl3, 125 MHz)  185.4 (t, J = 27.5 Hz), 161.7 (t, J = 30.6 Hz), 

148.2, 141.0, 135.6, 130.9, 130.2 (t, J = 2.5 Hz), 129.3, 128.8, 124.1, 110.2 (t, J = 265.0 Hz), 67.4. 19F 
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NMR (CDCl3, 376 MHz)  –107.0 (s, 2 F). IR (film) 3080, 1778, 1715, 1699, 1599, 1526, 1450, 1348, 

1310, 1257, 1159, 1128, 1101, 926, 843, 791, 739, 714, 687 cm1. HRMS (ESI, m/z): calcd for 

C16H12F2NO5 [M+H]+ 336.0684, found 336.0683. mp 53–54 °C. 
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2,2-difluoro-3-(4-nitrophenyl)-1-phenylpropan-1-one (3.4f) 

General procedure C was followed using 3.3f (167.6 mg, 0.500 mmol), Pd(PPh3)4 (28.9 mg, 0.0250 

mmol), and o-xylene (0.010 L). The reaction was run at 140 °C for 24 h. Workup and chromatographic 

purification (20% to 50% CH2Cl2 in hexanes) afforded the title compound 3.4f as an off-white solid (34.2 

mg, 23%). 1H NMR (CDCl3, 400 MHz)  8.20 (d, J = 8.0 Hz, 2 H), 8.08 (d, J = 8.0 Hz, 2 H), 7.66 (t, J = 

7.4 Hz, 1 H), 7.54–7.48 (m, 4 H), 3.64 (t, J = 17.4 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  188.7 (t, J = 

30.6 Hz), 147.7, 139.2 (t, J = 3.1 Hz), 134.9, 132.1, 131.7 (t, J = 2.5 Hz), 130.4 (t, J = 3.1 Hz), 129.0, 

123.7, 118.1 (t, J = 254.4 Hz), 39.8 (t, J = 23.1 Hz). 19F NMR (CDCl3, 376 MHz)  –97.8 (t, J = 16.9 Hz, 

2 F). IR (film) 3080, 2928, 1699, 1599, 1520, 1450, 1348, 1279, 1171, 1115, 1055, 1040, 904, 856, 773, 

733, 715, 694, 669, 600 cm-1. HRMS (ESI, m/z): calcd for C15H12F2NO3 [M+H]+ 292.0785, found 

292.0786. mp 89–90 °C. 

 

(2-methoxyphenyl)methanol (3.3g-1) 

General procedure A was followed using o-anisaldehyde (2.7 g, 20 mmol), NaBH4 (1.1 g, 30 mmol), and 

MeOH (50 mL). Workup and chromatographic purification (20% to 50% EtOAc in hexanes) afforded the 

title compound 3.3g-1 as a colorless oil (2.3 g, 83%). 1H NMR (CDCl3, 400 MHz)  7.31–7.28 (m, 2 H), 

6.96 (t, J = 7.4 Hz, 1 H), 6.90 (d, J = 8.4 Hz, 1 H), 4.70 (d, J = 6.0 Hz, 2 H), 3.88 (s, 3 H), 2.32 (t, J = 6.4 
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Hz, 1 H). HRMS (ESI, m/z): calcd for C8H9O2 [M–H]+ 137.0603, found 137.0587. Spectroscopic data 

matched that from the previous report.11 

 

2-methoxybenzyl 2,2-difluoro-3-oxo-3-phenylpropanoate (3.3g) 

General procedure B was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate 3.1a-1 (1.7 g, 

7.2 mmol), oxalyl chloride (0.58 mL, 6.9 mmol), 3.3g-1 (0.83 g, 6.0 mmol), Et3N (1.7 mL, 12 mmol), 

DMF (0.19 mL), and CH2Cl2 (35 mL). Workup and chromatographic purification (2% to 10% EtOAc in 

hexanes) afforded the title compound 3.3g as a colorless oil (1.51 g, 79%). 1H NMR (CDCl3, 400 MHz)  

8.05 (d, J = 8.0 Hz, 2 H), 7.66 (t, J = 7.4 Hz, 1 H), 7.49 (t, J = 7.6 Hz, 2 H), 7.32 (t, J = 8.0 Hz, 1 H), 7.26 

(d, J = 8.4 Hz, 1 H), 6.91 (t, J = 7.4 Hz, 1 H), 6.84 (d, J = 8.0 Hz, 1 H), 5.40 (s, 2 H), 3.73 (s, 3 H). 13C 

NMR (CDCl3, 125 MHz)  185.4 (t, J = 27.5 Hz), 161.9 (t, J = 30.6 Hz), 157.8, 135.2, 131.3, 130.6, 

130.3, 130.1 (t, J = 2.5 Hz), 129.1, 122.2, 120.6, 110.6, 109.9 (t, J =263.1 Hz), 65.1, 55.5. 19F NMR 

(CDCl3, 376 MHz)  –107.6 (s, 2 F). IR (film) 3070, 2964, 2841, 1770, 1715, 1699, 1599, 1497, 1466, 

1450, 1381, 1308, 1254, 1157, 1124, 1101, 1028, 922, 808, 756, 712, 687, 586 cm-1. HRMS (ESI, m/z): 

calcd for C17H14F2O4Na [M+Na]+ 343.0758, found 343.0746. 

 

2,2-difluoro-3-(2-methoxyphenyl)-1-phenylpropan-1-one (3.4g) 

General procedure C was followed using 3.3g (160 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

and o-xylene (0.010 L). Workup and chromatographic purification (0% to 5% EtOAc in hexanes) 

afforded the title compound 3.4g as a colorless oil (124 mg, 90%). 1H NMR (CDCl3, 400 MHz)  8.03 (d, 

J = 7.6 Hz, 2 H), 7.60 (t, J = 7.2 Hz, 1 H), 7.45 (t, J = 7.6 Hz, 2 H), 7.32–7.29 (m, 1 H), 7.28–7.25 (m, 1 
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H), 6.95 (t, J = 7.6 Hz, 1 H), 6.79 (d, J = 8.0 Hz, 1 H), 3.60 (t, J = 17.4 Hz, 2 H), 3.58 (s, 3 H). 13C NMR 

(CDCl3, 125 MHz)  189.7 (t, J = 29.4 Hz), 158.1, 134.1, 132.6, 132.5, 130.2 (t, J = 3.7 Hz), 129.4, 128.6, 

120.7, 120.0 (t, J = 4.4 Hz), 118.8 (t, J = 251.9 Hz), 110.6, 55.1, 35.2 (t, J = 23.7 Hz). 19F NMR (CDCl3, 

376 MHz)  –98.8 (t, J = 18.8 Hz, 2 F). IR (film) 2939, 2839, 1703, 1599, 1497, 1464, 1450, 1290, 1252, 

1176, 1124, 1051, 1026, 933, 754, 714, 687, 667 cm-1. HRMS (ESI, m/z): calcd for C16H14F2O2Na 

[M+Na]+ 299.0860, found 299.0847. 

OH

3.3h-1

Me

 

o-tolylmethanol (3.3h-1) 

General procedure A was followed using o-tolualdehyde (1.7 g, 15 mmol), NaBH4 (0.87 g, 23 mmol), and 

MeOH (38 mL). Workup and chromatographic purification (15% to 35% EtOAc in hexanes) afforded the 

title compound 3.3h-1 as a colorless solid (1.73 g, 94%). 1H NMR (CDCl3, 400 MHz)  7.38–7.36 (m, 1 

H), 7.24–7.18 (m, 3 H), 4.71 (d, J = 2.8 Hz, 2 H), 2.38 (s, 3 H), 1.58 (br, 1 H). Spectroscopic data 

matched that from the previous report.5 mp 35–36 °C (lit.5 37–38 °C). 

 

2-methylbenzyl 2,2-difluoro-3-oxo-3-phenylpropanoate (3.3h) 

General procedure B was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate 3.1a-1 (1.7 g, 

7.2 mmol), oxalyl chloride (0.58 mL, 6.9 mmol), 3.3h-1 (0.73 g, 6.0 mmol), Et3N (1.7 mL, 12 mmol), 

DMF (0.19 mL), and CH2Cl2 (35 mL). Workup and chromatographic purification (2% to 5% EtOAc in 

hexanes) afforded the title compound 3.3h as a colorless oil (1.48 g, 81%). 1H NMR (CDCl3, 400 MHz)  

8.03 (d, J = 7.6 Hz, 2 H), 7.66 (t, J = 7.4 Hz, 1 H), 7.48 (t, J = 7.6 Hz, 2 H), 7.30–7.25 (m, 2 H), 7.18 (t, J 

= 6.8 Hz, 2 H), 5.36 (s, 2 H), 2.28 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  185.4 (t, J = 27.5 Hz), 161.9 (t, 
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J = 30.6 Hz), 137.6, 135.3, 131.9, 131.1, 130.7, 130.1 (t, J = 2.5 Hz), 129.5, 129.1, 126.3, 110.0 (t, J = 

263.1 Hz), 67.9, 18.9. 19F NMR (CDCl3, 376 MHz)  –107.3 (s, 2 F). IR (film) 3068, 2974, 1776, 1715, 

1697, 1599, 1450, 1310, 1257, 1157, 1101, 1078, 922, 804, 762, 744, 712, 685, 584 cm-1. HRMS (ESI, 

m/z): calcd for C17H14F2O3Na [M+Na]+ 327.0809, found 327.0801. 

 

2,2-difluoro-1-phenyl-3-(o-tolyl)propan-1-one (3.4h) 

General procedure C was followed using 3.3h (152 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

and o-xylene (0.010 L). Workup and chromatographic purification (0% to 5% EtOAc in hexanes) 

afforded the title compound 3.4h as a colorless oil (114 mg, 88%). 1H NMR (CDCl3, 400 MHz)  8.05 (d, 

J = 7.6 Hz, 2 H), 7.63 (t, J = 7.4 Hz, 1 H), 7.48 (t, J = 7.8 Hz, 2 H), 7.28–7.26 (m, 1 H), 7.22–7.15 (m, 3 

H), 3.56 (t, J = 18.4 Hz, 2 H), 2.37 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  190.0 (t, J = 31.2 Hz), 138.3, 

134.5, 132.3, 131.9, 130.8, 130.4 (t, J = 3.1 Hz), 130.0 (t, J= 2.5 Hz), 128.8, 128.0, 126.1, 119.1 (t, J = 

252.5 Hz), 36.9 (t, J = 23.1 Hz), 20.2 (t, J = 1.9 Hz). 19F NMR (CDCl3, 376 MHz)  –98.6 (t, J = 18.8 Hz, 

2 F). IR (film) 3063, 3024, 1703, 1597, 1497, 1448, 1275, 1184, 1171, 1115, 1057, 1028, 904, 744, 714, 

687, 665, 602 cm-1. HRMS (ESI, m/z): calcd for C16H14F2ONa [M+Na]+ 283.0910, found 283.0905. 

 

Experimental Procedures and Characterization of Compounds in Scheme 3.16 
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General Procedure D: An oven-dried three-neck flask was charged with activated Zn (3.2 g, 49 mmol). 

The reaction vessel was equipped with a reflux condenser and two rubber septa, evacuated and backfilled 

with N2(g) three times. Dry THF (0.050 L) was added, followed by addition of the initiator 1,2-

dibromoethane (0.25 mL, 2.9 mmol) under N2(g). To activate the Zn, the reaction mixture was heated with 

a heat gun until the THF boiled suddenly. Heating was stopped, and the mixture was cooled to rt. This 

heating/cooling sequence for activation of Zn was repeated four more times (5 total). Subsequently, the 

reaction mixture was heated to 70 °C (oil-bath), and a solution of aldehyde (25 mmol) and ethyl 

bromodifluoroacetate (25 mmol) was added dropwise at a rate that maintained a gentle reflux. The 

resulting reaction mixture was stirred at 70 °C for 1 h, and then cooled to 50 °C and stirred overnight. The 

reaction mixture was cooled to 0 °C, and 1 N HCl(aq) was added until the residual Zn was consumed 

(roughly 100 mL). The reaction mixture was warmed to rt, and transferred to a separation funnel. The 

phases were separated, and the aqueous layer was extracted with EtOAc (3 x 50 mL). The combined 

organic layers were dried over anhydrous Na2SO4, filtered, and concentrated. Purification by flash 

chromatography provided the desired product. 

General Procedure E: An oven-dried three-neck flask was equipped with a liquid addition funnel, three-

way valve and two rubber septa, evacuated and backfilled with N2(g) three times. Dry CH2Cl2 (0.10 L) and 

oxalyl chloride (59 mmol) were added sequentially at rt, and the reaction solution was cooled to –78 °C. 

A solution of anhydrous DMSO (78 mmol) in dry CH2Cl2 (0.010 L) was added dropwise at –78 °C, and 

then the reaction solution was stirred continually at this temperature for 1 h. Next, a solution of alcohol 

(19.5 mmol) dissolved in dry CH2Cl2 (0.010 L) was added dropwise at –78 °C, and then the resulting 

reaction solution was stirred at this temperature for 1 h. Et3N (117 mmol) was added dropwise at –78 °C, 

and the reaction mixture was stirred at –78 °C for 30 min. The reaction mixture was gradually warmed to 

rt, and stirred at rt for 2 h. H2O (0100 mL) was added to quench the reaction, and CH2Cl2 was removed 

under reduced pressure. The aqueous layer was extracted with ether (3 x 100 mL), and the combined 

organic layers were dried over anhydrous Na2SO4, filtered, and concentrated. Purification by flash 

chromatography provided the desired product. 
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General Procedure F: A one-neck round-bottom flask was charged with β-keto ester (16 mmol), and 

MeOH (8.0 mL) was added at rt. The resulting solution was cooled to 0 °C. A pre-cooled solution of 

KOH (16 mmol) dissolved in MeOH (8.0 mL) was added dropwise, and then the reaction solution was 

warmed to rt, and stirred at rt for 7 h. MeOH was removed under reduced pressure. EtOAc (8.0 mL) and 

ether (8.0 mL) were added, and the mixture was sonicated at rt until fine solids formed. The solid was 

collected by filtration, washed with ether, and dried in vacuo to give potassium salt. 

General Procedure G: An oven-dried one-neck round-bottom flask was charged with potassium salt (5.0 

mmol), and the system was evacuated and backfilled with N2(g) three times. Dry CH2Cl2 (15 mL) and 

DMF (0.75 mL) were added via a syringe, and the reaction mixture was cooled to 0 °C. Oxalyl chloride 

(5.0 mmol) was added dropwise, and then the reaction mixture was stirred at 0 °C for 30 min, and rt for 

1.5 h. Next, a solution of cinnamyl alcohol (6.5 mmol) dissolved in dry CH2Cl2 (2.0 mL) was added 

dropwise at 0 °C followed by dropwise addition of Et3N (6.0 mmol). The resulting reaction mixture was 

stirred at 0 °C for 30 min, and rt for 1.5 h. H2O (8.0 mL) was added to quench the reaction, and CH2Cl2 

was removed under reduced pressure. The aqueous layer was extracted with ether (3 x 15 mL), and the 

combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated. Purification by 

flash chromatography provided the desired product. 

 

ethyl 2,2-difluoro-3-hydroxy-3-(4-methoxyphenyl)propanoate (3.5a-3) 

General procedure D was followed using activated Zn (3.2 g, 49 mmol), 1,2-dibromoethane (0.25 mL, 2.9 

mmol), p-anisaldehyde (3.0 mL, 25 mmol), ethyl bromodifluoroacetate (3.2 mL, 25 mmol), and THF 

(0.050 L). Workup and chromatographic purification (10% to 15% EtOAc in hexanes) afforded the title 

compound 3.5a-3 as a colorless oil (5.4 g, 84%). 1H NMR (CDCl3, 400 MHz)  7.37 (d, J = 8.8 Hz, 2 H), 

6.92 (d, J = 8.8 Hz, 2 H), 5.12 (ddd, J = 15.2, 8.0, 5.2 Hz, 1 H), 4.32 (q, J = 7.2 Hz, 2 H), 3.82 (s, 3 H), 
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2.63 (d, J = 5.2 Hz, 1 H), 1.31 (t, J = 7.2 Hz, 3 H). 13C NMR (CDCl3, 125 MHz)  163.8 (t, J = 31.2 Hz), 

160.5, 129.2, 126.7, 114.1, 114.0 (dd, J = 257.5, 252.5 Hz), 73.6 (dd, J = 26.2, 23.8 Hz), 63.3, 55.5, 14.1. 

19F NMR (CDCl3, 376 MHz)  –120.4 (dd, J = 259.4, 15.0 Hz, 1 F), –114.2 (dd, J = 259.4, 7.5 Hz, 1 F). 

HRMS (ESI, m/z): calcd for C12H14F2O4Na [M+Na]+ 283.0758, found 283.0746. Spectroscopic data 

matched that from the previous report.12 

 

ethyl 2,2-difluoro-3-(4-methoxyphenyl)-3-oxopropanoate (3.5a-2) 

General procedure E was followed using oxalyl chloride (5.0 mL, 59 mmol), DMSO (5.5 mL, 78 mmol), 

3.5a-3 (5.07 g, 19.5 mmol), Et3N (16 mL, 120 mmol) and CH2Cl2 (120 mL). Workup and 

chromatographic purification (2% to 5% EtOAc in hexanes) afforded the title compound 3.5a-2 as a 

colorless oil (4.38 g, 87%). 1H NMR (CDCl3, 400 MHz)  8.08 (d, J = 8.8 Hz, 2 H), 6.99 (d, J = 8.8 Hz, 2 

H), 4.39 (q, J = 7.2 Hz, 2 H), 3.91 (s, 3 H), 1.33 (t, J = 7.2 Hz, 3 H). 19F NMR (CDCl3, 376 MHz)  –

107.3 (s, 2 F). HRMS (ESI, m/z): calcd for C12H12F2O4Na [M+Na]+ 281.0601, found 281.0587. 

Spectroscopic data matched that from the previous report.13 

 

potassium 2,2-difluoro-3-(4-methoxyphenyl)-3-oxopropanoate (3.5a-1) 

General procedure F was followed using 3.5a-2 (4.08 g, 15.8 mmol), KOH (0.890 g, 15.8 mmol), and 

MeOH (16 mL). Workup afforded the title compound 3.5a-1 as a colorless solid (3.68 g, 87%). 1H NMR 

(DMSO-d6, 400 MHz)  7.99 (d, J = 8.8 Hz, 2 H), 7.04 (t, J = 8.8 Hz, 2 H), 3.84 (s, 3 H). 13C NMR 

(DMSO-d6, 125 MHz)  188.0 (t, J = 27.5 Hz), 163.5, 162.5 (t, J = 23.8 Hz), 131.6, 125.5, 113.8, 111.4 (t, 

J = 261.2 Hz), 55.6. 19F NMR (DMSO-d6, 376 MHz)  –104.9 (s, 2 F). IR (film) 2970, 2845, 1693, 1676, 
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1605, 1516, 1383, 1325, 1277, 1180, 1151, 1128, 1028, 922, 847, 816, 717, 613, 584 cm-1. HRMS (ESI, 

m/z): calcd for C10H7F2K2O4 [M+K]+ 306.9587, found 306.9574. mp 150–151 °C. 

 

3,5-dimethoxybenzyl 2,2-difluoro-3-(4-methoxyphenyl)-3-oxopropanoate (3.5a) 

General procedure G was followed using potassium 2,2-difluoro-3-(4-methoxyphenyl)-3-oxopropanoate 

3.5a-1 (1.6 g, 6.0 mmol), oxalyl chloride (0.49 mL, 5.7 mmol), 3,5-dimethoxybenzyl alcohol (0.84 g, 5.0 

mmol), Et3N (1.4 mL, 10 mmol), DMF (0.19 mL), and CH2Cl2 (30 mL). Workup and chromatographic 

purification (10% to 20% EtOAc in hexanes) afforded the title compound 3.5a as an off-white solid (1.5 g, 

79%). 1H NMR (CDCl3, 400 MHz)  8.03 (d, J = 8.8 Hz, 2 H), 6.94 (dt, J = 9.2, 2.4 Hz, 2 H), 6.45 (d, J = 

2.4 Hz, 2 H), 6.41 (t, J = 2.2 Hz, 1 H), 5.28 (s, 2 H), 3.90 (s, 3 H), 3.76 (s, 6 H). 13C NMR (CDCl3, 125 

MHz)  183.7 (t, J = 27.5 Hz), 165.3, 162.1 (t, J = 30.6 Hz), 161.1, 136.2, 132.7 (t, J = 2.5 Hz), 124.0 (t, J 

= 2.5 Hz), 114.5, 110.3 (t, J = 263.1 Hz), 106.1, 101.0, 68.9, 55.8, 55.5. 19F NMR (CDCl3, 376 MHz)  –

107.0 (s, 2 F). IR (film) 2957, 2937, 2841, 1774, 1701, 1686, 1599, 1512, 1458, 1431, 1311, 1267, 1157, 

1099, 1067, 1024, 922, 843, 791, 768, 696 cm-1. HRMS (ESI, m/z): calcd for C19H18F2O6Na [M+Na]+ 

403.0969, found 403.0960. mp 52–53 °C. 

 

3-(3,5-dimethoxyphenyl)-2,2-difluoro-1-(4-methoxyphenyl)propan-1-one (3.6a) 

General procedure C was followed using 3.5a (190 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

and o-xylene (0.010 L). Workup and chromatographic purification (2% to 5% EtOAc in hexanes) 

afforded the title compound 3.6a as a colorless oil (128 mg, 76%). 1H NMR (CDCl3, 400 MHz)  8.06 (d, 

J = 8.4 Hz, 2 H), 6.94 (d, J = 8.8 Hz, 2 H), 6.46 (s, 2 H), 6.40 (t, J = 2.2 Hz, 1 H), 3.89 (s, 3 H), 3.77 (s, 6 
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H), 3.44 (t, J = 17.8 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  188.0 (t, J = 30.0 Hz), 164.6, 160.8, 133.7 

(t, J = 3.7 Hz), 132.9 (t, J = 3.1 Hz), 125.2 (t, J = 1.9 Hz), 118.7 (t, J = 253.7 Hz), 114.1, 109.1, 99.8, 55.7, 

55.5, 40.7 (t, J = 23.1 Hz). 19F NMR (CDCl3, 376 MHz)  –98.1 (t, J = 18.8 Hz, 2 F). IR (film) 3003, 

2957, 2939, 2841, 1691, 1599, 1578, 1512, 1460, 1431, 1317, 1265, 1205, 1165, 1151, 1113, 1068, 1030, 

947, 879, 843, 796, 769, 715, 696, 688, 594 cm-1. HRMS (ESI, m/z): calcd for C18H18F2O4Na [M+Na]+ 

359.1071, found 359.1056. 

 

ethyl 2,2-difluoro-3-(4-fluorophenyl)-3-hydroxypropanoate (3.5b-3) 

General procedure D was followed using activated Zn (3.2 g, 49 mmol), 1,2-dibromoethane (0.25 mL, 2.9 

mmol), 4-fluorobenzaldehyde (2.6 mL, 25 mmol), ethyl bromodifluoroacetate (3.2 mL, 25 mmol), and 

THF (0.050 L). Workup and chromatographic purification (10% to 15% EtOAc in hexanes) afforded the 

title compound 3.5b-3 as a colorless oil (5.1 g, 82%). 1H NMR (CDCl3, 400 MHz)  7.46–7.42 (m, 2 H), 

7.10 (t, J = 8.8 Hz, 2 H), 5.18 (ddd, J = 15.2, 8.0, 5.2 Hz, 1 H), 4.33 (q, J = 7.2 Hz, 2 H), 2.71 (d, J = 4.8 

Hz, 1 H), 1.32 (t, J = 7.2 Hz, 3 H). 13C NMR (CDCl3, 125 MHz)  163.7 (t, J = 31.2 Hz), 163.4 (d, J = 

246.2 Hz), 130.4 (t, J = 2.5 Hz), 129.8 (d, J = 7.5 Hz), 115.6 (d, J = 21.2 Hz), 113.7 (dd, J = 257.5, 252.5 

Hz), 73.3 (dd, J = 27.5, 23.8 Hz), 63.5, 14.0. 19F NMR (CDCl3, 376 MHz)  –120.6 (dd, J = 263.2, 15.0 

Hz, 1 F), –113.8 (dd, J = 263.2, 7.5 Hz, 1 F), –112.2 (m, 1 F). HRMS (ESI, m/z): calcd for C11H11F3O3Li 

[M+Li]+ 255.0820, found 255.0831. Spectroscopic data matched that from the previous report.12 

 

ethyl 2,2-difluoro-3-(4-fluorophenyl)-3-oxopropanoate (3.5b-2) 
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General procedure E was followed using oxalyl chloride (5.0 mL, 58 mmol), DMSO (5.5 mL, 77 mmol), 

3.5b-3 (4.76 g, 19.2 mmol), Et3N (16 mL, 120 mmol) and CH2Cl2 (130 mL). Workup and 

chromatographic purification (2% to 5% EtOAc in hexanes) afforded the title compound 3.5b-2 as a 

colorless oil (3.93 g, 83%). 1H NMR (CDCl3, 400 MHz)  8.16–8.13 (m, 2 H), 7.21 (t, J = 8.6 Hz, 2 H), 

4.40 (q, J = 7.2 Hz, 2 H), 1.34 (t, J = 7.2 Hz, 3 H). 13C NMR (CDCl3, 125 MHz)  184.2 (t, J = 28.1 Hz), 

167.1 (d, J = 257.5 Hz), 161.9 (t, J = 30.0 Hz), 133.2 (dt, J = 8.8, 3.1 Hz), 127.6 (m), 116.6 (d, J = 22.5 

Hz), 110.0 (t, J = 262.5 Hz), 64.1, 14.0. 19F NMR (CDCl3, 376 MHz)  –107.5 (s, 2 F), –100.4 (m, 1 F). 

HRMS (ESI, m/z): calcd for C11H9F3O3Na [M+Na]+ 269.0401, found 269.0411. Spectroscopic data 

matched that from the previous report.14 

 

potassium 2,2-difluoro-3-(4-fluorophenyl)-3-oxopropanoate (3.5b-1) 

General procedure F was followed using 3.5b-2 (3.72 g, 15.1 mmol), KOH (0.850 g, 15.1 mmol), and 

MeOH (0.030 L). Workup afforded the title compound 3.5b-1 as a colorless solid (3.28 g, 85%). 1H NMR 

(DMSO-d6, 400 MHz)  8.09 (dd, J = 8.6, 5.4 Hz, 2 H), 7.37 (t, J = 9.0 Hz, 2 H). 13C NMR (DMSO-d6, 

125 MHz)  188.4 (t, J = 28.1 Hz), 165.3 (d, J = 252.5 Hz), 162.2 (t, J = 23.8 Hz), 132.3 (d, J = 10.0 Hz), 

129.3 (d, J = 3.8 Hz), 115.8 (d, J = 21.2 Hz), 111.3 (t, J = 261.2 Hz). 19F NMR (DMSO-d6, 376 MHz)  –

105.4 (s, 2 F), –104.5 (m, 1 F). IR (film) 3086, 1718, 1678, 1645, 1605, 1512, 1404, 1300, 1250, 1161, 

1099, 912, 849, 816, 764, 717, 688, 573, 521, 480 cm-1. HRMS (ESI, m/z): calcd for C9H4F3K2O3 [M+K]+ 

294.9387, found 294.9375. mp 173–174 °C decomposed. 
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3,5-dimethoxybenzyl 2,2-difluoro-3-(4-fluorophenyl)-3-oxopropanoate (3.5b) 
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General procedure G was followed using potassium 2,2-difluoro-3-(4-fluorophenyl)-3-oxopropanoate 

3.5b-1 (1.5 g, 6.0 mmol), oxalyl chloride (0.49 mL, 5.7 mmol), 3,5-dimethoxybenzyl alcohol (0.84 g, 5.0 

mmol), Et3N (1.4 mL, 10 mmol), DMF (0.19 mL), and CH2Cl2 (30 mL). Workup and chromatographic 

purification (5% to 15% EtOAc in hexanes) afforded the title compound 3.5b as a light yellow oil (1.3 g, 

71%). 1H NMR (CDCl3, 400 MHz)  8.11–8.07 (m, 2 H), 7.16 (t, J = 8.6 Hz, 2 H), 6.44–6.42 (m, 3 H), 

5.28 (s, 2 H), 3.77 (s, 6 H). 13C NMR (CDCl3, 125 MHz)  184.0 (t, J = 27.5 Hz), 167.0 (d, J = 257.5 Hz), 

161.7 (t, J = 30.6 Hz), 161.1, 136.0, 133.1 (dt, J = 10.0, 2.5 Hz), 127.5 (d, J = 2.5 Hz), 116.6 (d, J = 21.2 

Hz), 110.0 (t, J = 263.7 Hz), 106.3, 100.9, 69.1, 55.6. 19F NMR (CDCl3, 376 MHz)  –100.4 (m, 1 F), –

107.3 (s, 2 F). IR (film) 2959, 2941, 2841, 1774, 1701, 1599, 1508, 1473, 1431, 1304, 1244, 1207, 1159, 

1101, 1068, 922, 850, 834, 766, 715, 690, 615, 575 cm-1. HRMS (ESI, m/z): calcd for C18H15F3O5Na 

[M+Na]+ 391.0769, found 391.0762. 

 

3-(3,5-dimethoxyphenyl)-2,2-difluoro-1-(4-fluorophenyl)propan-1-one (3.6b) 

General procedure C was followed using 3.5b (184 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

and o-xylene (0.010 L). Workup and chromatographic purification (0% to 5% EtOAc in hexanes) 

afforded the title compound 3.6b as a colorless oil (133 mg, 82%). 1H NMR (CDCl3, 400 MHz)  8.11–

8.07 (m, 2 H), 7.15 (t, J = 8.8 Hz, 2 H), 6.45 (d, J = 2.4 Hz, 2 H), 6.40 (t, J = 2.2 Hz, 1 H), 3.77 (s, 6 H), 

3.45 (t, J = 17.8 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  188.1 (t, J = 31.2 Hz), 166.5 (d, J = 256.2 Hz), 

160.8, 133.4 (t, J = 3.7 Hz), 133.3 (dt, J = 10.0, 3.7 Hz), 128.7 (q, J = 2.5 Hz), 118.5 (t, J = 253.1 Hz), 

116.1 (d, J = 22.5 Hz), 109.1, 99.8, 55.5, 40.4 (t, J = 23.1 Hz). 19F NMR (CDCl3, 376 MHz)  –102.3 (m, 

1 F), –98.1 (t, J = 16.9 Hz, 2 F). IR (film) 3001, 2939, 2839, 1701, 1599, 1508, 1466, 1458, 1431, 1412, 

1319, 1277, 1242, 1205, 1161, 1111, 1070, 947, 879, 849, 771, 712, 688, 613, 596, 586 cm-1. HRMS (ESI, 

m/z): calcd for C17H16F3O3 [M+H]+ 325.1052, found 325.1061. 
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ethyl 2,2-difluoro-3-hydroxy-3-(3-(trifluoromethyl)phenyl)propanoate (3.5c-3) 

General procedure D was followed using activated Zn (3.2 g, 49 mmol), 1,2-dibromoethane (0.25 mL, 2.9 

mmol), 3-(trifluoromethyl)benzaldehyde (3.3 mL, 25 mmol), ethyl bromodifluoroacetate (3.2 mL, 25 

mmol), and THF (0.050 L). Workup and chromatographic purification (10% to 15% EtOAc in hexanes) 

afforded the title compound 3.5c-3 as a colorless oil (5.7 g, 78%). 1H NMR (CDCl3, 400 MHz)  7.74 (s, 

1 H), 7.66 (d, J = 7.6 Hz, 2 H), 7.53 (t, J = 7.8 Hz, 1 H), 5.29–5.23 (m, 1 H), 4.33 (q, J = 7.2 Hz, 2 H), 

2.95 (d, J = 4.8 Hz, 1 H), 1.31 (t, J = 7.2 Hz, 3 H). 13C NMR (CDCl3, 125 MHz)  163.5 (t, J = 31.2 Hz), 

135.7, 131.3, 131.0 (q, J = 32.1 Hz), 129.1, 126.2 (q, J = 3.7 Hz), 124.7 (q, J = 4.1 Hz), 124.1 (q, J = 

270.9 Hz), 113.6 (dd, J = 258.7 Hz, 253.7 Hz), 73.3 (dd, J = 28.1 Hz, 24.4 Hz), 63.6, 14.0. 19F NMR 

(CDCl3, 376 MHz)  –120.3 (dd, J = 263.2, 15.0 Hz, 1 F), –113.0 (dd, J = 263.2, 7.5 Hz, 1 F), –62.7 (s, 3 

F). IR (film) 3493, 2989, 2945, 1759, 1452, 1377, 1331, 1169, 1128, 1074, 854, 783, 729, 702, 667 cm-1. 

HRMS (ESI, m/z): calcd for C12H11F5O3Na [M+Na]+ 321.0526, found 321.0533. 

 

ethyl 2,2-difluoro-3-oxo-3-(3-(trifluoromethyl)phenyl)propanoate (3.5c-2) 

Dess-Martin periodinane (8.53 g, 20.1 mmol) was added into a solution of compound 3.5c-3 (4.61 g, 15.5 

mmol) dissolved in CH2Cl2 (0.120 L) at 0 °C, and the solution was stirred at rt for 3 h. CH2Cl2 was 

removed under reduced pressure, and the residue was charged with ether (170 mL). Next, the mixture was 

cooled to 0 °C, and Na2S2O3 (sat’d), water and NaHCO3 (sat’d, 75 mL each) were added into the mixture 

and stirred until the two phases were generated. The solution was transferred to a separation funnel, and 

the organic layer was collected. The aqueous layer was extracted with ether (2 x 170 mL), and the 
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combined organic phases were dried over anhydrous Na2SO4, filtered, and concentrated to provide the 

title compound 3.5c-2 as a colorless liquid (4.5g, 98%). Occasionally, a small amount of the hydrate form 

of the ketone was observed by 19F NMR [(CDCl3, 376 MHz)  –117.2 (s, 2 F)]. To convert the hydrate 

form to keto form, the crude product was stirred together with activated 4Å molecular sieves in dry 

toluene for several hours. The molecular sieves were removed by filtration and washed with dry toluene. 

The filtrate was concentrated, and the product was dried in vacuo. The colorless liquid product was used 

in the next step without further purification. 1H NMR (CDCl3, 400 MHz)  8.35 (s, 1 H), 8.28 (d, J = 7.6 

Hz, 1 H), 7.95 (d, J = 8.0 Hz, 1 H), 7.70 (t, J = 7.8 Hz, 1 H), 4.42 (q, J = 7.2 Hz, 2 H), 1.35 (t, J = 7.2 Hz, 

3 H). 13C NMR (CDCl3, 125 MHz)  184.8 (t, J = 28.1 Hz), 161.5 (t, J = 30.6 Hz), 133.3 (t, J = 2.5 Hz), 

132.1, 131.8 (t, J = 1.9 Hz), 131.6 (q, J = 3.3 Hz), 127.0 (q, J = 3.2 Hz), 123.5 (q, J = 270.9 Hz), 109.8 (t, 

J = 263.1 Hz), 64.3, 14.0. 19F NMR (CDCl3, 376 MHz)  –107.7 (s, 2 F), –63.1 (s, 3 F). IR (film) 2989, 

1778, 1713, 1614, 1375, 1337, 1269, 1161, 1134, 1076, 1009, 941, 785, 692, 651 cm-1. HRMS (ESI, m/z): 

calcd for C12H10F5O3 [M+H]+ 297.0550, found 297.0538. 

 

potassium 2,2-difluoro-3-oxo-3-(3-(trifluoromethyl)phenyl)propanoate (3.5c-1) 

A one-neck round-bottom flask was charged with 3.5c-2 (4.80 g, 16.2 mmol), and MeOH (35 mL) was 

added at rt. The resulting solution was cooled to 0 °C. A pre-cooled solution of KOH (0.910 g, 16.2 mmol) 

dissolved in MeOH (20 mL) was added dropwise, and then the reaction solution was warmed to rt. The 

reaction mixture was stirred at rt for 12 h, after which the solvent was removed under reduced pressure. 

Ether (20 mL) and hexanes (5 mL) were added, and the mixture was sonicated at rt until fine solids 

formed. The solid was collected by filtration, washed with ether, and dried in vacuo to give the compound 

3.5c-1 as an off-white solid (4.1 g, 83%). 1H NMR (DMSO-d6, 400 MHz)  8.30 (s, 1 H), 8.28 (d, J = 8.0 

Hz,1 H), 8.05 (d, J = 7.6 Hz, 1 H), 7.80 (t, J = 8.0 Hz, 1 H). 13C NMR (DMSO-d6, 125 MHz)  189.1 (t, J 
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= 28.1 Hz), 162.8 (t, J = 23.7 Hz), 133.4, 133.2, 130.3, 130.2, 129.6 (q, J = 32.1 Hz), 125.7, 123.8 (q, J = 

270.9 Hz) 111.4 (t, J = 261.9 Hz). 19F NMR (DMSO-d6, 376 MHz)  –105.7 (s, 2 F), –61.5 (s, 3 F). IR 

(film) 1701, 1670, 1389, 1333, 1269, 1128, 1074, 920, 814, 692 cm-1. HRMS (ESI, m/z): calcd for 

C10H5F5KO3 [M+H]+ 306.9796, found 306.9783. mp 145 °C decomposed. 

 

2,2-difluoro-3-oxo-3-(3-(trifluoromethyl)phenyl)propanoic acid (3.5c-1') 

A one-neck round-bottom flask was charged with 3.5c-1 (1.4 g, 4.6 mmol), and CHCl3 (25 mL) was 

added at rt. The resulting suspension was cooled to 0 °C, and then a pre-cooled solution of HCl in 1,4-

dioxane (4 N, 1.5 mL) was added dropwise. The mixture solution was stirred at 0 °C until the thick white 

suspension disappeared, leaving a translucent turbid suspension of KCl. Then, the mixture was filtered 

through a pad of anhydrous Na2SO4, and the solid portion was washed with CHCl3. The filtrate was 

concentrated under reduced pressure, and the residue was dried in vacuo to give the compound 3.5c-1' as 

a slightly pink solid (1.2 g, 97%). 1H NMR (CDCl3, 400 MHz)  8.37 (s, 1 H), 8.31 (d, J = 7.6 Hz, 1 H), 

7.97 (d, J = 7.6 Hz, 1 H), 7.72 (t, J = 7.8 Hz, 1 H), 6.80 (br, 1 H).13C NMR (CDCl3, 125 MHz)  184.7 (t, 

J = 28.7 Hz), 165.0 (t, J = 30.6 Hz), 133.4, 132.1 (q, J = 33.4 Hz), 132.0 (t, J = 3.7 Hz), 131.4, 130.1, 

127.1 (q, J = 3.4 Hz), 123.4 (q, J = 270.9 Hz), 110.0 (t, J = 264.4 Hz).19F NMR (CDCl3, 376 MHz)  –

107.6 (s, 2 F), –63.1 (s, 3 F). IR (film) 3088, 1769, 1709, 1612, 1439, 1335, 1271, 1167, 1130, 1074, 935, 

916, 818, 793, 758, 690 cm-1. HRMS (ESI, m/z): calcd for C10H6F5O3 [M+H]+ 269.0237, found 269.0242. 

mp 81–82 °C. 

 

3,5-dimethoxybenzyl 2,2-difluoro-3-oxo-3-(3-(trifluoromethyl)phenyl)propanoate (3.5c) 
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General procedure G was followed using 3.5c-1' (1.1 g, 4.3 mmol), oxalyl chloride (0.35 mL, 4.1 mmol), 

3,5-dimethoxybenzyl alcohol (0.69 g, 4.1 mmol), Et3N (1.1 mL, 8.2 mmol), DMF (0.12 mL), and CH2Cl2 

(25 mL). Workup and chromatographic purification (30% to 60% CH2Cl2 in hexanes) afforded the title 

compound 3.5c as a light yellow oil (1.2 g, 70%). 1H NMR (CDCl3, 400 MHz)  8.32 (s, 1 H), 8.22 (d, J = 

8.0 Hz, 1 H), 7.92 (d, J = 8.0 Hz, 1 H), 7.65 (t, J = 8.0 Hz, 1 H), 6.45–6.42 (m, 3 H), 5.29 (s, 2 H), 3.77 (s, 

6 H). 13C NMR (CDCl3, 125 MHz)  184.6 (t, J = 28.1 Hz), 161.4 (t, J = 30.0 Hz), 161.2, 135.9, 133.2, 

132.0 (q, J = 33.7 Hz), 131.6 (m), 129.9, 126.9 (q, J = 3.3 Hz), 123.4 (q, J = 271.2 Hz), 109.8 (t, J = 

263.7 Hz), 106.3, 101.0, 69.3, 55.5. 19F NMR (CDCl3, 376 MHz)  –107.5 (s, 2 F), –63.1 (s, 3 F). IR 

(film) 2962, 2843, 1778, 1713, 1612, 1599, 1462, 1433, 1337, 1207, 1159, 1134, 1074, 939, 924, 839, 

692, 652 cm-1. HRMS (ESI, m/z): calcd for C19H15F5O5 [M]+ 418.0840, found 418.0838. 

 

3-(3,5-dimethoxyphenyl)-2,2-difluoro-1-(3-(trifluoromethyl)phenyl)propan-1-one (3.6c) 

General procedure C was followed using 3.5c (209 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

and o-xylene (0.010 L). The reaction was run at 130 °C for 24 h. Workup and chromatographic 

purification (1% to 10% CH2Cl2 in hexanes) afforded the title compound 3.6c as a colorless oil (144 mg, 

77%). 1H NMR (CDCl3, 400 MHz)  8.23 (s, 1 H), 8.20 (d, J = 8.4 Hz, 1 H), 7.86 (d, J = 7.6 Hz, 1 H), 

7.61 (t, J = 7.8 Hz, 1 H), 6.45 (d, J = 2.0 Hz, 2 H), 6.40 (t, J = 2.2 Hz, 1 H), 3.77 (s, 6 H), 3.47 (t, J = 17.6 

Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  188.8 (t, J = 31.2 Hz), 160.9, 133.3 (t, J = 3.7 Hz), 133.0 (t, J = 

3.1 Hz), 132.9 (t, J = 2.5 Hz), 131.5 (t, J = 32.9 Hz), 130.7 (q, J = 3.3 Hz), 129.5, 127.1 (h, J = 3.7 Hz), 

123.6 (q, J = 270.9 Hz), 118.4 (t, J = 253.1 Hz), 109.1, 99.9, 55.5, 40.4 (t, J = 22.5 Hz). 19F NMR (CDCl3, 

376 MHz)  –98.2 (t, J = 16.9 Hz, 2 F), –63.0 (s, 3 F). IR (film) 3003, 2941, 2841, 1713, 1610, 1597, 

1464, 1431, 1335, 1259, 1205, 1165, 1132, 1074, 837, 816, 766, 692 cm-1. HRMS (ESI, m/z): calcd for 

C18H16F5O3 [M+H]+ 375.1020, found 375.1022. 
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ethyl 2,2-difluoro-3-hydroxy-3-(5-methylthiophen-2-yl)propanoate (3.5d-3) 

General procedure D was followed using activated Zn (1.94 g, 29.6 mmol), 1,2-dibromoethane (0.15 mL, 

1.8 mmol), 5-methyl-2-thiophenecarboxaldehyde (1.6 mL, 15 mmol), ethyl bromodifluoroacetate (1.9 mL, 

15 mmol), and THF (0.030 L). Workup and chromatographic purification (10% to 15% EtOAc in hexanes) 

afforded the title compound 3.5d-3 as a yellow oil (2.15 g, 58%). 1H NMR (CDCl3, 400 MHz)  6.96 (d, J 

= 3.2 Hz, 1 H), 6.68 (dd, J = 3.4, 1.4 Hz, 1 H), 5.33 (ddd, J = 14.8, 8.0, 6.4 Hz, 1 H), 4.35 (q, J = 7.2 Hz, 

2 H), 2.60 (d, J = 6.0 Hz, 1 H), 2.49 (s, 3 H), 1.34 (t, J = 7.2 Hz, 3 H).13C NMR (CDCl3, 125 MHz)  

163.4 (dd, J = 32.5, 31.2 Hz), 142.2, 134.2, 128.0, 125.3, 113.4 (dd, J = 257.5, 253.8 Hz), 70.6 (dd, J = 

27.5, 25.0 Hz), 63.5, 15.5, 14.1. 19F NMR (CDCl3, 376 MHz)  –120.2 (dd, J = 263.2, 15.0 Hz, 1 F), –

114.2 (dd, J = 263.2, 7.5 Hz, 1 F). IR (film) 3495, 2986, 2924, 1759, 1375, 1321, 1217, 1186, 1103, 1072, 

1045, 854, 793, 669 cm-1. HRMS (ESI, m/z): calcd for C10H12F2O3SNa [M+Na]+ 273.0373, found 

273.0376. 

 

ethyl 2,2-difluoro-3-(5-methylthiophen-2-yl)-3-oxopropanoate (3.5d-2) 

General procedure E was followed using oxalyl chloride (3.9 mL, 46 mmol), DMSO (4.4 mL, 61 mmol), 

3.5d-3 (3.8 g, 15 mmol), Et3N (13 mL, 92 mmol) and CH2Cl2 (0.11 L). Workup and chromatographic 

purification (2% to 5% EtOAc in hexanes) afforded the title compound 3.5d-2 as a yellow oil (3.2 g, 

83%). 1H NMR (CDCl3, 400 MHz)  7.87–7.86 (m, 1 H), 6.90 (dd, J = 4.2, 1.4 Hz, 1 H), 4.39 (q, J = 7.2 

Hz, 2 H), 2.60 (s, 3 H), 1.34 (t, J = 7.2 Hz, 3 H). 13C NMR (CDCl3, 125 MHz)  178.1 (t, J = 27.5 Hz), 

161.9 (t, J = 30.6 Hz), 154.5, 137.4 (t, J = 4.4 Hz), 135.3, 128.2, 109.7 (t, J = 262.5 Hz), 64.0, 16.4, 14.1. 
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19F NMR (CDCl3, 376 MHz)  –108.2 (s, 2 F). IR (film) 2988, 2941, 1774, 1666, 1446, 1313, 1267, 1157, 

1126, 1053, 868, 816, 787, 675, 580 cm-1. HRMS (ESI, m/z): calcd for C10H10F2O3SNa [M+Na]+ 

271.0216, found 271.0221. 

 

potassium 2,2-difluoro-3-(5-methylthiophen-2-yl)-3-oxopropanoate (3.5d-1) 

General procedure F was followed using 3.5d-2 (3.0 g, 12 mmol), KOH (0.67 g, 12 mmol), and MeOH 

(25 mL). Workup afforded the title compound 3.5d-1 as a colorless solid (2.6 g, 84%). 1H NMR (DMSO-

d6, 400 MHz)  7.78 (d, J = 3.6 Hz, 1 H), 6.97 (dd, J = 4.0, 1.4 Hz, 1 H), 2.52 (s, 3 H). 13C NMR (DMSO-

d6, 125 MHz)  182.6 (t, J = 28.8 Hz), 162.1 (t, J = 23.8 Hz), 150.9, 136.8, 136.2 (t, J = 2.5 Hz), 127.8, 

111.3 (t, J = 261.9 Hz), 15.6. 19F NMR (DMSO-d6, 376 MHz)  –105.2 (s, 2 F). IR (film) 1693, 1668, 

1454, 1389, 1298, 1157, 1130, 1074, 1047, 860, 818, 806, 793, 706, 615, 590, 575, 511 cm-1. HRMS (ESI, 

m/z): calcd for C8H5F2K2O3S [M+K]+ 296.9202, found 296.9193. mp 141–142 °C decomposed. 

 

3,5-dimethoxybenzyl 2,2-difluoro-3-(5-methylthiophen-2-yl)-3-oxopropanoate (3.5d) 

General procedure G was followed using potassium 2,2-difluoro-3-(5-methylthiophen-2-yl)-3-

oxopropanoate 3.5d-1 (1.1 g, 4.1 mmol), oxalyl chloride (0.33 mL, 3.9 mmol), 3,5-dimethoxybenzyl 

alcohol (0.66 g, 3.9 mmol), Et3N (0.96 mL, 6.9 mmol), DMF (0.13 mL), and CH2Cl2 (22 mL). Workup 

and chromatographic purification (5% to 10% EtOAc in hexanes) afforded the title compound 3.5d as a 

light yellow oil (0.49 g, 34%). 1H NMR (CDCl3, 400 MHz)  7.81 (dt, J = 4.0, 1.6 Hz, 1 H), 6.86 (dd, J = 

4.0, 1.2 Hz, 1 H), 6.46 (d, J = 2.0 Hz, 2 H), 6.42 (t, J = 2.2 Hz, 1 H), 5.28 (s, 2 H), 3.78 (s, 6 H), 2.58 (s, 3 

H). 13C NMR (CDCl3, 125 MHz)  177.9 (t, J = 28.1 Hz), 161.7 (t, J = 30.6 Hz), 161.1, 154.6, 137.4 (t, J 
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= 4.4 Hz), 136.2, 135.1 (t, J = 1.9 Hz), 128.2, 109.7 (t, J = 263.7 Hz), 106.0, 101.1, 69.0, 55.6, 16.4. 19F 

NMR (CDCl3, 376 MHz)  –108.0 (s, 2 F). IR (film) 2960, 2939, 2841, 1774, 1670, 1599, 1448, 1302, 

1205, 1155, 1053, 918, 837, 816, 750, 700, 677 cm-1. HRMS (ESI, m/z): calcd for C17H16F2O5SNa 

[M+Na]+ 393.0584, found 393.0577. 

 

3-(3,5-dimethoxyphenyl)-2,2-difluoro-1-(5-methylthiophen-2-yl)propan-1-one (3.6d) 

General procedure C was followed using 3.5d (185 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

and o-xylene (0.010 L). Workup and chromatographic purification (0% to 5% EtOAc in hexanes) 

afforded the title compound 3.6d as an off-white solid (137 mg, 84%). 1H NMR (CDCl3, 400 MHz)  

7.75–7.74 (m, 1 H), 6.83 (d, J = 4.0 Hz, 1 H), 6.44 (s, 2 H), 6.39 (t, J = 2.2 Hz, 1 H), 3.77 (s, 6 H), 3.41 (t, 

J = 17.4 Hz, 2 H), 2.56 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  182.4 (t, J = 30.6 Hz), 160.8, 153.2, 

136.9 (t, J = 5.6 Hz), 136.5, 133.4 (t, J = 3.7 Hz), 127.9, 118.3 (t, J = 253.1 Hz), 109.0, 99.9, 55.5, 40.8 (t, 

J = 23.1 Hz), 16.2. 19F NMR (CDCl3, 376 MHz)  –99.7 (t, J = 18.8 Hz, 2 F). IR (film) 2939, 2839, 1668, 

1597, 1446, 1319, 1288, 1205, 1153, 1067, 893, 837, 816, 766, 696, 602 cm-1. HRMS (ESI, m/z): calcd 

for C16H16F2O3SNa [M+Na]+ 349.0686, found 349.0699. mp 30–31 °C. 

 

ethyl 2,2-difluoro-3-hydroxy-3-(1-phenyl-1H-pyrazol-4-yl)propanoate (3.5e-3) 

General procedure D was followed using activated Zn (1.54 g, 23.6 mmol), 1,2-dibromoethane (0.16 mL, 

1.9 mmol), 1-phenyl-1H-pyrazole-4-carbaldehyde15 (2.70 g, 15.7 mmol), ethyl bromodifluoroacetate (2.0 

mL, 15.7 mmol), and THF (80 mL). Workup and chromatographic purification (10% to 30% EtOAc in 
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hexanes) afforded the title compound 3.5e-3 as a colorless solid (3.8 g, 82%). 1H NMR (CDCl3, 400 MHz) 

 8.00 (s, 1 H), 7.74 (s, 1 H), 7.63 (dt, J = 7.2, 1.5 Hz, 2 H), 7.44 (t, J = 8.0 Hz, 2 H), 7.30 (tt, J = 7.6, 1.4 

Hz, 1 H), 5.25 (ddd, J = 16.0, 7.8, 2.4 Hz, 1 H), 4.34 (q, J = 7.2 Hz, 2 H), 3.40 (br, 1 H), 1.32 (t, J = 7.2 

Hz, 3 H). 13C NMR (CDCl3, 125 MHz)  163.6 (t, J = 31.2 Hz), 140.3, 139.6, 129.6, 127.1, 127.0, 119.5, 

118.2 (d, J = 2.5 Hz), 113.9 (dd, J = 256.2, 252.5 Hz), 66.9 (dd, J = 29.4, 24.4 Hz), 63.3, 13.9. 19F NMR 

(CDCl3, 376 MHz)  –120.7 (dd, J = 263.2, 15.0 Hz, 1 F), –114.1 (dd, J = 263.2, 7.5 Hz, 1 F). IR (film) 

3325, 2986, 1759, 1599, 1568, 1504, 1406, 1321, 1213, 1074, 1007, 955, 856, 800, 758, 690 cm-1. HRMS 

(ESI, m/z): calcd for C14H14F2N2O3Na [M+Na]+ 319.0870, found 319.0865. mp 51–52 °C. 

 

ethyl 2,2-difluoro-3-oxo-3-(1-phenyl-1H-pyrazol-4-yl)propanoate (3.5e-2) 

IBX (3.89 g, 13.9 mmol) was added into a solution of compound 3.5e-3 (1.65 g, 5.57 mmol) dissolved in 

DMSO (0.020 L), and the solution was stirred at rt for 20 h. Water (20 mL) was added and the mixture 

was extracted with EtOAc (3 x 40 mL). The combined organic layers were washed with saturated 

NaHCO3(aq) (2 x 60 mL) and brine (2 x 60 mL), then dried over anhydrous Na2SO4, filtered, and 

concentrated. Purification by flash chromatography (10% to 20% EtOAc in hexanes) provided the title 

compound 3.5e-2 as a colorless solid (1.45g, 88%). 1H NMR (CDCl3, 400 MHz)  8.61 (s, 1 H), 8.30 (s, 1 

H), 7.76–7.73 (m, 2 H), 7.55–7.50 (m, 2 H), 7.43 (tt, J = 7.6, 1.5 Hz, 1 H), 4.40 (q, J = 7.2 Hz, 2 H), 1.36 

(t, J = 7.2 Hz, 3 H). 13C NMR (CDCl3, 125 MHz)  180.1 (t, J = 28.8 Hz), 161.8 (t, J = 30.6 Hz), 142.9 (t, 

J = 2.5 Hz), 139.0, 131.6 (t, J = 4.4 Hz), 129.9, 128.5, 120.2, 118.8 (t, J = 2.5 Hz), 109.5 (t, J = 261.9 Hz), 

64.1, 14.0. 19F NMR (CDCl3, 376 MHz)  –110.8 (s, 2 F). IR (film) 3138, 2986, 1772, 1690, 1541, 1504, 

1312, 1244, 1174, 1126, 1036, 951, 889, 824, 760, 688 cm-1. HRMS (ESI, m/z): calcd for 

C14H12F2N2O3Na [M+Na]+ 317.0714, found 317.0695. mp 28–29 °C. 
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potassium 2,2-difluoro-3-oxo-3-(1-phenyl-1H-pyrazol-4-yl)propanoate (3.5e-1) 

General procedure F was followed using 3.5e-2 (1.31 g, 4.45 mmol), KOH (0.250 g, 4.45 mmol), and 

MeOH (0.020 L). Workup afforded the title compound 3.5e-1 as a colorless solid (1.2 g, 89%). 1H NMR 

(DMSO-d6, 400 MHz)  9.04 (s, 1 H), 8.20 (s, 1 H), 7.90 (dd, J = 7.6, 1.6 Hz, 2 H), 7.55 (t, J = 8.0 Hz, 2 

H), 7.41 (t, J = 7.2 Hz, 1 H). 13C NMR (DMSO-d6, 125 MHz)  184.5 (t, J = 28.8 Hz), 162.3 (t, J = 2.5 

Hz), 142.3, 138.7, 131.8, 129.7, 127.7, 120.4, 119.4, 111.3 (t, J = 261.2 Hz). 19F NMR (DMSO-d6, 376 

MHz)  –107.8 (s, 2 F). IR (film) 3126, 1693, 1682, 1543, 1506, 1385, 1267, 1167, 1126, 1084, 951, 883, 

810, 752, 698, 683, 656 cm-1. HRMS (ESI, m/z): calcd for C12H7F2K2N2O3 [M+K]+ 342.9699, found 

342.9707. mp 139–140 °C. 

 

3,5-dimethoxybenzyl 2,2-difluoro-3-oxo-3-(1-phenyl-1H-pyrazol-4-yl)propanoate (3.5e) 

General procedure G was followed using potassium 2,2-difluoro-3-oxo-3-(1-phenyl-1H-pyrazol-4-

yl)propanoate 3.5e-1 (1.1 g, 3.7 mmol), oxalyl chloride (0.30 mL, 3.5 mmol), 3,5-dimethoxybenzyl 

alcohol (0.59 g, 3.5 mmol), Et3N (0.97 mL, 7.0 mmol), DMF (0.13 mL), and CH2Cl2 (20 mL). Workup 

and chromatographic purification (10% to 15% EtOAc in hexanes) afforded the title compound 3.5e as an 

off-white solid (0.42 g, 29%). 1H NMR (CDCl3, 400 MHz)  8.54 (s, 1 H), 8.28 (s, 1 H), 7.71–7.69 (m, 2 

H), 7.52 (t, J = 8.0 Hz, 2 H), 7.44–7.40 (m, 1 H), 6.46 (d, J = 2.4 Hz, 2 H), 6.39 (t, J = 2.2 Hz, 1 H), 5.28 

(s, 2 H), 3.75 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  179.8 (t, J = 29.4 Hz), 161.6 (t, J = 31.2 Hz), 161.2, 

143.0 (t, J = 2.5 Hz), 138.9, 136.0, 131.6 (t, J = 3.7 Hz), 129.9, 128.6, 120.2, 118.7, 109.5 (t, J = 262.5 

Hz), 106.2, 101.0, 69.2, 55.5. 19F NMR (CDCl3, 376 MHz)  –110.7 (s, 2 F). IR (film) 3134, 2959, 2941, 
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2841, 1774, 1686, 1599, 1541, 1502, 1466, 1431, 1381, 1302, 1242, 1205, 1157, 1068, 1036, 951, 881, 

820, 760, 688, 660, 607 cm-1. HRMS (ESI, m/z): calcd for C21H18F2N2O5Na [M+Na]+ 439.1081, found 

439.1061. mp 66–67 °C. 

O

F F N
N

Ph
OMe

MeO

3.6e
 

3-(3,5-dimethoxyphenyl)-2,2-difluoro-1-(1-phenyl-1H-pyrazol-4-yl)propan-1-one (3.6e) 

General procedure C was followed using 3.5e (208 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

and o-xylene (0.010 L). The reaction was run at 120 °C for 24 h. Workup and chromatographic 

purification (2.5% to 5% EtOAc in hexanes) afforded the title compound 3.6e as an off-white solid (127 

mg, 68%). 1H NMR (CDCl3, 400 MHz)  8.41 (s, 1 H), 8.21 (s, 1 H), 7.67 (d, J = 7.6 Hz, 2 H), 7.50 (t, J 

= 8.0 Hz, 2 H), 7.42–7.37 (m, 1 H), 6.46 (d, J = 2.0 Hz, 2 H), 6.37 (t, J = 2.2 Hz, 1 H), 3.76 (s, 6 H), 3.42 

(t, J = 17.2 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  184.5 (t, J = 31.9 Hz), 160.9, 143.1 (t, J = 2.5 Hz), 

139.1, 133.3 (t, J = 3.7 Hz), 131.5 (t, J = 5.0 Hz), 129.9, 128.3, 120.1, 119.8 (t, J = 2.5 Hz), 118.3 (t, J = 

251.9 Hz), 109.1, 99.8, 55.5, 40.4 (t, J = 23.7 Hz). 19F NMR (CDCl3, 376 MHz)  –101.8 (t, J = 16.9 Hz, 

2 F). IR (film) 2939, 2839, 1682, 1597, 1539, 1504, 1464, 1431, 1296, 1205, 1151, 1070, 1038, 951, 874, 

845, 760, 688 cm-1. HRMS (ESI, m/z): calcd for C20H19F2N2O3 [M+H]+ 373.1364, found 373.1352. mp 

58–59 °C. 

 

ethyl 3-cyclohexyl-2,2-difluoro-3-hydroxypropanoate (3.5f-3) 

General procedure D was followed using activated Zn (3.2 g, 49 mmol), 1,2-dibromoethane (0.25 mL, 2.9 

mmol), cyclohexanecarboxaldehyde (3.0 mL, 25 mmol), ethyl bromodifluoroacetate (3.2 mL, 25 mmol), 

and THF (0.050 L). Workup and chromatographic purification (10% to 15% EtOAc in hexanes) afforded 
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the title compound 3.5f-3 as a colorless oil (3.7 g, 63%). 1H NMR (CDCl3, 400 MHz)  4.36 (q, J = 7.2 

Hz, 2 H), 3.89–3.79 (m, 1 H), 1.99 (d, J = 8.0 Hz, 1 H), 1.94–1.91 (m, 1 H), 1.82–1.65 (m, 5 H), 1.37 (t, J 

= 7.2 Hz, 3 H), 1.32–1.08 (m, 5 H). 13C NMR (CDCl3, 125 MHz)  164.1 (dd, J = 32.5, 31.2 Hz), 115.6 

(dd, J = 256.2, 253.8 Hz), 75.4 (dd, J = 26.2, 23.8 Hz), 63.2, 38.4, 29.8, 27.5, 26.3, 26.2, 26.0, 14.2. 19F 

NMR (CDCl3, 376 MHz)  –120.1 (dd, J = 263.2, 15.0 Hz, 1 F), –111.6 (dd, J = 263.2, 7.5 Hz, 1 F). 

HRMS (ESI, m/z): calcd for C11H18F2O3Na [M+Na]+ 259.1122, found 259.1128. Spectroscopic data 

matched that from the previous report.1 

 

ethyl 3-cyclohexyl-2,2-difluoro-3-oxopropanoate (3.5f-2) 

General procedure E was followed using oxalyl chloride (3.8 mL, 44 mmol), DMSO (4.2 mL, 59 mmol), 

3.5f-3 (3.47 g, 14.7 mmol), Et3N (12 mL, 88 mmol) and CH2Cl2 (95 mL). Workup and chromatographic 

purification (2% to 5% EtOAc in hexanes) afforded the title compound 3.5f-2 as a colorless oil (3.00 g, 

87%). 1H NMR (CDCl3, 400 MHz)  4.37 (q, J = 7.2 Hz, 2 H), 2.94–2.88 (m, 1 H), 1.94–1.89 (m, 2 H), 

1.85–1.80 (m, 2 H), 1.73–1.69 (m, 1 H), 1.36 (t, J = 7.2 Hz, 3 H), 1.47–1.19 (m, 5 H). 13C NMR (CDCl3, 

125 MHz)  200.4 (t, J = 26.2 Hz), 161.8 (t, J = 30.6 Hz), 108.8 (t, J = 263.1 Hz), 63.8, 45.5, 28.3, 25.7, 

25.5, 14.1. 19F NMR (CDCl3, 376 MHz)  –113.1 (s, 2 F).HRMS (ESI, m/z): calcd for C11H16F2O3Na 

[M+Na]+ 257.0965, found 257.0959. Spectroscopic data matched that from the previous report.1 

 

potassium 3-cyclohexyl-2,2-difluoro-3-oxopropanoate (3.5f-1) 

General procedure F was followed using 3.5f-2 (2.8 g, 12 mmol), KOH (0.67 g, 12 mmol), and MeOH 

(12 mL). Workup afforded the title compound 3.5f-1 as a colorless solid (2.5 g, 85%). 1H NMR (DMSO-
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d6, 400 MHz)  2.72–2.66 (m, 1 H), 1.78–1.59 (m, 5 H), 1.27–1.11 (m, 5 H). 13C NMR (DMSO-d6, 125 

MHz)  204.0 (t, J = 26.2 Hz), 162.2, 111.2 (t, J = 263.8 Hz), 44.8, 28.3, 25.4, 25.0. 19F NMR (DMSO-d6, 

376 MHz)  –111.1 (s, 2 F). IR (film) 2935, 2864, 1732, 1690, 1674, 1446, 1373, 1329, 1248, 1207, 1174, 

1140, 1070, 964, 820, 796, 739, 631, 584 cm-1. HRMS (ESI, m/z): calcd for C9H11F2K2O3 [M+K]+ 

282.9950, found 282.9948. mp 188 °C decomposed. 

 

3,5-dimethoxybenzyl 3-cyclohexyl-2,2-difluoro-3-oxopropanoate (3.5f) 

General procedure G was followed using potassium 3-cyclohexyl-2,2-difluoro-3-oxopropanoate 3.5f-1 

(0.93 g, 3.8 mmol), oxalyl chloride (0.31 mL, 3.7 mmol), 3,5-dimethoxybenzyl alcohol (0.54 g, 3.2 

mmol), Et3N (0.89 mL, 6.4 mmol), DMF (0.12 mL), and CH2Cl2 (20 mL). Workup and chromatographic 

purification (5% to 10% EtOAc in hexanes) afforded the title compound 3.5f as a colorless oil (0.74 g, 

65%). 1H NMR (CDCl3, 400 MHz)  6.49 (d, J = 2.0 Hz, 2 H), 6.45 (t, J = 2.4 Hz, 1 H), 5.26 (s, 2 H), 

3.80 (s, 6 H), 2.90–2.84 (m, 1 H), 1.86 (dd, J = 13.6, 2.8 Hz, 2 H), 1.81–1.76 (m, 2 H), 1.71–1.66 (m, 1 

H), 1.44–1.19 (m, 5 H). 13C NMR (CDCl3, 125 MHz)  200.2 (t, J = 26.9 Hz), 161.7 (t, J = 30.6 Hz), 

161.2, 136.2, 108.8 (t, J = 263.1 Hz), 106.2, 101.1, 68.9, 55.6, 45.5, 28.2, 25.6, 25.4. 19F NMR (CDCl3, 

376 MHz)  –112.9 (s, 2 F). IR (film) 2937, 2856, 1780, 1736, 1599, 1458, 1431, 1379, 1302, 1207, 1155, 

1068, 970, 955, 837, 702, 588 cm-1. HRMS (ESI, m/z): calcd for C18H22F2O5Na [M+Na]+ 379.1333, found 

379.1324. 

 

2-(methylthio)benzyl 2,2-difluoro-3-oxo-3-phenylpropanoate (3.6f) 
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General procedure C was followed using 3.5f (178 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

and o-xylene (0.010 L). The reaction was run at 130 °C for 24 h. Workup and chromatographic 

purification (0% to 5% EtOAc in hexanes) afforded the title compound 3.6f as a colorless oil (92 mg, 

59%). 1H NMR (CDCl3, 400 MHz)  6.39–6.37 (m, 3 H), 3.78 (s, 6 H), 3.25 (t, J = 16.8 Hz, 2 H), 2.73–

2.67 (m, 1 H), 1.76–1.64 (m, 5 H), 1.29–1.19 (m, 5 H). 13C NMR (CDCl3, 125 MHz)  204.6 (t, J = 29.4 

Hz), 160.9, 133.3 (t, J = 4.4 Hz), 117.8 (t, J = 253.7 Hz), 108.9, 99.9, 55.5, 45.3, 39.9 (t, J = 23.1 Hz), 

28.1, 25.8, 25.5. 19F NMR (CDCl3, 376 MHz)  –104.5 (t, J = 16.9 Hz, 2 F). IR (film) 2935, 2856, 1732, 

1608, 1599, 1462, 1431, 1310, 1296, 1205, 1153, 1070, 980, 930, 891, 837, 760 cm-1. HRMS (ESI, m/z): 

calcd for C17H14F2O3SNa [M+Na]+ 359.0529, found 359.0511. 

 

 

Preparation of Compounds 3.1a′ and 3.1a″ in Table 3.3 

O

O O

H F

3.1a'

 

benzyl 2-fluoro-3-oxo-3-phenylpropanoate (3.1a′) 

Compound 3.1′ was prepared according to a previous report.16 Compound 3.1a″ (1.87 g, 7.35 mmol) and 

CpTiCl3 (81.0 mg, 0.370 mmol) were dissolved in CH3CN (0.040 L) at rt, and selectfluor (2.86 g, 8.08 

mmol) was added. The mixture was stirred at rt for 6 h, and filtered to remove solids. The filtrate was 

concentrated, and the crude product was purified by column chromatography using a gradient of EtOAc / 

hexanes (2% to 5%) for elution to furnish the compound 3.1a′ as a colorless oil (1.71 g, 85%). 1H NMR 

(CDCl3, 400 MHz)  8.01 (dt, J = 8.4, 1.2 Hz, 2 H), 7.64 (tt, J = 7.6, 1.5 Hz, 1 H), 7.48 (t, J = 7.8 Hz, 2 

H), 7.34–7.30 (m, 3 H), 7.28–7.25 (m, 2 H), 5.93 (d, J = 48.8 Hz, 1 H), 5.31–5.23 (m, 2 H). 13C NMR 

(CDCl3, 125 MHz)  189.5 (d, J = 20.0 Hz), 165.0 (d, J = 25.0 Hz), 134.8, 134.5, 133.5 (d, J = 1.2 Hz), 

129.7 (d, J = 2.5 Hz), 129.0, 128.9, 128.8, 128.5, 90.2 (d, J = 196.2 Hz), 68.3. 19F NMR (CDCl3, 376 
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MHz)  –190.4 (d, J = 45.1 Hz, 1 F). IR (film) 3065, 3034, 2957, 1765, 1693, 1597, 1580, 1499, 1450, 

1381, 1283, 1240, 1213, 1184, 1101, 957, 744, 694, 606 cm-1. HRMS (ESI, m/z): calcd for C16H13FO3Na 

[M+Na]+ 295.0746, found 295.0757. 

 

benzyl 3-oxo-3-phenylpropanoate (3.1a″) 

Compound 3.1a″ was prepared according to a previous report.17 A mixture of benzyl alcohol (1.0 mL, 

10.0 mmol), ethyl benzoylacetate (1.73 g, 10.0 mmol), DMAP (1.22 g, 10.0 mmol) was stirred with oven-

dried 4 Å molecular sieves (50 g) in dry toluene (0.080 L) at 100–105 °C for 36 h. The reaction mixture 

was cooled to rt, and filtered to remove the molecular sieves. The solvents were removed under reduced 

pressure, and EtOAc (60 mL) and water (60 mL) were added to the residue. The layers were separated, 

and the organic layer was dried over anhydrous Na2SO4, filtered, and concentrated. The crude product 

was purified by column chromatography using a gradient of EtOAc / hexanes (2% to 5%) for elution to 

furnish the compound 3.1a″ as a as a yellow solid (2.1 g, 83%, ketone : enol = 4.4:1). 1H NMR (CDCl3, 

400 MHz)  12.51 (s, 1 H, enol), 7.95–7.93 (m, 2 H, keto), 7.80–7.78 (m, 2 H, enol), 7.63–7.58 (m, 1 H, 

keto), 7.50–7.30 (m, 15 H, keto + enol), 5.75 (s, 1 H, enol), 5.27 (s, 2 H, enol), 5.21 (s, 2 H, keto), 4.06 (s, 

2 H, keto). 13C NMR (CDCl3, 125 MHz)  192.5 (keto), 173.1 (enol), 172.0 (enol), 167.6 (keto), 136.1, 

136.0, 135.5, 134.0, 133.5, 131.6, 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 126.3, 87.4 (enol), 67.4 (keto), 

66.3 (enol), 46.2 (keto). IR (film) 3063, 3032, 2957, 1742, 1688, 1637, 1497, 1450, 1410, 1325, 1267, 

1211, 1186, 1144, 1078, 980, 775, 754, 688, 582 cm-1. HRMS (ESI, m/z): calcd for C16H14O3Na [M+Na]+ 

277.0841, found 277.0833. mp 39–40 °C. 
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Experimental Procedures and Characterization of Compounds for Table 3.3 

General Procedure H: An oven-dried 20 mL scintillation vial was charged with substrate (3.1a, 3.1a′ or 

3.1a″, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), and a magnetic stir bar. Dry o-xylene (0.010 L) 

was added via a syringe. Subsequently, the vial was transferred out of the glove box and placed on a pre-

heated reaction block at 120 °C, and stirred for 15 h. The vial was cooled to rt, and the mixture was 

diluted with EtOAc. An internal standard was added, and the reaction mixture was stirred at rt for 30 min 

to ensure thorough mixing in prior to 19F or 1H NMR analysis. 

 

2,2-difluoro-1,3-diphenylpropan-1-one (3.2a) 

General procedure H was followed using 3.1a (145 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

and o-xylene (0.010 L). Workup and chromatographic purification (0% to 2% EtOAc in hexanes) 

afforded the title compound 3.2a as a colorless oil, which becomes a colorless solid in the fridge (100 mg, 

81%). 1H NMR (CDCl3, 400 MHz)  8.04 (d, J = 7.6 Hz, 2 H), 7.62 (t, J = 7.6 Hz, 1 H), 7.48 (t, J = 7.6 

Hz, 2 H), 7.32 (br, 5 H), 3.53 (t, J = 17.8 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  189.7 (t, J = 30.6 Hz), 

134.4, 132.3 (t, J = 2.5 Hz), 131.5 (t, J = 3.1 Hz), 131.1, 130.3 (t, J = 3.7 Hz), 128.8, 128.6, 127.8, 118.6 

(t, J = 253.1 Hz), 40.3 (t, J = 23.1 Hz). 19F NMR (CDCl3, 376 MHz)  –98.6 (t, J = 16.9 Hz, 2 F). IR (film) 

3063, 3032, 2937, 1701, 1597, 1497, 1450, 1279, 1173, 1115, 1084, 1049, 1032, 943, 901, 727, 715, 698, 

669, 600 cm-1. HRMS (ESI, m/z): calcd for C15H12F2ONa [M+Na]+ 269.0754, found 269.0742. mp 45 °C. 

Spectroscopic data matched that from the previous report.4 
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Chapter 4. Ligand-Controlled Regiodivergent Palladium-Catalyzed Decarboxylative 

Allylation of ,-Difluoroketone Enolates 

4.1 Introduction to Transition Metal-Catalyzed Decarboxylative Allylation 

      Decarboxylative coupling is a powerful method for the construction of C–C bonds that generates 

reactive organometallic intermediates under mild conditions and releases CO2 as the only byproduct.1 

Moreover, this strategy enables the formation of reactive nucleophiles bearing an acidic proton capable of 

undergoing deprotonation and regioselective coupling to provide products that might be difficult to access 

otherwise.2 Among decarboxylative C–C coupling reactions, decarboxylative allylation reactions,1b in 

which the allylic electrophile and the nucleophile are generated in situ from unimolecular decarboxylation 

of -ketoesters, are broadly investigated because of their potential applications. These types of reaction 

play an important role in accessing chiral allylic products3 and are widely applied for the synthesis of 

natural products (Scheme 4.1).4 
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Scheme 4.1. General Mechanism of Transition Metal-Catalyzed Decarboxylative Allylation Reactions
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      Many transition metals participate in the allylation reactions with complementary regioselectivities. 

Metals such as Ru, Rh, Ir, Mo, and W afford the branched products,1b,5 while Pd metal complexes 

predominately form the linear products.1b,6 With the development of new ligands, Pd-catalyzed allylation 

reactions of monosubstituted allylic electrophiles with soft C-based (e.g. malonates, -diketones, -

ketoestsers) and heteroatom-based nucleophiles can enable to access branched products (Scheme 4.2).7 
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      Pd-catalyzed allylation reactions of hard ketone enolate nucleophiles with monosubstituted allylic 

electrophiles almost exclusively provide linear products (Scheme 4.3),1b,3c,8 which arise from an outer-

sphere attack of enolates on the less-hindered terminus of a Pd--allyl intermediate. 

 

      In a rare example, a Pd-catalyzed allylation reaction of a ketone enolate employed stoichiometric Li 

additives to generate the uncommon branched product (Scheme 4.4A), while the use of Cu(I) salts still 

favored the formation of linear products.9 In this reaction, the selectivity was believed to originate from 

the state of carbanion aggregation, which was affected by the addition of Li or Cu(I) additives. However 
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until recently, the ability of a ligand to control the regioselectivity for Pd-catalyzed allylation reactions of 

ketone enolates had not been reported. In 2016, the Hou lab demonstrated a ligand controlled Pd-

catalyzed allylation reaction of the ketone enolates to generate the branched products, in which the use of 

achiral NHC ligands enables the formation of racemic anti/syn products along with other diastereo-

isomers (Scheme 4.4B).10 In their mechanistic studies, the branched products come from an inner-sphere 

[3,3′]-reductive elimination based on the experimental results and density functional theory (DFT) 

calculations. 
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4.2 Development to Access -Allyl-,-Difluoroketones 

      Current methods to access -allylated ,-difluoroketones focus on Aldol/Mannich condensation 

reactions of ,-difluoroenoxysilanes (Scheme 4.5A),11 which come from either Brook rearrangement of 

the intermediate A (path a) or trifluoroacetate-release-drived cleavage of a C–C bond of 
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pentafluoroacetone hydrate B (path b). Other similar strategies involve Reformatsky-type reactions of 

halodifluoromethyl ketones with allylic aldehydes and imines using an excess of metal as a mediator 

(Scheme 4.5B).12 However, these reactions simultaneously introduce a heteroatom at the -position, 

while also incorporating the allyl group.  

 

      The Claisen rearrangement has also been utilized for generating -allyl-,-difluoroketones, and the 

products including difluoroacylsilanes and difluoroacylstannanes can couple with alkyl or aryl 

electrophiles to form complex -allyl-,-difluoroketone derivatives (Scheme 4.6A).13 However, the 

preparation of the allyl vinyl ether starting materials requires the use of strong bases, which restrict the 

substrate scope of the entire reaction. Additionally, the Portella and Kobayashi labs demonstrated 

alkylation reactions of ,-difluoroenoxysilanes with allyl electrophiles; however, Lewis acids or 

stoichiometric amount of metal additives are required to promote the reactions, and the substrate scope of 

these reactions is similarly limited to simple alkyl substituents (Scheme 4.6B).14 
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4.3 Palladium-Catalyzed Decarboxylative Difluoroalkylation to Access -Allyl-,-difluoroketones 

      Based on our ongoing studies aimed at accessing privileged fluorinated motifs using decarboxylative 

strategies,15 and the successful example of decarboxylative benzylation of ,-difluoroketone enolates,15c 

we envisioned that a decarboxylative strategy should afford -allyl-,-difluoroketones from allylic 

alcohols. Decarboxylative allylation reactions of fluorine-containing nucleophiles are restricted to -

fluoroketones,16 and decarboxylative allylation reactions of ,-difluoroketones have not been realized. 

Furthermore, even simple allylation reactions of ,-difluoroketone enolates have remained restricted to 

a single reaction that uses stoichiometric amount of copper,14b and no catalytic allylation reactions 

generate this substructure. 

      To begin the study, cinnamyl alcohol-derived esters were used as the sp3-based electrophiles because 

they possess higher reactivity compared to other allylic electrophiles. The cinnamyl alcohols required 

were prepared by either reduction of corresponding esters or Pd-catalyzed coupling reactions (Scheme 

4.7A). The ,-difluoroketone enolates would be generated in situ via decarboxylation of ,-difluoro--
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keto-esters. Thus, cinnamyl ,-difluoro--keto esters were identified as test substrates, and they were 

prepared through four steps, comprising 1) Reformatsky addition of  ethyl bromodifluoroacetate to 

aldehydes; 2) oxidation of alcohols to ketones; 3) basic hydrolysis of ethyl esters; and 4) the esterification 

of -keto-,-difluoroacetate with cinnamyl alcohols (Scheme 4.7B). 

H3C O

O

Br

F F
O

O

R'
F F

H3C

OH

O

O

R'
F F

H3C

O

O

O

R'
F F

K

O

O

O

R'
F F

O

R' = C6H5
4-OMeC6H4
4-F-C6H4
5-methylthiophene-2-yl
1-Ph-1H-pyrazole
cyclohexyl

swern oxidation or IBX

(82 88%)

1. Zn, THF

2. R'CHO
70 °C 50 °C
(58 93%)

1. (COCl)2, DMF, CH2Cl2

2. cinnamyl alcohols, Et3N
0 °C rt
(54 80%)

KOH
MeOH

0 °C rt
(84 89%)

Scheme 4.7. General Synthetic Sequence for Cinnamyl , -Difluoro- -keto-ester Substrates

O

O

Ph
F F

O

R = H
3-CF3
4-NO2
3-CO2Et
3-N-Boc-piperazine
4-Me
3,4-dimethoxymethane
4-OMe

1. (COCl)2, DMF, CH2Cl2
2. cinnamyl alcohol

Et3N, 0 °C rt
(72 85%)

A) Preparation of Cinnamyl Alcohols

B) Preparation of Cinnamyl , -Difluoro- -ketoacetates

R

Ph

Me

CO2H

R

CO2Me

R

R' X
nucleophile

OH
HN

NBoc
X = I, Br
R' = CO2Et, prop-2-en-1-ol

Pd (cat.)

(38 63%)

OH
R

R = CO2Et, N-Boc-piperazine

SOCl2, MeOH

(94 98%)

DIBAL

(95 98%)
R

OH

+

 

      Based on our previous successes with Cu-catalyzed decarboxylative coupling reactions of cinnamyl 

-bromo-,-difluoro esters, we initially explored the use of Cu-based catalytic systems in 

decarboxylative allylation reactions of ,-difluoroketone enolates (Scheme 4.8A). In some of the Cu-

catalyzed reactions, full conversion was achieved; however, no or trace amounts of the desired coupling 

product 4.2a were detected by GC. Instead, the Cu-based catalysts typically provided 

difluoroacetophenone and various isomers of bicinnamyl. In contrast, the preliminary result that 5% of 
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Pd(OAc)2/PPh3 system provided 5% of the desired coupling product 4.2a revealed that a Pd-based 

catalyst could promote the desired transformation (Scheme 4.8B). Thus, Pd-based system was selected for 

further investigation. 

 

4.4 An Orthogonal Set of Palladium-Catalyzed Allylation Reactions of ,-Difluoroketone Enolates 

      A broad screen of P-based ligands identified biarylmonophosphines17 as privileged ligands for the 

present reaction. The biarylmonophosphine class of ligands demonstrated several notable relationships 

between ligand structure and catalytic activity (Scheme 4.9). First, substitution of the ortho-position of 

the right aromatic ring improved the yield and selectivity for the branched product (Scheme 4.9A). For 

example, only 2% of the branched product was generated with CyJohnPhos; however, the use of SPhos 

and XPhos improved the yield and selectivity of the transformation. This phenomenon might arise from 

increased steric hindrance of the ligands, or from inhibition of cyclometalation processes that deactivate 

the catalyst.17 Second, substituents on the phosphine atom control the selectivity for formation of 

branched and linear products (Scheme 4.9B). As a control, XPhos provided a 25:1 selectivity for 
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formation of the branched product, and substitution of the cyclohexyl groups with phenyl groups, 

(PhXPhos)18 improved the yield and selectivity of the branched product. In contrast, substitution of the 

cyclohexyl groups with bulkier t-butyl groups (t-BuXPhos) unexpectedly inverted the regioselectivity and 

provided an orthogonal protocol for accessing the linear product. Third, relative to t-BuXPhos, ligands 

bearing substituents on the left ring (Me4t-BuXPhos and t-BuBrettPhos19) modulated the yield and 

selectivity for formation of the linear product (Scheme 4.9C). Additional optimization revealed that both 

linear and branched products formed in 1,4-dioxane and toluene, although distinct temperatures and 

concentrations proved optimal for formation of each product.  
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      In the present reaction, the ligand-controlled regioselectivity was only observed for the ,-

difluorinated substrate 4.1a (entry 1, Table 4.1), and the analogous mono- and non-fluorinated substrates 

(4.1b and 4.1c) did not provide branched products in good yield and regioselectivity (entries 2–3, Table 

4.1). Therefore, the physicochemical perturbation resulting from fluorination of the substrate 4.1a 

facilitated formation of the branched product. Moreover, the difluorinated substrate 4.1a operates via a 

decarboxylation followed by allylation mechanism, while the mono- and non-fluorinated substrates (4.1b 

and 4.1c) might undergo a different mechanism, such as allylation followed by decarboxylation. Thus, the 

present catalyst systems that operate via decarboxylation followed by allylation mechanism may not be 

appropriate for the transformation of the mono- and non-fluorinated substrates. However, allylation 

reactions of monofluorinated cyclic-16 and non-fluorinated cyclic- and acyclic ketone enolates1b,8–10 have 

been realized using different catalysts developed by other research groups. 



 

165 
 

PhXPhost-BuBrettPhos i-Pr

i-Pr
PPh2

i-Pr

i-Pr

i-Pr
Pt-Bu2

i-Pr

MeO

OMe

Ph O

O O

Ph

4.1c

Ph O

O O

Ph

4.1b

Ph O

O O

Ph
F F

4.1a

F

catalyst system Bsubstrate

4.2a, 89%
(b/l = 1 : 18)

4.3a, 94%
(b/l = 99 : 1)

4.2c, 85%
(b/l < 1 : 50)

4.3c, 5%
(b/l = 1 : 2)

Ph O

Pd(OAc)2 (3.0 mol%)
t-BuBrettPhos (6.0 mol%)
1,4-dioxane, 60 °C, 20 h

Catalyst System A
or

Pd(OAc)2 (2.5 mol%)
PhXPhos (5.0 mol%)

1,4-dioxane, 90 °C, 20 h
Catalyst System B

Ph Ph

O

X1 X2

Ph

Ph

O
X1

X2

Ph

OO

X1 X2

H

H H

+

4.3b, 36%
(b/l = 2.1 : 1)
(dr, b = 2 : 1)

4.2b, 24%
(b/l < 1 : 24)

catalyst system A

Ph Ph

O

F F Ph

Ph

O
F

F

Ph Ph

O

H F Ph

Ph

O
H

F

Ph Ph

O

H H Ph

Ph

O
H

H

H

entry

1

2

3

4.1a–c

4.2a–c

4.3a–c

a Catalyst System A: substrate (1.0 equiv), Pd(OAc)2 (3.0 mol%), t-BuBrettPhos (6.0 mol%), 1,4-dioxane

(0.50 M), 60 °C, 20 h; Catalyst System B: substrate (1.0 equiv), Pd(OAc)2 (2.5 mol%), PhXPhos (5.0 mol%),

1,4-dioxane (0.10 M), 90 °C, 20 h. For fluorinated products, yields and selectivities were determined by
19F NMR using PhCF3 or PhF as an internal standard, respectively. For non-fluorinated products, yields and

selectivities were determined by 1H NMR using CH2Br2 as an internal standard.

Table 4.1. Ligand-Controlled Regioselective Allylation Reactions of Fluorinated Substratesa
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      Based on classical reactivity patterns, the ability of ,-difluoracetophenone to provide both branched 

and linear products is unexpected. Traditionally for Pd-catalyzed allylation reactions, “hard” and “soft” 

nucleophiles have been identified by their pKa values, with hard nucleophiles (pKa > 25) being less acidic 

than soft nucleophiles (pKa < 25).20 However for most pronucleophiles, the presence of a resonance-

stabilizing group lowers the pKa value and increases the polarizability of the molecular orbitals (e.g. 

ketone vs. -ketoester or -diketone).1b,21 In contrast for ,-difluoroketones (pKa = 20.2),22 the lower pKa 

results from an inductive effect that makes the anions harder (negative fluorine effect).23 Thus for the 

present allylation reaction, the ,-difluoroketone enolates should be harder than acetophenone (pKa = 

24.7),22 which typically provides linear products.1b,3c,8 Thus, based on classic hard/soft reactivity trends, 

the ,-difluoroketones would not provide the uniquely observed branched product. 

      Utilizing the optimized conditions, a variety of substrates bearing electron-donating and -withdrawing 

functional groups on the cinnamyl component underwent regioselective coupling to provide both linear 

and branched products (Scheme 4.10). Notably, with catalyst system A [Pd(OAc)2/t-BuBrettPhos/1,4-

dioxane/ 60 °C], substrates bearing electron-deficient allylic moieties 4.5a–c provided better selectivity 

than neutral 4.5d–e and electron-rich 4.5f–g substrates. In contrast, catalyst system B 

[Pd(OAc)2/PhXPhos/1,4-dioxane/ 90 °C] showed excellent selectivity for the branched products 

(generally  > 49 : 1), regardless of the electronic properties of the cinnamyl moiety 4.6a–g. Both catalyst 

systems tolerated substitution at the C2 position of the allyl fragment 4.5h and 4.6h.  
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60 °C, 24 h; Catalyst System B: 4.4a h (1.0 equiv), Pd(OAc)2 (2.5 mol%), PhXPhos (5.0 mol%), 1,4-dioxane

(0.10 M), 90 °C, 24 h. 19F NMR yields for the major isomers were determined using PhCF3 as an internal
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(5 mol%), t-BuBrettPhos (10 mol%).

Scheme 4.10. Decarboxylative Difluoroallylation of Substrates Bearing Distinct Allyl Moietiesa
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      However, substrates bearing -hydrogens on the allyl fragment underwent -H elimination (Scheme 

4.11A) to generate dienes instead of coupling products. Non-cinnamyl substrates provided either no linear 

products or low yields of branched products. In these cases, ,-difluoracetophenone was the major 

product under the present conditions (Scheme 4.11B). 
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      Both catalyst systems also transformed substrates bearing distinct aryl and alkyl ,-difluoroketone 

moieties (Scheme 4.12). Reactions of electron-rich and neutral aryl ,-difluoroketone substrates 

afforded good selectivities and yields for the linear 4.8a–b and branched 4.9a–b products under the 

respective conditions. Even heteroaryl ,-difluoroketone substrates 4.7c–d generated linear 4.8c–d and 

branched 4.9c–d products in good selectivities and yields. Under the standard reaction conditions, an 

aliphatic ,-difluoroketone was less reactive; however, improved yields and high selectivities were 

obtained by increasing the catalyst loading [5 mol% Pd(OAc)2, 10 mol% ligands] and reaction time 4.8e 

and 4.9e. Thus, both catalyst systems enabled access to a variety of unique ,-difluoroketone products, 

which would be challenging to prepare otherwise. 
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Scheme 4.12. Decarboxylative Difluoroallylation of Substrates Bearing Distinct Ketone Moietiesa

a Catalyst System A: 4.7a e (1.0 equiv), Pd(OAc)2 (3.0 mol%), t-BuBrettPhos (6.0 mol%), 1,4-dioxane (0.50 M),

60 °C, 24 h; Catalyst System B: 4.7a e (1.0 equiv), Pd(OAc)2 (2.5 mol%), PhXPhos (5.0 mol%), 1,4-dioxane

(0.10 M), 90 °C, 24 h. 19F NMR yields for the major isomers were determined by using PhCF3 as an internal

standard (average of two runs). The values in parenthe-ses represent the yields of the major products. The

regioselectivities were determined by 1H NMR analysis of the crude reaction mixtures. b Pd(OAc)2 (5.0 mol%),

t-BuBrettPhos (10 mol%). c 70 °C, 36 h. d Pd(OAc)2 (3.5 mol%), PhXPhos (7.0 mol%). e 18 h. f Pd(OAc)2

(5.0 mol%), PhXPhos (10 mol%). g 90 °C, 36 h.
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      The complementary products may derive from a common Ln–Pd(-allyl)(enolate) intermediate 4.11 

through distinct ligand-controlled regioselective C–C bond-forming events (Scheme 4.13A). To establish 

the intermediacy of a -allyl complex, secondary ester 4.13 was subjected to both conditions A and B 

(Scheme 4.13B), and the results were compared to reactions of the corresponding linear substrate 4.4a in 

Scheme 4.11. System A transformed both linear and branched substrates 4.4a and 4.13 into linear product 

4.5a with comparable selectivity (b/l = 1 : 23 vs. 1 : 21), while system B transformed both linear and 

branched substrates 4.4a and 4.13 into branched product 4.6a with high selectivity (b/l = 99 : 1). 

Combined, these data 1) implicate the intermediacy of -allyl species 4.11 in both reaction pathways; 2) 

discount memory effects controlling the regioselecivity for either system; and 3) confirm that the ligands 

ultimately control the regiochemical fate of the reaction. 

 

       



 

171 
 

      Subsequent reactions probed the extent of association and/or solvent separation of the ,-

difluoroketone enolate with the palladium -allyl complex.  If free enolate existed in solution, it would be 

protonated upon addition of an acidic additive. The conjugate base of the additive would then react with 

the -allyl complex and regenerate Pd(0) to continue the catalytic cycle. When 4.1a was subjected to the 

standard reaction conditions A and B in the presence of 1.0 equivalent of pentane-2,4-dione 

(acetylacetone; acac; pKa = 13.3 in DMSO), distinct yields of fluorinated products 4.2a, 4.3a, alkylated 

product 4.2a′, and protonated difluoroketone 4.3a′ were detected (Table 4.2). Catalyst system A provided 

product 4.2a in 28% yield, and products 4.2a′ and 4.3a′ in ca. 66% yield (entry 2, Table 4.2). 

Alternatively, catalyst system B generated 4.3a in 67% yield, and 4.2a′ and 4.3a′ in lower yields (30% 

and 32%, respectively, entry 4, Table 4.2). Since formation of products 4.2a′ and 4.3a′ derive from 

dissociation of the Pd-bound difluoroenolate, the lower yields of 4.2a′ and 4.3a′ generated in the 

reactions of catalyst system B, which provides the branched product, indicate that the enolate is more 

tightly associated with the palladium -allyl complex. 
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none 89
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acac

A

A
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B

1

2

3

4

1

<1
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67 30 32

0 0

4.1a

4

1

(keto+enol)

Pd(OAc)2 (3.0 mol%)
t-BuBrettPhos (6.0 mol%)

1,4-dioxane, 60 °C, 20 h
Catalyst System A

Pd(OAc)2 (2.5 mol%)
PhXPhos (5.0 mol%)

1,4-dioxane, 90 °C, 20 h
Catalyst System B

additive (1.0 equiv)

4.2a' (%)c

Table 4.2. Distinct Pathways for Formation of Linear and Branched Products

b/ld

1 : 22

1 : 28

94 : 1

>98 : 2

a Catalyst system A: 4.1a (1.0 equiv, 0.50 M solution in 1,4-dioxane), Pd(OAc)2 (3.0 mol%), t-BuBrettPhos

(6.0 mol%), 60 °C, 20 h. Catalyst system B: 4.1a (1.0 equiv, 0.10 M solution in 1,4-dioxane), Pd(OAc)2
(2.5 mol%), PhXPhos (5.0 mol%), 90 °C, 20 h. b Yields were determined by 19F NMR spectroscopy using , , -

trifluorotoluene as an internal standard. c The yield of non-fluorinated product was determined by 1H NMR

spectroscopy using CH2Br2 as an internal standard. d The selectivity for branched to linear products was the ratio

of 4.3a to 4.2a.
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      Thus, we hypothesized that cinnamyl ,-difluoro--keto esters underwent decarboxylative 

difluoromethylation to generate linear and branched products via different pathways under both catalyst 

systems. The linear product may come from outer sphere attack of the enolate on less hindered terminus 

of the -allyl complex (path i, Scheme 4.13) while the branched product may result from the 

rearrangement of a seven-membered ring transition state composed of enolate-Pd--allyl complex (path 

iii, Scheme 4.13) as proposed by Stoltz, Goddard III, and Echavarren.24 

      An evaluation of the relationship between the electronic structures of the cinnamyl-derived substrates 

and the regioselectivities of the catalytic reactions suggests that the branched and linear products derive 

from distinct pathways. For outer-sphere processes, the electronic structure of the cinnamyl-derived 

substrates can perturb the regiochemical outcome of the reaction. Specifically, electron-rich substrates 

provide linear products in lower selectivity than electron-deficient substrates,7b,25 because SN1-like attack 

at the stabilized secondary position of the -allyl intermediates (path ii, Scheme 4.13) competes with SN2-

like attack at the unhindered primary position (path i, Scheme 4.13). For system A, a similar trend was 

observed, as confirmed by a linear free energy correlation (Figure 4.1). Thus, under system A, the 

reaction may proceed predominantly through an analogous outer-sphere mechanism (path i, Scheme 4.13).  
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      In contrast, system B notably generates branched products, which are less commonly observed in Pd-

catalyzed allylation reactions of hard ketone enolates.1b,3c,8 If SN1-like attack of intermediate 4.10 

predominantly occurred at the secondary position (path ii, Scheme 4.13), the electronic properties of the 

cinnamyl-derived substrates 4.1a, 4.4a–c, 4.4e and 4.4g would likely allow path i to compete and 

influence the regioselectivity of the reactions.7b,25 However for system B, substrates bearing electron-rich, 

-neutral, and -deficient cinnamyl moieties all underwent coupling to afford the branched products in high 

selectivities 4.3a, 4.6a–c, 4.6e and 4.6g (Figure 4.2). This lack of a correlation between the electronic 

properties of the cinnamyl-derived substrates and the regioselectivity may discount the outer-sphere path i. 

 

       

 

 



 

175 
 

      An alternate explanation for the unique regioselectivity involves the sigmatropic rearrangement of an 

1-allyl intermediate (path iii, Scheme 4.13).24 Although this mechanism has been computationally 

predicted, experimental evidence for palladacyclic transition state 4.12 has not been established. In 

support of this rearrangement mechanism, non-metal-catalyzed 3,3′-sigmatropic rearrangements of allyl 

,-difluoroenol ethers similarly proceed more rapidly than those of the non-fluorinated 

counterparts.13a, 26  Thus, in the present case, the fluorine atoms might also provide unique physical 

properties that facilitate an analogous Pd-catalyzed rearrangement to provide the branched product. 

4.5 Conclusion 

      The fluorine substituents of the substrate and the selection of appropriate ligands together facilitated a 

pair of orthogonal palladium-catalyzed regioselective decarboxylative allylation reactions to afford ,-

difluoroketone products. Computational studies should provide insight into the physicochemical basis on 

which fluorination enables formation of the branched product, and into the relationship between the 

ligand structures and the regioselectivity of the transformation. Ongoing work aims at exploiting this 

reaction pathway to generate other unique fluorinated substructures, including enantioenriched products. 

We envision that these strategies should be useful for accessing ,-difluoroketone-based probes that 

would otherwise be challenging to prepare. 
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General Information 

Unless otherwise noted, reactions were performed under an atmosphere of N2 using oven-dried 

glassware. Palladium-catalyzed reactions were performed in 1 dram vials, which were sealed with PTFE-

lined silicone septa, and all other reactions were performed in round-bottom flasks that were sealed with 

rubber septa. Stainless steel syringes were used to transfer air- and moisture-sensitive liquid reagents. 

Reactions were monitored by thin-layer chromatography (TLC) on UNIPLATE Silica Gel HLF plates, 

visualizing by quenching of fluorescence, or by staining with KMnO4 or nihydrin. Column 

chromatography was conducted using an automated system. 19F NMR yields and isolated yields reported 

in the manuscript represent an average of at least two independent runs of material deemed to be at least 

95% pure by NMR. Yields reported in the supporting information refer to a single experiment. 

Unless otherwise noted, reagents were purchased from commercial sources, and used as received. 1,4-

Dioxane (anhydrous, 99.8%) and Pd(OAc)2 (reagent grade, 98%) were purchased from Sigma Aldrich. 

All ligands for screening were purchased from Sigma Aldrich or Strem with the following exceptions: t-

BuBrettPhos and PhXPhos were prepared according to previously reported syntheses. 1 , 2  Solvents 

including DMF, PhMe, CH2Cl2, THF, MeOH were used directly from a solvent purification system in 

which solvent was dried by passage through two columns of activated alumina under argon. 

Proton nuclear magnetic resonance (1H NMR) spectra and carbon nuclear magnetic resonance (13C 

NMR) spectra were recorded on Bruker 400 AVANCE spectrometer (400 and 100 MHz, respectively) or 

Bruker 500 AVANCE spectrometer (500 and 125 MHz, respectively). Chemical shifts () for protons are 

reported in parts per million (ppm) downfield from tetramethylsilane, and are referenced to proton 

resonance of residual CHCl3 in the NMR solvent (CHCl3:  = 7.27 ppm or DMSO-d6:  = 2.50 ppm). 

Chemical shifts () for carbon are reported in ppm downfield from tetramethylsilane, and are referenced 

to the carbon resonances of the solvent residual peak (CDCl3:  = 77.23 ppm or DMSO-d6:  = 39.51 

ppm). Fluorine nuclear magnetic resonance (19F NMR) spectra were recorded on a Bruker 400 AVANCE 

spectrometer (376 MHz). 19F NMR chemical shifts () are reported in ppm upfield from 
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trichlorofluoromethane (0 ppm). NMR data are represented as follows: chemical shift (ppm), multiplicity 

(s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant in Hertz (Hz), 

integration. Gas chromatography (GC) data were obtained via analysis using an Agilent Technologies 

7890A GC system with a FID detector and an Agilent Technologies 30 m x 0.320 mm i.d. HP–5 capillary 

column. High-resolution mass determinations were obtained either by electrospray ionization (ESI) on a 

Waters LCT PremierTM mass spectrometer or by atmospheric-pressure chemical ionization (APCI–

hexane/PhMe) on a Waters Q-Tof PremierTM, for which sample plus near mass internal exact mass 

standard were dissolved in hexane, and hexane or PhMe/hexane were used as ionization solvent. Infrared 

spectra were measured at a Shimadzu FTIR-8400S Fourier Transform Infrared Spectrometer. Uncorrected 

melting points were measured on Thomas Hoover Capillary Melting Point apparatus. 

Preparation of Known Compounds 

Potassium 2,2-difluoro-3-oxo-3-phenylpropanoate, potassium 2,2-difluoro-3-(4-methoxyphenyl)-3-

oxopropanoate, potassium 2,2-difluoro-3-(4-fluorophenyl)-3-oxopropanoate, potassium 2,2-difluoro-3-(5-

methylthiophen-2-yl)-3-oxopropanoate, potassium 2,2-difluoro-3-oxo-3-(1-phenyl-1H-pyrazol-4-

yl)propanoate, and potassium 3-cyclohexyl-2,2-difluoro-3-oxopropanoate were prepared according to a 

previous report in our group.3 

Preparation of Compound 4.1a 

 

cinnamyl 2,2-difluoro-3-oxo-3-phenylpropanoate (4.1a) 

An oven-dried one-neck round-bottom flask was charged with Potassium 2,2-difluoro-3-oxo-3-

phenylpropanoate3 (3.00 g, 12.6 mmol), and the system was evacuated and backfilled with N2(g) three 

times. Dry CH2Cl2 (0.040 L) and DMF (1.2 mL) were added via a syringe, and the reaction mixture was 

cooled to 0 °C. Oxalyl chloride (1.2 mL, 14 mmol) was added dropwise, and then the reaction mixture 
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was stirred at 0 °C for 30 min, and rt for 1.5 h. Next, a solution of cinnamyl alcohol (2.54 g, 18.9 mmol) 

dissolved in dry CH2Cl2 (2.0 mL) was added dropwise at 0 °C followed by dropwise addition of Et3N (2.6 

mL, 19 mmol). The resulting reaction mixture was stirred at 0 °C for 30 min, and rt for 1.5 h. H2O (10 mL) 

was added to quench the reaction, and CH2Cl2 was removed under reduced pressure. The aqueous layer 

was extracted with ether (3 x 20 mL), and the combined organic layers were dried over anhydrous 

Na2SO4, filtered, and concentrated. The crude product was purified by column chromatography using a 

gradient of EtOAc / hexanes (2% to 5%) for elution to furnish the compound 4.1a as a as a colorless oil 

(3.20 g, 80%). 1H NMR (CDCl3, 400 MHz)  8.09 (d, J = 7.6 Hz, 2 H), 7.67 (t, J = 7.6 Hz, 1 H), 7.51 (t, J 

= 7.6 Hz, 2 H), 7.38–7.29 (m, 5 H), 6.69 (d, J = 15.6 Hz, 1 H), 6.23 (dt, J = 16, 6.8 Hz, 1 H), 4.98 (d, J = 

6.8 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  185.6 (t, J = 27.5 Hz), 161.9 (t, J = 30.6 Hz), 136.5, 135.8, 

135.4, 131.2, 130.2 (t, J = 2.5 Hz), 129.2, 128.9, 128.7, 127.0, 120.9, 110.0 (t, J = 263.8 Hz), 68.2. 19F 

NMR (CDCl3, 376 MHz)  –107.4 (s, 2 F). IR (film) 3061, 3028, 1776, 1715, 1699, 1597, 1450, 1312, 

1159, 1124, 968, 922, 746, 712, 688 cm-1. HRMS (ESI, m/z): calcd for C18H14F2O3Na [M+Na]+ 339.0809, 

found 339.0804. 

Screening of Ligands 

An oven-dried 1 dram vial was charged with substrate 4.1a (47.4 mg, 0.150 mmol), Pd(OAc)2 (1.7 mg, 

0.0075 mmol), ligand (7.0 mg, 0.0150 mmol), and a magnetic stir bar. The vial was equipped with a 

three-way valve, evacuated and backfilled with N2(g) four times. Dry 1,4-dioxane (0.60 mL) was added via 

a syringe under N2(g). The vial was sealed with a screwed-cap under N2(g) flow, and was stirred at rt for 5 

min. Subsequently, the vial was placed on a pre-heated reaction block, and stirred at 80 °C for 20 h. The 

vial was cooled to rt, and the mixture was diluted with EtOAc (3 mL). Dodecane (0.020 mL, 0.088 mmol) 

was added as a standard, and the reaction mixture was stirred at rt for 30 min to ensure thorough mixing. 

A small aliquot was taken from the vial, passed through a plug of silica gel, and eluted with additional 

EtOAc (2 mL). The sample was analyzed using GC/FID, and the quantity of compounds 4.2a and 4.3a 

were determined using dodecane as an internal standard. 
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Characterization of Compounds 4.2a and 4.3a 

 

(E)-2,2-difluoro-1,5-diphenylpent-4-en-1-one (4.2a) 

1H NMR (CDCl3, 400 MHz)  8.13 (dt, J = 8.4, 1.4 Hz, 2 H), 7.65 (tt, J = 7.6, 1.4 Hz, 1 H), 7.52 (t, J = 

8.0 Hz, 2 H), 7.39–7.36 (m, 2 H), 7.32 (t, J = 7.4 Hz, 2 H), 7.27–7.23 (m, 1 H), 6.60 (d, J = 15.6 Hz, 1 H), 

6.22 (dt, J = 15.6, 7.2 Hz, 1 H), 3.14 (tdd, J = 17.2, 7.2, 1.6 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  

189.4 (t, J = 31.2 Hz), 136.9, 136.4, 134.6, 132.2 (t, J = 2.5 Hz), 130.4 (t, J = 3.1 Hz), 128.9, 128.8, 128.0, 
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126.6, 119.0 (t, J = 5.6 Hz), 118.9 (t, J = 253.1 Hz), 38.0 (t, J = 23.1 Hz). 19F NMR (CDCl3, 376 MHz)  

–98.9 (t, J = 16.9 Hz, 2 F). IR (film) 3059, 3026, 1701, 1597, 1448, 1273, 1173, 1119, 1090, 1061, 966, 

947, 914, 748, 716, 688, 667 cm-1. HRMS (ESI, m/z): calcd for C17H15F2O [M+H]+ 273.1091, found 

273.1092. mp 45–46 °C. 

 

2,2-difluoro-1,3-diphenylpent-4-en-1-one (4.3a) 

1H NMR (CDCl3, 400 MHz)  7.96 (dt, J = 8.8, 1.4 Hz, 2 H), 7.61 (tt, J = 7.6, 1.4 Hz, 1 H), 7.46 (t, J = 

8.0 Hz, 2 H), 7.33–7.28 (m, 5 H), 6.22 (ddd, J = 17.2, 10.4, 8.4 Hz, 1 H), 5.32 (d, J = 10.4 Hz, 1 H), 5.23 

(dt, J = 16.8, 1.2 Hz, 1 H), 4.32 (td, J = 16.4, 8.4 Hz, 1 H). 13C NMR (CDCl3, 125 MHz)  190.0 (t, J = 

29.4 Hz), 135.3, 134.2, 133.1, 132.6 (t, J = 4.4 Hz), 130.1 (t, J = 3.1 Hz), 129.8, 128.8, 128.0, 120.8, 

118.8 (t, J = 257.5 Hz), 54.2 (t, J = 21.9 Hz). 19F NMR (CDCl3, 376 MHz)  –103.5 (dd, A of ABX, JAB = 

274.5 Hz, JAX = 15.0 Hz, 1 F), –103.1 (dd, B of ABX, JAB = 274.5 Hz, JBX = 15.0 Hz, 1 F). IR (film) 3065, 

3032, 1701, 1597, 1448, 1267, 1178, 1049, 930, 746, 716, 698, 688 cm-1. HRMS (ESI, m/z): calcd for 

C17H14F2ONa [M+Na]+ 295.0910, found 295.0902. 

Preparation of Compounds 4.1b and 4.1c in Table 4.1 

 

cinnamyl 3-oxo-3-phenylpropanoate (4.1c) 

Compound 4.1c was prepared according to a previous report.4 A mixture of cinnamyl alcohol (1.34 g, 

10.0 mmol), ethyl benzoylacetate (1.73 g, 10.0 mmol), DMAP (1.22 g, 10.0 mmol) was stirred with oven-

dried 4 Å molecular sieves (50 g) in dry toluene (0.080 L) at 100–105 °C for 36 h. The reaction mixture 

was cooled to rt, and filtered to remove the molecular sieves. The solvents were removed under reduced 
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pressure, and EtOAc (60 mL) and water (60 mL) were added to the residue. The layers were separated, 

and the organic layer was dried over anhydrous Na2SO4, filtered, and concentrated. The crude product 

was purified by column chromatography using a gradient of EtOAc / hexanes (2% to 5%) for elution to 

furnish the compound 4.1c as a as a yellow oil (2.08 g, 74%, ketone : enol = 4:1). 1H NMR (CDCl3, 400 

MHz)  12.53 (s, 1 H, enol), 7.98–7.96 (m, 2 H, keto), 7.82–7.79 (m, 2 H, enol), 7.61 (tt, J = 7.4, 1.6 Hz, 

1 H, keto), 7.51–7.42 (m, 7 H, enol + keto), 7.39–7.25 (m, 8 H, enol + keto), 6.72 (d, J = 16.0 Hz, 1 H, 

enol), 6.64 (d, J = 16.0 Hz, 1 H, keto), 6.36 (dt, J = 16.0, 6.4 Hz, 1 H, enol), 6.26 (dt, J = 16.0, 6.4 Hz, 1 

H, keto), 5.74 (s, 1 H, enol), 4.89 (dd, J = 6.4, 1.6 Hz, 2 H, enol), 4.83 (dd, J = 6.4, 1.6 Hz, 2 H, keto), 

4.06 (s, 2 H, keto). HRMS (ESI, m/z): calcd for C18H16O3Na [M+Na]+ 303.0997, found 303.0996. 

Spectroscopic data matched that from the previous report.5 

 

cinnamyl 2-fluoro-3-oxo-3-phenylpropanoate (4.1b) 

Compound 4.1b was prepared according to a previous report.6 Compound 4.1c (1.03 g, 3.67 mmol) and 

CpTiCl3 (39.5 mg, 0.180 mmol) were dissolved in CH3CN (0.020 L) at rt, and selectfluor (1.40 g, 4.04 

mmol) was added. The mixture was stirred at rt for 6 h, and filtered to remove solids. The filtrate was 

concentrated, and the crude product was purified by column chromatography using a gradient of EtOAc / 

hexanes (2% to 5%) for elution to furnish the compound 4.1b as a as a colorless oil (0.75 g, 68%). 1H 

NMR (CDCl3, 400 MHz)  8.06 (dt, J = 8.4, 1.2 Hz, 2 H), 7.64 (tt, J = 7.4, 1.4 Hz, 1 H), 7.51 (t, J = 8.0 

Hz, 2 H), 7.35–7.26 (m, 5 H), 6.62 (dt, J = 16.0, 1.4 Hz, 1 H), 6.21 (dt, J = 16.0, 6.4 Hz, 1 H), 5.94 (d, J = 

48.8 Hz, 1 H), 4.90 (dt, J = 6.4, 1.4 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  189.6 (d, J = 20.0 Hz), 

164.9 (d, J = 23.8 Hz), 135.9, 135.8, 134.7, 133.5 (d, J = 2.5 Hz), 129.7 (d, J = 3.8 Hz), 129.0, 128.8, 

128.5, 126.9, 121.5, 90.2 (d, J = 196.2 Hz), 67.1. 19F NMR (CDCl3, 376 MHz)  –190.2 (d, J = 48.9 Hz, 1 
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F). IR (film) 1763, 1691, 1597, 1448, 1242, 1198, 1111, 966, 744, 690 cm-1. HRMS (ESI, m/z): calcd for 

C18H15FO3Na [M+Na]+ 321.0903, found 321.0894. 

Experimental Procedures and Characterization of Compounds for Table 4.1 

General Procedure A: An oven-dried 1 dram vial was charged with substrate (4.1a, 4.1b or 4.1c), 

Pd(OAc)2, ligand (t-BuBrettPhos or PhXPhos), and a magnetic stir bar. The vial was equipped with a 

three-way valve, evacuated and backfilled with N2(g) four times. Dry 1,4-dioxane was added via a syringe 

under N2(g). The vial was sealed with a screwed-cap under N2(g) flow, and was stirred at rt for 5 min. 

Subsequently, the vial was placed on a pre-heated reaction block, and stirred at the indicated temperature 

for 20 h. The vial was cooled to rt, and the mixture was diluted with EtOAc. An internal standard was 

added, and the reaction mixture was stirred at rt for 30 min to ensure thorough mixing before checking 19F 

or 1H yields. 

 

(E)-2,2-difluoro-1,5-diphenylpent-4-en-1-one (4.2a) 

General procedure A was followed using 4.1a (84.1 mg, 0.300 mmol), Pd(OAc)2 (2.0 mg, 0.0090 mmol), 

t-BuBrettPhos (8.7 mg, 0.018 mmol), and 1,4-dioxane (0.60 mL). ,,-trifluorotoluene (15 µL) was 

added as an internal standard to obtain a 19F NMR yield of linear product 4.2a. Spectral data of 4.2a 

matched that described above. 

 

2,2-difluoro-1,3-diphenylpent-4-en-1-one (4.3a) 

General procedure A was followed using 4.1a (84.1 mg, 0.300 mmol), Pd(OAc)2 (1.68 mg, 0.0075 mmol), 

PhXPhos (6.97 mg, 0.015 mmol), and 1,4-dioxane (3.0 mL). ,,-trifluorotoluene (15 µL) was added as 
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an internal standard to obtain a 19F NMR yield of branched product 4.3a. Spectral data of 4.3a matched 

that described above. 

 

(E)-2-fluoro-1,5-diphenylpent-4-en-1-one (4.2b) 

General procedure A was followed using 4.1b (89.5 mg, 0.300 mmol), Pd(OAc)2 (2.0 mg, 0.0090 mmol), 

t-BuBrettPhos (8.7 mg, 0.018 mmol), and 1,4-dioxane (0.60 mL). Fluorobenzene (15 µL) was added as an 

internal standard to obtain 19F NMR yields. After determination of the 19F NMR yield, the aliquot was 

recombined with the reaction mixture. The total reaction mixture was passed through a plug of silica gel, 

and eluted with ether. Removal of the solvents and chromatographic purification provided the linear 

product 4.2b (15.2 mg, 20%). 1H NMR (CDCl3, 400 MHz)  8.00 (d, J = 8.0 Hz, 2 H), 7.63 (tt, J = 7.4, 

1.5 Hz, 1 H), 7.51 (t, J = 8.0 Hz, 2 H), 7.39–7.22 (m, 5 H), 6.53 (dt, J = 16.0, 1.6 Hz, 1 H), 6.27 (dt, J = 

16.0, 7.2 Hz, 1 H), 5.69 (ddd, J = 49.0, 7.4, 4.8 Hz, 1 H), 3.02–2.82 (m, 2 H). 13C NMR (CDCl3, 125 

MHz)  196.4 (d, J = 20.0 Hz), 137.0, 134.6, 134.3, 134.1, 129.2 (d, J = 3.8 Hz), 129.0, 128.8, 127.8, 

126.5, 123.0 (d, J = 3.8 Hz), 93.2 (d, J = 185.0 Hz), 36.4 (d, J = 21.2 Hz). 19F NMR (CDCl3, 376 MHz)  

–187.8 (ddd, J = 48.9, 30.1, 22.5 Hz, 1 F). IR (film) 3026, 2922, 1701, 1597, 1578, 1448, 1228, 1072, 964, 

744, 694 cm-1. HRMS (ESI, m/z): calcd for C17H15FONa [M+Na]+ 277.1005, found 277.0995. 

 

2-fluoro-1,3-diphenylpent-4-en-1-one (4.3b) 

General procedure A was followed using 4.1b (89.5 mg, 0.300 mmol), Pd(OAc)2 (1.7 mg, 0.0075 mmol), 

PhXPhos (7.0 mg, 0.015 mmol), and 1,4-dioxane (3.0 mL). Fluorobenzene (15 µL) was added as an 

internal standard to obtain 19F NMR yields. After determination of the 19F yield, the aliquot was 
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recombined with the reaction mixture. The total reaction mixture was passed through a plug of silica gel, 

and eluted with ether. Removal of the solvents and chromatographic purification provided the branched 

product 4.3b as two diastereoisomers (16 mg, 21%, A : B = 2.2 : 1). 1H NMR (CDCl3, 400 MHz)  7.90–

7.88 (m, 2 H, isomer A), 7.79 (dt, J = 8.4, 1.2 Hz, 2 H, isomer B), 7.62–7.22 (m, 16 H, isomers A and B), 

6.19 (ddd, J = 17.2, 10.2, 8.2 Hz, 1 H, isomer A), 6.16 (ddd, J = 17.2, 10.4, 7.6 Hz, 1 H, isomer B), 5.83 

(dd, J = 48.4, 4.0 Hz, 1 H, isomer A), 5.78 (dd, J = 48.8, 5.2, 1 H, isomer B), 5.24–5.18 (m, 1 H for 

isomer A and 2 H for isomer B), 5.07 (dt, J = 17.2, 1.2 Hz, 1 H, isomer A), 4.16–4.01 (m, 4 H, isomers A 

and B). 13C NMR (CDCl3, 125 MHz)  196.5 (d, J = 20.0 Hz, isomer B), 196.0 (d, J = 18.7 Hz, isomer A), 

139.4 (isomer A), 137.7 (isomer B), 136.1 (d, J = 5.0 Hz, isomer B), 135.3 (isomer B), 135.2 (isomer A), 

134.3 (d, J = 5.0 Hz, isomer A), 133.9 (isomer A), 133.8 (isomer B), 129.1 (isomers A and B), 129.0 

(isomers A and B), 128.9 (isomers A and B), 128.8 (isomers A and B), 127.6 (isomers A and B), 119.1 

(isomer A), 118.1 (isomer B), 95.9 (d, J = 190.0 Hz, isomer B), 95.7 (d, J = 191.2 Hz, isomer B), 52.6 (d, 

J = 20.0 Hz, isomer A), 52.3 (d, J = 20.0 Hz, isomer B). 19F NMR (CDCl3, 376 MHz)  –194.9 (dd, J = 

48.9, 26.3 Hz, 1 F, isomer A), –191.9 (dd, J = 48.9, 26.3 Hz, 1 F, isomer B). IR (film) 3063, 2924, 1697, 

1691, 1597, 1491, 1448, 1277, 1252, 1095, 926, 756, 698 cm-1. HRMS (ESI, m/z): calcd for C17H15FONa 

[M+Na]+ 277.1005, found 277.0999. 

 

(E)-1,5-diphenylpent-4-en-1-one (4.2c) 

General procedure A was followed using 4.1c (84.1 mg, 0.300 mmol), Pd(OAc)2 (2.0 mg, 0.0090 mmol), 

t-BuBrettPhos (8.7 mg, 0.018 mmol), and 1,4-dioxane (0.60 mL). Dibromomethane (15 µL) was added as 

an internal standard to obtain 1H NMR yields. Spectral data of the linear product 4.2c matched that from a 

previous report.7 
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1,3-diphenylpent-4-en-1-one (4.3c) 

General procedure A was followed using 4.1c (84.1 mg, 0.300 mmol), Pd(OAc)2 (1.68 mg, 0.0075 mmol), 

PhXPhos (6.97 mg, 0.015 mmol), and 1,4-dioxane (3.0 mL). Dibromomethane (10 µL) was added as an 

internal standard to obtain 1H NMR yields. Spectral data of the branched product 4.3c matched that from 

a previous report .8 

Experimental Procedures and Characterization of Compounds in Scheme 4.10 

General Procedure B: An oven-dried round-bottom flask was charged with cinnamic acid derivative (12 

mmol), and dry MeOH (25 mL) was added. The mixture was cooled to 0 °C, and thionyl chloride (24 

mmol) was added dropwise. The reaction mixture was warmed to rt, and then stirred at reflux for 6 h. The 

reaction mixture was cooled to rt, and MeOH and thionyl chloride were removed under reduced pressure. 

EtOAc (25 mL) and H2O (10 mL) were added to the residue, and the solution was neutralized with 

NaHCO3(aq). The phases were separated, and the aqueous layer was extracted with EtOAc (2 x 15 mL). 

The combined organic phases were dried over anhydrous Na2SO4, filtered, and concentrated to give the 

desired product without further purification. 

General Procedure C: An oven-dried three-neck flask was charged with cinnamic ester (8.0 mmol). The 

reaction vessel was equipped with a liquid addition funnel, evacuated and backfilled with N2(g) three times. 

Dry CH2Cl2 (0.020 L) was added at rt, and then the solution was cooled to –78 °C. DIBAL (1.0 M in 

hexane, 0.020 L, 0.020 mol) was added dropwise, and then the reaction solution was gradually warmed to 

rt. The reaction solution was cooled to 0 °C, and 1 N HCl was added dropwise to quench the reaction 

until no precipitate remained. The phases were separated, and the aqueous layer was extracted with 

CH2Cl2 (2 x 20 mL). The combined organic phases were dried over anhydrous Na2SO4, filtered, and 

concentrated to give the desired product without further purification. 
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General Procedure D: An oven-dried one-neck round-bottom flask was charged with potassium 2,2-

difluoro-3-oxo-3-phenylpropanoate3 (4.8 mmol), and the system was evacuated and backfilled with N2(g) 

three times. Dry CH2Cl2 (24 mL) and DMF (1.2 mL) were added via a syringe, and the reaction mixture 

was cooled to 0 °C. Oxalyl chloride (4.0 mmol) was added dropwise, and then the reaction mixture was 

stirred at 0 °C for 30 min, and rt for 1.5 h. Next, a solution of cinnamyl alcohol derivative (4.0 mmol) 

dissolved in dry CH2Cl2 (2.0 mL) was added dropwise at 0 °C followed by dropwise addition of Et3N (8.0 

mmol). The resulting reaction mixture was stirred at 0 °C for 30 min, and rt for 1.5 h. H2O (10 mL) was 

added to quench the reaction, and the CH2Cl2 was removed under reduced pressure. The aqueous layer 

was extracted with ether (3 x 20 mL), and the combined organic layers were dried over anhydrous 

Na2SO4, filtered, and concentrated. Purification by flash chromatography provided the desired product.

General Procedure E: Pd-Catalyzed Decarboxylation to Generate Linear Difluoroketone Product: An 

oven-dried 1 dram vial was charged with substrate 4a–h (0.300 mmol), Pd(OAc)2 (2.0 mg, 0.0090 mmol), 

t-BuBrettPhos (8.7 mg, 0.018 mmol), and a magnetic stir bar. The vial was equipped with a three-way 

valve, and evacuated and backfilled with N2(g) four times. Dry 1,4-dioxane (0.60 mL) was added via a 

syringe under N2(g). The vial was sealed with a screwed-cap under N2(g), and was stirred at rt for 5 min. 

Subsequently, the vial was placed on a pre-heated reaction block at 60 °C, and stirred for 24 h. The vial 

was cooled to rt, and the mixture was diluted with EtOAc (2 mL). ,,-Trifluorotoluene (15 µL, 0.12 

mmol) or 2,2,2-trifluoroethanol (0.010 mL, 0.14 mmol) was added as a standard, and the reaction mixture 

was stirred at rt for 30 min to ensure thorough mixing. An aliquot was taken from the vial for 19F NMR 

analysis. After determination of the 19F yield, the aliquot was recombined with the reaction mixture. The 

total reaction mixture was passed through a plug of silica gel, and eluted with ether. (In some cases, 

EtOAc was used for elution). Removal of the solvents and chromatographic purification provided the 

desired product 5a–h. 

General Procedure F: Pd-Catalyzed Decarboxylation to Generate Branched Difluoroketone Product: An 

oven-dried 1 dram vial was charged with the substrate 4a–h (0.300 mmol), Pd(OAc)2 (1.7 mg, 0.0075 



 

192 
 

mmol), PhXPhos (7.0 mg, 0.0150 mmol), and a magnetic stir bar. The vial was equipped with a three-way 

valve, and evacuated and backfilled with N2(g) four times. Dry 1,4-dioxane (3.0 mL) was added via a 

syringe under N2(g). The vial was sealed with a screwed-cap under N2(g), and was stirred at rt for 5 min. 

Subsequently, the vial was placed on a pre-heated reaction block at 90 °C, and stirred for 24 h. The vial 

was cooled to rt, and the mixture was diluted with EtOAc (0.50 mL). ,,-Trifluorotoluene (15 µL, 0.12 

mmol) or 2,2,2-trifluoroethanol (0.010 mL, 0.14 mmol) was added as a standard, and the reaction mixture 

was stirred at rt for 30 min to ensure thorough mixing. An aliquot was taken from the vial for 19F NMR 

analysis. After determination of the 19F yield, the aliquot was recombined with the reaction mixture. The 

total reaction mixture was passed through a plug of silica gel, and eluted with ether. (In some cases, 

EtOAc was used for elution). Removal of the solvents and chromatographic purification provided the 

desired product 6a–h. 

 

(E)-methyl 3-(3-(trifluoromethyl)phenyl)acrylate (4.4a-2) 

General procedure B was followed using 3-(trifluoromethyl)cinnamic acid (1.50 g, 6.94 mmol), thionyl 

chloride (1.0 mL, 14 mmol), and MeOH (15 mL). Workup afforded the title compound 4.4a-2 as a 

colorless solid (1.52 g, 95%). 1H NMR (CDCl3, 400 MHz)  7.77–7.69 (m, 3 H), 7.65 (d, J = 8.0 Hz, 1 H), 

7.53 (t, J = 7.6 Hz, 1 H), 6.52 (d, J = 16.0 Hz, 1 H), 3.84 (s, 3 H). 19F NMR (CDCl3, 376 MHz)  –62.9 (s, 

3 F). HRMS (ESI, m/z): calcd for C11H10F3O2 [M+H]+ 231.0633, found 231.0641. Spectroscopic data 

matched that from the previous report.9 

 

(E)-3-(3-(trifluoromethyl)phenyl)prop-2-en-1-ol (4.4a-1) 
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General procedure C was followed using 4.4a-2 (1.38 g, 6.00 mmol), DIBAL (1.0 M in hexane, 15 mL, 

15 mmol), and CH2Cl2 (15 mL). Workup afforded the title compound 4.4a-1 as a light yellow oil (1.15 g, 

95%). 1H NMR (CDCl3, 400 MHz)  7.63 (s, 1 H), 7.57–7.54 (m, 1 H), 7.51–7.49 (m, 1 H), 7.46–7.42 (m, 

1 H), 6.67 (dt, J = 16.0, 1.6 Hz, 1 H), 6.45 (dt, J = 16.0, 5.4 Hz, 1 H), 4.37 (dd, J = 5.4, 1.6 Hz, 2 H), 1.63 

(s, 3 H). 19F NMR (CDCl3, 376 MHz)  –62.8 (s, 3 F). HRMS (ESI, m/z): calcd for C10H10F3O [M+H]+ 

203.0684, found 203.0674. Spectroscopic data matched that from the previous report.9 

 

(E)-3-(3-(trifluoromethyl)phenyl)allyl 2,2-difluoro-3-oxo-3-phenylpropanoate (4.4a) 

General procedure D was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate3 (1.2 g, 4.8 

mmol), oxalyl chloride (0.34 mL, 4.0 mmol), 4.4a-1 (0.81 g, 4.0 mmol), Et3N (1.1 mL, 8.0 mmol), DMF 

(1.2 mL), and CH2Cl2 (24 mL). Workup and chromatographic purification (2% to 5% EtOAc in hexanes) 

afforded the title compound 4.4a as a colorless oil (1.2 g, 78%). 1H NMR (CDCl3, 500 MHz)  8.10 (d, J 

= 8.0 Hz, 2 H), 7.69–7.66 (m, 1 H), 7.58–7.51 (m, 5 H), 7.48–7.45 (m, 1 H), 6.70 (d, J = 16.0 Hz, 1 H), 

6.30 (dtd, J = 10.0, 6.0, 1.5 Hz, 1 H), 5.00 (d, J = 6.0 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  185.5 (t, J 

= 27.5 Hz), 161.8 (t, J = 30.6 Hz), 136.6, 135.4, 134.5, 131.3 (q, J = 32.5 Hz), 131.1, 130.2 (t, J = 2.5 Hz), 

130.1, 129.4, 129.2, 124.2 (q, J = 271.3 Hz), 125.2 (q, J = 3.8 Hz), 123.6 (q, J = 3.8 Hz), 123.0, 110.1 (t, 

J = 263.8 Hz), 67.5. 19F NMR (CDCl3, 376 MHz)  –107.3 (s, 2 F), –62.8 (s, 3 F). IR (film) 3067, 2960, 

1778, 1715, 1699, 1599, 1450, 1336, 1312, 1165, 1124, 1097, 966, 924, 793, 712, 696, 687 cm-1. HRMS 

(ESI, m/z): calcd for C19H13F5O3Na [M+Na]+ 407.0683, found 407.0611. 

 

(E)-2,2-difluoro-1-phenyl-5-(3-(trifluoromethyl)phenyl)pent-4-en-1-one (4.5a) 
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General procedure E was followed using 4.4a (115.3 mg, 0.300 mmol), Pd(OAc)2 (2.0 mg, 0.090 mmol), 

t-BuBrettPhos (8.7 mg, 0.018 mmol), and 1,4-dioxane (0.60 mL). Workup and chromatographic 

purification (0% to 5% EtOAc in hexanes) afforded the title compound 4.5a as a colorless oil (90.4 mg, 

89%). 1H NMR (CDCl3, 400 MHz)  8.15 (dd, J = 8.2, 1.4, 2 H), 7.70–7.65 (m, 1 H), 7.62 (s, 1 H), 7.57–

7.51 (m, 4 H), 7.47–7.43 (m, 1 H), 6.65 (d, J = 16.0 Hz, 1 H), 6.32 (dt, J = 16.0, 7.2 Hz, 1 H), 3.18 (tdd, J 

= 16.8, 7.2, 1.2 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  189.2 (t, J = 31.3 Hz), 137.6, 135.0, 134.7, 

132.0 (t, J = 2.5 Hz), 131.2 (q, J = 32.5 Hz), 130.4 (t, J = 3.1 Hz), 129.7, 129.2, 129.0, 124.5 (q, J = 3.8 

Hz), 124.3 (q, J = 271.3 Hz), 123.3 (q, J = 3.8 Hz), 121.3 (t, J = 5.0 Hz), 118.8 (t, J = 253.1 Hz), 37.9 (t, J 

= 23.5 Hz). 19F NMR (CDCl3, 376 MHz)  –98.7 (t, J = 16.9 Hz, 2 F), –62.8 (s, 3 F). IR (film) 3065, 1701, 

1599, 1450, 1331, 1169, 1124, 1072, 966, 798, 716, 696 cm-1. HRMS (APCI-hexane/PhMe, m/z): calcd 

for C18H14F5O [M+H]+ 341.0965, found 341.0951. 

 

2,2-difluoro-1-phenyl-3-(3-(trifluoromethyl)phenyl)pent-4-en-1-one (4.6a) 

General procedure F was followed using 4.4a (115 mg, 0.300 mmol), Pd(OAc)2 (1.7 mg, 0.0075 mmol), 

PhXPhos (7.0 mg, 0.015 mmol), and 1,4-dioxane (3.0 mL). Workup and chromatographic purification (0% 

to 5% EtOAc in hexanes) afforded the title compound 4.6a as a colorless oil (86.5 mg, 85%). 1H NMR 

(CDCl3, 400 MHz)  7.99 (dd, J = 8.6, 1.0 Hz, 2 H), 7.66–7.61 (m, 1 H), 7.59–7.55 (m, 3 H), 7.51–7.44 

(m, 3 H), 6.20 (ddd, J = 17.2, 10.4, 8.4 Hz, 1 H), 5.36 (dd, J = 10.2, 1.0 Hz, 1 H), 5.24 (d, J = 16.8 Hz, 1 

H), 4.42 (ddd, J = 17.4, 14.6, 8.4 Hz, 1 H). 13C NMR (CDCl3, 125 MHz)  189.4 (t, J = 29.4 Hz), 136.5, 

134.5, 133.3, 132.8 (t, J = 2.5 Hz), 131.9 (t, J = 3.8 Hz), 131.1 (q, J = 31.9 Hz), 130.1 (t, J = 3.8 Hz), 

129.3, 128.9, 126.7 (q, J = 3.8 Hz), 124.9 (q, J = 3.8 Hz), 124.2 (q, J = 270.0 Hz), 121.6, 118.5 (t, J = 

257.5 Hz), 53.6 (t, J = 21.3 Hz). 19F NMR (CDCl3, 376 MHz)  –103.7 (dd, A of ABX, JAB = 280.1 Hz, 

JAX = 16.9 Hz, 1 F), –102.2 (dd, B of ABX, JAB = 280.1 Hz, JBX = 15.0 Hz, 1 F), –62.6 (s, 3 F). IR (film) 
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3076, 1705, 1599, 1450, 1331, 1169, 1128, 1076, 926, 795, 716, 702, 688 cm-1. HRMS (APCI-

hexane/PhMe, m/z): calcd for C18H14F5O [M+H]+ 341.0965, found 341.0971. 

 

(E)-3-(4-nitrophenyl)allyl 2,2-difluoro-3-oxo-3-phenylpropanoate (4.4b) 

General procedure D was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate3 (1.4 g, 5.5 

mmol), oxalyl chloride (0.36 mL, 4.2 mmol), 4-nitrocinnamyl alcohol (0.75 g, 4.2 mmol), Et3N (1.2 mL, 

8.4 mmol), DMF (1.2 mL), and CH2Cl2 (0.040 L). Workup and chromatographic purification (5% to 10% 

EtOAc in hexanes) afforded the title compound 4.4b as a pale yellow solid (1.2 g, 79%). 1H NMR (CDCl3, 

400 MHz)  8.20 (d, J = 8.8 Hz, 2 H), 8.11 (d, J = 7.6 Hz, 2 H), 7.72–7.67 (m, 1 H), 7.56–7.50 (m, 4 H), 

6.75 (dt, J = 16.0, 1.6 Hz, 1 H), 6.41 (dt, J = 16.0, 6.4 Hz, 1 H), 5.03 (dd, J = 6.4, 1.6 Hz, 2 H). 13C NMR 

(CDCl3, 125 MHz)  185.6 (t, J = 27.5 Hz), 161.8 (t, J = 30.6 Hz), 147.7, 142.2, 135.5, 133.2, 131.0 (t, J 

= 1.9 Hz), 130.2 (t, J = 2.5 Hz), 129.3, 127.6, 125.8, 124.3, 110.2 (t, J = 264.4 Hz), 67.1. 19F NMR 

(CDCl3, 376 MHz)  –107.0 (s, 2 F). IR (film) 3076, 1774, 1701, 1597, 1518, 1344, 1310, 1159, 1126, 

1105, 922, 860, 822, 744, 714, 687 cm-1. HRMS (ESI, m/z): calcd for C18H12F2NO5 [M-H]+ 360.0684, 

found 360.0669. mp 65–66 °C. 

 

(E)-2,2-difluoro-5-(4-nitrophenyl)-1-phenylpent-4-en-1-one (4.5b) 

General procedure E was followed using 4.4b (108 mg, 0.300 mmol), Pd(OAc)2 (2.0 mg, 0.090 mmol), t-

BuBrettPhos (8.7 mg, 0.018 mmol), and 1,4-dioxane (0.60 mL). The reaction temperature was raised to 

70 °C. Workup and chromatographic purification (2% to 5% EtOAc in hexanes) afforded the title 

compound 4.5b as a light yellow solid (41.9 mg, 44%). 1H NMR (CDCl3, 400 MHz)  8.18 (d, J = 8.8 Hz, 
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2 H), 8.14 (dd, J = 8.6, 1.4 Hz, 2 H), 7.66 (tt, J = 7.6, 1.5 Hz, 1 H), 7.55–7.49 (m, 4 H), 6.68 (d, J = 16.0 

Hz, 1 H), 6.43 (dt, J = 16.0, 7.4 Hz, 1 H), 3.20 (tdd, J = 16.8, 7.4, 1.4 Hz, 2 H). 13C NMR (CDCl3, 125 

MHz)  188.9 (t, J = 31.2 Hz), 147.3, 143.1, 134.8, 134.4, 131.8 (t, J = 3.1 Hz), 130.4 (t, J = 3.1 Hz), 

129.0, 127.1, 124.4 (t, J = 5.0 Hz), 124.2, 118.7 (t, J = 253.1 Hz), 37.9 (t, J = 23.8 Hz). 19F NMR (CDCl3, 

376 MHz)  –98.4 (t, J = 16.9 Hz, 2 F). IR (film) 3076, 1697, 1597, 1514, 1344, 1202, 1111, 1032, 972, 

860, 716, 687, 667 cm-1. HRMS (APCI-hexane/PhMe, m/z): calcd for C17H14F2NO3 [M+H]+ 318.0942, 

found 318.0935. mp 81–82 °C. 

Ph

O
F

F

4.6b
O2N

 

2,2-difluoro-3-(4-nitrophenyl)-1-phenylpent-4-en-1-one (4.6b) 

General procedure F was followed using 4.4b (108 mg, 0.300 mmol), Pd(OAc)2 (1.7 mg, 0.0075 mmol), 

PhXPhos (7.0 mg, 0.015 mmol), and 1,4-dioxane (3.0 mL). Workup and chromatographic purification (2% 

to 5% EtOAc in hexanes) afforded the title compound 4.6b as a yellow solid (74.4 mg, 78%). 1H NMR 

(CDCl3, 400 MHz)  8.20 (d, J = 8.8 Hz, 2 H), 8.01 (dd, J = 8.2, 1.4 Hz, 2 H), 7.67–7.63 (m, 1 H), 7.56–

7.48 (m, 4 H), 6.18 (ddd, J = 17.0, 10.4, 8.0 Hz, 1 H), 5.39 (d, J = 10.4 Hz, 1 H), 5.26 (d, J = 16.8 Hz, 1 

H), 4.50 (td, J = 16.0, 8.0 Hz, 1 H). 13C NMR (CDCl3, 125 MHz)  188.9 (t, J = 30.0 Hz), 147.7, 143.1, 

134.7, 132.4 (t, J = 2.5 Hz), 131.4 (t, J = 4.4 Hz), 130.8, 130.2 (t, J = 3.8 Hz), 129.0, 123.9, 122.0, 118.3 

(t, J = 258.1 Hz), 53.5 (t, J = 21.9 Hz). 19F NMR (CDCl3, 376 MHz)  –102.8 (dd, A of ABX, JAB = 285.8 

Hz, JAX = 15.0 Hz, 1 F), –101.7 (dd, B of ABX, JAB = 285.8 Hz, JBX = 15.0 Hz, 1 F). IR (film) 3084, 1701, 

1599, 1524, 1448, 1348, 1176, 1053, 922, 833, 717, 694, 667 cm-1. HRMS (APCI-hexane/PhMe, m/z): 

calcd for C17H14F2NO3 [M+H]+ 318.0942, found 318.0927. mp 64–65 °C. 
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(E)-ethyl 3-(3-hydroxyprop-1-en-1-yl)benzoate (4.4c-1) 

Compound 4.4c-1 was prepared according to a previous report. 10  An oven-dried Schlenk tube was 

charged with Pd(OAc)2 (0.14 g, 0.60 mmol), PPh3 (0.32 g, 1.2 mmol), and AgOAc (2.0 g, 12 mmol). The 

vessel was evacuated and backfilled with N2(g) three times. Dry DMF (18 mL) was added via a syringe, 

followed by addition of allyl alcohol (1.6 mL, 24 mmol) at rt. The reaction tube was sealed under N2(g) 

flow, placed in a pre-heated oil bath at 70 °C, and stirred for 16 h. The tube was removed from the oil 

bath, and allowed to cool to rt. The reaction mixture was filtered through a pad of celite. The filtrate was 

added with H2O (15 mL), and extracted with EtOAc (3 x 25 mL). The combined organic phases were 

dried over anhydrous Na2SO4, filtered, and concentrated. The crude product was purified by column 

chromatography using a gradient of EtOAc / hexanes (20% to 40%) for elution to afford the compound 

4.4c-1 as a as a tan oil (0.93 g, 38%). 1H NMR (CDCl3, 400 MHz)  8.08 (t, J = 2.0 Hz, 1 H), 7.93 (dd, J 

= 6.6, 1.4 Hz, 1 H), 7.57 (dd, J = 6.8, 1.6 Hz, 1 H), 7.40 (t, J = 7.6 Hz, 1 H), 6.67 (dt, J = 15.6, 1.6 Hz, 1 

H), 6.46 (dt, J = 15.6, 5.4 Hz, 1 H), 4.42–4.36 (m, 4 H), 1.56 (br, 1 H), 1.41 (t, J = 7.2 Hz, 3 H). 13C NMR 

(CDCl3, 125 MHz)  166.7, 137.2, 131.1, 130.9, 130.2, 130.0, 128.9, 128.8, 127.7, 63.7, 61.3, 14.6. IR 

(film) 3458, 2982, 2868, 1716, 1443, 1367, 1288, 1261, 1198, 1105, 1022, 966, 746, 685 cm-1. HRMS 

(APCI-hexane/PhMe, m/z): calcd for C12H15O3 [M+H]+ 207.1021, found 207.1020. 

 

(E)-ethyl 3-(3-((2,2-difluoro-3-oxo-3-phenylpropanoyl)oxy)prop-1-en-1-yl)benzoate (4.4c) 

General procedure D was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate3 (1.2 g, 4.8 

mmol), oxalyl chloride (0.34 mL, 4.0 mmol), 4.4c-1 (0.83 g, 4.0 mmol), Et3N (1.1 mL, 8.0 mmol), DMF 
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(1.2 mL), and CH2Cl2 (24 mL). Workup and chromatographic purification (10% to 15% EtOAc in 

hexanes) afforded the title compound 4.4c as a light yellow oil (1.1 g, 71%). 1H NMR (CDCl3, 400 MHz) 

 8.10 (dd, J = 8.4, 1.6 Hz, 2 H), 8.03 (t, J = 1.6 Hz, 1 H), 7.97 (dt, J = 7.6, 1.6 Hz, 1 H), 7.69–7.65 (m, 1 

H), 7.55–7.50 (m, 3 H), 7.41 (t, J = 7.6 Hz, 1 H), 6.72 (d, J = 16.0 Hz, 1 H), 6.31 (dt, J = 16.0, 6.4 Hz, 1 

H), 5.00 (dd, J = 6.4, 1.2 Hz, 1 H), 4.40 (q, J = 7.2 Hz, 2 H), 1.42 (t, J = 7.2 Hz, 3 H). 13C NMR (CDCl3, 

125 MHz)  185.5 (t, J = 27.5 Hz), 166.5, 161.9 (t, J = 30.0 Hz), 136.1, 135.4, 135.2, 131.2, 131.1, 130.2 

(t, J = 2.5 Hz), 129.6, 129.2, 128.9, 128.0, 122.2, 110.0 (t, J = 263.8 Hz), 67.8, 61.4, 14.5. 19F NMR 

(CDCl3, 376 MHz)  –107.3 (s, 2 F). IR (film) 2982, 1774, 1718, 1599, 1450, 1306, 1275, 1202, 1159, 

1105, 922, 748, 685 cm-1. HRMS (ESI, m/z): calcd for C21H18F2O5Na [M+Na]+ 411.1020, found 411.1007. 

 

(E)-ethyl 3-(4,4-difluoro-5-oxo-5-phenylpent-1-en-1-yl)benzoate (4.5c) 

General procedure E was followed using 4.4c (116 mg, 0.300 mmol), Pd(OAc)2 (2.0 mg, 0.090 mmol), t-

BuBrettPhos (8.7 mg, 0.018 mmol), and 1,4-dioxane (0.60 mL). Workup and chromatographic 

purification (0% to 5% EtOAc in hexanes) afforded the title compound 4.5c as a colorless oil (86.0 mg, 

83%). 1H NMR (CDCl3, 400 MHz)  8.13 (dt, J = 8.4, 1.2 Hz, 2 H), 8.05 (t, J = 1.8 Hz, 1 H), 7.93 (dt, J = 

7.6, 1.6 Hz, 1 H), 7.64 (tt, J = 7.4, 1.6 Hz, 1 H), 7.56–7.49 (m, 3 H), 7.38 (t, J = 8.0 Hz, 1 H), 6.63 (d, J = 

16.0 Hz, 1 H), 6.30 (dt, J = 16.0, 7.2 Hz, 1 H), 4.39 (q, J = 7.2 Hz, 2 H), 3.16 (tdd, J = 17.2, 7.2, 1.5 Hz, 2 

H), 1.41 (t, J = 7.2 Hz, 3 H). 13C NMR (CDCl3, 125 MHz)  189.2 (t, J = 31.2 Hz), 166.6, 137.1, 135.4, 

134.6, 132.0 (t, J = 2.5 Hz), 131.0, 130.7, 130.4 (t, J = 3.1 Hz), 128.9, 128.8, 127.6, 120.4 (t, J = 5.6 Hz), 

118.8 (t, J = 253.1 Hz), 61.2, 37.9 (t, J = 23.1 Hz), 14.5. 19F NMR (CDCl3, 376 MHz)  –98.8 (t, J = 16.9 

Hz, 2 F). IR (film) 2982, 1718, 1599, 1448, 1286, 1200, 1173, 1107, 1024, 968, 752, 716, 687, 667 cm-1. 

HRMS (ESI, m/z): calcd for C20H18F2O3Na [M+Na]+ 367.1122, found 367.1104. 
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ethyl 3-(4,4-difluoro-5-oxo-5-phenylpent-1-en-3-yl)benzoate (4.6c) 

General procedure F was followed using 4.4c (116 mg, 0.300 mmol), Pd(OAc)2 (1.7 mg, 0.0075 mmol), 

PhXPhos (7.0 mg, 0.015 mmol), and 1,4-dioxane (3.0 mL). Workup and chromatographic purification (0% 

to 5% EtOAc in hexanes) afforded the title compound 4.6c as a colorless oil (86.0 mg, 83%). 1H NMR 

(CDCl3, 400 MHz)  8.03–7.97 (m, 4 H), 7.62 (tt, J = 7.4, 1.2 Hz, 1 H), 7.56 (d, J = 7.6 Hz, 1 H), 7.49–

7.45 (m, 2 H), 7.41 (t, J = 7.6 Hz, 1 H), 6.22 (ddd, J = 16.8, 10.4, 8.4 Hz, 1 H), 5.33 (dd, J = 10.4, 1.2 Hz, 

1 H), 5.23 (dt, J = 17.2, 1.2 Hz, 1 H), 4.47–4.36 (m, 3 H), 1.40 (t, J = 7.2 Hz, 3 H). 13C NMR (CDCl3, 125 

MHz)  189.6 (t, J = 30.0 Hz), 166.4, 135.9, 134.4, 134.2, 132.8 (t, J = 2.5 Hz), 132.2 (dd, J = 5.0, 3.8 

Hz), 131.0, 130.1 (t, J = 3.1 Hz), 129.2, 128.9, 128.8, 121.2, 118.6 (t, J = 257.5 Hz), 61.3, 53.8 (t, J= 21.9 

Hz), 14.5. 19F NMR (CDCl3, 376 MHz)  –103.8 (dd, A of ABX, JAB = 278.2 Hz, JAX = 18.8 Hz, 1 F), –

102.3 (dd, B of ABX, JAB = 278.2 Hz, JBX = 11.3 Hz, 1 F). IR (film) 2984, 1718, 1597, 1448, 1367, 1282, 

1180, 1107, 1051, 933, 750, 719, 694 cm-1. HRMS (ESI, m/z): calcd for C20H18F2O3Na [M+Na]+ 

367.1122, found 367.1104. 

 

(E)-tert-butyl 4-(3-(3-hydroxyprop-1-en-1-yl)phenyl)piperazine-1-carboxylate (4.4d-1) 

An oven-dried Schlenk tube was charged with Pd2dba3 (46 mg, 0.050 mmol), DavePhos (47 mg, 0.12 

mmol), and 1-N-Boc-piperazine (1.1 g, 6.0 mmol). The vessel was evacuated and backfilled with N2(g) 

three times. Dry THF (5.0 mL) was added via a syringe, followed by drop wise addition of LHMDS (1.1 

M in THF/ethylbenzene, 0.010 L, 11 mmol). The reaction mixture was stirred at rt for 5 min, and then a 

solution of (E)-3-(3-bromophenyl)prop-2-en-1-ol (1.1 g, 5.0 mmol) dissolved in dry THF (2.0 mL) was 
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added. The reaction tube was sealed under N2(g) flow, placed in a pre-heated oil bath at 65 °C, and stirred 

for 7 h. The tube was removed from the oil bath, and allowed to cool to rt. The reaction mixture was 

diluted with EtOAc (20 mL), and washed with H2O (20 mL) and brine (20 mL). The organic layer was 

dried over anhydrous Na2SO4, filtered, and concentrated. The crude product was purified by column 

chromatography using a gradient of EtOAc / hexanes (10% to 40%) for elution to afford the compound 

4.4d-1 as a as a tan solid (1.0 g, 63%). 1H NMR (CDCl3, 400 MHz)  7.24 (t, J = 8.2 Hz, 1 H), 6.96–6.94 

(m, 2 H), 6.85–6.83 (m, 1 H), 6.59 (dt, J = 16.0, 1.6 Hz, 1 H), 6.36 (dt, J = 16.0, 5.6 Hz, 1 H), 4.33 (d, J = 

4.8 Hz, 2 H), 3.59 (t, J = 5.2 Hz, 4 H), 3.15 (t, J = 5.2 Hz, 4 H), 1.50 (s, 9 H). HRMS (ESI, m/z): calcd for 

C18H26N2O3Na [M+Na]+ 341.1841, found 341.1827. Spectroscopic data matched that from the previous 

report.9 

 

(E)-tert-butyl-4-(3-(3-((2,2-difluoro-3-oxo-3-phenylpropanoyl)oxy)prop-1-en-1-

yl)phenyl)piperazine-1-carboxylate (4.4d) 

General procedure D was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate3 (1.5 g, 5.8 

mmol), oxalyl chloride (0.38 mL, 4.5 mmol), 4.4d-1 (1.4 g, 4.5 mmol), Et3N (1.2 mL, 8.9 mmol), DMF 

(1.2 mL), and CH2Cl2 (45 mL). Workup and chromatographic purification (5% to 10% EtOAc in hexanes) 

afforded the title compound 4.4d as a tan solid (1.5 g, 67%). 1H NMR (CDCl3, 400 MHz)  8.09 (d, J = 

7.6 Hz, 2 H), 7.69–7.65 (m, 1 H), 7.52 (t, J = 7.8 Hz, 2 H), 7.24 (t, J = 8.0 Hz, 1 H), 6.91–6.86 (m, 3 H), 

6.65 (d, J = 16.0 Hz, 1 H), 6.21 (dt, J = 16.0, 6.8 Hz, 1 H), 4.97 (dd, J = 6.8, 1.2 Hz, 2 H), 3.59 (t, J = 5.2 

Hz, 4 H), 3.14 (t, J = 5.2 Hz, 4 H), 1.50 (s, 9 H). 13C NMR (CDCl3, 125 MHz)  185.6 (t, J = 27.5 Hz), 

161.9 (t, J = 30.6 Hz), 154.9, 151.8, 136.8, 135.4, 131.2, 130.2 (t, J = 2.5 Hz), 129.6, 129.2, 120.9, 119.1, 

117.1, 115.2, 110.1 (t, J = 263.8 Hz), 80.2, 68.2, 49.6, 43.7, 28.6. 19F NMR (CDCl3, 376 MHz)  –107.3 
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(s, 2 F). IR (film) 2976, 2822, 1774, 1693, 1597, 1450, 1421, 1242, 1163, 1124, 999, 922, 773, 687 cm-1. 

HRMS (ESI, m/z): calcd for C27H30F2N2O5Na [M+Na]+ 523.2020, found 523.1995. mp 81–82 °C. 

 

(E)-tert-butyl-4-(3-(4,4-difluoro-5-oxo-5-phenylpent-1-en-1-yl)phenyl)piperazine-1-carboxylate 

(4.5d) 

General procedure E was followed using 4.4d (0.150 g, 0.300 mmol), Pd(OAc)2 (3.4 mg, 0.015 mmol), t-

BuBrettPhos (14.5 mg, 0.0300 mmol), and 1,4-dioxane (0.60 mL). Workup and chromatographic 

purification (2% to 5% EtOAc in hexanes) afforded the title compound 4.5d as a red oil (118 mg, 86%). 

1H NMR (CDCl3, 400 MHz)  8.13 (dd, J = 8.4, 1.6 Hz, 2 H), 7.67–7.63 (m, 1 H), 7.51 (t, J = 8.0 Hz, 2 

H), 7.22 (t, J = 8.0 Hz, 1 H), 6.93–6.91 (m, 2 H), 6.85–6.82 (m, 1 H), 6.56 (d, J = 15.6 Hz, 1 H), 6.18 (dt, 

J = 15.6, 7.2 Hz, 1 H), 3.59 (t, J = 5.2 Hz, 4 H), 3.18–3.06 (m, 6 H), 1.50 (s, 9 H). 13C NMR (CDCl3, 125 

MHz)  189.4 (t, J = 31.2 Hz), 154.9, 151.8, 137.8, 136.7, 134.6, 132.2 (t, J = 2.5 Hz), 130.4 (t, J = 3.1 

Hz), 129.6, 128.9, 119.0 (t, J = 5.6 Hz), 118.9 (t, J = 252.5 Hz), 118.8, 116.5, 114.9, 80.1, 49.7, 43.8, 38.0 

(t, J = 23.8 Hz), 28.6. 19F NMR (CDCl3, 376 MHz)  –98.8 (t, J = 16.9 Hz, 2 F). IR (film) 2976, 1697, 

1597, 1421, 1366, 1242, 1171, 1122, 997, 968, 777, 716, 687 cm-1. HRMS (ESI, m/z): calcd for 

C26H30F2N2O3Na [M+Na]+ 479.2122, found 479.2108. 

 

tert-butyl 4-(3-(4,4-difluoro-5-oxo-5-phenylpent-1-en-3-yl)phenyl)piperazine-1-carboxylate (4.6d) 

General procedure F was followed using 4.4d (0.150 g, 0.300 mmol), Pd(OAc)2 (1.7 mg, 0.0075 mmol), 

PhXPhos (7.0 mg, 0.015 mmol), and 1,4-dioxane (3.0 mL). Workup and chromatographic purification (2% 

to 5% EtOAc in hexanes) afforded the title compound 4.6d as a yellow oil (107 mg, 78%). 1H NMR 
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(CDCl3, 400 MHz)  7.94 (d, J = 8.0 Hz, 2 H), 7.63–7.58 (m, 1 H), 7.45 (t, J = 8.0 Hz, 2 H), 7.23–7.19 

(m, 1 H), 6.86–6.81 (m, 3 H), 6.20 (ddd, J = 17.2, 10.4, 8.4 Hz, 1 H), 5.30 (d, J = 10.0 Hz, 1 H), 5.24 (d, J 

= 17.2 Hz, 1 H), 4.26 (td, J = 16.4, 8.4 Hz, 1 H), 3.56 (t, J = 5.2 Hz, 4 H), 3.08 (t, J = 5.2 Hz, 4 H), 1.49 (s, 

9 H). 13C NMR (CDCl3, 125 MHz)  190.1 (t, J = 29.4 Hz), 154.9, 151.6, 136.2, 134.2, 133.2, 132.5 (t, J 

= 4.4 Hz), 130.0 (t, J = 3.1 Hz), 129.6, 128.8, 121.6, 120.7, 118.8 (t, J = 256.9 Hz), 118.2, 116.2, 80.1, 

54.5 (t, J = 21.9 Hz), 49.5, 43.6, 28.6. 19F NMR (CDCl3, 376 MHz)  –103.8 (dd, A of ABX, JAB = 270.7 

Hz, JAX = 15.0 Hz, 1 F), –102.6 (dd, B of ABX, JAB = 270.7 Hz, JBX = 15.0 Hz, 1 F). IR (film) 2976, 2860, 

1697, 1601, 1450, 1421, 1366, 1236, 1171, 1124, 1051, 997, 932, 868, 775, 698 cm-1. HRMS (ESI, m/z): 

calcd for C26H30F2N2O3Na [M+Na]+ 479.2122, found 479.2130. 

 

(E)-methyl 3-(p-tolyl)acrylate (4.4e-2) 

General procedure B was followed using 4-methylcinnamic acid (1.95 g, 12.0 mmol), thionyl chloride 

(1.7 mL, 24 mmol), and MeOH (25 mL). Workup afforded the title compound 4.4e-2 as a colorless solid 

(1.99 g, 94%). 1H NMR (CDCl3, 400 MHz)  7.68 (d, J = 16.0 Hz, 1 H), 7.44 (d, J = 8.0 Hz, 2 H), 7.20 (d, 

J = 8.0 Hz, 2 H), 6.41 (d, J = 16.0 Hz, 1 H), 3.81 (s, 3 H), 2.38 (s, 3 H). Spectroscopic data of 1H NMR 

matched that from the previous report.11 

 

(E)-3-(p-tolyl)prop-2-en-1-ol (4.4e-1) 

General procedure C was followed using 4.4e-2 (1.41 g, 8.00 mmol), DIBAL (1.0 M in hexane, 0.020 L, 

0.020 mmol), and CH2Cl2 (0.020 L). Workup afforded the title compound 4.4e-1 as a colorless solid (1.15 

g, 97%). 1H NMR (CDCl3, 400 MHz)  7.30 (d, J = 8.0 Hz, 2 H), 7.14 (d, J = 8.0 Hz, 2 H), 6.60 (dt, J = 
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16.0, 1.4 Hz, 1 H), 6.33 (dt, J = 16.0, 5.8 Hz, 1 H), 4.32 (td, J = 5.8, 1.4 Hz, 2 H), 2.36 (s, 3 H), 1.59 (t, J 

= 5.8 Hz, 1 H). Spectroscopic data of 1H NMR matched that from the previous report.12 

 

(E)-3-(p-tolyl)allyl 2,2-difluoro-3-oxo-3-phenylpropanoate (4.4e) 

General procedure D was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate3 (1.4 g, 5.4 

mmol), oxalyl chloride (0.38 mL, 4.5 mmol), 4.4e-1 (0.67 g, 4.5 mmol), Et3N (1.2 mL, 9.0 mmol), DMF 

(1.2 mL), and CH2Cl2 (25 mL). Workup and chromatographic purification (2% to 5% EtOAc in hexanes) 

afforded the title compound 4.4e as a colorless oil (1.1 g, 74%). 1H NMR (CDCl3, 400 MHz)  8.09 (dd, J 

= 8.8, 1.2 Hz, 2 H), 7.69–7.64 (m, 1 H), 7.54–7.49 (m, 2 H), 7.26 (d, J = 8.8 Hz, 2 H), 7.14 (d, J = 8.4 Hz, 

2 H), 6.66 (d, J = 16.0 Hz, 1 H), 6.18 (dt, J = 15.6, 6.8 Hz, 1 H), 4.96 (dd, J = 6.4, 1.2, 2 H), 2.36 (s, 3 H). 

13C NMR (CDCl3, 125 MHz)  185.6 (t, J = 27.5 Hz), 161.9 (t, J = 30.6 Hz), 138.7, 136.6, 135.3, 133.0, 

131.2 (t, J = 1.9 Hz), 130.2 (t, J = 2.5 Hz), 129.5, 129.2, 126.9, 119.8, 110.0 (t, J = 263.1 Hz), 68.4, 21.5. 

19F NMR (CDCl3, 376 MHz)  –107.4 (s, 2 F). IR (film) 3028, 2921, 1774, 1713, 1699, 1599, 1514, 1450, 

1310, 1159, 1124, 1101, 970, 922, 795, 712, 685 cm-1. HRMS (ESI, m/z): calcd for C19H16F2O3Na 

[M+Na]+ 353.0965, found 353.0962. 

 

(E)-2,2-difluoro-1-phenyl-5-(p-tolyl)pent-4-en-1-one (4.5e) 

General procedure E was followed using 4.4e (99.1 mg, 0.300 mmol), Pd(OAc)2 (2.0 mg, 0.090 mmol), t-

BuBrettPhos (8.7 mg, 0.018 mmol), and 1,4-dioxane (0.60 mL). Workup and chromatographic 

purification (0% to 5% EtOAc in hexanes) afforded the title compound 4.5e as an off-white solid (75.0 

mg, 87%). 1H NMR (CDCl3, 400 MHz)  8.14 (dt, J = 8.4, 1.2 Hz, 2 H), 7.65 (tt, J = 7.4, 1.5 Hz, 1 H), 
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7.54–7.50 (m, 2 H), 7.28 (d, J = 8.0 Hz, 2 H), 7.14 (d, J = 8.0 Hz, 2 H), 6.57 (d, J = 16.0 Hz, 1 H), 6.17 

(dt, J = 16.0, 7.4 Hz, 1 H), 3.14 (tdd, J = 17.0, 7.4, 1.5 Hz, 2 H), 2.36 (s, 3 H). 13C NMR (CDCl3, 125 

MHz)  189.4 (t, J = 31.2 Hz), 137.8, 136.3, 134.5, 134.1, 130.4 (t, J = 3.1 Hz), 129.4, 128.9, 126.5, 

118.9 (t, J = 252.5 Hz), 117.8 (t, J = 5.0 Hz), 38.1 (t, J = 23.8 Hz), 21.4. 19F NMR (CDCl3, 376 MHz)  –

99.0 (t, J = 18.8 Hz, 2 F). IR (film) 3038, 2922, 1703, 1599, 1514, 1448, 1273, 1173, 1120, 968, 804, 716, 

687, 667 cm-1. HRMS (ESI, m/z): calcd for C18H17F2O [M+H]+ 287.1247, found 287.1243. m.p. 50–52 °C. 

 

2,2-difluoro-1-phenyl-3-(p-tolyl)pent-4-en-1-one (4.6e) 

General procedure F was followed using 4.4e (99.1 mg, 0.300 mmol), Pd(OAc)2 (1.7 mg, 0.0075 mmol), 

PhXPhos (7.0 mg, 0.015 mmol), and 1,4-dioxane (3.0 mL). Workup and chromatographic purification (0% 

to 5% EtOAc in hexanes) afforded the title compound 4.6e as a light yellow oil (77.0 mg, 90%). 1H NMR 

(CDCl3, 400 MHz)  7.97 (dt, J = 7.6, 1.2 Hz, 2 H), 7.61 (tt, J = 7.4, 1.4 Hz, 1 H), 7.47 (t, J = 7.8 Hz, 2 

H), 7.22 (d, J = 8.0 Hz, 2 H), 7.14 (d, J = 8.0 Hz, 2 H), 6.22 (ddd, J = 17.2, 10.4, 8.4 Hz, 1 H), 5.30 (dd, J 

= 10.4, 1.2 Hz, 1 H), 5.22 (dt, J = 17.2, 1.2 Hz, 1 H), 4.29 (td, J = 16.6, 8.4 Hz, 1 H), 2.33 (s, 3 H). 13C 

NMR (CDCl3, 125 MHz)  190.1 (t, J = 29.4 Hz), 137.8, 134.2, 133.1, 132.8 (t, J = 3.8 Hz), 132.2 (t, J = 

2.5 Hz), 130.1 (t, J = 3.8 Hz), 129.6, 129.5, 128.8, 120.5, 118.8 (t, J = 256.9 Hz), 53.8 (t, J = 21.2 Hz), 

21.3. 19F NMR (CDCl3, 376 MHz)  –103.6 (dd, A of ABX, JAB = 274.5 Hz, JAX = 16.9 Hz, 1 F), –103.2 

(dd, B of ABX, JAB = 274.5 Hz, JBX = 15.0 Hz, 1 F). IR (film) 3026, 2922, 1705, 1597, 1516, 1448, 1267, 

1174, 1049, 924, 795, 714, 688, 667 cm-1. HRMS (ESI, m/z): calcd for C18H16F2ONa [M+Na]+ 309.1067, 

found 309.1064. 
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(E)-methyl 3-(benzo[d][1,3]dioxol-5-yl)acrylate (4.4f-2) 

General procedure B was followed using 3,4-(methylenedioxyl)cinnamic acid (2.00 g, 10.4 mmol), 

thionyl chloride (1.5 mL, 21 mmol), and MeOH (15 mL). Workup afforded the title compound 4.4f-2 as a 

colorless solid (2.05 g, 96%). 1H NMR (CDCl3, 400 MHz)  7.61 (d, J = 16.0 Hz, 1 H), 7.04 (d, J = 1.6 

Hz, 1 H), 7.01 (dd, J = 8.0, 1.6 Hz, 1 H), 6.82 (d, J = 8.0 Hz, 1 H), 6.28 (d, J = 16.0 Hz, 1 H), 6.02 (s, 2 

H), 3.80 (s, 3 H).HRMS (ESI, m/z): calcd for C11H10O4Na [M+Na]+ 229.0477, found 229.0494. 

Spectroscopic data matched that from the previous report.13 

 

(E)-3-(benzo[d][1,3]dioxol-5-yl)prop-2-en-1-ol (4.4f-1) 

General procedure C was followed using 4.4f-2 (1.50 g, 7.30 mmol), DIBAL (1.0 M in hexane, 15 mL, 

15 mmol), and CH2Cl2 (15 mL). Workup afforded the title compound 4.4f-1 as a colorless solid (1.27 g, 

98%). 1H NMR (CDCl3, 400 MHz)  6.94 (d, J = 1.6 Hz, 1 H), 6.83 (dd, J = 8.0, 1.6 Hz, 1 H), 6.77 (d, J 

= 7.6 Hz, 1 H), 6.53 (dt, J = 16.0, 1.6 Hz, 1 H), 6.21 (dt, J = 16.0, 6.0 Hz, 1 H), 5.97 (s, 2 H), 4.30 (d, J = 

6.0 Hz, 2 H), 1.45 (br, 1 H). HRMS (ESI, m/z): calcd for C10H11O3 [M+H]+ 179.0708, found 179.0716. 

Spectroscopic data matched that from the previous report.13 
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(E)-3-(benzo[d][1,3]dioxol-5-yl)allyl 2,2-difluoro-3-oxo-3-phenylpropanoate (4.4f) 

General procedure D was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate3 (1.6 g, 6.0 

mmol), oxalyl chloride (0.42 mL, 5.0 mmol), 4.4f-1 (0.89 g, 5.0 mmol), Et3N (1.4 mL, 0.010 mol), DMF 

(1.2 mL), and CH2Cl2 (25 mL). Workup and chromatographic purification (10% to 20% EtOAc in 

hexanes) afforded the title compound 4.4f as a colorless oil (1.3 g, 72%). 1H NMR (CDCl3, 400 MHz)  
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8.08 (d, J = 8.0 Hz, 2 H), 7.67 (t, J = 7.4 Hz, 1 H), 7.52 (t, J = 7.6 Hz, 2 H), 6.89 (d, J = 1.6 Hz, 1 H), 

6.82–6.75 (m, 2 H), 6.60 (d, J = 16.0 Hz, 1 H), 6.05 (dt, J = 16.0, 6.8 Hz, 1 H), 5.98 (s, 2 H), 4.94 (d, J = 

6.8 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  185.5 (t, J = 27.5 Hz), 161.9 (t, J = 30.6 Hz), 148.3, 148.2, 

136.4, 135.3, 131.2, 130.2, 130.1 (t, J = 2.5 Hz), 129.2, 122.1, 118.9, 110.0 (t, J = 263.8 Hz), 108.5, 106.1, 

101.4, 68.3. 19F NMR (CDCl3, 376 MHz)  –107.4 (s, 2 F). IR (film) 2895, 1774, 1711, 1699, 1504, 1491, 

1448, 1308, 1252, 1159, 1040, 922, 712, 685 cm-1. HRMS (ESI, m/z): calcd for C19H15F2O5 [M+H]+ 

361.0888, found 361.0897. 

 

(E)-5-(benzo[d][1,3]dioxol-5-yl)-2,2-difluoro-1-phenylpent-4-en-1-one (4.5f) 

General procedure E was followed using 4.4f (108 mg, 0.300 mmol), Pd(OAc)2 (2.0 mg, 0.090 mmol), t-

BuBrettPhos (8.7 mg, 0.018 mmol), and 1,4-dioxane (0.60 mL). Workup and chromatographic 

purification (2% to 5% EtOAc in hexanes) afforded the title compound 4.5f as an off-white solid (66.0 

mg, 70%). 1H NMR (CDCl3, 400 MHz)  8.12 (dt, J = 8.0, 1.2 Hz, 2 H), 7.67–7.62 (m, 1 H), 7.51 (t, J = 

8.0 Hz, 2 H), 6.92 (d, J = 1.6 Hz, 1 H), 6.81–6.74 (m, 2 H), 6.49 (d, J = 16.0 Hz, 1 H), 6.03 (dt, J = 16.0, 

7.2 Hz, 1 H), 5.95 (s, 2 H), 3.10 (tdd, J = 17.2, 7.2, 1.2 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  189.4 (t, 

J = 30.6 Hz), 148.2, 147.5, 135.9, 134.5, 132.2 (t, J = 1.9 Hz), 131.4, 130.4 (t, J = 3.1 Hz), 128.9, 121.3, 

118.9 (t, J = 252.5 Hz), 117.1 (t, J = 5.0 Hz), 108.4, 105.9, 101.3, 38.0 (t, J = 23.1 Hz). 19F NMR (CDCl3, 

376 MHz)  –99.0 (t, J = 16.9 Hz, 2 F). IR (film) 3072, 2899, 1701, 1597, 1504, 1491, 1448, 1252, 1173, 

1040, 966, 933, 804, 714, 687, 669 cm-1. HRMS (ESI, m/z): calcd for C18H14F2O3Na [M+Na]+ 339.0809, 

found 339.0800. mp 77–78 °C. 
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3-(benzo[d][1,3]dioxol-5-yl)-2,2-difluoro-1-phenylpent-4-en-1-one (4.6f) 

General procedure F was followed using 4.4f (108.1 mg, 0.300 mmol), Pd(OAc)2 (1.7 mg, 0.0075 mmol), 

PhXPhos (7.0 mg, 0.015 mmol), and 1,4-dioxane (3.0 mL). Workup and chromatographic purification (2% 

to 5% EtOAc in hexanes) afforded the title compound 4.6f as a colorless oil (77.6 mg, 82%). 1H NMR 

(CDCl3, 400 MHz)  7.97 (dt, J = 8.4, 1.2 Hz, 2 H), 7.62 (tt, J = 7.6, 1.4 Hz, 1 H), 7.47 (t, J = 8.0 Hz, 2 

H), 6.84 (s, 1 H), 6.74 (s, 2 H), 6.16 (ddd, J = 16.8, 10.4, 8.2 Hz, 1 H), 5.95 (s, 2 H), 5.30 (d, J = 10.0 Hz, 

1 H), 5.22 (dt, J = 16.8, 1.2 Hz, 1 H), 4.24 (td, J = 16.2, 8.2 Hz, 1 H). 13C NMR (CDCl3, 125 MHz)  

190.0 (t, J = 29.4 Hz), 148.0, 147.4, 134.3, 133.1, 132.6 (t, J = 3.8 Hz), 130.1 (t, J = 3.1 Hz), 128.8, 123.4, 

120.6, 118.7 (t, J = 257.5 Hz), 110.0, 108.5, 101.3, 53.7 (t, J = 21.9 Hz). 19F NMR (CDCl3, 376 MHz)  –

104.1 (dd, A of ABX, JAB = 274.5 Hz, JAX = 15.0 Hz, 1 F), –103.0 (dd, B of ABX, JAB = 274.5 Hz, JBX = 

15.0 Hz, 1 F). IR (film) 3076, 2893, 1705, 1597, 1504, 1489, 1446, 1250, 1182, 1040, 932, 800, 719, 688, 

669 cm-1. HRMS (ESI, m/z): calcd for C18H14F2O3Na [M+Na]+ 339.0809, found 339.0824. 

 

(E)-methyl 3-(4-methoxyphenyl)acrylate (4.4g-2) 

General procedure B was followed using 4-methoxycinnamic acid (5.0 g, 28 mmol), thionyl chloride (4.1 

mL, 56 mmol), and MeOH (45 mL). Workup afforded the title compound 4.4g-2 as a colorless solid (5.3 

g, 98%). 1H NMR (CDCl3, 400 MHz)  7.66 (d, J = 16.0 Hz, 1 H), 7.49 (d, J = 8.8 Hz, 2 H), 6.91 (d, J = 

8.4 Hz, 2 H), 6.32 (d, J = 16.0 Hz, 1 H), 3.85 (s, 3 H), 3.80 (s, 3 H). Spectroscopic data of 1H NMR 

matched that from the previous report.11  

 

(E)-3-(4-methoxyphenyl)prop-2-en-1-ol (4.4g-1) 
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General procedure C was followed using 4.4g-2 (2.20 g, 11.4 mmol), DIBAL (1.0 M in hexane, 28.6 mL, 

28.6 mmol), and CH2Cl2 (30.0 mL). Workup afforded the title compound 4.4g-1 as a colorless solid (1.84 

g, 98%). 1H NMR (CDCl3, 400 MHz)  7.34 (d, J = 8.8 Hz, 2 H), 6.87 (d, J = 8.8 Hz, 2 H), 6.57 (dt, J = 

16.0, 1.6 Hz, 1 H), 6.25 (dt, J = 16.0, 6.0 Hz, 1 H), 4.31 (d, J = 5.6 Hz, 2 H), 3.82 (s, 3 H), 1.42 (br, 1 H). 

HRMS (ESI, m/z): calcd for C10H13O2 [M+H]+ 165.0916, found 165.0911. Spectroscopic data matched 

that from the previous report.14 

 

(E)-3-(4-methoxyphenyl)allyl 2,2-difluoro-3-oxo-3-phenylpropanoate (4.4g) 

General procedure D was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate3 (1.6 g, 6.0 

mmol), oxalyl chloride (0.42 mL, 5.0 mmol), 4.4g-1 (0.82 g, 5.0 mmol), Et3N (1.4 mL, 0.010 mol), DMF 

(1.2 mL), and CH2Cl2 (25 mL). Workup and chromatographic purification (10% to 20% EtOAc in 

hexanes) afforded the title compound 4.4g as a colorless solid (0.94 g, 54%). 1H NMR (CDCl3, 400 MHz) 

 8.08 (dt, J = 7.6, 1.2 Hz, 2 H), 7.66 (tt, J = 7.6, 1.4 Hz, 1 H), 7.51 (t, J = 7.8 Hz, 2 H), 7.30 (d, J = 8.8 

Hz, 2 H), 6.86 (d, J = 8.8 Hz, 2 H), 6.64 (d, J = 16.0 Hz, 1 H), 6.09 (dt, J = 16.0, 6.8 Hz, 1 H), 4.95 (dd, J 

= 6.8, 1.2 Hz, 2 H), 3.82 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  185.6 (t, J = 27.5 Hz), 161.9 (t, J = 30.6 

Hz), 160.1, 136.4, 135.3, 131.2 (t, J = 1.2 Hz), 130.2 (t, J= 2.5 Hz), 129.2, 128.5, 128.3, 118.5, 114.2, 

110.0 (t, J = 263.8 Hz), 68.6, 55.5. 19F NMR (CDCl3, 376 MHz)  –107.4 (s, 2 F). IR (film) 2959, 2837, 

1774, 1711, 1701, 1606, 1512, 1450, 1306, 1252, 1159, 922, 845, 711, 685 cm-1. HRMS (ESI, m/z): calcd 

for C19H16F2O4Na [M+Na]+ 369.0914, found 369.0898. mp 36–38 °C. 

 

(E)-2,2-difluoro-5-(4-methoxyphenyl)-1-phenylpent-4-en-1-one (4.5g) 
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General procedure E was followed using 4.4g (104 mg, 0.300 mmol), Pd(OAc)2 (2.0 mg, 0.090 mmol), t-

BuBrettPhos (8.7 mg, 0.018 mmol), and 1,4-dioxane (0.60 mL). Workup and chromatographic 

purification (2% to 5% EtOAc in hexanes) afforded the title compound 4.5g as an off-white solid (52.0 

mg, 57%). 1H NMR (CDCl3, 400 MHz)  8.13 (dt, J = 8.4, 1.2 Hz, 2 H), 7.66–7.62 (m, 1 H), 7.51 (t, J = 

8.0 Hz, 2 H), 7.31 (d, J = 8.8 Hz, 2 H), 6.86 (d, J = 8.4 Hz, 2 H), 6.53 (d, J = 16.0 Hz, 1 H), 6.06 (dt, J = 

16.0, 7.2 Hz, 1 H), 3.12 (tdd, J = 17.2, 7.2, 1.4 Hz, 2 H), 3.81 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  

189.5 (t, J = 30.6 Hz), 159.5, 135.8, 134.5, 132.2 (t, J = 2.5 Hz), 130.4 (t, J = 3.1 Hz), 129.7, 128.9, 127.8, 

118.9 (t, J = 252.5 Hz), 116.6 (t, J = 5.0 Hz), 114.1, 55.5, 38.1 (t, J = 23.1 Hz). 19F NMR (CDCl3, 376 

MHz)  –99.0 (t, J = 16.9 Hz, 2 F). IR (film) 2959, 1701, 1606, 1512, 1448, 1250, 1174, 1036, 968, 837, 

806, 714, 687, 667 cm-1. HRMS (ESI, m/z): calcd for C18H16F2O2Na [M+Na]+ 325.1016, found 325.1005. 

mp 55–57 °C. 

 

2,2-difluoro-3-(4-methoxyphenyl)-1-phenylpent-4-en-1-one (4.6g) 

General procedure F was followed using 4.4g (104 mg, 0.300 mmol), Pd(OAc)2 (1.7 mg, 0.0075 mmol), 

PhXPhos (7.0 mg, 0.015 mmol), and 1,4-dioxane (3.0 mL). Workup and chromatographic purification (2% 

to 5% EtOAc in hexanes) afforded the title compound 4.6g as a colorless oil (65.1 mg, 72%). 1H NMR 

(CDCl3, 400 MHz)  7.95 (dd, J = 8.4, 1.6 Hz, 2 H), 7.61 (tt, J = 7.4, 1.2 Hz, 1 H), 7.46 (t, J = 8.0 Hz, 2 

H), 7.23 (d, J = 8.4 Hz, 2 H), 6.85 (d, J = 8.8 Hz, 2 H), 6.20 (ddd, J = 17.2, 10.2, 8.0 Hz, 1 H), 5.30 (d, J 

= 10.4 Hz, 1 H), 5.20 (dd, J = 17.2, 1.6 Hz, 1 H), 4.27 (td, J = 16.4, 8.0 Hz, 1 H), 3.79 (s, 3 H). 13C NMR 

(CDCl3, 125 MHz)  190.2 (t, J = 30.0 Hz), 159.4, 134.2, 133.1, 132.8 (t, J = 4.4 Hz), 130.9, 130.1 (t, J = 

3.8 Hz), 128.8, 127.2, 120.4, 118.8 (t, J =256.9 Hz), 114.2, 55.4, 53.4 (t, J = 21.9 Hz). 19F NMR (CDCl3, 

376 MHz)  –104.1 (dd, A of ABX, JAB = 274.5 Hz, JAX = 16.0 Hz, 1 F), –103.0 (dd, B of ABX, JAB = 
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274.5 Hz, JBX = 16.0 Hz, 1 F). IR (film) 2957, 1703, 1612, 1599, 1514, 1448, 1252, 1180, 1036, 922, 804, 

714, 688, 667 cm-1. HRMS (ESI, m/z): calcd for C18H16F2O2Na [M+Na]+ 325.1016, found 325.1001. 

 

(E)-2-methyl-3-phenylallyl 2,2-difluoro-3-oxo-3-phenylpropanoate (4.4h) 

General procedure D was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate3 (1.2 g, 4.8 

mmol), oxalyl chloride (0.34 mL, 4.0 mmol), trans-2-methyl-3-phenyl-2-propen-1-ol (0.59 g, 4.0 mmol), 

Et3N (1.1 mL, 8.0 mmol), DMF (1.2 mL), and CH2Cl2 (24 mL). Workup and chromatographic 

purification (2% to 5% EtOAc in hexanes) afforded the title compound 4.4h as a colorless oil (0.94 g, 

71%). 1H NMR (CDCl3, 400 MHz)  8.10 (d, J = 8.4 Hz, 2 H), 7.70–7.66 (m, 1 H), 7.53 (t, J = 8.0 Hz, 2 

H), 7.35 (t, J = 7.6 Hz, 2 H), 7.28–7.23 (m, 3 H), 6.56 (s, 1 H), 4.89 (s, 2 H), 1.83 (s, 3 H). 13C NMR 

(CDCl3, 125 MHz)  185.6 (t, J = 26.9 Hz), 161.9 (t, J = 30.6 Hz), 136.6, 135.4, 131.2 (t, J = 1.9 Hz), 

131.0, 130.6, 130.2 (t, J = 2.5 Hz), 129.2, 129.1, 128.4, 127.3, 110.0 (t, J = 263.1 Hz), 73.4, 15.5. 19F 

NMR (CDCl3, 376 MHz)  –107.3 (s, 2 F). IR (film) 3062, 2949, 1776, 1713, 1699, 1599, 1450, 1306, 

1157, 1101, 922, 746, 698, 687 cm-1. HRMS (ESI, m/z): calcd for C19H16F2O3Na [M+Na]+ 353.0965, 

found 353.0952. 

 

(E)-2,2-difluoro-4-methyl-1,5-diphenylpent-4-en-1-one (4.5h) 

General procedure E was followed using 4.4h (99.1 mg, 0.300 mmol), Pd(OAc)2 (3.4 mg, 0.015 mmol), t-

BuBrettPhos (15 mg, 0.030 mmol), and 1,4-dioxane (0.60 mL). Workup and chromatographic 

purification (0% to 5% EtOAc in hexanes) afforded the title compound 4.5h as a colorless oil (67 mg, 

78%). 1H NMR (CDCl3, 400 MHz)  8.14 (d, J = 7.6 Hz, 2 H), 7.66 (tt, J = 7.6, 1.5 Hz, 1 H), 7.52 (t, J = 
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7.6 Hz, 2 H), 7.37–7.33 (m, 2 H), 7.26–7.22 (m, 3 H), 6.41 (s, 1 H), 3.10 (t, J = 17.8 Hz, 2 H), 2.01 (s, 3 

H). 13C NMR (CDCl3, 125 MHz)  189.9 (t, J = 30.0 Hz), 137.6, 134.4, 132.5 (t, J = 1.9 Hz), 132.2, 130.3 

(t, J = 3.1 Hz), 129.2 (t, J = 3.1 Hz), 129.1, 128.9, 128.3, 126.8, 119.4 (t, J = 253.1 Hz), 44.8 (t, J = 22.5 

Hz), 19.4. 19F NMR (CDCl3, 376 MHz)  –98.3 (t, J = 18.8 Hz, 2 F). IR (film) 3059, 2922, 1703, 1599, 

1448, 1277, 1176, 1113, 1061, 1028, 918, 744, 716, 698, 687 cm-1. HRMS (ESI, m/z): calcd for 

C18H16F2ONa [M+Na]+ 309.1067, found 309.1059. 

 

2,2-difluoro-4-methyl-1,3-diphenylpent-4-en-1-one (4.6h) 

General procedure F was followed using 4.4h (99.1 mg, 0.300 mmol), Pd(OAc)2 (1.7 mg, 0.0075 mmol), 

PhXPhos (7.0 mg, 0.015 mmol), and 1,4-dioxane (3.0 mL). Workup and chromatographic purification (0% 

to 5% EtOAc in hexanes) afforded the title compound 4.6h as a colorless oil (71 mg, 83%). 1H NMR 

(CDCl3, 400 MHz)  8.00 (d, J = 7.6 Hz, 2 H), 7.62 (t, J = 7.4 Hz, 1 H), 7.48 (t, J = 7.6 Hz, 2 H), 7.41–

7.32 (m, 5 H), 5.08 (s, 1 H), 5.05 (s, 1 H), 4.31 (dd, J = 21.6, 14.4 Hz, 1 H), 1.74 (s, 3 H). 13C NMR 

(CDCl3, 125 MHz)  190.3 (t, J = 30.0 Hz), 140.9 (d, J = 5.0 Hz), 134.5 (d, J = 2.5 Hz), 134.1, 133.2, 

130.2, 130.0 (t, J = 3.1 Hz), 128.8, 128.6, 128.0, 119.1 (dd, J = 260.0, 253.8 Hz), 115.5 (d, J = 3.8 Hz), 

55.7 (t, J = 20.6 Hz), 23.4. 19F NMR (CDCl3, 376 MHz)  –104.2 (dd, A of AMX, JAM = 282.0 Hz, JAX = 

22.6 Hz, 1 F), –97.1 (dd, M of AMX, JAM = 282.0 Hz, JMX = 13.2 Hz, 1 F). IR (film) 3063, 2974, 1701, 

1597, 1493, 1450, 1282, 1184, 1120, 1051, 922, 741, 717, 698, 665, 604 cm-1. HRMS (ESI, m/z): calcd 

for C18H16F2ONa [M+Na]+ 309.1067, found 309.1069. 

Experimental Procedures and Characterization of Compounds in Scheme 4.12 
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cinnamyl 2,2-difluoro-3-(4-methoxyphenyl)-3-oxopropanoate (4.7a) 

General procedure D was followed using potassium 2,2-difluoro-3-(4-methoxyphenyl)-3-oxopropanoate3 

(1.5 g, 5.6 mmol), oxalyl chloride (0.52 mL, 6.2 mmol), cinnamyl alcohol (1.1 g, 8.4 mmol), Et3N (0.93 

mL, 6.7 mmol), DMF (1.0 mL), and CH2Cl2 (0.020 L). Workup and chromatographic purification (5% to 

10% EtOAc in hexanes) afforded the title compound 4.7a as a colorless oil (1.6 g, 83%). 1H NMR (CDCl3, 

400 MHz)  8.08 (d, J = 8.8 Hz, 2 H), 7.37–7.28 (m, 5 H), 6.96 (d, J = 8.8 Hz, 2 H), 6.68 (dt, J = 16.0, 1.2 

Hz, 1 H), 6.23 (dt, J = 16.0, 6.4 Hz, 1 H), 4.97 (dd, J = 6.4, 1.2 Hz, 2 H), 3.87 (s, 3 H). 13C NMR (CDCl3, 

125 MHz)  183.8 (t, J = 26.9 Hz), 165.3, 162.1 (t, J = 30.0 Hz), 136.3, 135.8, 132.8 (t, J = 2.5 Hz), 128.8, 

128.6, 127.0, 124.0 (t, J = 1.9 Hz), 121.0, 114.5, 110.3 (t, J = 263.1 Hz), 68.0, 55.8. 19F NMR (CDCl3, 

376 MHz)  –107.1 (s, 2 F). IR (film) 3028, 2960, 1774, 1701, 1690, 1601, 1574, 1512, 1427, 1312, 1269, 

1157, 1099, 1026, 968, 924, 845, 746, 692, 579 cm-1. HRMS (ESI, m/z): calcd for C19H16F2O4Na 

[M+Na]+ 369.0914, found 369.0896. 

Ph

O

F F
OMe

4.8a
 

(E)-2,2-difluoro-1-(4-methoxyphenyl)-5-phenylpent-4-en-1-one (4.8a) 

General procedure E was followed using 4.7a (104 mg, 0.300 mmol), Pd(OAc)2 (3.4 mg, 0.015 mmol), t-

BuBrettPhos (14.5 mg, 0.0300 mmol), and 1,4-dioxane (0.60 mL). Workup and chromatographic 

purification (2% to 5% EtOAc in hexanes) afforded the title compound 4.8a as an off-white solid (72.0 

mg, 79%). 1H NMR (CDCl3, 400 MHz)  8.13 (dt, J = 8.8, 1.2 Hz, 2 H), 7.39–7.37 (m, 2 H), 7.32 (t, J = 

7.4 Hz, 2 H), 7.27–7.23 (m, 1 H), 6.98 (d, J = 9.2 Hz, 2 H), 6.59 (d, J = 16.0 Hz, 1 H), 6.22 (dt, J = 16.0, 

7.2 Hz, 1 H), 3.90 (s, 3 H), 3.12 (tdd, J = 17.2, 7.2, 1.6 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  187.8 (t, 
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J = 30.6 Hz), 164.7, 136.9, 136.2, 133.0 (t, J = 3.1 Hz), 128.8, 127.9, 126.6, 125.0 (t, J = 2.5 Hz), 119.3 (t, 

J = 5.0 Hz), 119.1 (t, J = 252.5 Hz), 114.2, 55.8, 38.2 (t, J = 23.8 Hz). 19F NMR (CDCl3, 376 MHz)  –

98.5 (t, J = 16.9 Hz, 2 F). IR (film) 3026, 2935, 1690, 1601, 1574, 1512, 1425, 1265, 1167, 1119, 1028, 

968, 845, 770, 746, 692, 619 cm-1. HRMS (ESI, m/z): calcd for C18H16F2O2Na [M+Na]+ 325.1016, found 

325.0989. mp 41–42 °C. 

 

2,2-difluoro-1-(4-methoxyphenyl)-3-phenylpent-4-en-1-one (4.9a) 

General procedure F was followed using 4.7a (104 mg, 0.300 mmol), Pd(OAc)2 (2.4 mg, 0.011 mmol), 

PhXPhos (9.8 mg, 0.021 mmol), and 1,4-dioxane (3.0 mL). Workup and chromatographic purification (2% 

to 5% EtOAc in hexanes) afforded the title compound 4.9a as a light yellow oil (76.0 mg, 84%). 1H NMR 

(CDCl3, 400 MHz)  7.99 (dt, J = 8.8, 1.0 Hz, 2 H), 7.33–7.28 (m, 5 H), 6.93 (d, J = 8.8 Hz, 2 H), 6.23 

(ddd, J = 17.2, 10.4, 8.0 Hz, 1 H), 5.30 (d, J = 10.4 Hz, 1 H), 5.22 (dt, J = 17.2, 1.2 Hz, 1 H), 4.31 (td, J = 

16.4, 8.0 Hz, 1 H), 3.89 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  188.2 (t, J = 29.4 Hz), 164.4, 135.6 (t, J 

= 2.5 Hz), 132.8 (t, J = 4.4 Hz), 132.7 (t, J = 3.8 Hz), 129.8, 128.8, 128.0, 125.8 (t, J = 1.9 Hz), 120.6, 

119.0 (t, J = 257.5 Hz), 114.1, 55.7, 54.3 (t, J = 21.9 Hz). 19F NMR (CDCl3, 376 MHz)  –102.9 (d, A2, J 

= 15.0 Hz, 2 F). IR (film) 3030, 2935, 1691, 1601, 1574, 1510, 1456, 1423, 1315, 1265, 1178, 1117, 1028, 

924, 845, 744, 700, 619 cm-1. HRMS (ESI, m/z): calcd for C18H16F2O2Na [M+Na]+ 325.1016, found 

325.1004. 

O

O

F F
F

O

Ph

4.7b
 

cinnamyl 2,2-difluoro-3-(4-fluorophenyl)-3-oxopropanoate (4.7b) 
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General procedure D was followed using potassium 2,2-difluoro-3-(4-fluorophenyl)-3-oxopropanoate3 

(1.20 g, 4.68 mmol), oxalyl chloride (0.40 mL, 4.7 mmol), cinnamyl alcohol (0.820 g, 6.08 mmol), Et3N 

(0.98 mL, 7.0 mmol), DMF (0.75 mL), and CH2Cl2 (16 mL). Workup and chromatographic purification 

(2% to 5% EtOAc in hexanes) afforded the title compound 4.7b as a colorless oil (1.14 g, 73%). 1H NMR 

(CDCl3, 400 MHz)  8.14 (dd, J = 8.8, 5.2 Hz, 2 H), 7.39–7.28 (m, 5 H), 7.22–7.16 (m, 2 H), 6.70 (dt, J = 

16.0, 1.2 Hz, 1 H), 6.24 (dt, J = 16.0, 6.8 Hz, 1 H), 4.98 (dd, J = 6.8, 1.2 Hz, 2 H). 13C NMR (CDCl3, 125 

MHz)  184.1 (t, J = 27.5 Hz), 167.1 (d, J = 257.5 Hz), 161.8 (t, J = 30.6 Hz), 136.7, 135.8, 133.2 (dt, J = 

10.0, 2.5 Hz), 128.9, 128.8, 127.6, 127.0, 120.8, 116.6 (d, J = 22.5 Hz), 110.0 (t, J = 263.8 Hz), 68.3. 19F 

NMR (CDCl3, 376 MHz)  –107.2 (s, 2 F), –100.3 (m, 1 F). IR (film) 3082, 3028, 1774, 1701, 1599, 

1508, 1308, 1244, 1161, 1124, 1101, 968, 924, 852, 746, 692 cm-1. HRMS (ESI, m/z): calcd for 

C18H13F3O3Na [M+Na]+ 357.0714, found 357.0701. 

Ph

O

F F
F

4.8b

 

(E)-2,2-difluoro-1-(4-fluorophenyl)-5-phenylpent-4-en-1-one (4.8b) 

General procedure E was followed using 4.7b (0.100 g, 0.300 mmol), Pd(OAc)2 (2.0 mg, 0.090 mmol), t-

BuBrettPhos (8.7 mg, 0.018 mmol), and 1,4-dioxane (0.60 mL). Workup and chromatographic 

purification (0% to 5% EtOAc in hexanes) afforded the title compound 4.8b as a light yellow oil (75.0 mg, 

86%). 1H NMR (CDCl3, 400 MHz)  8.18 (dd, J = 8.6, 5.4 Hz, 2 H), 7.39–7.37 (m, 2 H), 7.34–7.30 (m, 2 

H), 7.28–7.24 (m, 1 H), 7.18 (t, J = 8.6 Hz, 2 H), 6.60 (d, J = 16.0 Hz, 1 H), 6.21 (dt, J = 16.0, 7.4 Hz, 1 

H), 3.13 (tdd, J = 17.2, 7.4, 1.4 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  187.8 (t, J = 31.2 Hz), 166.6 (d, 

J = 256.2 Hz), 136.8, 136.5, 133.3 (dt, J = 10.0, 3.8 Hz), 129.8, 128.8, 128.5, 128.0, 126.6, 118.9 (t, J = 

5.0 Hz), 118.9 (t, J = 252.5 Hz), 37.9 (t, J = 23.1 Hz). 19F NMR (CDCl3, 376 MHz)  –102.2 (m, 1 F), –

98.6 (t, J = 16.9 Hz, 2 F). IR (film) 3028, 1701, 1599, 1508, 1414, 1242, 1161, 966, 850, 766, 692 cm-1. 

HRMS (ESI, m/z): calcd for C17H13F3ONa [M+Na]+ 313.0816, found 313.0830. 
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2,2-difluoro-1-(4-fluorophenyl)-3-phenylpent-4-en-1-one (4.9b) 

General procedure F was followed using 4.7b (0.100 g, 0.300 mmol), Pd(OAc)2 (1.7 mg, 0.0075 mmol), 

PhXPhos (7.0 mg, 0.015 mmol), and 1,4-dioxane (3.0 mL). Workup and chromatographic purification (0% 

to 5% EtOAc in hexanes) afforded the title compound 4.9b as an off-white solid (74.8 mg, 86%). 1H 

NMR (CDCl3, 400 MHz)  8.00 (dd, J = 8.6, 5.4 Hz, 2 H), 7.33–7.28 (m, 5 H), 7.12 (t, J = 8.6 Hz, 2 H), 

6.22 (ddd, J = 16.8, 10.4, 8.4 Hz, 1 H), 5.32 (d, J = 10.0 Hz, 1 H), 5.24 (d, J = 16.8 Hz, 1 H), 4.30 (td, J = 

16.4, 8.4 Hz, 1 H). 13C NMR (CDCl3, 125 MHz)  188.5 (t, J = 29.4 Hz), 166.4 (d, J = 256.2 Hz), 135.2 

(d, J = 3.8 Hz), 133.0 (dt, J = 8.8, 3.8 Hz), 132.5 (t, J = 4.4 Hz), 129.8, 129.4 (d, J = 2.5 Hz), 128.8, 128.1, 

120.9, 118.8 (t, J = 256.2 Hz), 116.1 (d, J = 21.2 Hz), 54.1 (t, J = 21.9 Hz). 19F NMR (CDCl3, 376 MHz) 

 –103.4 (dd, A of ABX, JAB = 276.4 Hz, JAX = 16.9 Hz, 1 F), –102.6 (m, 1 F), –102.5 (dd, B of ABX, JAB 

= 276.4 Hz, JBX = 16.9 Hz, 1 F). IR (film) 3086, 1707, 1599, 1506, 1412, 1242, 1161, 1047, 926, 850, 744, 

700 cm-1. HRMS (APCI-hexane/PhMe, m/z): calcd for C17H14F3O [M+H]+ 291.0997, found 291.0994. mp 

35–36 °C. 

S
CH3

F F
O

O O
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4.7c

 

cinnamyl 2,2-difluoro-3-(5-methylthiophen-2-yl)-3-oxopropanoate (4.7c) 

General procedure D was followed using potassium 2,2-difluoro-3-(5-methylthiophen-2-yl)-3-

oxopropanoate3 (1.5 g, 5.8 mmol), oxalyl chloride (0.49 mL, 5.8 mmol), cinnamyl alcohol (1.0 g, 7.5 

mmol), Et3N (1.2 mL, 8.7 mmol), DMF (1.0 mL), and CH2Cl2 (21 mL). Workup and chromatographic 

purification (2% to 5% EtOAc in hexanes) afforded the title compound 4.7c as a colorless oil (1.4 g, 72%). 

1H NMR (CDCl3, 400 MHz)  7.87–7.86 (m, 1 H), 7.39–7.29 (m, 5 H), 6.87 (dd, J = 4.0, 1.2 Hz, 1 H), 
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6.69 (dt, J = 16.0, 1.2 Hz, 1 H), 6.25 (dt, J = 16.0, 6.4 Hz, 1 H), 4.97 (dd, J = 6.4, 1.2 Hz, 2 H), 2.57 (s, 3 

H). 13C NMR (CDCl3, 125 MHz)  177.9 (t, J = 28.1 Hz), 161.8 (t, J = 30.6 Hz), 154.6, 137.5 (t, J = 5.0 

Hz), 136.4, 135.8, 135.2, 128.8, 128.7, 128.2, 127.0, 120.9, 109.7 (t, J = 263.1 Hz), 68.1, 16.4. 19F NMR 

(CDCl3, 376 MHz)  –108.0 (s, 2 F). IR (film) 3028, 1774, 1664, 1446, 1310, 1265, 1155, 1051, 968, 912, 

812, 746, 692 cm-1. HRMS (ESI, m/z): calcd for C17H14F2O3SNa [M+Na]+ 359.0529, found 359.0531. 

Ph

O

F F S
Me

4.8c

 

(E)-2,2-difluoro-1-(5-methylthiophen-2-yl)-5-phenylpent-4-en-1-one (4.8c) 

General procedure E was followed using 4.7c (101 mg, 0.300 mmol), Pd(OAc)2 (2.0 mg, 0.090 mmol), t-

BuBrettPhos (8.7 mg, 0.018 mmol), and 1,4-dioxane (0.60 mL). Workup and chromatographic 

purification (0% to 5% EtOAc in hexanes) afforded the title compound 4.8c as a light yellow solid (78.0 

mg, 89%). 1H NMR (CDCl3, 400 MHz)  7.87–7.86 (m, 1 H), 7.38–7.36 (m, 2 H), 7.34–7.30 (m, 2 H), 

7.26–7.22 (m, 1 H), 6.88 (dd, J = 3.6, 1.2 Hz, 1 H), 6.59 (d, J = 16.0 Hz, 1 H), 6.19 (dt, J = 16.0, 7.4 Hz, 

1 H), 3.10 (tdd, J = 17.0, 7.4, 1.4 Hz, 2 H), 2.58 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  182.3 (t, J = 31.2 

Hz), 153.3, 136.9 (t, J = 5.0 Hz), 136.8, 136.4, 136.3, 128.7, 128.0, 127.9, 126.6, 118.9 (t, J = 5.0 Hz), 

118.6 (t, J = 252.5 Hz), 38.2 (t, J = 23.8 Hz), 16.3. 19F NMR (CDCl3, 376 MHz)  –100.0 (t, J = 16.9 Hz, 

2 F). IR (film) 3026, 1670, 1448, 1223, 1184, 1171, 1057, 968, 812, 758, 739, 692 cm-1. HRMS (ESI, 

m/z): calcd for C16H14F2OSNa [M+Na]+ 315.0631, found 315.0643. mp 49–50 °C. 
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2,2-difluoro-1-(5-methylthiophen-2-yl)-3-phenylpent-4-en-1-one (4.9c) 

General procedure F was followed using 4.7c (101 mg, 0.300 mmol), Pd(OAc)2 (1.7 mg, 0.0075 mmol), 

PhXPhos (7.0 mg, 0.015 mmol), and 1,4-dioxane (3.0 mL). The reaction time was 18 h. Workup and 
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chromatographic purification (0% to 5% EtOAc in hexanes) afforded the title compound 4.9c as a light 

yellow solid (76.0 mg, 87%). 1H NMR (CDCl3, 400 MHz)  7.73–7.72 (m, 1 H), 7.35–7.28 (m, 5 H), 5.81 

(dd, J = 4.0, 1.2 Hz, 1 H), 6.22 (ddd, J = 17.2, 10.4, 8.4 Hz, 1 H), 5.31 (d, J = 10.4 Hz, 1 H), 5.24 (dt, J = 

17.2, 1.2 Hz, 1 H), 4.26 (td, J = 16.6, 8.4 Hz, 1 H), 2.55 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  182.4 (t, 

J = 30.0 Hz), 153.2, 137.0, 136.6 (t, J = 5.6 Hz), 135.3 (t, J = 1.9 Hz), 132.4 (t, J = 3.8 Hz), 129.8, 128.7, 

128.0, 127.8, 120.8, 118.7 (t, J = 257.5 Hz), 54.3 (t, J = 21.9 Hz), 16.2. 19F NMR (CDCl3, 376 MHz)  –

104.8 (d, A2, J = 15.0 Hz, 2 F). IR (film) 3030, 1662, 1448, 1275, 1171, 1061, 1040, 932, 812, 748, 719, 

700 cm-1. HRMS (ESI, m/z): calcd for C16H14F2OSK [M+K]+ 331.0371, found 331.0382. mp 55–56 °C. 

 

cinnamyl 2,2-difluoro-3-oxo-3-(1-phenyl-1H-pyrazol-4-yl)propanoate (4.7d) 

General procedure D was followed using potassium 2,2-difluoro-3-oxo-3-(1-phenyl-1H-pyrazol-4-

yl)propanoate3 (0.76 g, 2.5 mmol), oxalyl chloride (0.19 mL, 2.3 mmol), cinnamyl alcohol (0.28 g, 2.1 

mmol), Et3N (0.58 mL, 4.2 mmol), DMF (48 µL), and CH2Cl2 (12 mL). Workup and chromatographic 

purification (5% to 10% EtOAc in hexanes) afforded the title compound 4.7d as a colorless solid (0.68 g, 

85%). 1H NMR (CDCl3, 400 MHz)  8.61 (s, 1 H), 8.31 (s, 1 H), 7.72 (d, J = 8.0 Hz, 2 H), 7.50 (t, J = 8.0 

Hz, 2 H), 7.43–7.37 (m, 3 H), 7.35–7.28 (m, 3 H), 6.72 (d, J = 16.0 Hz, 1 H), 6.27 (dt, J = 16.0, 6.4 Hz, 1 

H), 4.98 (d, J = 6.4 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  179.9 (t, J = 28.8 Hz), 161.7 (t, J = 30.6 Hz), 

143.0 (t, J = 2.5 Hz), 139.0, 136.6, 135.7, 131.7 (t, J = 3.8 Hz), 129.9, 128.9, 128.8, 128.6, 127.0, 120.8, 

120.2, 118.8, 109.6 (t, J = 262.5 Hz), 68.3. 19H NMR (CDCl3, 376 MHz)  –110.6 (s, 2F). IR (film) 3138, 

3059, 1774, 1688, 1541, 1504, 1308, 1242, 1171, 1126, 1036, 968, 951, 883, 758, 690 cm-1. HRMS (ESI, 

m/z): calcd for C21H16F2N2O3Na [M+Na]+ 405.1027, found 405.1025. mp 64–65 °C. 
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(E)-2,2-difluoro-5-phenyl-1-(1-phenyl-1H-pyrazol-4-yl)pent-4-en-1-one (4.8d) 

General procedure E was followed using 4.7d (76.5 mg, 0.200 mmol), Pd(OAc)2 (2.2 mg, 0.010 mmol), t-

BuBrettPhos (9.7 mg, 0.020 mmol), and 1,4-dioxane (0.40 mL). Workup and chromatographic 

purification (0% to 5% EtOAc in hexanes) afforded the title compound 4.8d as a colorless solid (43 mg, 

64%). 1H NMR (CDCl3, 400 MHz)  8.56 (s, 1 H), 8.29 (s, 1 H), 7.72–7.70 (m, 2 H), 7.51 (t, J = 8.0 Hz, 

2 H), 7.43–7.22 (m, 6 H), 6.61 (d, J = 16.0 Hz, 1 H), 6.19 (dt, J = 16.0, 7.4 Hz, 1 H), 3.10 (tdd, J = 17.0, 

7.4, 1.4 Hz, 2 H). 13C NMR (CDCl3, 125 MHz)  184.3 (t, J = 31.9 Hz), 143.2 (t, J = 2.5 Hz), 139.2, 

136.7, 136.6, 131.6 (t, J = 5.0 Hz), 129.9, 128.8, 128.4, 128.1, 126.6, 120.0, 119.6, 118.7 (t, J = 5.0 Hz), 

118.5 (t, J = 251.2 Hz), 37.6 (t, J = 23.8 Hz). 19F NMR (CDCl3, 376 MHz)  –102.4 (t, J = 16.9 Hz, 2 F). 

IR (film) 1686, 1541, 1502, 1186, 1038, 951, 908, 876, 833, 756, 688 cm-1. HRMS (ESI, m/z): calcd for 

C20H17F2N2O [M+H]+ 339.1309, found 339.1320. mp 95–97 °C. 

 

2,2-difluoro-3-phenyl-1-(1-phenyl-1H-pyrazol-4-yl)pent-4-en-1-one (4.9d) 

General procedure F was followed using 4.7d (76.5 mg, 0.200 mmol), Pd(OAc)2 (2.2 mg, 0.010 mmol), 

PhXPhos (9.3 mg, 0.020 mmol), and 1,4-dioxane (2.0 mL). Workup and chromatographic purification (0% 

to 5% EtOAc in hexanes) afforded the title compound 4.9d as a colorless solid (49 mg, 72%). 1H NMR 

(CDCl3, 400 MHz)  8.38 (s, 1 H), 8.16 (s, 1 H), 7.67 (dt, J = 8.4, 1.9 Hz, 2 H), 7.50 (t, J = 8.0 Hz, 2 H), 

7.42–7.25 (m, 6 H), 6.25 (ddd, J = 17.2, 10.4, 8.4 Hz, 1 H), 5.35 (d, J = 10.4 Hz, 1 H), 5.29 (dt, J = 16.8, 

1.2 Hz, 1 H), 4.28 (td, J = 16.4, 8.4 Hz, 1 H). 13C NMR (CDCl3, 125 MHz)  184.8 (t, J = 31.2 Hz), 143.0 

(t, J = 3.1 Hz), 139.1, 135.2 (d, J = 5.0 Hz), 132.2 (dd, J = 4.4, 3.1 Hz), 131.4 (t, J = 5.6 Hz), 129.9, 129.8, 
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128.8, 128.3, 128.2, 121.0, 120.4, 120.1, 118.6 (t, J = 255.6 Hz), 53.8 (t, J = 22.5 Hz). 19F NMR (CDCl3, 

376 MHz)  –107.6 (dd, A of ABX, JAB = 263.2 Hz, JAX = 15.0 Hz, 1 F), –106.2 (dd, B of ABX, JAB = 

263.2 Hz, JBX = 15.0 Hz, 1 F). IR (film) 3065, 3032, 1684, 1599, 1541, 1504, 1250, 1174, 1036, 951, 887, 

758, 725, 700, 688, 658 cm-1. HRMS (ESI, m/z): calcd for C20H17F2N2O [M+H]+ 339.1309, found 

339.1303. mp 81–82 °C. 

 

cinnamyl 3-cyclohexyl-2,2-difluoro-3-oxopropanoate (4.7e) 

General procedure D was followed using potassium 3-cyclohexyl-2,2-difluoro-3-oxopropanoate3 (1.5 g, 

6.1 mmol), oxalyl chloride (0.52 mL, 6.1 mmol), cinnamyl alcohol (1.1 g, 8.0 mmol), Et3N (1.0 mL, 7.4 

mmol), DMF (1.0 mL), and CH2Cl2 (20 mL). Workup and chromatographic purification (2% to 5% 

EtOAc in hexanes) afforded the title compound 4.7e as a colorless oil (1.6 g, 81%). 1H NMR (CDCl3, 400 

MHz)  7.42–7.40 (m, 2 H), 7.37–7.30 (m, 3 H), 6.73 (d, J = 15.6 Hz, 1 H), 6.27 (dt, J = 15.6, 6.8 Hz, 1 

H), 4.95 (d, J = 6.8 Hz, 2 H), 2.95–2.89 (m, 1 H), 1.94–1.89 (m, 2 H), 1.83–1.78 (m, 2 H), 1.71–1.68 (m, 

1 H), 1.47–1.17 (m, 5 H). 13C NMR (CDCl3, 125 MHz)  200.3 (t, J = 26.9 Hz), 161.7 (t, J = 30.6 Hz), 

136.6, 135.8, 128.9, 128.8, 127.0, 120.9, 108.8 (t, J = 263.8 Hz), 68.1, 45.5, 28.3, 25.6, 25.4. 19F NMR 

(CDCl3, 376 MHz)  –112.9 (s, 2 F). IR (film) 2935, 2858, 1776, 1736, 1450, 1310, 1202, 1144, 966, 746, 

692 cm-1. HRMS (ESI, m/z): calcd for C18H20F2O3Na [M+Na]+ 345.1278, found 345.1284. 

 

(E)-1-cyclohexyl-2,2-difluoro-5-phenylpent-4-en-1-one (4.8e) 

General procedure E was followed using 4.7e (96.7 mg, 0.300 mmol), Pd(OAc)2 (3.4 mg, 0.015 mmol), t-

BuBrettPhos (14.5 mg, 0.0300 mmol), and 1,4-dioxane (0.60 mL). The reaction was run at 70 °C, and the 
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reaction time was extended to 36 h. Workup and chromatographic purification (0% to 5% EtOAc in 

hexanes) afforded the title compound 4.8e as a light yellow oil (51.0 mg, 61%). 1H NMR (CDCl3, 400 

MHz)  7.38–7.23 (m, 5 H), 6.54 (d, J = 16.0 Hz, 1 H), 6.08 (dt, J = 16.0, 7.4 Hz, 1 H), 2.98–2.86 (m, 3 

H), 1.88–1.77 (m, 4 H), 1.71–1.67 (m, 1 H), 1.42–1.19 (m, 5 H). 13C NMR (CDCl3, 125 MHz)  204.3 (t, 

J = 29.4 Hz), 136.8, 136.5, 128.8, 128.0, 126.5, 118.8 (t, J = 5.6 Hz), 118.0 (t, J =253.1 Hz), 45.1, 37.2 (t, 

J = 23.8 Hz), 28.3, 25.8, 25.6. 19F NMR (CDCl3, 376 MHz)  –105.6 (t, J = 16.9 Hz, 2 F). IR (film) 2934, 

2856, 1734, 1497, 1450, 1207, 1146, 1057, 1032, 968, 748, 692 cm-1. HRMS (ESI, m/z): calcd for 

C17H20F2ONa [M+Na]+ 301.1380, found 301.1388. 

 

1-cyclohexyl-2,2-difluoro-3-phenylpent-4-en-1-one (4.9e) 

General procedure F was followed using 4.7e (96.7 mg, 0.300 mmol), Pd(OAc)2 (3.4 mg, 0.015 mmol), 

PhXPhos (13.9 mg, 0.0300 mmol), and 1,4-dioxane (3.0 mL). The reaction time was extended to 36 h. 

Workup and chromatographic purification (0% to 5% EtOAc in hexanes) afforded the title compound 

4.9e as a light yellow oil (61.0 mg, 73%). 1H NMR (CDCl3, 400 MHz)  7.36–7.28 (m, 5 H), 6.17 (ddd, J 

= 17.2, 10.0, 8.4 Hz, 1 H), 5.32 (d, J = 10.0 Hz, 1 H), 5.24 (d, J = 17.2 Hz, 1 H), 4.16–4.05 (m, 1 H), 

2.63–2.56 (m, 1 H), 1.78–1.74 (m, 2 H), 1.68–1.62 (m, 2 H), 1.44–1.39 (m,1 H), 1.28–1.08 (m, 5 H). 13C 

NMR (CDCl3, 125 MHz)  205.0 (t, J = 28.8 Hz), 135.2 (d, J = 5.0 Hz), 132.4 (dd, J = 6.2, 2.5 Hz), 129.8, 

128.8, 128.1, 120.8, 118.1 (t, J = 258.1 Hz), 53.1 (t, J = 21.9 Hz), 45.9, 28.1, 27.7, 25.7, 25.6, 25.5. 19F 

NMR (CDCl3, 376 MHz)  –112.0 (dd, A of AMX, JAM = 263.2 Hz, JAX = 16.9 Hz, 1 F), –107.6 (dd, M of 

AMX, JAM = 263.2 Hz, JMX = 15.0 Hz, 1 F). IR (film) 2934, 2856, 1732, 1494, 1452, 1207, 1167, 1059, 

1032, 966, 930, 742, 700 cm-1. HRMS (ESI, m/z): calcd for C17H20F2ONa [M+Na]+ 301.1380, found 

301.1378. 
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Preparation of Compound 4.13 in Scheme 4.13B 

F3C
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O

O

Ph

O

F F

 

1-(3-(trifluoromethyl)phenyl)allyl 2,2-difluoro-3-oxo-3-phenylpropanoate (4.13) 

An oven-dried one-neck round-bottom flask was charged with potassium salt potassium 2,2-difluoro-3-

oxo-3-phenylpropanoate3 (1.0 g, 4.2 mmol), and the system was evacuated and backfilled with N2(g) three 

times. Dry CH2Cl2 (21 mL) and DMF (0.10 mL) were added via a syringe, and the reaction mixture was 

cooled to 0 °C. Oxalyl chloride (0.31 mL, 3.7 mmol) was added dropwise, and then the reaction mixture 

was stirred at 0 °C for 30 min, and rt for 2 h. Next, a solution of 1-(3-(trifluoromethyl)phenyl)prop-2-en-

1-ol15 (0.71 g, 3.5 mmol) dissolved in dry CH2Cl2 (2.0 mL) was added dropwise at 0 °C followed by 

dropwise addition of Et3N (0.97 mL, 7.0 mmol). The resulting reaction mixture was stirred at 0 °C for 30 

min, and rt for 2 h. H2O (10 mL) was added to quench the reaction, and the CH2Cl2 was removed under 

reduced pressure. The aqueous layer was extracted with ether (3 x 20 mL), and the combined organic 

layers were dried over anhydrous Na2SO4, filtered, and concentrated. Purification by flash 

chromatography (0% to 15% EtOAc in hexanes) afforded the title compound 4.13 as a colorless oil (0.81 

g, 60%). 1H NMR (CDCl3, 400 MHz)  8.04 (dd, J = 8.0, 1.4 Hz, 2 H), 7.69–7.65 (m, 1 H), 7.59 (dt, J = 

6.4, 1.8 Hz, 1 H), 7.54–7.47 (m, 5 H), 6.45 (d, J = 6.0 Hz, 1 H), 5.98 (ddd, J = 17.0, 10.8, 6.2 Hz, 1 H), 

5.42–5.40 (m, 1 H), 5.37 (d, J = 1.2 Hz, 1 H). 13C NMR (CDCl3, 125 MHz)  185.4 (t, J = 27.5 Hz), 161.0 

(t, J = 30.6 Hz), 138.0, 135.4, 133.7, 131.3 (q, J = 32.5 Hz), 131.1, 130.7, 130.1 (t, J = 3.1 Hz), 129.5, 

129.2, 125.8 (q, J = 3.7 Hz), 124.1 (q, J = 3.7 Hz), 124.0 (q, J = 270.9 Hz), 119.9, 109.9 (t, J = 263.7 Hz), 

79.0. 19F NMR (CDCl3, 376 MHz)  –107.5 (d, A of AB, J = 289.5 Hz, 1 F), –107.1 (d, B of AB, J = 

289.5 Hz, 1 F), –62.7 (s, 3 F). IR (film) 3072, 1778, 1714, 1699, 1599, 1452, 1333, 1256, 1167, 1128, 

1074, 926, 804, 704, 687, 580 cm-1. HRMS (EI, m/z): calcd for C19H12F5O3 [M–H+] 383.0707, found 

383.0698. 
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Experimental Procedures for Catalytic Reactions in Scheme 4.13B 

An oven-dried 1 dram vial was charged with substrate 4.13 (57.6 mg, 0.150 mmol), Pd(OAc)2 (1.0 mg, 

0.0045 mmol for catalyst system A or 0.8 mg, 0.0037 mmol for catalyst system B), ligand (t-BuBrettPhos 

4.4 mg, 0.0090 mmol for catalyst system A or PhXPhos 3.5 mg, 0.0075 mmol for catalyst system B), and 

a magnetic stir bar. The vial was equipped with a three-way valve, evacuated and backfilled with N2(g) 

four times. Dry 1,4-dioxane (0.3 mL for catalyst system A or 1.5 mL for catalyst system B) was added via 

a syringe under N2(g). The vial was sealed with a screwed-cap under N2(g) flow, and was stirred at rt for 5 

min. Subsequently, the vial was placed on a pre-heated reaction block, and stirred at 60 °C for catalyst 

system A or 90 °C for catalyst system B for 24 h. The vial was cooled to rt, and the mixture was diluted 

with EtOAc (2.0 mL for catalyst system A or 0.1 mL for catalyst system B). 2,2,2-trifluoroethanol (10 µL, 

0.1372 mmol) was added as a standard, and the reaction mixture was stirred at rt for 30 min to ensure 

thorough mixing. An aliquot was taken from the vial for 19F NMR analysis. 19F NMR yields and 

selectivities reported in the manuscript represent an average of two independent runs for catalyst system 

A or B, respectively. 

Experimental Procedures for Catalytic Reactions in the Presence of Acidic Additives 

Entry 2 in Scheme 15: An oven-dried 1 dram vial A was charged with Pd(OAc)2 (2.0 mg, 0.0090 mmol), 

t-BuBrettPhos (8.7 mg, 0.018 mmol), and a magnetic stir bar. The vial A was equipped with a three-way 

valve, and evacuated and backfilled with N2(g) three times. Dry 1,4-dioxane (0.2 mL) was added via a 

syringe under N2(g). The vial was sealed with PTFE-lined silicone septa under N2(g), and the mixture was 

stirred at 80 °C for 10 min (pre-activation), and then cooled to rt. Subsequently, another oven-dried vial B 

was charged with a magnetic stir bar, the substrate 4.1a (0.300 mmol) and acetyl acetone (30 µL, 0.300 

mmol), and the dry1,4-dioxane (0.3 mL) was added via a syringe under N2(g), and stirred at rt thoroughly. 

The solution in the vial B was transferred to the vial A via a syringe under N2(g), and another dry1,4-

dioxane (0.1 mL) was used to wash inner wall of the vial B and the solution was transferred to the vial A 

again. The vial A was stirred at rt for 5 min, and then placed on a pre-heated reaction block at 60 °C, and 
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stirred for 20 h. The vial was cooled to rt, and the mixture was diluted with EtOAc (2 mL). ,,-

Trifluorotoluene (15 µL, 0.12 mmol) was added as an internal standard, and the reaction mixture was 

stirred at rt for 30 min to ensure thorough mixing. An aliquot was taken from the vial A for 19F NMR 

analysis to determine the ratio of fluorinated products 4.2a, 4.3a, and 4.3a′. After determination of the 19F 

yield, the aliquot was recombined with the reaction mixture. The total reaction mixture was passed 

through a plug of silica gel, and eluted with EtOAc. The solvents were removed under reduced pressure, 

and 1H NMR of the crude mixture was analyzed for determining the ratio of allylated products 4.2a′ 

based on the integration related to 4.2a. 

Entry 4 in Scheme 15: An oven-dried 1 dram vial A was charged with Pd(OAc)2 (1.7 mg, 0.0075 mmol), 

PhXPhos (7.0 mg, 0.0150 mmol) and a magnetic stir bar. The vial A was equipped with a three-way valve, 

and evacuated and backfilled with N2(g) three times. Dry 1,4-dioxane (1.0 mL) was added via a syringe 

under N2(g). The vial was sealed with PTFE-lined silicone septa under N2(g), and the mixture was stirred at 

80 °C for 10 min (pre-activation), and then cooled to rt. Subsequently, another oven-dried vial B was 

charged with a magnetic stir bar, the substrate 4.1a (0.300 mmol) and acetyl acetone (30 µL, 0.300 mmol), 

and the dry1,4-dioxane (1.5 mL) was added via a syringe under N2(g), and stirred at rt thoroughly. The 

solution in the vial B was transferred to the vial A via a syringe under N2(g), and another dry1,4-dioxane 

(0.5 mL) was used to wash inner wall of the vial B and the solution was transferred to the vial A again. 

The vial A was stirred at rt for 5 min, and then placed on a pre-heated reaction block at 90 °C, and stirred 

for 20 h. The vial was cooled to rt, and the mixture was diluted with EtOAc (0.5 mL). ,,-

Trifluorotoluene (15 µL, 0.12 mmol) was added as an internal standard, and the reaction mixture was 

stirred at rt for 30 min to ensure thorough mixing. An aliquot was taken from the vial A for 19F NMR 

analysis to determine the ratio of fluorinated products 4.2a, 4.3a, and 4.3a′. After determination of the 19F 

yield, the aliquot was recombined with the reaction mixture. The total reaction mixture was passed 

through a plug of silica gel, and eluted with EtOAc. The solvents were removed under reduced pressure, 
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and 1H NMR of the crude mixture was analyzed for determining the ratio of allylated products 4.2a′ 

based on the integration related to 4.3a. 

Analysis of Selectivity Data in Figures 1 and 2 

O

O

Ph

O

F FX

Pd(OAc)2 (3.0 mol%)
t-BuBrettPhos (6.0 mol%)

1,4-dioxane, 60 °C, 20–24 h
Ph

O

F F

Ph

O
F

F

4.1a, 4.4ac, 4.4e, 4.4g 4.2a, 4.5ac, 4.5e, 4.5g 4.3a, 4.6ac, 4.6e, 4.6g

X
X

+

 

 

Substrate Substituent 
(X) 

Selectivity 
(lin/br) 

Log (SelectivityX/ 
SelectivityH) 

σ+ 

1a H 18 – – 

4a m-CF3 23 0.1065 0.52 

4b p-NO2 30 0.2218 0.79 

4c m-CO2Et 21 0.0669 0.37 

4e p-Me 10 0.2553 –0.31 

4g p-OMe 6   0.4771  –0.78 

 Values for σ+ were obtained from the literature.16 
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O

O

Ph

O

F FX

Pd(OAc)2 (2.5 mol%)
PhXPhos (5.0 mol%)

1,4-dioxane, 90 °C, 20–24 h
Ph

O

F F

Ph

O
F

F

4.1a, 4.4a-4c, 4.4e, 4.4g 4.2a, 4.5a-5c, 4.5e, 4.5g 4.3a, 4.6a-6c, 4.6e, 4.6g

X
X

+

 

 

Substrate Substituent 
(X) 

Selectivity 
(br/lin) 

Log (SelectivityX/ 
SelectivityH) 

σ+ 

1a H 99 – – 

4a m-CF3 99 0.0000 0.52 

4b p-NO2 98 -0.0004 0.79 

4c m-CO2Et 99 0.0000 0.37 

4e p-Me 99 0.0000 –0.31 

4g p-OMe 99   0.0000  –0.78 

 

 

 

 

 

 

 



 

226 
 

References for Chapter 4 Experimental Section 
 
1 Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. “Catalysts for Suzuki-Miyaura Coupling 
Processes: Scope and Studies of the Effect of Ligand Structure” J. Am. Chem. Soc. 2005, 127, 4685–4696. 
2 Hoshiya, N.; Buchwald, S. L. “An Improved Synthesis of BrettPhos- and RockPhos-Type 
Biarylphosphine Ligands” Adv. Synth. Catal. 2012, 354, 2031–2037. 
3  Yang, M.-H.; Orsi, D. L.; Altman, R. A. “Ligand-Controlled Regiodivergent Palladium-Catalyzed 
Decarboxylative Allylation Reaction to Access ,-Difluoroketones” Angew. Chem., Int. Ed. 2015, 54, 
2361–2365. 
4 Gilbert, J. C.; Kelly, T. A. “Transesterification of 3-Oxo Esters with Allylic Alcohols” J. Org. Chem. 
1988, 53, 449–450. 
5  He, H.; Zheng, X.-J.; Li, Y.; Dai, L.-X.; You, S.-L. “Ir-Catalyzed Regio- and Enantioselective 
Decarboxylative Allylic Alkylations” Org. Lett. 2007, 9, 4339–4341. 
6 Frantz, R.; Hintermann, L.; Perseghini, M.; Broggini, D.; Togni, A. “Titanium-Catalyzed Stereoselective 
Geminal Heterodihalogenation of -Ketoesters” Org. Lett. 2003, 5, 1709–1712. 
7 Yasuda, M.; Hayashi, K.; Katoh, Y.; Shibata, I.; Baba, A. “Highly Controlled Chemoselectivity of Tin 
Enolate by Its Hybridization State. Anionic Complex of Tin Enolate Coordinated by 
Tetrabutylammonium Bromide as Halo Selective Reagent” J. Am. Chem. Soc. 1998, 120, 715–721. 
8 Evans, P. A.; Leahy, D. K. “Regioselective and Enantiospecific Rhodium-Catalyzed Allylic Alkylation 
Reactions Using Copper(I) Enolates: Synthesis of (-)-Sugiresinol Dimethyl Ether” J. Am. Chem. Soc. 
2003, 125, 8974–8975. 
9  Ambler, B. R.; Altman, R. A. “Copper-Catalyzed Decarboxylative Trifluoromethylation of Allylic 
Bromodifluoroacetates” Org. Lett. 2013, 15, 5578–5581. 
10 Jeffery, T. “Palladium-Catalyzed Arylation of Allylic Alcohols: Highly Selective Synthesis of -
Aromatic Carbonyl Compounds or -aromatic ,-Unsaturated Alcohols” Tetrahedron Lett. 1991, 32, 
2121–2124. 
11 Hatsuda, M.; Kuroda, T.; Seki, M. “An Improved Synthesis of (E)-Cinnamic Acid Derivatives via the 
Claisen-Schmidt Condensation” Synthetic Communications, 2003, 33, 427–434. 
12 Loelsberg, W.; Ye, S.; Schmalz, H.-G. “Enantioselective Copper-Catalysed Allylic Alkylation of 
Cinnamyl Chlorides by Grignard Reagents Using Chiral Phosphine-Phosphite Ligands” Adv. Synth. Catal. 
2010, 352, 2023–2031. 
13 Angle, S. R.; Choi, I.; Tham, F. S. “Stereoselective Synthesis of 3-Alkyl-2-aryltetrahydrofuran-4-ols: 
Total Synthesis of (±)-Paulownin” J. Org. Chem. 2008, 73, 6268–6278. 
14 Charette, A. B.; Molinaro, C.; Brochu, C. “Catalytic Asymmetric Cyclopropanation of Allylic Alcohols 
with Titanium-TADDOLate: Scope of the Cyclopropanation Reaction” J. Am. Chem. Soc. 2001, 123, 
12168–12175. 
151-(3-(Trifluoromethyl)phenyl)prop-2-en-1-ol was prepared according to the procedure described in the 
following patent: O. Thiel, C. Bernard, R. Larsen, M. J. Martinelli, M. T. Raza (Amgen Inc., USA), 
2009002427, 2008. 
16 Brown, H. C.; Okamoto, Y. “Derective Effects in Aromatic Substitution. XXX. Electrophilic 
Substituent Constants” J. Am. Chem. Soc. 1958, 80, 4979–4987. 



 

227 
 

Chapter 5. Palladium-Catalyzed para-C–H Difluoroalkylation of Arenes via 

Decarboxylation of Benzyl ,-Difluoro--keto-esters 

5.1 Introduction to Selective para-C–H Functionalization of Arenes 

      The functionalization of C–H bonds represents an important and powerful strategy for converting 

simple arenes and hydrocarbons to more complex molecules.1 This strategy mainly utilizes transition 

metals to functionalize inert C–H bonds, and react them with carbon- and heteroatom-based reagents to 

generate coupling products.2 The C–H functionalization strategy avoids the use of pre-functionalized 

precursors, thus provides an atom-economic and time-saving transformation for building structurally 

complicated natural products, especially for late-stage modifications of bioactive molecules.3 Moreover, 

the C–H functionalization method enables distinct bond disconnections in retrosynthetic analysis of 

natural products, which could create new and efficient synthetic strategies.3b–d However, the reliability 

and value of such a C–H functionalization reaction depend on chemoselective activation of one C–H bond 

over others. To address selectivity issues, many methods have been developed to activate a specific C–H 

bond. 4  For aromatic systems, the utilization of auxiliary groups and well-designed transition-metal 

catalysts has enabled selective ortho-,5 and even meta6-C–H functionalization of arenes.  

      However, the strategies to selectively activate C–H bonds at the para-position of arenes remain 

limited. Current methods for para-C–H functionalization reactions mainly utilize electronic control of 

substrates. In this strategy, arenes couple with in situ generated electrophilic intermediates, including 

iodonium salts or metal carbenoids, to generate para-functionalized arenes (Scheme 5.1). In the case of 

iodonium salts as reactive intermediates, 7  electron-rich arenes proceeded much more quickly than 

electron-deficient arenes, most of which did not participate in the reactions (Scheme 5.1A). This result 

supported the assertion that the reactions proceeded by an electrophilic aromatic substitution or 

metalation (SEAr or EAM) mechanism, thus only tolerating electron-rich aromatic substrates. For the 

reactions that proceed through electrophilic gold carbenoids,8  more electron-deficient fluorinated -
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diazoester precursors were required to facilitate reactions of the substrates bearing alkyl- and halogen-

substituted arenes (Scheme 5.1B). 

EDG
amines

phthalimides
phenols

arylsilanes

EDG

Q

Q = N, O, C-
based groups

Cu or Au (cat.)

PhI(OAc)2
+

R'

I
Ar X

III

via e--deficient

intermediates

H

R1

R1 = OH, NHR3,

alkyl, halogens

Ar CO2R4

N2

Ar CO2CH2CF3

N2

Ar' CO2R5

Au

R1

Ar CO2R5

(when R1 = alkyl, halogen)

(when R1 = OH, NHR3)

R2

R5 = Me, Et, CH2CF3

-diazoesters

x = OTf, OTs, BF4

via metal carbenoids

+

Scheme 5.1. Electronic Control of Substrates on Selective para-C H Functionalization Reactions

A) Hypervalent Iodine(III) Intermediates

B) Metal Carbenoids as Intermediates

R R

Au (cat.)

AgSbF6

R2

 

      Moreover, the combination use of electron-rich arenes with palladium catalysts under oxidative 

conditions provided an alternative strategy for accessing para-biphenyl derivatives (Scheme 5.2). The Yu 

group proposed that this method contains two C–H activation steps (Scheme 5.2A).9a–c First, the directing 

group (DG) on one aromatic ring facilitated the formation of a cyclopalladated Pd(II) complex, which was 

oxidized to a Pd(IV) species by oxidants. Then, the ligand/directing group-stabilized Pd(IV) species could 

undergo an electrophilic palladation of electron-rich arenes, followed by reductive elimination, to 

generate para-functionalized products. In the reactions, the Yu group also utilized 3-acetylpyridine as a 

ligand that coordinates to Pd(IV) center to facilitate electrophilic palladation, and avoided the use of 

stoichiometric amount of oxidant NFSI. Similarly, the Zhou lab also proposed a Pd(II)/Pd(IV) catalytic 

cycle for the reactions of phenol derivatives with aryl iodides (Scheme 5.2B).9d Despite these reactions 

provided para-functionalized products in high selectivity, they required the use of stoichiometric amount 

of oxidants, and directing group-containing aromatic systems, both of which caused organic wastes and 

narrowed the substrate scope. 
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      The auxiliary group-based approach presents difficulty in para-C–H transformations, because of the 

challenge of designing a directing group with appropriate length to reach the distal C–H bond, activate it, 

and form a pre-organized metallacycle for reactions. Recently, a silyl biphenyl-based template enabled for 

selective para-C–H functionalization of toluene and phenol derivatives (Scheme 5.3).10 However, this 

method requires the pre-installation of the template to the substrates through an appropriate functional 

group for attachment, and the removal of the heavy template at a late stage, which narrows the substrate 

scope and adds extra synthetic steps, respectively.  

X
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Scheme 5.3. Template-Assisted Approach to Control Selective para-C H Functionalization Reactions
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      To overcome these limitations, the strategies that use transition-metal catalysts to control para-

selectivity enables the activation of C–H bonds at the para-position of heterocycles and electron-deficient 

arenes. For example, the Ong and Hiyama labs utilized a Ni/Al bimetallic catalyst system to activate the 

para-C–H bond of pyridines and quinolones (Scheme 5.4A).11a,b The combination of Ni/Al catalysts 

enabled the formation of a reactive species A, in which Ni -bonds to two NHC ligands and 2-bonds to 

the pyridine with the nitrogen atom coordinating to Al, and directed the metalation to occur at the more 

acidic and less sterically congested para-position of pyridine to form the Ni(II) complex B. Subsequently, 

coordination of alkenes to the complex B, followed by migratory insertion into Ni–H bond generated the 

intermediate D, which underwent reductive elimination to provide the coupling product and regenerate 

Ni(0) to close the catalytic cycle (Scheme 5.4B).11b Moreover, the use of structurally distinct ligands 

enabled the regioselective formation of linear and branched products, thus extending reaction pattern 

(Scheme 5.4C).11c Recently, the Nakao group combined a bulky Ni/Al cocatalyst with a bulky NHC 

ligand to develop a powerful catalytic system that can functionalize the para-C–H bond of electron-

deficient arenes, such as benzamides and aromatic ketones (Scheme 5.4D).11d In the reaction mode, the 

interaction of aluminum Lewis acid with the carbonyl group electronically enhanced the reactivity of the 

para-C–H bond toward an electron-rich Ni center, and a steric repulsion between the bulky Al center and 

the bulky ligand pushed the Ni catalyst to the para-C–H bond. The cooperation of the electronic and 

steric effects significantly improved the yields and selectivity compared to previous reports. 
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      Additionally, the Itami group developed an iridium catalyst bearing a bulky ligand to undergo para 

selective borylation (Scheme 5.5).11e This para-selectivity derived from a steric repulsion between the 

substrate and bulky ligand of the catalyst, which prevented meta-H from approaching the metal center, 

and inhibited its activation. The strategy utilizing bulky catalyst to drive para-selectivity enabled to 

functionalize electron-deficient arenes, which are challenging substrates to functionalize by alternative 

methods. 
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5.2 Base-Promoted Selective para-Difluoroalkylation of Arenes 

      To complement these known strategies, we report a base-mediated para-C–H difluoroalkylation of 

arenes using palladium catalysis (Scheme 5.6). In this reaction, amine additives play an essential role in 

promoting a C–H functionalization pathway (Scheme 5.6A) and disfavoring a traditional decarboxylative 

benzylation reaction (Scheme 5.6B).12 This reaction represents the unique example in which a base can 

switch the selectivity from cross-coupling to C–H functionalization. 
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      The formation of such a -aryl-,-difluoroketone was initially observed as a side product during the 

exploration of the substrate scope in the decarboxylative benzylation of ,-difluoroketone enolates. We 

found that the reaction of ortho-thio-substituted benzyl substrates generated the desired -benzyl-,-

difluoroketone product together with the unexpected -aryl-,-difluoroketone (Scheme 5.7). After the 

isolation and 2D NMR analysis of the -aryl-,-difluoroketone product, it was concluded that the ,-

difluoroketone moiety was incorporated at the para-position of arenes relative to the methyl group.  

 

      Although -aryl-,-difluoroketones can be accessed by known methods, its formation via a 

decarboxylative C–H functionalization reaction has not been reported. Thus, we aimed to develop a 

selective C–H functionalization method for accessing -aryl-,-difluoroketones. To begin the study, a 

variety of ortho- and meta-substituted benzyl ,-difluoro--keto-esters were identified as potential 

substrates, and they were prepared through four steps, including 1) Reformatsky addition of  ethyl 

bromodifluoroacetate to aldehydes; 2) oxidation of alcohols to ketones; 3) basic hydrolysis of ethyl esters; 

and 4) esterification of -keto-,-difluoroacetate with substituted benzyl alcohols (Scheme 5.8).12 
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      Initial screening focused on the identification of appropriate ligands that can promote para-C–H 

arylation reaction, and suppress cross-coupling benzylation reaction (Table 5.1). Generally, electron-

deficient ligands (entry 1) caused low conversion, and inhibited the arylation reaction, while more 

electron-rich ligands benefited the arylation reaction, and provided the arylated product in about 30% 

yields (entries 2–5). However, ligands that were excessively electron-rich (entry 6), hindered, and 

bidentate suppressed the catalytic C–H arylation reaction. 
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15

88

93

92

93

37

conv. (%)

PhCOCF2H

Table 5.1. Electron-Rich Triphenylphosphine Ligands Favored Formation of Arylated Product

Other ligands screened that produced < 25% arylated product by 19F NMR analysis were shown below.

Yields were determined by 19F NMR using , , -trifluorotoluene as an internal standard.

entry

1

2

3

4

5

6

 

      Since S-containing groups can also serve as a ligand and coordinate to palladium that could interfere 

with a catalyst system and deactivate the palladium catalyst, we used another substrate (5.1) bearing a 

non-coordinating group for screening. During the optimization, we found that electronic properties of 

ligands and palladium catalysts or precatalysts affected the selectivity of arylation to benzylation products; 

however, no obvious trend was observed. For example, the catalyst system of PdCp(3-C3H4)/P(4-

OMeC6H4)3 favored the arylated product, while the catalyst system of Pd(dba)2/P(4-OMeC6H4)3 still 

preferred the benzylated product. For these conditions, the yield of arylated product 5.2a was less than 

40%. To further improve the yield, solvent screening was performed. Interestingly, the distribution of 

products closely correlated with the solvent used (Table 5.2). Specifically, hydrocarbon and ether solvents 

provided benzylated product 5.2b (entries 1–4), while polar and coordinating solvents favored arylated 
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product 5.2a (entries 5–8). Although full conversion was achieved for these conditions, the yield of 

arylated product 5.2a did not increase further. 

 

      Amine additives could favor the para-selective C–H arylation reaction. Considering that a 

dearomatization-rearomatization process might operate in the catalytic arylation reaction of ,-

difluoroketone enolates, we explored the use of bases that could facilitate the rearomatization step and 

enhance the yields. Interestingly, the strength of bases affected the selectivity of arylation to benzylation 

(Table 5.3). Nitriles, inorganic bases, and weak bases, such as pyridine and anilines, exclusively provided 

the benzylated product 5.2b (entries 2–7). In contrast, more basic amines, including N,N-

dimethylaminopyridine (DMAP), tripropylamine (n-Pr3N), triethylamine (Et3N), and the chelating base 

(TMEDA) gave the arylated product 5.2a (entries 8–11). Further exploration of aliphatic amines 

demonstrated correlation between rigidity/hindrance and selectivity. The conformationally constrained 

base quinuclidine provided low yield of arylated product 5.2a (entry 12), while the bulky diisopropylethyl 

amine (DIPEA) favored the benzylated product 5.2b (entry 13). Thus, Et3N with a compromise between 

basicity and steric hindrance generated the arylated product 5.2a in the highest yield (entries 10). 

Additionally, the stoichiometry of Et3N also influenced the yield of arylated product 5.2a. Increased 
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amount of Et3N improved the selectivity towards the arylated product 5.2a (entries 10, and 14–16), but 

more than 1 equivalent of Et3N did not increase the yield (entries 10 and 17). After further optimization, 

the final conditions [2.5 mol% of Pd(PPh3)4/1.0 equiv of Et3N/1,4-dioxane/100 °C] provided the desired 

arylated product 5.2a in 75% isolated yield (entry 18), thus manifesting the importance of Et3N on the 

para-selective C–H difluoroalkylation of arenes. 
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110 °C, 24 h

Ph

O

F F
Me

base (mol%) 5.2a (%) 5.2b (%)

5.2a 5.2b

+

Na2CO3 (300)

PhCO2K (100)

pyridine (100)

N, N-dimethylaniline (100)

DMAP (100)

N(n-Pr)3 (100)

TMEDA (100)

Et3N (100)

butyronitrile (300)

Et3N (50)

Et3N (25)

Et3N (10)

Et3N (300)

PhONa (100)

quinuclidine (100)

DIPEA (100)

entry

2

3

4

5

6

7

8

11

12

13

9

10

17

14

15

16

0 88 3

0 91 3

0 0 18

2 71 6

4 85 0

54 4 17

0 89 2

69 5 8

12 1 10

12 68 4

58 13 6

70 5 6

69 5 5

65 7 5

63 11 5

49 26 4

Et3N (100)18c 82 (75) 7 6

Table 5.3. Bases Remarkably Affected Selectivity between Benzylation and Arylationa,b

5.1

-1 0 89 0

PhCOCF2H

PhCOCF2H (%)

a Yields were determined by 19F NMR using , , -trifluorotoluene as an internal standard.
b Full conversion was observed.
c The optimized conditions: 5.1 (0.5 mmol), Pd(PPh3)4 (5 mol%), Et3N (1.0 equiv), 1,4-dioxane (0.05 M),

100 °C, 12 h. 19F NMR yields were determined using , , -trifluorotoluene as an internal standard

(average of two runs). The value in parentheses indicates the isolated yield (average of two runs)
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      A variety of substrates bearing distinct electronic properties and substituent patterns on benzylic 

moieties underwent the decarboxylative arylation to incorporate a ,-difluoroketone moiety at the para-

position of arenes relative to the methyl group (Table 5.4). Generally, ortho-substituted electron-rich 

(5.3a–b) and -deficient (5.3c–d) substrates provided the arylated products (5.4a–d) in modest to high 

yields. Particularly, in the case of the substrate 5.3d, no benzylated product was observed by 19F NMR. 

The reaction of the substrate (5.3e) bearing a bulky phenyl group on the ortho-posotion of the aromatic 

ring gave the product (5.4e) in modest yield. In this reaction of the substrates 5.3e, we isolated 35% of the 

major side product, 9H-fluorene, which might come from an intramolecular cyclization reaction. 

Moreover, substrates bearing a coordinating group (5.3f–g) at the ortho-positions tolerated the present 

reaction and produced the arylated products (5.4f–g) in good yields and selectivity using higher catalyst 

loading and increasing reaction temperatures. Even a non-substituted simple benzyl substrate (5.3h) was 

transformed to the arylated product (5.4h) in modest yield and selectivity. This example demonstrated 

Et3N rather than the substitution pattern of arenes played a key factor for the catalytic para-C—H 

arylation reaction. However, meta-substituted substrates provided lower yields of arylated products than 

their ortho-substituted counterparts (5.4i vs 5.4a, and 5.4j vs 5.4d). This trend might derive from the 

steric hindrance imparted by the meta-substituent to the para-position that disfavors the attack of ,-

difluoroketone enolates, thus reducing the yields and selectivity towards arylated products. 
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      The decarboxylative arylation reaction also converted substrates bearing a variety of aryl, heteroaryl, 

and alkyl ,-difluoroketones into the products (Table 5.5). The substrate bearing an electron-neutral aryl 

,-difluoroketone moiety (5.5a) provided the arylated product (5.6a) in high yields. Even, heteroaryl-

containing ,-difluoroketone substrate (5.5b) worked well under the standard reaction conditions. The 

tolerance to S- and N-containing heterocycles represented potential application of the current reaction 

toward accessing fluorinated analogues of biologically active molecules. Additionally, the reaction of an 

aliphatic ,-difluoroketone substrate (5.5c) afforded good yield of the arylated product (5.6c) without 

further optimization. 
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      The -aryl-,-difluoroketone products likely derive from a pathway that differs from that proposed 

for the formation of -benzyl-,-difluoroketone products (Figure 5.1). In decarboxylative benzylation 

reactions, the ,-difluoroketone enolate reacts with the benzylic position of (3-exobenzyl)palladium(II) 

intermediate by a SN2-like reductive elimination, and forms the key C(–C(sp3) bond (A, path a).13 

However, in the present decarboxylative C–H arylation reaction, the ,-difluoroketone enolate might 

attack the para-position of the aromatic ring to form a dearomatized product (B, path b), which could 

undergo Et3N-facilitated rearomatization to generate the -aryl-,-difluoroketone products (BD, path 

b).  
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      Such regioselective benzylation and arylation reactions have been reported by the Tunge lab (Figure 

5.2). 14  In the reactions, the use of the bidentate (S)-DTBM SEGPHOS ligand provided benzylated 

products, while the utilization of the monodentate PPh3 ligand generated arylated products. Thus, the 

selectivity between benzylation and arylation is controlled by the ligands. However, in our cases, Et3N 

seems to play an important role in switching the selectivity from benzylation to arylation. 
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      In support of the proposed arylation mechanism, the Kuwano lab illustrated benzylic carbonates 

bearing an internal nucleophile undergo the palladium-catalyzed cyclization reactions with the 

nucleophile attacking the para-position to form a dearomatized product that rearomatizes to the final 

product (Scheme 5.9A). 15 a Moreover, the Yamamoto and Bao labs have reported intermolecular 

palladium-catalyzed dearomatization reactions, in which the nucleophiles, including allyltributylstannane 

and secondary amines, attack the aromatic para-position instead of the benzylic position to generate 

dearomatized and C–N coupling products (Scheme 5.9B and 5.9C).15b,c Additionally, the Tunge lab 

demonstrated decarboxylative coupling reactions of benzyl enol carbonates that can provide dearomatized 

and arylated ketone products using different palladium catalysts (Scheme 5.9D).15d 
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      The proposed arylation mechanism involves a dearomatization-rearomatization process, in which a 

proton shifts from the C5 (para-position) to the C1 (benzylic position) position. To confirm the 

involvement of a 1,5-prototropic shift in our arylation reaction, we prepared a deuterium-labeled substrate 

with deuterium incorporated on the C5 position to observe if the deuterium could relocate to the C1 

position (Scheme 5.10).  

 

      The synthesis of the deuterium-labeled substrate 5.7 started with the commercially available 2-

isopropylaniline, which underwent bromination followed by one-pot two-step nitration and iodination to 

generate aryl iodide 5.7-4. Subsequent formylation of aryl iodide 5.7-4 and reduction of the aldehyde 5.7-

3 formed benzyl alcohol 5.7-2, which coupled with deuterated sodium formate to produce deuterated 

alcohol 5.7-1.16 Finally, the esterification of deuterated alcohol 5.7-1 with ,-difluoro--keto acetate 

provided the deuterium-labeled probe 5.7 (95% of deuterium content) in good yields (Scheme 5.11). 
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      To test the proposed 1,5-deuteron shift, the deuterium-labeled substrate 5.7 was subjected to the 

standard catalytic conditions (Scheme 5.12). This reaction generated the product 5.7a with deuterium 

relocated to the C1 (benzylic position) in the yield (71%) comparable to the non-deuterium-labeled 

counterpart 5.4b (77%). The result was consistent with the proposed mechanism. The dearomatization-

rearomatization process occurs during the reactions and Et3N might serve as a proton shuttle to facilitate 

such a process. 
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      Meanwhile, we still cannot exclude out the role of Et3N as a nucleophile. For this, another mechanism 

is also considered for selective para-fluoroalkylation reaction of arenes (Scheme 5.13). In this mechanism, 

Et3N might serve as a nucleophile to attack the benzylic position of (3-exobenzyl)palladium(II) 

intermediate and generate an activated benzylic electrophile E. Then, the benzylic electrophile E reacts 

with the ,-difluoroketone enolate to form a dearomatized product, which rearomatizes to provide the 

arylated product. 
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      More studies to explain the role of Et3N are necessary. Currently, mechanistic studies aiming to 

understand the origin for the selective para-C–H difluoroalkylation of arenes are in progress. This part of 

work is performed by Dr.  Francisco de Azambuja in the lab. The proposed studies include 1) kinetic 

isotope effect (KIE) to understand if the cleavage of para-C–H bond is the rate-determining step; 2) the 

use of stoichiometric amount of deuterated methanol as an additive to see if the reaction involves the 

insertion of Pd catalyst into the C–H bond; 3) cross-over experiments to probe if the ,-difluoroketone 

enolate dissociates from the (-benzyl)palladium(II) complex; 4) competitive experiments of deuterated 

and non-deuterated substrates to probe the slowest step: oxidative addition or reductive elimination, and 

the role of Et3N in the reaction; and 5) NMR experiments to elucidate if new intermediates form under the 

catalytic conditions. These results will be reported in the future. 
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5.3 Conclusion 

      Remote para-C–H functionalization of arenes has been a challenging topic. Current methods for para-

selective activation of C–H bonds mainly rely on electronic control of substrates, and utilization of 

auxiliary groups, which causes limited substrate scope, and contradicts atom economy, respectively. In 

contrast, the ability to use simple additives to direct a catalytic reaction to a remote position provides a 

new and complementary opportunity for C–H functionalization reactions. We reported a palladium-

catalyzed decarboxylative C–H difluoroalkylation reaction of arenes, in which Et3N overrides the 

anticipated coupling pathway, and instead provides a C–H functionalization product with para-selectivity. 

This base-enabled C–H transformation tolerates electron-rich and -deficient substrates, and should 

provide an alternative strategy for designing para-selective functionalization reactions. 
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Chapter 5 Appendix  

Experimental Procedures and Spectral Analyses for Compounds in Chapter 5 
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General Information 

Unless otherwise noted, reactions were performed under an atmosphere of N2 using oven-dried 

glassware. Palladium-catalyzed reactions were performed in 1 dram vials and 20 mL pressure-resistant 

scintillation vials, which were sealed with PTFE-lined silicone septa, and all other reactions were 

performed in round-bottom flasks that were sealed with rubber septa. Stainless steel syringes were used to 

transfer air- and moisture-sensitive liquid reagents. Reactions were monitored by thin-layer 

chromatography (TLC) on UNIPLATE Silica Gel HLF plates, visualizing by quenching of fluorescence, 

or by staining with KMnO4, anisaldehyde, phosphomolybdic acid or iodine. Column chromatography was 

conducted using an automated and manual system for purifying substrates and catalytic products, 

respectively. In most cases, arylated and benzylated products are very close to each other or on the same 

spot on TLC plate. To visualize their separation, the staining reagent phosphomolybdic acid can be used 

to distinguish arylated and benzylated products while they represent different color. 19F NMR yields and 

isolated yields reported in the manuscript represent an average of at least two independent runs of 

material deemed to be at least 95% pure by NMR. Yields reported in the supporting information refer to a 

single experiment. 

Unless otherwise noted, reagents were purchased from commercial sources, and used as received. 1,4-

Dioxane (anhydrous), Pd(PPh3)4 (reagent grade, 99%), and Et3N (anhydrous) were purchased from Sigma 

Aldrich. Solvents including DMF, PhMe, CH2Cl2, THF, MeOH were used directly from a solvent 

purification system, in which solvent was dried by passage through two columns of activated alumina 

under argon. 

Proton nuclear magnetic resonance (1H NMR) spectra and carbon nuclear magnetic resonance (13C NMR) 

spectra were recorded on Bruker 400 AVANCE spectrometer (400 and 100 MHz, respectively) or Bruker 

500 AVANCE spectrometer (500 and 125 MHz, respectively). Chemical shifts () for protons are 

reported in parts per million (ppm) downfield from tetramethylsilane, and are referenced to proton 

resonance of residual CHCl3 in the NMR solvent (CHCl3:  = 7.27 ppm or DMSO-d6:  = 2.50 ppm). 
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Chemical shifts () for carbon are reported in ppm downfield from tetramethylsilane, and are referenced 

to the carbon resonances of the solvent residual peak (CDCl3:  = 77.23 ppm or DMSO-d6:  = 39.51 

ppm). Fluorine nuclear magnetic resonance (19F NMR) spectra were recorded on a Bruker 400 AVANCE 

spectrometer (376 MHz). 19F NMR chemical shifts () are reported in ppm upfield from 

trichlorofluoromethane (0 ppm). NMR data are represented as follows: chemical shift (ppm), multiplicity 

(s = singlet, d = doublet, t = triplet, q = quartet, p = pent, m = multiplet), coupling constant in Hertz (Hz), 

integration. High-resolution mass determinations were obtained either by electrospray ionization (ESI) on 

a Waters LCT PremierTM mass spectrometer or by atmospheric-pressure chemical ionization (APCI–

hexane/PhMe) on a Waters Q-Tof PremierTM, for which sample plus near mass internal exact mass 

standard were dissolved in hexane, and hexane or PhMe/hexane were used as ionization solvent. Infrared 

spectra were measured at a Shimadzu FTIR-8400S Fourier Transform Infrared Spectrometer. Uncorrected 

melting points were measured on Thomas Hoover Capillary Melting Point apparatus. 

Preparation of Known Compounds 

2-methylbenzyl 2,2-difluoro-3-oxo-3-phenylpropanoate 5.1, 2-methoxybenzyl 2,2-difluoro-3-oxo-3-

phenylpropanoate 5.3a, benzyl 2,2-difluoro-3-oxo-3-phenylpropanoate 5.3h, 3-(trifluoromethyl)benzyl 

2,2-difluoro-3-oxo-3-phenylpropanoate 5.3j, Potassium 2,2-difluoro-3-oxo-3-phenylpropanoate, 

potassium 2,2-difluoro-3-(4-methoxyphenyl)-3-oxopropanoate, potassium 2,2-difluoro-3-(4-

fluorophenyl)-3-oxopropanoate, potassium 2,2-difluoro-3-oxo-3-(3-(trifluoromethyl)phenyl)propanoate 

potassium 2,2-difluoro-3-(5-methylthiophen-2-yl)-3-oxopropanoate, potassium 2,2-difluoro-3-oxo-3-(1-

phenyl-1H-pyrazol-4-yl)propanoate, and potassium 3-cyclohexyl-2,2-difluoro-3-oxopropanoate were 

prepared according to previous reports in our group.1 

General Procedure for Screening Conditions 

An oven-dried 1 dram vial was charged with substrate 5.1 (0.100 mmol), Pd catalysts, ligands (for ligand 

screening), bases (for base screening), a magnetic stir bar, and anhydrous solvents inside the glove box. 

Subsequently, the vial was sealed with a PTFE-lined screw cap, and transferred out of the glove box. The 
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sealed vial was placed on a pre-heated reaction block at the indicated temperature with stirring for 24 h. 

The vial was cooled to rt, and the mixture was diluted with EtOAc (0.5 mL). ,,-Trifluorotoluene (10 

L, 0.0814 mmol) was added as an internal standard, and the reaction mixture was stirred at rt at least 20 

min to ensure thorough mixing. An aliquot was taken from the vial for 19F NMR analysis. 

Initial Screening and Optimization of Reaction Conditions 
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O

O

Ph

O

F F

Ph

O

F F

Me

+

Pd(PPh3)4 (5 mol%)
no base

solvent (0.05 M)
110 °C, 24 hMe Me

Me

solvent 5.2a (%) 5.2b (%) PhCOCF2H (%)

o-xylene

1,4-dioxane

diglyme

0 97 2

butyronitrile

DMA

anisole

42

45

0

7

8

quant.

25

25

0

DMSO

DMF

24

47

6

8

50

27

0 quant. 0

2 87 4

Ph

O

F F

entry

1

2

4

5

6

3

8

7

5.1 5.2a 5.2b

a Yields were determined by 19F NMR using , , -trifluorotoluene as an internal standard.
b Full conversion was observed except for entry 4 (conv. 97%)

PhCOCF2H

Table 2. Solvents Affected Selectivity between Benzylation and Arylationa,b
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O

O

Ph

O

F F
Me

Me

Me
F F

Ph

O
Pd(PPh3)4 (5 mol%)

base (mol%)

toluene (0.05 M)
110 °C, 24 h

Ph

O

F F
Me

base (mol%) 5.2a (%) 5.2b (%)

5.2a 5.2b

+

Na2CO3 (300)

PhCO2K (100)

pyridine (100)

N, N-dimethylaniline (100)

DMAP (100)

N(n-Pr)3 (100)

TMEDA (100)

Et3N (100)

butyronitrile (300)

Et3N (50)

Et3N (25)

Et3N (10)

Et3N (300)

PhONa (100)

quinuclidine (100)

DIPEA (100)

entry

2

3

4

5

6

7

8

11

12

13

9

10

17

14

15

16

0 88 3

0 91 3

0 0 18

2 71 6

4 85 0

54 4 17

0 89 2

69 5 8

12 1 10

12 68 4

58 13 6

70 5 6

69 5 5

65 7 5

63 11 5

49 26 4

Et3N (100)18c 82 (75) 7 6

Table 3. Bases Remarkably Affected Selectivity between Benzylation and Arylationa,b

5.1

-1 0 89 0

PhCOCF2H

PhCOCF2H (%)

a Yields were determined by 19F NMR using , , -trifluorotoluene as an internal standard.
b Full conversion was observed.
c The optimized conditions: 5.1 (0.5 mmol), Pd(PPh3)4 (5 mol%), Et3N (1.0 equiv), 1,4-dioxane (0.05 M),

100 °C, 12 h. 19F NMR yields were determined using , , -trifluorotoluene as an internal standard

(average of two runs). The value in parentheses indicates the isolated yield (average of two runs)
 

Experimental Procedures for Pd-Catalyzed Arylation of ,-Difluoroketone Enolates 

General Procedure A: An oven-dried 20 mL scintillation vial was charged with substrate 5.1, 5.3a–j 

(0.500 mmol), Et3N (70 L, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), and a magnetic stir bar. 

Dry 1,4-dioxane (0.010 L) was added via a syringe. Subsequently, the vial was sealed, transferred out of 

the glove box and placed on a pre-heated reaction block at 100 °C, and stirred for 12 h. The vial was 
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cooled to rt, and the mixture was diluted with EtOAc (1 mL). ,,-Trifluorotoluene (30 L, 0.2443 

mmol) was added as an internal standard, and the reaction mixture was stirred at rt for 15 mins to ensure 

thorough mixing. An aliquot was taken from the vial for 19F NMR analysis. After determining the 19F 

yield, the aliquot was recombined with the reaction mixture. The total reaction mixture was passed 

through a plug of celite, and eluted with EtOAc. Removal of the solvents under reduced pressure and 

chromatographic purification provided the desired product 5.2a and 5.4a–j. 

Experimental Procedures and Characterization of Compounds for Table 5.3 

 

2-(3,4-dimethylphenyl)-2,2-difluoro-1-phenylethanone (5.2a) 

General procedure A was followed using 5.1 (152 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

Et3N (70 L, 0.500 mmol), and 1,4-dioxane (0.010 L). Workup and chromatographic purification (5% to 

15% DCM in hexanes) provided the title compound 5.2a as an off-white solid (100 mg, 77%). 1H NMR 

(CDCl3, 400 MHz)  8.04–8.01 (m, 2 H), 7.61–7.56 (m, 1 H), 7.47–7.42 (m, 2 H), 7.37 (s, 1 H), 7.37–

7.35 (m, 1 H), 7.22 (d, J = 8.0 Hz, 1 H), 2.29 (s, 6 H). 13C NMR (CDCl3, 125 MHz)  189.4 (t, J = 31.2 

Hz), 140.1, 137.6, 134.3, 132.4, 130.7 (t, J = 25.2 Hz), 130.5 (t, J = 2.7 Hz), 130.3, 128.8, 126.8 (t, J = 

5.8 Hz), 123.1 (t, J = 5.9 Hz), 117.2 (t, J = 252.6 Hz), 20.1, 19.9. 19F NMR (CDCl3, 376 MHz)  –97.6 (s, 

2 F). IR (film) 3061, 2924, 1701, 1597, 1580, 1504, 1449, 1300, 1261, 1175, 1126, 918, 851, 826, 723, 

685, 644, 517 cm-1. HRMS (ESI, m/z): calcd for C16H14F2ONa [M+Na]+ 283.0910, found 283.0921. mp 

47–48 °C. 

Experimental Procedures and Characterization of Compounds for Table 5.4 

General Procedure B: An oven-dried one-neck round-bottom flask was charged with aldehyde (14 mmol). 

Methanol (30 mL) was added as solvent, followed by the addition of NaBH4 (21 mmol) as solid portion. 

The reaction mixture was stirred at 0 °C for 30 min. H2O was added to quench the reaction, and methanol 
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was removed under reduced pressure. The aqueous layer was extracted with CH2Cl2 (3 x 20 mL) three 

times and the combined organic phases were dried over anhydrous MgSO4 or Na2SO4, filtered and 

concentrated. The crude product was purified by column chromatography using a gradient of EtOAc / 

hexanes (0% to 30%) for elution to afford the desired benzyl alcohol. 

General Procedure C: An oven-dried one-neck round-bottom flask was charged with potassium 2,2-

difluoro-3-oxo-3-phenylpropanoate (7.2 mmol), and the system was evacuated and backfilled with N2(g) 

three times. Dry CH2Cl2 (35 mL) and DMF (0.19 mL) were added via a syringe, and the reaction mixture 

was cooled to 0 °C. Oxalyl chloride (6.9 mmol) was added dropwise, and then the reaction mixture was 

stirred at 0 °C for 30 min, and rt for 2.5 h. Next, a solution of benzyl alcohol derivative (6.0 mmol) 

dissolved in dry CH2Cl2 (3.0 mL) was added dropwise at 0 °C, followed by dropwise addition of Et3N (12 

mmol). The resulting reaction mixture was stirred at 0 °C for 30 min, and rt for 2.5 h. H2O (10 mL) was 

added to quench the reaction, and the CH2Cl2 was removed under reduced pressure. The aqueous layer 

was extracted with ether (3 x 25 mL), and the combined organic layers were dried over anhydrous MgSO4 

or Na2SO4, filtered, and concentrated. Purification by flash chromatography provided the desired product. 

 

2,2-difluoro-2-(3-methoxy-4-methylphenyl)-1-phenylethanone (5.4a) 

General procedure A was followed using 5.3a (160 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

Et3N (70 L, 0.500 mmol), and 1,4-dioxane (0.010 L). The reaction was run at 110 °C. Workup and 

chromatographic purification (10% to 25% DCM in hexanes) provided the title compound 5.4a as an off-

white solid (100 mg, 72%). 1H NMR (CDCl3, 400 MHz)  8.03 (dt, J = 7.4, 1.1 Hz, 2 H), 7.59 (ddt, J = 

7.9, 6.9, 1.3 Hz, 1 H), 7.47–7.42 (m, 2 H), 7.21 (d, J = 7.6 Hz, 1 H), 7.11 (d, J = 8.0 Hz, 1 H), 7.03 (s, 1 

H), 3.85 (s, 3 H), 2.24 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  189.3 (t, J = 30.6 Hz), 158.2, 134.3, 132.4, 

131.9 (t, J = 25 Hz), 131.1, 130.5 (t, J = 2.5 Hz), 130.3, 128.8, 117.6 (t, J =6.2 Hz), 117.1 (t, J = 251.2 
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Hz), 106.9 (t, J = 5.6 Hz), 55.6, 16.4. 19F NMR (CDCl3, 376 MHz)  –97.6 (s, 2 F). IR (film) 2959, 2938, 

1699, 1597, 1508, 1450, 1410, 1294, 1265, 1223, 1175, 1128, 1047, 918, 849, 822, 712, 687, 656 cm-1. 

HRMS (ESI, m/z): calcd for C16H14F2O2 [M]+ 276.0962, found 276.0952. mp 51–52 °C. 

 

(2-isopropylphenyl)methanol (5.3b-1) 

General procedure B was followed using 2-isopropylbenzaldehyde2 (1.97 g, 13.3 mmol), NaBH4 (0.760 g, 

20.0 mmol), and MeOH (28 mL). Workup and chromatographic purification (10% to 15% EtOAc in 

hexanes) afforded the title compound 5.3b-1 as a colorless oil (1.68 g, 84%). 1H NMR (CDCl3, 400 MHz) 

 7.37–7.29 (m, 3 H), 7.20 (td, J = 7.1, 1.7 Hz, 1 H), 4.77 (d, J = 5.6 Hz, 2 H), 3.28 (hept, J = 6.8 Hz, 1 

H), 1.51 (t, J = 6.0 Hz, 1 H), 1.27 (d, J = 6.8 Hz, 6 H). 13C NMR (CDCl3, 125 MHz)  147.4, 137.5, 128.6, 

128.5, 126.1, 125.7, 63.5, 28.8, 24.2. IR (film) 3342, 2962, 2928, 2870, 1489, 1450, 1385, 1184, 1034, 

1005, 758 cm-1. 

 

2-isopropylbenzyl 2,2-difluoro-3-oxo-3-phenylpropanoate (5.3b) 

General procedure C was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate1 (1.4 g, 6.0 

mmol), oxalyl chloride (0.49 mL, 5.8 mmol), 5.3b-1 (0.75 g, 5.0 mmol), Et3N (1.4 mL, 10 mmol), DMF 

(0.15 mL), and CH2Cl2 (30 mL). Workup and chromatographic purification (2% to 5% EtOAc in hexanes) 

afforded the title compound 5.3b as a colorless oil (1.35 g, 81%). 1H NMR (CDCl3, 400 MHz)  8.04 (dd, 

J = 8.8, 1.2 Hz, 2 H), 7.69–7.64 (m, 1 H), 7.49 (dd, J = 8.4, 7.4 Hz, 2 H), 7.38–7.28 (m, 3 H), 7.17 (ddd, J 

= 7.5, 6.7, 1.9 Hz, 1 H), 5.41 (s, 2 H), 3.09 (hept, J = 6.8 Hz, 1 H), 1.20 (d, J = 6.8 Hz, 12 H). 13C NMR 

(CDCl3, 125 MHz)  185.4 (t, J = 27.5 Hz), 161.9 (t, J = 30.6 Hz), 148.6, 135.3, 131.1 (t, J = 1.9 Hz), 
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130.7, 130.4, 130.1 (t, J = 1.9 Hz), 130.0, 129.1, 126.1, 126.0, 110.0 (t, J = 263.7 Hz), 67.6, 29.2, 24.1. 

19F NMR (CDCl3, 376 MHz)  –107.8 (s, 2 F). IR (film) 3067, 2966, 1774, 1715, 1699, 1599, 1493, 1450, 

1385, 1308, 1257, 1157, 1101, 922, 802, 760, 712, 685 cm-1. HRMS (ESI, m/z): calcd for C19H18F2O3K 

[M+K]+ 371.0861, found 371.0862.  

 

2,2-difluoro-2-(3-isopropyl-4-methylphenyl)-1-phenylethanone (5.4b) 

General procedure A was followed using 5.3b (166 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

Et3N (70 L, 0.500 mmol), and 1,4-dioxane (0.010 L). Workup and chromatographic purification (5% to 

15% DCM in hexanes) provided the title compound 5.4b as a colorless oil (112 mg, 78%). 1H NMR 

(CDCl3, 500 MHz)  8.03 (dt, J = 8.3, 1.2 Hz, 2 H), 7.60–7.57 (m, 1 H), 7.48 (d, J = 2.0 Hz, 1 H), 7.46–

7.42 (m, 2 H), 7.32 (dd, J = 8.0, 2.0 Hz, 1 H), 7.21 (d, J = 8.0 Hz, 1 H), 3.16 (hept, J = 6.9 Hz, 1 H), 2.37 

(s, 3 H), 1.22 (d, J = 6.9 Hz, 6 H). 13C NMR (CDCl3, 125 MHz)  189.5 (t, J = 31.2 Hz), 147.9, 138.6, 

134.3, 132.5, 131.1 (t, J = 25.0 Hz), 130.8, 130.5 (t, J = 2.9 Hz), 128.8, 122.9 (t, J = 5.9 Hz), 122.2 (t, J = 

5.8 Hz), 117.4 (t, J = 252.7 Hz), 29.6, 23.2, 19.5. 19F NMR (CDCl3, 376 MHz)  –97.6 (s, 2 F). IR (film) 

3063, 2965, 1703, 1597, 1499, 1449, 1252, 1221, 1182, 1132, 920, 885, 826, 714, 687 cm-1. HRMS (ESI, 

m/z): calcd for C18H18F2ONa [M+Na]+ 311.1223, found 311.1216. 

 

methyl 2-(((2,2-difluoro-3-oxo-3-phenylpropanoyl)oxy)methyl)benzoate (5.3c) 

General procedure C was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate1 (1.9 g, 7.9 

mmol), oxalyl chloride (0.64 mL, 7.6 mmol), methyl 2-(hydroxymethyl)benzoate3 (1.1 g, 6.6 mmol), Et3N 

(1.8 mL, 13 mmol), DMF (0.20 mL), and CH2Cl2 (40 mL). Workup and chromatographic purification (5% 
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to 10% EtOAc in hexanes) afforded the title compound 5.3c as a colorless oil (1.4 g, 61%). 1H NMR 

(CDCl3, 400 MHz)  8.09 (dt, J = 7.4, 1.0 Hz, 2 H), 8.02 (dd, J = 7.6, 1.2 Hz, 1 H), 7.70–7.66 (m, 1 H), 

7.54–7.49 (m, 3 H), 7.44–7.39 (m, 2 H), 5.78 (s, 2 H), 3.88 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  185.5 

(t, J = 27.5 Hz), 167.0, 161.7 (t, J = 30.6 Hz), 135.8, 135.3, 132.9, 131.3, 131.2, 130.2 (t, J = 2.5 Hz), 

129.2, 128.6 (overlap), 128.5, 110.1 (t, J = 263.1 Hz), 67.6, 52.4. 19F NMR (CDCl3, 376 MHz)  –107.7 

(s, 2 F). IR (film) 3071, 2955, 1778, 1714, 1697, 1599, 1582, 1493, 1450, 1435, 1383, 1306, 1269, 1128, 

1082, 959, 924, 791, 741, 712, 687, 582 cm-1. HRMS (ESI, m/z): calcd for C18H14F2O5Na [M+Na]+ 

371.0707, found 371.0703. 

 

methyl 5-(1,1-difluoro-2-oxo-2-phenylethyl)-2-methylbenzoate (5.4c) 

General procedure A was followed using 5.3c (174 mg, 0.500 mmol), Pd(PPh3)4 (28.9 mg, 0.0250 mmol), 

Et3N (70 L, 0.500 mmol), and 1,4-dioxane (0.010 L). The reaction was run at 120 °C. Workup and 

chromatographic purification (15% to 50% DCM in hexanes) provided the title compound 5.4c as a 

colorless oil (100 mg, 66%; a 11:1 mixture of the arylated to benzylated isomers by 19F NMR analysis). 

1H NMR (CDCl3, 400 MHz)  8.18 (d, J = 2.0 Hz, 1 H), 8.06–8.03 (m, 2 H), 7.64–7.59 (m, 2 H), 7.49–

7.45 (m, 2 H), 7.36 (d, J = 8.0 Hz, 1 H), 3.91 (s, 3 H), 2.65 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  188.9 

(t, J = 31.2 Hz), 167.2, 143.7, 134.6, 132.6, 132.1, 131.0 (t, J = 25.0 Hz), 130.5 (t, J = 3.1 Hz), 130.3, 

129.1 (t, J = 5.6 Hz), 128.9, 128.2 (t, J = 5.6 Hz), 116.8 (t, J = 252.5 Hz), 52.3, 21.9. 19F NMR (CDCl3, 

376 MHz)  –97.9 (s, 2 F). IR (film) 3073, 2953, 1732, 1703, 1597, 1449, 1310, 1267, 1229, 1132, 1084, 

970, 907, 835, 779, 721, 687, 644 cm-1. HRMS (ESI, m/z): calcd for C17H14F2O3Na [M+Na]+ 327.0809, 

found 327.0821. 
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2-(trifluoromethyl)benzyl 2,2-difluoro-3-oxo-3-phenylpropanoate (5.3d) 

General procedure C was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate1 (0.86 g, 3.6 

mmol), oxalyl chloride (0.29 mL, 3.4 mmol), 2-trifluoromethylbenzyl alcohol (0.53 g, 3.0 mmol), Et3N 

(0.83 mL, 6.0 mmol), DMF (93 L), and CH2Cl2 (18 mL). Workup and chromatographic purification (2% 

to 5% EtOAc in hexanes) afforded the title compound 5.3d as a colorless oil (0.70 g, 65%). 1H NMR 

(CDCl3, 400 MHz)  8.09–8.06 (m, 2 H), 7.71–7.66 (m, 2 H), 7.58–7.45 (m, 5 H), 5.54 (s, 2 H). 13C NMR 

(CDCl3, 125 MHz)  185.4 (t, J = 27.5 Hz), 161.7 (t, J = 30.6 Hz), 135.4, 132.5, 132.1, 131.0 (t, J = 1.9 

Hz), 130.3, 130.1 (t, J = 2.5 Hz), 129.2, 129.1, 128.6 (q, J = 30.9 Hz), 126.4 (q, J = 5.4 Hz), 124.1 (q, J = 

272.1 Hz), 110.1 (t, J = 263.7 Hz), 65.4 (q, J = 2.9 Hz). 19F NMR (CDCl3, 376 MHz)  –107.7 (s, 2 F), –

60.4 (s, 3 F). IR (film) 3075, 1780, 1701, 1599, 1450, 1315, 1167, 1121, 1061, 924, 770, 712, 685, 654, 

581 cm-1. HRMS (ESI, m/z): calcd for C17H11F5O3Na [M+Na]+ 381.0526, found 381.0536. 

 

2,2-difluoro-2-(4-methyl-3-(trifluoromethyl)phenyl)-1-phenylethanone (5.4d) 

General procedure A was followed using 5.3d (179 mg, 0.500 mmol), Pd(PPh3)4 (28.9 mg, 0.0250 mmol), 

Et3N (70 L, 0.500 mmol), and 1,4-dioxane (0.010 L). The reaction was run at 100 °C for 18 h. Workup 

and chromatographic purification (5% to 15% DCM in hexanes) provided the title compound 5.4d as a 

colorless oil (131 mg, 83%). 1H NMR (CDCl3, 500 MHz)  8.08–8.06 (m, 2 H), 7.87 (d, J = 1.9 Hz, 1 H), 

7.66–7.62 (m, 2 H), 7.51–7.48 (m, 2 H), 7.41 (d, J = 8.0 Hz, 1 H), 2.54 (s, 3 H). 13C NMR (CDCl3, 125 

MHz)  188.7 (t, J = 31.5 Hz), 140.2 (m), 134.7, 132.7, 132.0, 131.3 (t, J = 25.8 Hz), 130.5 (t, J = 2.8 Hz), 

129.8 (q, J = 30.7 Hz), 129.2 (t, J = 5.8 Hz), 129.0, 124.1 (q, J = 272.5 Hz), 123.5 (h, J = 5.8 Hz), 116.8 (t, 
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J = 254.4 Hz), 19.5 (m). 19F NMR (CDCl3, 376 MHz)  –97.8 (s, 2 F), –62.5 (s, 3 F). IR (film) 3075, 

2940, 1705, 1624, 1597, 1504, 1450, 1327, 1236, 1211, 1175, 1130, 1059, 1026, 905, 833, 806, 716, 687, 

673, 613 cm-1. HRMS (ESI, m/z): calcd for C16H12F5O [M+H]+ 315.0808, found 315.0800. 

 

[1,1'-biphenyl]-2-ylmethanol (5.3e-1) 

Compound 5.3e-1 was prepared from a known procedure4 using 2-phenylbenzoic acid (2.0 g, 10 mmol), 

LAH (0.76 g, 20 mmol), and THF (50 mL) under refluxing. Workup and chromatographic purification 

(10% to 15% EtOAc in hexanes) provided the title compound 5.3e-1 as an off-white solid (1.37 g, 74%). 

1H NMR (CDCl3, 400 MHz)  7.57 (dd, J = 7.2, 2.0 Hz, 1 H), 7.46–7.35 (m, 7 H), 7.30 (dd, J = 7.0, 1.8 

Hz, 1 H), 4.64 (d, J = 6.0 Hz, 2 H), 1.57 (t, J = 5.8 Hz, 1 H). Spectroscopic data matched that from the 

previous report.5 mp 43–44 °C (lit. 44 °C).6 

O

O O

F F
Ph

5.3e

 

[1,1'-biphenyl]-2-ylmethyl 2,2-difluoro-3-oxo-3-phenylpropanoate (5.3e) 

General procedure C was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate1 (1.3 g, 5.4 

mmol), oxalyl chloride (0.44 mL, 5.2 mmol), 5.3e-1 (0.83 g, 4.5 mmol), Et3N (1.2 mL, 9.0 mmol), DMF 

(0.14 mL), and CH2Cl2 (30 mL). Workup and chromatographic purification (2% to 5% EtOAc in hexanes) 

afforded the title compound 5.3e as a colorless oil (1.45 g, 88%). 1H NMR (CDCl3, 400 MHz)  8.06 (dd, 

J = 8.4, 1.6 Hz, 2 H), 7.71–7.66 (m, 1 H), 7.51 (t, J = 7.8 Hz, 2 H), 7.46–7.26 (m, 9 H), 5.26 (s, 2 H). 13C 

NMR (CDCl3, 125 MHz)  185.4 (t, J = 26.9 Hz), 161.7 (t, J = 30.6 Hz), 143.0, 140.0, 135.3, 131.2 

(overlap), 130.4, 130.2, 130.1 (t, J = 2.5 Hz), 129.3, 129.2 (overlap), 128.5, 127.9, 127.7, 110.0 (t, J = 

263.7 Hz), 67.5. 19F NMR (CDCl3, 376 MHz)  –107.8 (s, 2 F). IR (film) 3063, 3028, 1771, 1715, 1699, 
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1599, 1481, 1450, 1381, 1312, 1099, 1011, 922, 802, 746, 704, 685, 582 cm-1. HRMS (ESI, m/z): calcd 

for C22H16F2O3Na [M+Na]+ 389.0965, found 389.0979. 

F F
Ph

O
Me

Ph

5.4e

 

2,2-difluoro-2-(6-methyl-[1,1'-biphenyl]-3-yl)-1-phenylethanone (5.4e) 

General procedure A was followed using 5.3e (183 mg, 0.500 mmol), Pd(PPh3)4 (28.9 mg, 0.0250 mmol), 

Et3N (70 L, 0.500 mmol), and 1,4-dioxane (0.010 L). The reaction was run at 100 °C for 24 h. Workup 

and chromatographic purification (5% to 25% DCM in hexanes) provided the title compound 5.4e as a 

colorless oil (86 mg, 53%). 1H NMR (CDCl3, 400 MHz)  8.09–8.07 (m, 2 H), 7.63–7.59 (m, 1 H), 7.54–

7.37 (m, 8 H), 7.34–7.31 (m, 2 H), 2.33 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  189.2 (t, J = 31.2 Hz), 

142.7, 140.9, 138.9 (t, J = 2.5 Hz), 134.4, 132.4, 131.1, 130.9 (t, J = 25 Hz), 130.5 (t, J = 2.5 Hz), 129.3, 

128.8, 128.4, 127.5, 127.1 (t, J = 5.6 Hz), 124.6 (t, J = 6.2 Hz), 117.2 (t, J = 251.2 Hz), 20.7. 19F NMR 

(CDCl3, 376 MHz)  –97.6 (s, 2 F). IR (film) 3059, 3028, 1703, 1597, 1489, 1449, 1267, 1227, 1128, 

1105, 899, 827, 770, 702, 687 cm-1. HRMS (ESI, m/z): calcd for C21H17F2O [M+H]+ 323.1247, found 

323.1244. 

 

(2-(methylthio)phenyl)methanol (5.3f-1) 

Compound 5.3f-1 was prepared from a known procedure4 using 2-(methylthio)benzoic acid (1.3 g, 8.0 

mmol), LAH (0.61 g, 16 mmol), and THF (40 mL). Workup and chromatographic purification (10% to 15% 

EtOAc in hexanes) provided the title compound 5.3f-1 as a colorless oil (1.1 g, 89%). 1H NMR (CDCl3, 

400 MHz)  7.39 (d, J = 7.6 Hz, 1 H), 7.33–7.27 (m, 2 H), 7.22–7.18 (m, 1 H), 4.77 (s, 2 H), 2.50 (s, 3 H), 



 

265 
 

2.13 (br, 1 H). Spectroscopic data matched that from the previous report.4 HRMS (ESI, m/z): calcd for 

C8H9OS [M-H]+ 153.0374, found 153.0369. 

O

O O

F F
SMe

5.3f
 

2-(methylthio)benzyl 2,2-difluoro-3-oxo-3-phenylpropanoate (5.3f) 

General procedure C was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate1 (1.8 g, 7.8 

mmol), oxalyl chloride (0.63 mL, 7.5 mmol), 5.3f-1 (1.0 g, 6.5 mmol), Et3N (1.8 mL, 13 mmol), DMF 

(0.20 mL), and CH2Cl2 (38 mL). Workup and chromatographic purification (2% to 5% EtOAc in hexanes) 

afforded the title compound 5.3f as a colorless oil (1.74 g, 80%). 1H NMR (CDCl3, 400 MHz)  8.06 (dt, 

J = 7.6, 1.1 Hz, 2 H), 7.66 (tt, J = 7.6, 1.4 Hz, 1 H), 7.52–7.47 (m, 2 H), 7.35–7.28 (m, 3 H), 7.18–7.14 (m, 

1 H), 5.46 (s, 2 H), 2.43 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  185.3 (t, J = 26.9 Hz), 161.8 (t, J = 30.6 

Hz), 138.7, 135.2, 132.2, 131.2, 130.1 (t, J = 2.5 Hz), 129.8 (overlap), 129.1, 127.5, 125.7, 109.9 (t, J = 

263.1 Hz), 67.4, 16.7. 19F NMR (CDCl3, 376 MHz)  –107.8 (s, 2 F). IR (film) 3065, 2924, 1778, 1770, 

1713, 1697, 1597, 1472, 1450, 1381, 1310, 1256, 1157, 1101, 1080, 922, 800, 750, 712, 685, 582 cm-1. 

HRMS (ESI, m/z): calcd for C17H14F2O3SNa [M+Na]+ 359.0529, found 359.0542. 

 

2,2-difluoro-2-(4-methyl-3-(methylthio)phenyl)-1-phenylethanone (5.4f) 

General procedure A was followed using 5.3f (168 mg, 0.500 mmol), Pd(PPh3)4 (28.9 mg, 0.0250 mmol), 

Et3N (70 L, 0.500 mmol), and 1,4-dioxane (0.010 L). The reaction was run at 120 °C for 24 h. Workup 

and chromatographic purification (5% to 15% DCM in hexanes) provided the title compound 5.4f as an 

off-white solid (90 mg, 62%). 1H NMR (CDCl3, 500 MHz)  8.03 (d, J = 8.1 Hz, 2 H), 7.62–7.58 (m, 1 

H), 7.47–7.44 (m, 2 H), 7.34 (d, J = 1.8 Hz, 1 H), 7.29 (d, J = 8.0 Hz, 1 H), 7.22 (d, J = 8.0 Hz, 1 H), 2.48 
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(s, 3 H), 2.35 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  189.2 (t, J = 31.1 Hz), 139.5, 138.7, 134.3, 132.3, 

131.6 (t, J = 25.0 Hz), 130.5 (t, J = 2.8 Hz), 130.2, 128.9, 121.7 (t, J = 6.0 Hz), 121.0 (t, J = 6.0 Hz), 

117.1 (t, J = 253.3 Hz), 20.1, 15.2. 19F NMR (CDCl3, 376 MHz)  –97.8 (s, 2 F). IR (film) 3063, 2922, 

1703, 1597, 1449, 1393, 1267, 1242, 1130, 1105, 1036, 908, 824, 721, 685, 644 cm-1. HRMS (ESI, m/z): 

calcd for C16H15F2OS [M+H]+ 293.0812, found 293.0801. mp 46–47 °C. 

 

(2-(phenylthio)phenyl)methanol (5.3g-1) 

Compound 5.3g-1 was prepared from a known procedure4 using 2-(phenylthio)benzoic acid7 (3.0 g, 13 

mmol), LAH (1.0 g, 27 mmol), and THF (65 mL). Workup and chromatographic purification (10% to 15% 

EtOAc in hexanes) provided the title compound 5.3g-1 as an off-white solid (2.5 g, 88%). 1H NMR 

(CDCl3, 400 MHz)  7.54–7.51 (m, 1 H), 7.40–7.34 (m, 2 H), 7.31–7.26 (m, 3 H), 7.24–7.19 (m, 3 H), 

4.79 (d, J = 6.4 Hz, 2 H), 2.06 (t, J = 6.4 Hz, 1 H). Spectroscopic data matched that from the previous 

report.8 HRMS (ESI, m/z): calcd for C13H12OS [M]+ 216.0609, found 216.0602. mp 43–44 °C (lit. 44 °C). 

 

2-(phenylthio)benzyl 2,2-difluoro-3-oxo-3-phenylpropanoate (5.3g) 

General procedure C was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate1 (0.95 g, 4.0 

mmol), oxalyl chloride (0.32 mL, 3.8 mmol), 5.3g-1 (0.71 g, 3.3 mmol), Et3N (0.92 mL, 6.6 mmol), DMF 

(0.10 mL), and CH2Cl2 (20 mL). Workup and chromatographic purification (2% to 5% EtOAc in hexanes) 

afforded the title compound 5.3g as a colorless oil (0.93 g, 71%). 1H NMR (CDCl3, 400 MHz)  8.06 (d, J 

= 7.6 Hz, 2 H), 7.69–7.64 (m, 1 H), 7.50 (t, J = 8.0 Hz, 2 H), 7.41–7.17 (m, 9 H), 5.51 (s, 2 H). 13C NMR 

(CDCl3, 125 MHz)  185.3 (t, J = 27.5 Hz), 161.7 (t, J = 30.6 Hz), 135.7, 135.4, 135.3, 134.7, 134.0, 
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131.2, 130.2, 130.1, 129.9, 129.7, 129.5, 129.1, 128.4, 127.1, 110.0 (t, J = 263.7 Hz), 67.3. 19F NMR 

(CDCl3, 376 MHz)  –107.8 (s, 2 F). IR (film) 3063, 1776, 1713, 1697, 1597, 1581, 1477, 1450, 1441, 

1377, 1308, 1256, 1157, 1099, 1024, 924, 800, 746, 712, 687, 582 cm-1. HRMS (ESI, m/z): calcd for 

C22H16F2O3SNa [M+Na]+ 421.0686, found 421.0688. 

 

2,2-difluoro-2-(4-methyl-3-(phenylthio)phenyl)-1-phenylethanone (5.4g) 

General procedure A was followed using 5.3g (199 mg, 0.500 mmol), Pd(PPh3)4 (28.9 mg, 0.0250 mmol), 

Et3N (70 L, 0.500 mmol), and 1,4-dioxane (5.0 mL). The reaction was run at 120 °C for 24 h. Workup 

and chromatographic purification (5% to 15% DCM in hexanes) provided the title compound 5.4g as a 

colorless oil (103 mg, 58%; a 10:1 mixture of the arylated to benzylated isomers by 19F NMR analysis). 

1H NMR (CDCl3, 400 MHz)  7.98–7.95 (m, 2 H), 7.62–7.57 (m, 1 H), 7.45–7.39 (m, 4 H), 7.33–7.26 (m, 

4 H), 7.24–7.21 (m, 2 H), 2.41 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  188.8 (t, J = 31.2 Hz), 142.3, 

136.2, 134.5, 134.4, 132.1, 131.8 (t, J = 25.0 Hz), 131.1, 130.9, 130.4 (t, J = 2.5 Hz), 129.6, 128.8 

(overlap), 127.4, 124.7 (t, J = 5.6 Hz), 116.8 (t, J = 252.5 Hz), 20.7. 19F NMR (CDCl3, 376 MHz)  –98.0 

(s, 2 F). IR (film) 3061, 2922, 1713, 1699, 1597, 1582, 1476, 1449, 1387, 1242, 1130, 1024, 908, 824, 

721, 687 cm-1. HRMS (ESI, m/z): calcd for C21H17F2OS [M+H]+ 355.0968, found 355.0954. 

 

2,2-difluoro-1-phenyl-2-(p-tolyl)ethanone (5.4h) 

General procedure A was followed using 5.3h (145 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

Et3N (70 L, 0.500 mmol), and 1,4-dioxane (0.010 L). The reaction was run at 100 °C for 24 h. Workup 

and chromatographic purification (0% to 10% DCM in hexanes) provided the title compound 5.4h as a 
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colorless oil (72 mg, 58%). 1H NMR (CDCl3, 400 MHz)  8.04–8.02 (m, 2 H), 7.61–7.57 (m, 1 H), 7.51 

(d, J = 8.0 Hz, 2 H), 7.47–7.42 (m, 2 H), 7.27 (d, J = 8.0 Hz, 2 H), 2.39 (s, 3 H). 13C NMR (CDCl3, 150 

MHz)  189.3 (t, J = 30.9 Hz), 141.4, 134.3, 132.4, 130.5 (t, J = 2.9 Hz), 129.7, 128.8, 125.7 (t, J = 6.0 

Hz), 117.3 (t, J = 252.6 Hz), 21.5. 19F NMR (CDCl3, 376 MHz)  –97.7 (s, 2 F). IR (film) 3063, 2926, 

1699, 1597, 1448, 1259, 1186, 1122, 1095, 1007, 897, 822, 781, 725, 687, 627, 586, 542 cm-1. HRMS 

(ESI, m/z): calcd for C15H13F2O [M+H]+ 247.0934, found 247.0927. 

 

3-methoxybenzyl 2,2-difluoro-3-oxo-3-phenylpropanoate (5.3i) 

General procedure C was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate1 (2.0 g, 8.4 

mmol), oxalyl chloride (0.69 mL, 8.1 mmol), 3-methoxybenzyl alcohol (0.97 g, 7.0 mmol), Et3N (1.9 mL, 

14 mmol), DMF (0.22 mL), and CH2Cl2 (42 mL). Workup and chromatographic purification (2% to 5% 

EtOAc in hexanes) afforded the title compound 5.3i as a colorless oil (1.6 g, 71%). 1H NMR (CDCl3, 400 

MHz)  8.06–8.03 (m, 2 H), 7.69–7.65 (m, 1 H), 7.52–7.47 (m, 2 H), 7.25 (t, J = 7.8 Hz, 1 H), 6.90–6.86 

(m, 2 H), 6.85–6.84 (m, 1 H), 5.32 (s, 2 H), 3.79 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  185.4 (t, J = 

27.5 Hz), 161.9 (t, J = 30.6 Hz), 159.9, 135.4, 135.3, 131.1 (t, J = 1.9 Hz), 130.1 (t, J = 2.5 Hz), 130.0, 

129.2, 120.7, 114.8, 113.8, 110.0 (t, J = 263.7 Hz), 69.1, 55.4. 19F NMR (CDCl3, 376 MHz)  –107.9 (s, 2 

F). IR (film) 2963, 2839, 1778, 1715, 1697, 1599, 1489, 1454, 1379, 1310, 1267, 1126, 916, 783, 685, 

582 cm-1. HRMS (ESI, m/z): calcd for C17H14F2O4Na [M+Na]+ 343.0758, found 343.0766. 

 

22,2-difluoro-2-(2-methoxy-4-methylphenyl)-1-phenylethanone (5.4i) 
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General procedure A was followed using 5.3i (160 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

Et3N (70 L, 0.500 mmol), and 1,4-dioxane (0.010 L). The reaction was run at 100 °C for 24 h. Workup 

and chromatographic purification (2% to 4% EtOAc in hexanes) provided the title compound 5.4i as an 

off-white solid (73 mg, 53%). 1H NMR (CDCl3, 400 MHz)  7.97–7.94 (m, 2 H), 7.68 (d, J = 7.6 Hz, 1 

H), 7.57–7.52 (m, 1 H), 7.42–7.38 (m, 2 H), 6.93 (d, J = 7.6 Hz, 1 H), 6.67 (s, 1 H), 3.58 (s, 3 H), 2.38 (s, 

3 H). 13C NMR (CDCl3, 150 MHz)  188.6 (t, J = 30.0 Hz), 156.7 (t, J = 5.3 Hz), 143.3, 133.6, 133.1, 

129.7 (t, J = 2.2 Hz), 128.5, 126.3 (t, J = 6.8 Hz), 121.9, 120.6 (t, J = 24.1 Hz), 115.4 (t, J = 250.3 Hz), 

112.8, 55.6, 22.0. 19F NMR (CDCl3, 376 MHz)  –97.9 (s, 2 F). IR (film) 2939, 1716, 1614, 1585, 1508, 

1464, 1414, 1284, 1238, 1167, 1148, 1121, 1038, 1005, 928, 901, 862, 816, 717, 690, 646, 604 cm-1. 

HRMS (ESI, m/z): calcd for C16H14F2O2Na [M+Na]+ 299.0860, found 299.0858. mp 53–54 °C. 

 

2,2-difluoro-2-(4-methyl-2-(trifluoromethyl)phenyl)-1-phenylethanone (5.4j) 

General procedure A was followed using 5.3j (179 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

Et3N (70 L, 0.500 mmol), and 1,4-dioxane (0.010 L). The reaction was run at 100 °C for 24 h. Workup 

and chromatographic purification (0% to 10% DCM in hexanes) provided the title compound 5.4j as a 

colorless oil (40 mg, 25%; a 11:1 mixture of the arylated to benzylated isomers by 19F NMR analysis). 1H 

NMR (CDCl3, 400 MHz)  8.17–8.14 (m, 2 H), 7.70–7.64 (m, 2 H), 7.63 (s, 1 H), 7.55–7.51 (m, 2 H), 

7.49 (d, J = 7.2 Hz, 1 H), 2.49 (s, 3 H). 13C NMR (CDCl3, 150 MHz)  188.8 (t, J = 33.0 Hz), 141.7, 

134.4, 132.5, 132.2 (t, J = 3.0 Hz), 130.4 (t, J = 2.5 Hz), 128.9, 128.5 (q, J = 5.4 Hz), 128.3 (t, J = 9.8 Hz), 

123.7 (q, J = 272.0 Hz), 117.6 (t, J = 256.9 Hz), 21.4. (Two set of peaks buried between 128.6 and 128.2 

ppm). 19F NMR (CDCl3, 376 MHz)  –94.1 (q, J = 11.3 Hz, 2 F), –58.6 (t, J = 11.3 Hz, 3 F) for the 

arylated isomer;  –99.0 (t, J = 17.6 Hz, 2 F), –63.2 (s, 3 F) for the benzylated isomer. IR (film) 3072, 
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2928, 1701, 1599, 1450, 1315, 1277, 1240, 1136, 1074, 893, 854, 820, 717, 692, 650 cm-1. HRMS (ESI, 

m/z): calcd for C16H12F5O [M+H]+ 315.0808, found 315.0787. 

Experimental Procedures and Characterization of Compounds for Table 5.5 

 

2-(trifluoromethyl)benzyl 2,2-difluoro-3-(4-fluorophenyl)-3-oxopropanoate (5.5a) 

General procedure C was followed using potassium 2,2-difluoro-3-(4-fluorophenyl)-3-oxopropanoate1 

(1.1 g, 4.2 mmol), oxalyl chloride (0.34 mL, 4.0 mmol), 2-trifluoromethylbenzyl alcohol (0.62 g, 3.5 

mmol), Et3N (0.97 mL, 7.0 mmol), DMF (0.11 mL), and CH2Cl2 (21 mL). Workup and chromatographic 

purification (2% to 5% EtOAc in hexanes) or (15% to 30% DCM in hexanes) afforded the title compound 

5.5a as a colorless oil (0.76 g, 58%). 1H NMR (CDCl3, 400 MHz)  8.12 (ddt, J = 7.5, 5.3, 1.1 Hz, 2 H), 

7.69 (d, J = 8.0 Hz, 1 H), 7.60–7.52 (m, 2 H), 7.48 (t, J = 7.6 Hz, 1 H), 7.21–7.16 (m, 2 H), 5.54 (s, 2 H). 

13C NMR (CDCl3, 125 MHz)  184.0 (t, J = 27.5 Hz), 167.1 (d, J = 258.7 Hz), 161.5 (t, J = 30.6 Hz), 

133.2 (dt, J = 9.6, 3.1 Hz), 132.5, 132.0, 130.5, 129.2, 128.7 (q, J = 30.8 Hz), 127.5 (q, J = 2.5 Hz), 126.5 

(q, J = 5.4 Hz), 124.1 (q, J = 272.1 Hz), 116.6 (d, J = 22.5 Hz), 110.1 (t, J = 263.7 Hz), 65.5 (q, J = 2.5 

Hz). 19F NMR (CDCl3, 376 MHz)  –107.6 (s, 2 F), –100.7 (m, 1 F), –60.4 (s, 3 F). IR (film) 3082, 1778, 

1697, 1599, 1510, 1456, 1416, 1315, 1244, 1123, 1040, 926, 851, 768, 654, 613, 571 cm-1. HRMS (ESI, 

m/z): calcd for C17H11F6O3 [M+H]+ 377.0612, found 377.0606. 

 

2,2-difluoro-1-(4-fluorophenyl)-2-(4-methyl-3-(trifluoromethyl)phenyl)ethanone (5.6a) 

General procedure A was followed using 5.5a (188 mg, 0.500 mmol), Pd(PPh3)4 (28.9 mg, 0.0250 mmol), 

Et3N (70 L, 0.500 mmol), and 1,4-dioxane (0.010 L). The reaction was run at 100 °C for 18 h. Workup 
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and chromatographic purification (5% to 10% DCM in hexanes) provided the title compound 5.6a as a 

colorless oil (132 mg, 79%). 1H NMR (CDCl3, 400 MHz)  8.14–8.10 (m, 2 H), 7.84 (s, 1 H), 7.63 (d, J = 

8.0 Hz, 1 H), 7.41 (d, J = 8.0 Hz, 1 H), 7.20–7.14 (m, 2 H), 2.55 (s, 3 H). 13C NMR (CDCl3, 125 MHz)  

187.2 (t, J = 31.9 Hz), 166.7 (d, J = 256.2 Hz), 140.3 (m), 133.4 (dt, J = 10.0, 3.1 Hz), 132.7, 131.0 (t, J = 

25.0 Hz), 129.8 (q, J = 30.4 Hz), 129.2 (t, J = 5.6 Hz), 128.4 (q, J = 2.5 Hz), 124.1 (q, J = 272.5 Hz), 

123.5 (h, J = 5.7 Hz), 116.8 (t, J = 253.1 Hz), 116.4 (d, J = 22.5 Hz), 19.5. 19F NMR (CDCl3, 376 MHz)  

–102.1 (m, 1 F), –97.6 (s, 2 F), –62.5 (s, 3 F). IR (film) 3084, 2941, 1705, 1601, 1508, 1414, 1327, 1285, 

1238, 1175, 1130, 1059, 908, 853, 791, 766, 669, 604 cm-1. HRMS (ESI, m/z): calcd for C16H11F6O 

[M+H]+ 333.0714, found 333.0711. 

 

2-(trifluoromethyl)benzyl 2,2-difluoro-3-(5-methylthiophen-2-yl)-3-oxopropanoate (5.5b) 

General procedure C was followed using potassium potassium 2,2-difluoro-3-(5-methylthiophen-2-yl)-3-

oxopropanoate1 (1.5 g, 6.0 mmol), oxalyl chloride (0.49 mL, 5.8 mmol), 2-trifluoromethylbenzyl alcohol 

(0.88 g, 5.0 mmol), Et3N (1.4 mL, 10 mmol), DMF (0.15 mL), and CH2Cl2 (30 mL). Workup and 

chromatographic purification (2% to 5% EtOAc in hexanes) afforded the title compound 5.5b as a yellow 

oil (1.3 g, 69%). 1H NMR (CDCl3, 400 MHz)  7.86–7.85 (m, 1 H), 7.69 (d, J = 8.0 Hz, 1 H), 7.59–7.52 

(m, 2 H), 7.47 (t, J = 7.8 Hz, 1 H), 6.89 (dd, J = 4.0, 1.2 Hz, 1 H), 5.54 (s, 2 H), 2.59 (s, 3 H). 13C NMR 

(CDCl3, 125 MHz)  177.8 (t, J = 28.7 Hz), 161.5 (t, J = 31.2 Hz), 154.8, 137.5 (t, J = 5.0 Hz), 135.1, 

132.5, 132.2, 130.1, 129.0, 128.5 (q, J = 31.2 Hz), 128.2, 126.4 (q, J = 5.8 Hz), 124.1 (q, J = 271.6 Hz), 

109.8 (t, J = 263.7 Hz), 65.3 (q, J = 2.7 Hz), 16.4. 19F NMR (CDCl3, 376 MHz)  –108.2 (s, 2 F), –60.5 (s, 

3 F). IR (film) 3078, 2926, 1778, 1682, 1666, 1447, 1315, 1171, 1124, 1040, 935, 812, 770, 675, 654, 582 

cm-1. HRMS (ESI, m/z): calcd for C16H11F5O3SNa [M+Na]+ 401.0247, found 401.0252. 
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2,2-difluoro-2-(4-methyl-3-(trifluoromethyl)phenyl)-1-(5-methylthiophen-2-yl)ethanone (5.6b) 

General procedure A was followed using 5.5b (189 mg, 0.500 mmol), Pd(PPh3)4 (28.9 mg, 0.0250 mmol), 

Et3N (70 L, 0.500 mmol), and 1,4-dioxane (0.010 L). The reaction was run at 100 °C for 18 h. Workup 

and chromatographic purification (5% to 15% DCM in hexanes) provided the title compound 5.6b as an 

off-white solid (134 mg, 80%). 1H NMR (CDCl3, 400 MHz)  7.87 (s, 1 H), 7.84–7.83 (m, 1 H), 7.68 (d, 

J = 8.0 Hz, 1 H), 7.39 (d, J = 8.0 Hz, 1 H), 6.87 (dd, J = 4.0, 1.2 Hz, 1 H), 2.57 (s, 3 H), 2.52 (s, 3 H). 13C 

NMR (CDCl3, 125 MHz)  181.4 (t, J = 31.9 Hz), 153.8, 140.1 (m), 137.1 (t, J = 5.0 Hz), 135.8, 132.6, 

131.3 (t, J = 25.6 Hz), 129.7 (q, J = 30.4 Hz), 129.2 (t, J = 6.2 Hz), 128.0, 124.1 (q, J = 272.1 Hz), 123.5 

(h, J = 6.0 Hz), 116.3 (t, J = 252.5 Hz), 19.5 (m), 16.3. 19F NMR (CDCl3, 376 MHz)  –99.4 (s, 2 F), –

62.5 (s, 3 F). IR (film) 2928, 1672, 1624, 1445, 1327, 1285, 1238, 1211, 1175, 1126, 1059, 910, 860, 816, 

773, 739, 683, 608 cm-1. HRMS (ESI, m/z): calcd for C15H12F5OS [M+H]+ 335.0529, found 335.0520. mp 

44–45 °C. 

 

2-(trifluoromethyl)benzyl 3-cyclohexyl-2,2-difluoro-3-oxopropanoate (5.5c) 

General procedure C was followed using potassium potassium 3-cyclohexyl-2,2-difluoro-3-

oxopropanoate 1 (1.8 g, 7.2 mmol), oxalyl chloride (0.58 mL, 6.9 mmol), 2-trifluoromethylbenzyl alcohol 

(1.1 g, 6.0 mmol), Et3N (1.7 mL, 12 mmol), DMF (0.19 mL), and CH2Cl2 (36 mL). Workup and 

chromatographic purification (2% to 5% EtOAc in hexanes) or (15% to 30% DCM in hexanes) afforded 

the title compound 5.5c as a colorless oil (0.83 g, 38%). 1H NMR (CDCl3, 400 MHz)  7.72 (d, J = 8.0 Hz, 

1 H), 7.63–7.54 (m, 2 H), 7.50 (t, J = 7.6 Hz, 1 H), 2.93–2.86 (m, 1 H), 1.90–1.77 (m, 4 H), 1.72–1.67 (m, 
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1 H), 1.45–1.19 (m, 5 H), 5.51 (s, 2 H). 13C NMR (CDCl3, 125 MHz)  200.2 (t, J = 26.9 Hz), 161.5 (t, J 

= 30.6 Hz), 132.5, 132.1, 130.5, 129.2, 128.8 (q, J = 30.8 Hz), 126.5 (q, J = 5.4 Hz), 124.1 (q, J = 272.5 

Hz), 108.8 (t, J = 264.4 Hz), 65.3 (q, J = 2.9 Hz), 45.5, 28.2, 25.6, 25.4. 19F NMR (CDCl3, 376 MHz)  –

113.2 (s, 2 F), –60.4 (s, 3 F). IR (film) 2938, 2860, 1782, 1738, 1611, 1587, 1452, 1315, 1175, 1123, 

1061, 1040, 959, 770, 654 cm-1. HRMS (ESI, m/z): calcd for C17H17F5O3Na [M+Na]+ 387.0996, found 

387.1014. 

 

1-cyclohexyl-2,2-difluoro-2-(4-methyl-3-(trifluoromethyl)phenyl)ethanone (5.6c) 

General procedure A was followed using 5.5c (182 mg, 0.500 mmol), Pd(PPh3)4 (28.9 mg, 0.0250 mmol), 

Et3N (70 L, 0.500 mmol), and 1,4-dioxane (0.010 L). The reaction was run at 100 °C for 24 h. Workup 

and chromatographic purification (0% to 1% DCM in hexanes) provided the title compound 5.6c as a 

colorless oil (118 mg, 74%). 1H NMR (CDCl3, 400 MHz)  7.78 (s, 1 H), 7.59 (dd, J = 7.6, 1.6 Hz, 1 H), 

7.39 (d, J = 8.0 Hz, 1 H), 2.95–2.88 (m, 1 H), 2.54 (s, 3 H), 1.81–1.75 (m, 4 H), 1.71–1.67 (m, 1 H), 

1.43–1.19 (m, 5 H). 13C NMR (CDCl3, 125 MHz)  202.8 (t, J = 30.6 Hz), 140.1, 132.6, 130.6 (t, J = 26.2 

Hz), 129.7 (q, J = 30.4 Hz), 129.2 (t, J = 6.2 Hz), 124.1 (q, J = 272.5 Hz), 123.4 (h, J = 5.9 Hz), 115.7 (t, 

J = 253.7 Hz), 45.3, 28.8, 25.7, 25.5, 19.5 (m). 19F NMR (CDCl3, 376 MHz)  –105.6 (s, 2 F), –62.5 (s, 3 

F). IR (film) 2938, 2860, 1738, 1624, 1452, 1327, 1287, 1240, 1175, 1128, 1059, 947, 908, 841, 829, 752, 

681 cm-1. HRMS (ESI, m/z): calcd for C16H18F5O [M+H]+ 321.1278, found 321.1267. 
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Preparation of Deuterium-Labeled Probe 5.7 

 

4-bromo-2-isopropylaniline (5.7-5) 

Compound 5.7-5 was prepared from a previously reported procedure9 using 2-isopropylaniline (8.5 mL, 

60 mmol), NBS (12g, 66 mmol), NH4OAc (0.46 g, 6.0 mmol), and CH3CN (0.24 L). Workup and 

chromatographic purification (5% to 10% EtOAc in hexanes) provided the title compound 5.7-5 as a 

brown oil (12 g, 93%). 1H NMR (CDCl3, 400 MHz)  7.22 (d, J = 2.4 Hz, 1 H), 7.11 (dd, J = 8.4, 2.4 Hz, 

1 H), 6.56 (d, J = 8.4 Hz, 1 H), 3.65 (br, 2 H), 2.85 (hept, J = 6.8 Hz, 1 H), 1.25 (d, J = 6.8 Hz, 6 H). 

Spectroscopic data matched that from the previous report.9 HRMS (ESI, m/z): calcd for C9H13BrN 

[M+H]+ 214.0231, found 214.0239.  

4-bromo-1-iodo-2-isopropylbenzene (5.7-4) 

Compound 5.7-4 was prepared from a known procedure10 using compound 5.7-5 (6.0 g, 28 mmol), H2SO4 

(47 mL), CH3CN (31 mL), NaNO2 (3.5 g, 50 mmol), KI (16 g, 98 mmol), and water (0.12 L; 45 mL for 

dilution of H2SO4, 30 mL for solution of NaNO2, and 45 mL for solution of KI ). Workup followed by 

decolorization using Na2S2O3 (sat’d), and chromatographic purification (hexanes) provided the title 

compound 5.7-4 as an orange oil (8.9 g, 98%). 1H NMR (CDCl3, 400 MHz)  7.67 (d, J = 8.4 Hz, 1 H), 

7.35 (d, J = 2.4 Hz, 1 H), 7.02 (dd, J = 8.0, 2.4 Hz, 1 H), 3.14 (hept, J = 6.8 Hz, 1 H), 1.23 (d, J = 6.8 Hz, 
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6 H). Spectroscopic data matched that from the previous report.9 HRMS (ESI, m/z): calcd for C9H10BrI 

[M]+ 323.9011, found 323.9007. 

4-bromo-2-isopropylbenzaldehyde (5.7-3) 

Compound 5.7-3 was prepared from a previously reported procedure using a slight modification.11 Under 

an atmosphere of nitrogen, a solution of isopropylmagnesium chloride (2.0 M in THF, 57.5 mL, 115 

mmol) was added dropwise to a solution of compound 5.7-4 (7.50 g, 23.0 mmol) in THF (80 mL) through 

an addition funnel at –15 °C. After stirring at –15 °C for 30 min, DMF (11.0 mL, 138 mmol) was added 

dropwise by an addition funnel, and then the mixture was stirred at –15 °C for another 2 h. Subsequently, 

the reaction mixture was gradually warmed to rt, and was continually stirred at rt for another 2 hr. Next, 

the resulting reaction mixture was added with 1N HCl(aq) at 0 °C until the solid formed in the reaction 

mixture dissolved. The two phases were transferred to a separation funnel, and the aqueous layer was 

extracted with EtOAc (3 x 100 mL). The combined organic phases were dried over anhydrous Na2SO4, 

filtered, and concentrated. The crude product was purified by column chromatography using a gradient of 

EtOAc / hexanes (0% to 5%) for elution, and the product was dried by a rotatory evaporator (not high 

vacuum) to provide the compound 5.7-3 as a yellow oil (5.1 g, 98%). 1H NMR (CDCl3, 400 MHz)  

10.32 (s, 1 H), 7.69 (d, J = 8.4 Hz, 1 H), 7.59 (d, J = 1.6 Hz, 1 H), 7.50 (dd, J = 8.2, 1.8 Hz, 1 H), 3.95 

(hept, J = 6.8 Hz, 1 H), 1.31 (d, J = 6.8 Hz, 6 H). 13C NMR (CDCl3, 125 MHz)  191.4, 153.4, 133.0, 

131.9, 129.8 (overlap of three carbons), 27.9, 23.9. IR (film) 2967, 2870, 2731, 1703, 1694, 1584, 1557, 

1464, 1389, 1288, 1213, 1150, 1097, 1059, 901, 835, 818, 758 cm-1. HRMS (ESI, m/z): calcd for 

C10H12BrO [M+H]+ 227.0072, found 227.0062. 

(4-bromo-2-isopropylphenyl)methanol (5.7-2) 

General procedure B was followed using compound 5.7-3 (970 mg, 4.27 mmol), NaBH4 (242 mg, 6.40 

mmol), and MeOH (0.0120 L). Workup and chromatographic purification (10% to 15% EtOAc in 

hexanes) afforded the title compound 5.7-2 as an off-white solid (910 mg, 93%). 1H NMR (CDCl3, 400 

MHz)  7.43 (d, J = 2.0 Hz, 1 H), 7.32 (dd, J = 8.4, 2.0 Hz, 1 H), 7.23 (d, J = 8.4 Hz, 1 H), 4.71 (d, J = 
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5.2 Hz, 2 H), 3.21 (hept, J = 6.8 Hz, 1 H), 1.56 (br, 1 H), 1.25 (d, J = 7.2 Hz, 6 H). 13C NMR (CDCl3, 125 

MHz)  149.6, 136.4, 130.1, 129.1, 129.0, 122.5, 62.8, 28.9, 24.0. IR (film) 3395, 2963, 2870, 1589, 1566, 

1485, 1462, 1398, 1223, 1101, 1040, 1003, 897, 880, 841, 814 cm-1. HRMS (ESI, m/z): calcd for 

C10H13BrO [M]+ 228.0150, found 228.0151. mp 64–65 °C. 

 (4-deuterium-2-isopropylphenyl)methanol (5.7-1) 

Compound 5.7-1 was prepared from a previously reported procedure using a slight modification.12 An 

oven-dried microwave tube was charged with compound 5.7-2 (458 mg, 2.00 mmol), DCOONa (414 mg, 

6.00 mmol), Pd2dba3 (36.6 mg, 0.0400 mmol), P(t-Bu)3 (24.3 mg, 0.120 mmol), and dry DMSO (2.0 mL). 

Subsequently, the tube was sealed, and moved out of the glove box. The sealed tube was put into a pre-

heated oil-bath at 80 °C, and stirred for 8 h. The tube was then removed out of the oil-bath, and cooled to 

rt. The reaction mixture was quenched with 2.0 mL of NH4Cl (sat’d), and diluted with 6.0 mL of water. 

The mixture was transferred to a separation funnel, and the aqueous layer was extracted with DCM (4 x 

12 mL). The combined organic phases were dried over anhydrous Na2SO4, filtered, and concentrated. The 

crude product was purified by column chromatography using a gradient of EtOAc / hexanes (10% to 5%) 

for elution to provide the compound 5.7-1 as a colorless oil (250 mg, 83%). 1H NMR (CDCl3, 400 MHz) 

 7.35 (d, J = 7.6 Hz, 1 H), 7.35 (s, 1 H), 7.20 (dd, J = 7.6, 1.6 Hz, 1 H), 4.77 (d, J = 4.8 Hz, 2 H), 3.28 

(hept, J = 6.8 Hz, 1 H), 1.52 (t, J = 5.2 Hz, 1 H), 1.27 (d, J = 6.8 Hz, 6 H). 2H NMR (CHCl3, 61.4 MHz)  

7.33 (s, 1 D). 13C NMR (CDCl3, 125 MHz)  147.4, 137.4, 128.6, 128.3 (t, J = 24.4 Hz), 125.9, 125.6, 

63.5, 28.8, 24.2. IR (film) 3331, 2963, 2928, 2870, 1599, 1483, 1462, 1410, 1182, 1026, 1007, 907, 851, 

669, 523 cm-1. 

2-isopropyl-4-deuterium-benzyl 2,2-difluoro-3-oxo-3-phenylpropanoate (5.7) 

General procedure C was followed using potassium 2,2-difluoro-3-oxo-3-phenylpropanoate1 (834 mg, 

3.50 mmol), oxalyl chloride (0.28 mL, 3.36 mmol), compound 5.7-1 (442 mg, 2.92 mmol), Et3N (0.81 

mL, 5.84 mmol), DMF (91 L), and CH2Cl2 (18 mL). Workup and chromatographic purification (0% to 5% 

EtOAc in hexanes) afforded the title compound 5.7 as a colorless oil (848 mg, 87%). 1H NMR (CDCl3, 
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400 MHz)  8.04 (dd, J = 8.2, 1.4 Hz, 2 H), 7.69–7.64 (m, 1 H), 7.49 (t, J = 8.0 Hz, 2 H), 7.33 (s, 1 H), 

7.29 (d, J = 7.6 Hz, 1 H), 7.17 (d, J = 7.6 Hz, 1 H), 5.41 (s, 2 H), 3.09 (hept, J = 6.8 Hz, 1 H), 1.20 (d, J = 

6.8 Hz, 6 H). 2H NMR (CHCl3, 61.4 MHz)  7.36 (s, 1 D). 13C NMR (CDCl3, 125 MHz)  185.4 (t, J = 

27.5 Hz), 161.9 (t, J = 30.6 Hz), 148.6, 135.3, 131.1, 130.7, 130.4, 130.1 (t, J = 2.5 Hz), 129.7 (t, J = 24.4 

Hz), 129.1, 126.0, 125.9, 110.0 (t, J = 263.1 Hz), 67.6, 29.2, 24.1. 19F NMR (CDCl3, 376 MHz)  –107.8 

(s, 2 F). IR (film) 3067, 2967, 1774, 1715, 1697, 1599, 1450, 1385, 1310, 1157, 1101, 1026, 922, 841, 

799, 712, 675, 584 cm-1. HRMS (ESI, m/z): calcd for C19H17DF2O3Na [M+Na]+ 356.1184, found 

356.1190. 

Procedures of Deuterium-Labeling Experiments in Scheme 5.12 

 

General procedure A was followed using 5.7 (167 mg, 0.500 mmol), Pd(PPh3)4 (14.4 mg, 0.0125 mmol), 

Et3N (70 L, 0.500 mmol), and 1,4-dioxane (0.010 L). The reaction was run at 100 °C for 12 h. Workup 

and chromatographic purification (5% to 15% DCM in hexanes) provided the title compound 5.8a as a 

colorless oil (104 mg, 72%). 1H NMR (CDCl3, 400 MHz)  8.04–8.02 (m, 2 H), 7.60–7.56 (m, 1 H), 7.48 

(d, J = 1.2 Hz, 1 H), 7.46–7.42 (m, 2 H), 7.33–7.30 (m, 1 H), 7.21 (d, J = 8.0 Hz, 1 H), 3.15 (hept, J = 6.8 

Hz, 1 H), 2.35 (br, 2 H), 1.22 (d, J = 6.8 Hz, 6 H). 2H NMR (CHCl3, 61.4 MHz)  2.35 (t, J = 2.2 Hz,1 D). 

13C NMR (CDCl3, 125 MHz)  189.5 (t, J = 31.2 Hz), 147.9, 138.5, 134.2, 132.5, 131.1 (t, J = 25.0 Hz), 

130.8, 130.5 (t, J = 2.5 Hz), 128.8, 122.9 (t, J = 5.6 Hz), 122.2 (t, J = 5.6 Hz), 117.4 (t, J = 251.2 Hz), 

29.5, 23.2, 19.2 (m). 19F NMR (CDCl3, 376 MHz)  –97.6 (s, 2 F). IR (film) 2965, 2932, 1703, 1597, 

1499, 1449, 1244, 1217, 1132, 924, 887, 824, 714, 679 cm-1. HRMS (ESI, m/z): calcd for C18H18DF2O 

[M+H]+ 290.1467, found 290.1459. 
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2D NMR Analyses of Compounds 5.4b, 5.4d, and 5.4f 

 

1H (500 MHz), 13C (125 MHz)          Solvent: CDCl3                        Notebook: MHY-11-221-Ar             Compound 5.4b

Atom 1H 
shift 

(ppm) 

Hs Mult. 
(1H) 

J (Hz) 13C shift 
(ppm) 

Type 
C 

Mult. 
(13C) 

J (Hz) HMBC COSY NOESY 

1 3.16 1 hept 6.9 29.6 CH s  4, 7, 15 15 2, 15 

2 2.37 3 s  19.5 CH3 s  4, 7 4 1, 4, 15 

3     138.6 C s  1, 2, 5, 7   

4 7.21 1 d 8.0 130.8 CH s  2, 4 2, 5 2, 5 

5 7.32 1 dd 8.0, 2.0 122.9 CH t 5.9 7 4 4 

6     131.1 C t 25.0    

7 7.48 1 d 2.0 122.2 CH t 5.8 1, 2, 5  15 

8     147.9 C s  1, 2, 4, 15   

9     117.4 C t 252.7 5, 7   

10     189.5 C t 31.2 12, 13   

11     132.5 C s  13   

12 8.03 2 dt 8.3, 1.2 130.5 CH t 2.9 12. 14 13 13 

13 7.44 2 m 7.46–7.42 128.8 CH s  13 12, 14 12, 14 

14 7.58 1 m 7.60–7.57 134.3 CH s  12 13 13 

15 1.22 6 d 6.9 23.2 CH3 s  1, 15 1 1, 2, 7 
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1H (500 MHz), 13C (125 MHz)          Solvent: CDCl3                        Notebook: MHY-11-219-Ar                 Compound 5.4d

Atom 1H 
shift 

(ppm) 

Hs Mult. 
(1H) 

J (Hz) 13C shift 
(ppm) 

Type 
C 

Mult. 
(13C) 

J (Hz) HMBC COSY NOESY 

1     124.1 CF3 q 272.5    

2 2.54 3 s   19.5 CH3 m  4, 7 4, 7 4 

3     140.2 C m  2, 5, 7   

4 7.41 1 d 8.0 132.7 CH s  2 2 2, 5 

5 7.65 
(L) 

1 m 7.66–7.62 129.2 CH t 5.8 7 4 4 

6     131.3 C t 25.8 4   

7 7.87 1 d 1.9 123.5 CH h 5.8 5 2  

8     129.8 C q 30.7 2   

9     116.8 C t 254.4 5, 7   

10     188.7 C t 31.5 12   

11     132.0 C s  13   

12 8.07 2 m 8.08–8.06 130.5 CH t 2.8 12. 14 13 13 

13 7.49 2 m 7.51–7.48 129.0 CH s  13 12, 14 12, 14 

14 7.63 
(R) 

1 m 7.66–7.62 134.7 CH s  12 13 13 
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1H (500 MHz), 13C (125 MHz)          Solvent: CDCl3                        Notebook: MHY-11-273-Ar            Compound 5.4f 

Atom 1H 
shift 

(ppm) 

Hs Mult. 
(1H) 

J (Hz) 13C shift 
(ppm) 

Type 
C 

Mult. 
(13C) 

J (Hz) HMBC COSY NOESY 

1 2.48 3 s  15.2 CH3 s  2 7 7 

2 2.35 3 s   20.1 CH3 s  1, 4 4 4 

3     138.7 C s  2, 5, 7   

4 7.22 1 d 8.0 130.2 CH s  2 2, 5 2 

5 7.29 1 d 8.0 121.7 CH t 6.0 7 4  

6     131.6 C t 25.0 4   

7 7.34 1 d 1.8 121.0 CH t 6.0 5 1 1 

8     139.5 C s  1, 2, 4   

9     117.1 C t 253.3 7   

10     189.2 C t 31.1 12, 13   

11     132.3 C s  13   

12 8.03 2 d 8.1 130.5 CH t 2.8 12. 14 13 13 

13 7.46 2 m 7.47–7.44 128.9 CH s  13 12, 14 12, 14 

14 7.60 1 m 7.62–7.58 134.3 CH s  12 13 13 
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