University of Kansas Department of Aerospace Engineering AE 421 Aerospace Computer Graphics Spring 2000

Instructor: Dr. Rick Hale, 3019A Learned Hall

e-mail: rhale@aerospace.ae.ukans.edu

Phone: 864-2949

Office hours: 1:30-3:00 M-F, by appointment, or as

available

GTA:

Aero-CADD: Mr. Kurt Schueler, 1019 Learned Hall, 4-2972

Office hours: TR 6:00-7:00 PM (3040 Lea)

Drafting: Mr. Daniel Vahidi, 1019 Learned Hall, 4-2972

Office hours: TR 2:30-4:30

Textbooks:

F.E. Giesecke, et. al. "Principles of Engineering Graphics", Second Edition, Macmillan, 1994.

Course Objectives:

The course objectives are to explore elements of two and three-dimensional descriptive geometry with emphasis on spatial visualization and applications to aerospace vehicles and systems. Students will develop skills in using instruments, both traditional and computer-based, to depict aerospace vehicles and their components and systems for purposes of illustration, design and analysis. By the end of the course student should be capable of:

- · Accurately conveying geometry of aerospace vehicles
- Properly documenting required geometric tolerances
- Applying existing CAD software tools to real-world designs

Course Topics:

- Two-dimensional constructions, sketching
- Geometric modeling

- Introduction to computer-based modeling
- Three-dimensional modeling and surfacing
- Aerospace configuration development
- Parametric modeling
- Integration of design and analysis
- Design and drawing projects

Evaluation:

Grades will be based on weekly homework assignments and design projects (55%), one midterm examination (10%), a final design project (20%) and a final exam (15%). Each student is expected to actively participate in class discussions and design reviews. Individual lab and design grade scores may be reduced by up to 20% for failure to attend related classes, at the discretion of the GTA.

Policies:

Homework is usually due at the beginning of the class period one week after assigned. Late homework will not be accepted unless approved by the instructor or GTA *prior* to the homework due date. Even if approved, late homework may be assessed a 10% reduction for every day past the original due date.

Any student in this course who has a disability that may prevent him or her from demonstrating his or her full abilities should contact me personally as soon as possible to discuss necessary accommodations.

Isn	date	day topic	reading
1	Jan. 18	T Introduction	
		Aero-CADD Overview	
2	Jan. 20	R Instruments & lettering	Chap. 1-4
		Aero-CADD Introduction, Drafting ass	istant, customization
3	Jan. 25	T Geometric constructions	Chap. 5
		Environment settings, layers, printing,	file import/export
4	Jan. 27	R Sketching and shape description	Chap. 6
		Wireframes: views, planes, points, lines	, arcs, circles, ellipses

5	Feb. 1	T Multiview drawing Chap. 7
6	Feb. 3	Wireframes: conics, splines, helix R Mathematics of splines, conics Wireframes: curve editing, transformations
7	Feb. 8	T CAD/CAM Chap. 8
8	Feb. 10	Design explorer, associativity, editing objects, show, verify R Sectional views Chap. 9 Adding text and dimensions
9	Feb. 15	T Auxiliary views Chap. 10
10	Feb. 17	Surfacing: introduction, creating surfaces R Mathematics of surfaces Surfacing: editing surfaces
11	Feb. 22	T Manufacturing Chap. 12 Polyconic surfacing
12	Feb. 24	R Dimensioning Chap. 13 Aeropack tools (airfoils, planforms, area curves)
13	Feb. 29	T Dimensioning Details: symbols, review
14	Mar. 2	R Tolerancing Chap. 14 Detail design: surfacing internal geometry
15	Mar. 7	T Tolerancing
16	Mar. 9	Airplane components: wings (lifting surfaces) R Threads, fasteners, spacers Chap. 15 Airplane components: control surfaces, flaps
17	Mar. 14	Threads, fasteners, spacers Airplane components: wings, flaps, interference checks
18	Mar. 16	R Midterm exam
	Mar. 20	M-F Spring Break
19	Mar. 28	T Axonometric projection Chap. 17 Airplane components: fuselage
20	Mar. 30	R Axonometric projection Airplane components: wing-fuselage fillet
21	Apr. 4	T Oblique projection Chap. 18
22	Apr. 6	Airplane components: wing-fuselage fairing R Oblique projection Airplane components: Inlets
23	Apr. 11	T Projects Airplane components: systems, systems interference checks
24	Apr. 13	R Mathematics of solids Introduction to solids (Unigraphics)

25	Apr. 18	T	Graphics translation standards Introduction to solids
26	Apr. 20	R	Projects
	•		Parametric modeling, graphics translation
27	Apr. 25	T	Projects
28	Apr. 27	R	Projects
29	May 2	T	Projects
30	May 4	R	Projects
	May 9	Т	Stop Day
	May 10	W	Finals begin