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ABSTRACT

Gibbs oscillation can show up near flow regions with strong temperature gradients in the numerical simu-

lation of nonhydrostatic mesoscale atmospheric flows when using the high-order discontinuousGalerkin (DG)

method. The authors propose to incorporate flow-feature-based localized Laplacian artificial viscosity in the

DG framework to suppress the spurious oscillation in the vicinity of sharp thermal fronts but not to con-

taminate the smooth flow features elsewhere. The parameters in the localized Laplacian artificial viscosity are

modeled based on both physical criteria and numerical features of the DG discretization. The resulting nu-

merical formulation is first validated on several shock-involved test cases, including a shock discontinuity

problem with the one-dimensional Burger’s equation, shock–entropy wave interaction, and shock–vortex in-

teraction. Then the efficacy of the developed numerical formulation on stabilizing thermal fronts in non-

hydrostatic mesoscale atmospheric modeling is demonstrated by two benchmark test cases: the rising thermal

bubble problem and the density current problem. The results indicate that the proposed flow-feature-based

localized Laplacian artificial viscositymethod can sharply detect the nonsmooth flow features, and stabilize the

DG discretization nearby. Furthermore, the numerical stabilization method works robustly for a wide range of

grid sizes and polynomial orders without parameter tuning in the localized Laplacian artificial viscosity.

1. Introduction

Numerical weather prediction (NWP) models have

been profoundly influenced by the paradigm shift in high

performance computing (HPC). On the one hand, the

ever increasing computing power allows researchers to

run nonhydrostatic (NH) models at resolutions finer

than 10km (Steppeler et al. 2003; Lynch 2008; Marras

et al. 2015); on the other, both HPC and the intrinsic

complex physical processes in NH modeling pose many

challenges to the development of numerical methods

(e.g., local numerical algorithms, high-order accuracy,

geometric flexibility, etc.). The discontinuous Galerkin

(DG) method has been proven to be an ideal candidate

to accommodate these challenges (Giraldo and Restelli

2008). One example is the Nonhydrostatic Unified

Model of the Atmosphere (NUMA) (Kelly and Giraldo

2012; Giraldo et al. 2013), which has been successfully

applied to three-dimensional limited-area modeling on

distributed-memory computers with a large number of

processors as well as with adaptive mesh refinement

(AMR) in two dimensions (Kopera and Giraldo 2014).

Despite the success in NH modeling by high-order

accurate (i.e., order. 2) methods (Giraldo and Restelli
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2008; Ullrich and Jablonowski 2012), robust and effi-

cient stabilization of sharp flow gradients (e.g., thermal

fronts) or flow discontinuities (e.g., shock) remains

challenging in the design of high-order methods. Argu-

ably, the two most frequently adopted methods to sta-

bilize the high-order methods in the presence of

nonsmooth flow features are limiters; for example, the

total variation bounded (TVB) limiter, the positivity

preserving limiter, the weighted essentially non-

oscillatory (WENO) limiter in the numerical framework

of Runge–Kutta discontinuous Galerkin (RKDG)

(Cockburn and Shu 1998; Qiu and Shu 2005; Zhang and

Shu 2010; Zhang and Nair 2012), and artificial viscosity.

In the limiter approach, the distribution of flow variables

is reshaped explicitly via the limiting procedure,

whereas in the artificial viscosity approach, no direct

modification is applied to the flow variables. Instead, an

artificial diffusion process is designed to smooth out

oscillation due to flow discontinuities or sharp fronts.

Both limiters and artificial viscosity have been success-

fully applied in shock capturing for supersonic and hy-

personic flows using discontinuous high-order methods

(Cockburn and Shu 1998; Qiu and Shu 2005; Zhang and

Shu 2010; Persson and Peraire 2006; Yang and Wang

2009; Dedner and Klöfkorn 2011; Yu and Wang 2014;

Park et al. 2014).

In the numerical simulation of nonhydrostatic meso-

scale atmospheric modeling, very high-order poly-

nomials can be used to approximate the solution, as

shown by Giraldo and Restelli (2008). Under this sce-

nario, the implementation of hierarchical limiters will be

very complicated. Furthermore, after limiting, the so-

lution might be represented by a lower-order or even

piecewise constant reconstruction. This polynomial or-

der reduction will dramatically increase the numerical

dissipation of the DG algorithm in the neighborhood of

the limited element. Sometimes, key flow features can

be totally smeared out, especially on coarse meshes.

Artificial viscosity provides an alternative way to handle

very high-order simulations on coarse (i.e., under-

resolved) meshes in the presence of sharp fronts.

The idea of capturing shock wave discontinuities in a

fluid by adding artificial viscosity into hyperbolic con-

servation laws originated from Von Neumann and

Richtmyer (1950). Since then, many types of artificial

viscosity methods have been developed to deal with flow

discontinuity capturing. One crucial issue in all artificial

viscosity modeling is how to describe the smoothness of

the flow fields accurately. Smoothness indicators are

used for this purpose. Different smoothness indicators

have been designed based on the gradient of flow

quantities (e.g., velocity, internal energy, etc.) (Cook

and Cabot 2004; Kawai and Lele 2008), resolution of the

numerical representation (Tadmor 1990; Persson and

Peraire 2006), residual/entropy residual of the simula-

tion (Bassi and Rebay 1994; Hartmann and Houston

2002; Guermond and Pasquetti 2008), and so on. Note

that all these smoothness indicators can effectively lo-

calize the artificial viscosity in the vicinity of flow dis-

continuities. Based on the different procedures to design

artificial diffusive terms and to incorporate them into

the original governing equations, the artificial viscosity

methods for computational fluid dynamics can be

roughly classified into several categories. These include,

but are not limited to the streamline-upwind/Petrov–

Galerkin (SUPG)-type artificial viscosity (Hughes and

Mallet 1986; Tezduyar and Park 1986; Johnson et al.

1990; Tezduyar and Senga 2006), variational multiscale

(VMS) (Marras et al. 2012, 2013), localized artificial

diffusivity using physical principles (Cook and Cabot

2004; Kawai and Lele 2008; Cook 2007; Kawai et al.

2010; Premasuthan et al. 2010; Olson and Lele 2013;

Haga andKawai 2013), residual-based artificial viscosity

(Bassi and Rebay 1994; Hartmann and Houston 2002;

Bassi et al. 1997; Hartmann 2006; Kurganov and Liu

2012), entropy artificial viscosity (Guermond and

Pasquetti 2008; Guermond et al. 2011; Zingan et al.

2013), spectral vanishing viscosity (Tadmor 1990;

Oberai and Wanderer 2006), and Laplacian or higher-

order artificial viscosity (Persson and Peraire 2006;

Wicker and Skamarock 1998; Xue 2000; Barter and

Darmofal 2010; Klöckner et al. 2011; Persson 2013; Li

et al. 2013; Yelash et al. 2014) methods. Other studies of

the artificial viscosity methods can be found in the

studies by Jameson (1995), Caramana et al. (1998),

Huang et al. (2005), Klemp et al. (2007), Skamarock and

Klemp (2008), Jebens et al. (2009), Kolev and Rieben

(2009), Nair (2009), and Reisner et al. (2013), just to

name a few.

We note that in many numerical simulations for

nonhydrostatic mesoscale atmospheric modeling, a

small amount of constant numerical viscosity is added to

the entire flow field to smooth out noises generated due

to insufficient resolution of small-scale flow features,

functioning similarly as a filter. This approach has been

demonstrated successfully to suppress numerical in-

stability due to high-frequency aliasing errors. However,

artificial viscosity added to the entire flow field will

dissipate the solution near smooth flow features, and

cannot automatically adapt with numerical discretiza-

tion (i.e., when the grid resolution is altered). For the

atmospheric flow over topography, when constant vis-

cosity or hyperviscosity is used, mass and potential

temperature can be diffused along terrain-following

surfaces leading to loss of hydrostatic balance and gen-

eration of spurious vertical noise. To overcome the
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aforementioned deficits of constant viscosity or hyper-

viscosity, some previous studies (e.g., Boyd 1996; Schär
et al. 2002; Guba et al. 2014) have been carried out. The

basic concepts from those studies are to incorporate

scale-dependent numerical dissipation, which can be

based on the flow features, terrain features, or compu-

tational grid features. In the work by Boyd (1996), a

continuously varying Erfc-Log filter is designed based

on the distance between the current location and the

singularity. As a result, it can smooth out oscillation near

the discontinuity while maintaining the smooth region

almost unaffected. Schär et al. (2002) developed a new

terrain-following vertical coordinate formulation that

can suppress small-scale noises due to grid inhomoge-

neity by employing a scale-dependent vertical decay

of underlying terrain features. Guba et al. (2014)

developed a tensor-based hyperviscosity for variable-

resolution grids. Using the shallow-water equations in

spherical geometry, it is demonstrated that no grid-

dependent oscillation shows up in the transition region

of grids with different resolution.

In this study, a flow-feature-based artificial viscosity is

proposed to smear high-frequency oscillations near sharp

flow features, while not affecting the smooth flow fields

elsewhere. Considering the features of the governing

equations (Giraldo and Restelli 2008), we augment the

original hyperbolic system with the flow-feature-based

localized Laplacian artificial diffusive terms (Persson and

Peraire 2006). The proposed localized Laplacian artificial

viscosity is constructed based on the smoothness of the

flow fields. Therefore, an adequate amount of artificial

viscosity is localized in the vicinity of sharp fronts to

suppress the Gibbs oscillation. Meanwhile, vanishing

artificial viscosity does not contaminate the smooth flow

features away from sharp fronts.

The remainder of the paper is organized as follows. The

governing equations for the nonhydrostatic mesoscale

atmospheric modeling and the discontinuous Galerkin

discretization are introduced in section 2. In section 3, the

basic ideas behind the localized Laplacian artificial vis-

cosity method are reviewed. A new family of modified

localized Laplacian artificial viscosity models is intro-

duced based on the proposedmodeling principles. Section

4 then presents the numerical results from simulations of

benchmark test cases. The sensitivity of free parameters in

artificial viscosity modeling is also studied there. Finally,

conclusions are summarized in section 5.

2. Governing equations and discretization

Many different forms of the governing equations have

been used for numerical weather prediction together

with various numerical methods. For nonhydrostatic

atmospheric modeling, three sets of equations were

presented by Giraldo and Restelli (2008): the non-

conservative form using Exner pressure, momentum,

and potential temperature (set 1); the conservative form

using density, momentum, and potential temperature

(set 2); and the conservative form using density, mo-

mentum, and total energy (set 3). Note that in the non-

conservative form (set 1), the mass equation is defined

by a conservation-like law for the Exner pressure, which

cannot be formally conserved. As a result, the model

based on these governing equations cannot conserve ei-

thermass or energy. In contrast, bothmass and energy are

conserved in the conservative form (sets 2 and 3). It was

found by Giraldo and Restelli (2008) that the two con-

servative forms outperform the nonconservative form.

Therefore, we study equation set 2 in this paper, which is

one of the equation sets used in the NUMAmodel (Kelly

and Giraldo 2012; Giraldo et al. 2013) and is a good

compromise between conservation and efficiency.

a. Governing equations

The two-dimensional form of equation set 2 reads as

›Q

›t
1= � F(Q)5G(Q) , (1)

where Q5 (r, ru, rw, ru) are the conservative vari-

ables; r is the density; u and w are velocities in x and z

directions, respectively; u is the potential temperature;

F5 ( f x, f z) is the inviscid flux; andG is the source term.

They are defined as

f x 5

0
BBBB@

ru

ru2 1 p

ruw

ruu

1
CCCCA, f z 5

0
BBBB@

rw

ruw

rw2 1 p

rwu

1
CCCCA, and

G5

0
BBBB@

0

0

2rg

0

1
CCCCA , (2)

where g is the gravitational constant, p is the pressure,

and is related with u by the equation of state as follows:

p5 p
0

�
rRu

p
0

�g

, (3)

where g5Cp/Cy is the ratio of specific heats (for con-

stant pressure and constant volume), R is the gas con-

stant, and p0 is a reference pressure that is only a function

of the vertical coordinate. Introducing the splitting of the

density, pressure and potential temperature as r5 r0 1 r0,
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p5 p0 1p0, and u5 u0 1 u0, where the subscript ‘‘0’’

denotes the values in hydrostatic balance, we rewrite

Eq. (1) as

›Q0

›t
1= � F0(Q)5G0(Q) , (4)

where Q0 5 (r0, ru, rw, Q0), Q5 ru, and Q0 5Q2 r0u0.

Correspondingly, F0 is written as

f x
0
5

0
BBBB@

ru

ru2 1 p0

ruw

ruu

1
CCCCA, f z0 5

0
BBBB@

rw

ruw

rw2 1 p0

rwu

1
CCCCA, and

G0 5

0
BBBB@

0

0

2r0g

0

1
CCCCA . (5)

The governing equations are solved on the physical

domain V, which is partitioned into N nonoverlapping

elementsVi. The solutionQ0
i on each elementVi belongs

toQk(Vi), whereQk(Vi) is the space of tensor product of

polynomials of degree at most k in each variable defined

on Vi. For conciseness, the element-wise continuous

solution Q0
i is replaced with Qi in the following sections

when no confusion between Q0
i and Qi exists. The same

convention also applies to F0 and G0.

b. Discontinuous Galerkin method

We approximate the exact solution of the conserva-

tion law using an element-wise continuous polynomial

Qh 2 VDG
h 5 fW 2 L2(Vi)g. Herein, VDG

h is a finite-

element space for DG, and L2(Vi) is the space of

square integrable functions defined on Vi. Let W be an

arbitrary weighting function or test function from the

same space VDG
h . The weighted residual form of the

governing equations on each element Vi then readsð
Vi

›Q
h

›t
W dV1

ð
Vi
= � F(Q

h
)W dV

5

ð
Vi
G(Q

h
)W dV, " W 2 VDG

h . (6)

Applying integration by parts to Eq. (6), one obtains

ð
Vi

›Q
h

›t
W dV2

ð
Vi
=W � F(Q

h
) dV1

ð
›Vi

F � nW dS

5

ð
Vi
G(Q

h
)W dV , (7)

where F5 ( f x, f z) and n is the outward unit normal

vector of ›Vi.

It is clear that the surface integral in Eq. (7) is not

properly defined as the numerical solution is discontin-

uous across element interfaces. To ensure conservation,

the normal flux term F � n is replaced with a Riemann

flux Fn
com(Q

i
h, Q

i1
h , n), where Qi1

h denotes the solution

outside the current element Vi. Various (approximate)

Riemann solvers can be used to calculate the Riemann

flux, and the Rusanov Riemann solver is adopted in this

paper. Then Eq. (7) can be rewritten as

ð
Vi

›Q
h

›t
W dV2

ð
Vi
=W � F(Q

h
) dV

1

ð
›Vi

Fn
com(Q

i
h,Q

i1
h , n)W dS5

ð
Vi
G(Q

h
)W dV . (8)

In the DG approach, a finite-dimensional basis set

fWjg is chosen as the solution space. Then the governing

equation is projected onto each member of the basis set

[see also the work byHesthaven andWarburton (2008)].

Thus, Eq. (8) is reformulated as

›

›t

ð
Vi
W

k�
j

(Q
h,j
W

j
) dV2

ð
Vi
=W

k
� F(Q

h
) dV

1

ð
›Vi

W
k
Fn
com dS5

ð
Vi
W

k�
j

(G
j
W

j
) dV . (9)

Applying integration by parts again to the second

term of Eq. (9), the strong form of DG is obtained as

›

›t

ð
Vi
W

k�
j

(Q
h,j
W

j
) dV1

ð
Vi
W

k
= � F(Q

h
) dV

1

ð
›Vi

W
k
(Fn

com 2Fn) dS5

ð
Vi
W

k�
j

(G
j
W

j
) dV, (10)

where Fn 5F � n is the local flux projected on ›Vi in the

surface normal direction.

The first integral in Eq. (10) is usually written as a mul-

tiplication of the mass matrix M and the time derivative

of the solution vector [Qh]. The square bracket ‘‘[ ]’’ de-

notes the vector form of the solutionQh. The entries of the

mass matrix M are of the following form:

M
(k,j)

5

ð
Vi
W

k
W

j
dV . (11)

If F is a linear function ofQ, then F can be expressed as

F5�jFjWj. Under this constraint, the second integral in

Eq. (10) can be formulated as a multiplication of the

stiffness matrix Sl and the flux vector [Fl]. The entries of

the stiffness matrix Sl are written as

Sl
(k,j) 5

ð
Vi
W

k

›W
j

›xl
dV, l5 1, 2 . (12)
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However, if F is a nonlinear function ofQ, then F cannot

generally be expressed via the basis set fWjg. Quadra-

tures are used to compute the volume and surface in-

tegrals. Clearly these operations can be expensive, and

some cost-effective approaches are required to improve

the computational efficiency. One such solution is the

quadrature-free approach proposed by Atkins and Shu

(1998). In this approach, it is assumed that even if the

flux F is nonlinear, it still can be represented by a

polynomial that belongs to the same spaceQk(Vi) as that

of the solutionQh.We denote it byFh. ThenEq. (10) still

holds for Fh.

We also assume that Fn
com belongs to the polynomial

space Pk(›Vi) and can be expressed by the basis set

fWf ,jg as Fn
com,f 5�jF

n
com,f ,jWf ,j on each surface. Thus,

the mass matrices Bf for the surface integration in Eq.

(10) can be formed with the following entries:

B
f ,(k,j)

5

ð
f

W
k
W

f ,j
dS

f
. (13)

Substituting Eqs. (11)–(13) into Eq. (10), we obtain the

following vector form:

›[Q
h
]

›t
52�

2

l51

(M21Sl)[Fl]

2 �
f

(M21B
f
)[Fn

com,f 2Fn
f ]1 [G

h
] . (14)

Now consider the nodal-type allocation of degrees of

freedom (DOFs), and assume that Wm is the Lagrange

polynomial, which satisfiesWm(rj)5 dmj, where rj 5 (xj, zj)

is the nodal point. Following the work by Hesthaven and

Warburton (2008), we introduce the differentiation matrix

Dxl , with the following entries:

D
xl ,(j,m)

5
›W

m

›xl

����
rj

. (15)

Then the entries of MDxl can be calculated as

(MD
xl
)
(k,m)

5 �
j

ð
Vi
W

k
W

j

›W
m

›xl

����
rj

dV

5

ð
Vi
W

k�
j

W
j

›W
m

›xl

����
rj

dV

5

ð
Vi
W

k

›W
m

›xl
dV5 (Sl)

(k,m)
. (16)

Therefore, Eq. (14) can be rewritten as

›[Q
h
]

›t
52�

2

l51

D
xl
[Fl]2 �

f

(M21B
f
)[Fn

com,f 2Fn
f ]1 [G

h
] .

(17)

According to Eq. (17), in the implementation of the

strong form, there is no need to explicitly calculate the

stiffness matrix Sl, but the differentiation of the flux

polynomials. This fact can be utilized to save computa-

tional cost, as demonstrated by Yu et al. (2014). More

detailed information about this implementation can be

found in the work by Giraldo and Restelli (2008).

3. Localized Laplacian artificial viscosity

The localized Laplacian artificial viscosity is used to

suppress the Gibbs oscillation near sharp thermal fronts.

Generally, for two-dimensional problems, the Laplacian

diffusion terms = � Fav(Q, =Q) in x and z directions read

as follows:

f av 5

0
BBBBBBBBBB@

0

«
e,x
r
›u

›x

«
e,x
r
›w

›x

«
e,x
r
›u0

›x

1
CCCCCCCCCCA

and gav 5

0
BBBBBBBBBB@

0

«
e,z
r
›u

›z

«
e,z
r
›w

›z

«
e,z
r
›u0

›z

1
CCCCCCCCCCA
. (18)

For simplicity, we set «e,x 5 «e,z 5 «e.

The DG method is used to discretize the following

equivalent system of Eq. (4) augmented by the artificial

diffusion term = � Fav(Q, =Q),

R2=Q5 0,

›Q

›t
1= � Finv(Q)2= � Fav(Q,R)5G(Q)

.

8><
>: (19)

Herein, R is the auxiliary variable used to facilitate the

discretization of viscous fluxes.

The artificial viscosity « is modeled following the ap-

proach by Persson and Peraire (2006). Several modifi-

cations are introduced to make this model more suitable

for sharp thermal front capturing in nonhydrostatic at-

mospheric modeling. In this study, the resolution-based

indicator is used to detect nonsmooth flow features.

Specifically, we approximate the solution in the poly-

nomial space Qk(V) as follows:

Q’U5 �
N(k)

i51

U
i
f

i
, (20)

whereU is the polynomial approximation ofQ, fi is the

ith basis of the space Qk(V), and N(k) is the total

number of basis of Qk(V); for two-dimensional prob-

lems, N(k)5 (k1 1)3 (k1 1).

Now we project the solution U onto the polynomial

space Qk21(V), and obtain
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Up 5 �
N(k21)

i51

Û
i
f̂
i
. (21)

Herein, f̂i is the ith basis of the spaceQk21(V), and Ûi is

the corresponding expansion coefficient. The expansion

coefficients can be calculated by solving the following

linear system:

�
N(k21)

m51

Û
m
hf̂

m
, f̂

j
i5 �

N(k)

m51

U
m
hf

m
, f̂

j
i, j5 1, . . . ,N(k21).

(22)

Note that h�, �i indicates the inner product in L2(V).

The resolution-based indicator in one finite element

can then be defined as

S
e
5 log

10

hU2Up,U2Upi
e

hU,Ui
e

. (23)

In case thathU,Uie5 0 orU5Up,Se is directly set as2100

when hU2Up,U2Upie , 10216. Clearly, if hU,Uie 5 0,

then U5Up 5 0, and thus hU2Up,U2Upie , 10216; if

U5Up, then hU2Up,U2Upie , 10216. For both cases,

the smooth indicator Se is directly set as 2100.

Finally, a smooth variation of the element-wise arti-

ficial viscosity «e is reconstructed as follows:

«
e
5

0 if S
e
, S

0
2 k

«
0

2

�
11 sin

p(S
e
2 S

0
)

2k

�
if S

0
2 k# S

e
# S

0
1 k

«
0

if S
e
. S

0
1 k

.

8>>>>><
>>>>>:

(24)

Herein, «0 is the magnitude of the artificial viscosity,

S0 is the estimated value of the smoothness indicator

Se for smooth flow features, and k is the control pa-

rameter of the smoothness range. From Eq. (24), it is

clear that «e 2 [0, «0]. According to Persson and Peraire

(2006), if the polynomial expansion has a similar be-

havior to the Fourier expansion, the smoothness indi-

cator will be proportional to 24 log10(k). Based on our

analyses, this estimate can add unnecessary numerical

dissipation to relatively smooth flow features. There-

fore, S0 is set as23 log10(k) in this study. The parameter

k determines the smoothness range on which the artifi-

cial viscosity functions. Generally, k needs to be chosen

sufficiently large so as to ensure a sharp front capturing

with smooth transition to flow fields nearby. It is found

that k affects the performance of artificial viscosity more

than the other parameters in Eq. (24). More test results

on this parameter will be discussed in the following

section.

In contrast to the modeling approach presented by

Persson and Peraire (2006), the artificial viscosity «0 is

modeled as follows. First we introduce several notations.

Let U, L, and a be the characteristic speed of the flow,

the characteristic length, and the diffusion coefficient.

Then, the Pèclet number Pe for a diffusion process can

be given by

Pe5
LU

a
. (25)

We will use it afterward. Note that the parameter defi-

nitions here are different from those in the work by

Persson and Peraire (2006), and Barter and Darmofal

(2010). In those works, the concept of the Pèclet number

is not introduced. To model the artificial viscosity «0, the

characteristic speed of the flow U and the characteristic

length L are used to match the dimension. Specifically,

U is set as the maximum absolute value of the charac-

teristic speed jljmax, and L is the subcell grid size h/P,

where h is the element size andP is the polynomial order.

In this work, the artificial viscosity «0 is allowed to be

proportional to a. Different models to bridge «0 and a

are proposed to make the modeling of the artificial vis-

cosity «0 less sensitive to the element size and poly-

nomial order. The principles followed in this approach

include the following:

d the artificial viscosity «0 is nonnegative;
d when the resolution of the numerical scheme is

infinite, the artificial viscosity «0 / 0; and
d the modeling is compatible with the classic results

from the second-order accurate (or equivalently P1

reconstruction) methods.

Instead of using the uniform assumption of the subcell

grid size h/P, we redefine the length scale inEq. (25) as the

maximum distance between two adjacent quadrature

points in the element, which is written as Dhmax 5Djmaxh,

where Djmax, scaled in [0, 1], is the maximum distance

between two adjacent quadrature points in a standard

one-dimensional element. Following the literature by

Barter and Darmofal (2010), the characteristic speed of

the flow U is taken as jljmax. As a result, a reads

a5
Dj

max

Pe
hjlj

max
. (26)

A general model for the artificial viscosity «0 can then

be written as

«
0
5 f (Dj

max
)hjlj

max
. (27)

We now focus on the modeling of the nondimensional

function f (Djmax). Following the work by Huang et al.

(2005), we require that when the P1 reconstruction is
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used, the function f passes the point (1, Pe21). This is

consistent with the definition of a for the second-order

finite-volume method. Then we show one approach to

determine a region of the function f that can satisfy the

proposed modeling criteria. It is observed that one

possible upper bound of the function f can be written as

f (Dj
max

)52
1

Pe
logDj

max
1

1

Pe
, Dj

max
2 [0, 1] . (28)

It is not difficult to verify that f (Djmax). 0; if Djmaxh/ 0,

then «0 / 0; and f (Djmax) passes the point (1, Pe
21). One

possible lower bound of the function f can be expressed as

f (Dj
max

)5

8><
>:
0, 0#Dj

max
, 1

1

Pe
, Dj

max
5 1

. (29)

This region is shown as the shadowed area in Fig. 1. Note

that the linear function f (Djmax)5Djmax/Pe recovers the

choice by Persson and Peraire (2006) and Barter and

Darmofal (2010). Based on our tests, the linear distribution

f (Dj
max

)52
Dj

max

Pe
1

2

Pe
(30)

is used to relate «0 with a. Finally, the artificial viscosity

«0 is defined as

«
0
5

�
2
Dj

max

Pe
1

2

Pe

�
hjlj

max
. (31)

From Eq. (31) and also Fig. 1, it is observed that when

h is held as a constant value and Djmax is reduced toward

zero, the artificial viscosity «0 does not decrease to zero.

But when the grid size is infinitesimally small, the artificial

viscosity «0 approaches zero as required by Eq. (31). A

physically sound way to interpret this new family of arti-

ficial viscosity goes as follows. To capture the flow dis-

continuity, one does not expect that the polynomial order

be increased substantially (i.e., Djmax is decreased sub-

stantially toward zero). Instead, the polynomial order is

fixed (i.e.,Djmax is fixed), and the grid will be substantially

refined near the flow discontinuity. This indicates that the

grid size h is expected to decrease toward zero for flow

discontinuity capturing. As a result, the artificial viscosity

«0 will decrease to zero as indicated by Eq. (31).

Wenote that the artificial viscosity «e given inEq. (24) is

an element-wise constant distribution. It is obvious that «e
has a jump on element interfaces if the element-wise

constant distribution is used. For quadrilateral elements, a

bilinear distribution can be constructed by interpolating

the four vertex artificial viscosity values to the desired

quadrature points. The value of artificial viscosity on a

specific vertex is calculated by averaging all values from

the neighboring elements that share the vertex.

It is also noted that when the numerical resolution is

sufficiently high, the localized Laplacian artificial vis-

cosity will be deactivated. As a result, the convergence

rate of the numerical scheme will not be affected. If the

localized Laplacian artificial viscosity is activated, the

convergence rate of the numerical scheme will be af-

fected by the percentage of elements that aremarked off

by the smoothness indicators. When the numerical res-

olution is low, the localized Laplacian artificial viscosity

will be activated in a large portion of the flow fields. As a

result, the convergence rate of the numerical scheme

will be lower than the optimal one. As the numerical

resolution increases, the localized Laplacian artificial

viscosity will be occasionally activated in a small portion

of the flow fields. Consequently, the numerical error is

found to be substantially reduced comparing with that of

the low-resolution case. As a result, the convergence

rate will be enhanced.

4. Results and discussion

In this section, we test the localized Laplacian artificial

viscosity method using several benchmark problems with

the presence of shock waves or sharp thermal fronts. The

benchmark test cases are summarized as follows:

d Shock capturing for the 1D Burger’s equation;
d 1D shock–entropy wave interaction,
d 2D shock–vortex interaction,
d 2D rising thermal bubble, and
d 2D density current.

FIG. 1. Paradigm of the family of functions f (Djmax) in the artificial

viscosity model.
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These test cases are used to demonstrate that the pro-

posed localized Laplacian artificial viscosity method can

effectively resolve both flow discontinuity and sharp

fronts while not dissipating smooth flow features. The

impact of localized Laplacian artificial viscosity on

nonhydrostatic atmospheric flow features is investigated

in detail using the two-dimensional thermal bubble and

density current problem. More verification studies on

the sharp shock-capturing capability of the proposed

localized Laplacian artificial viscosity method, and the

performance comparison with other artificial diffusivity

methods and those using limiters can be found by Yu

and Wang (2014) and Park et al. (2014).

To evaluate the performance of artificial viscosity on

grids with different resolution, a wide range of grid sizes

and polynomial orders is tested in each problem. In all

simulations, S0 in Eq. (24) is selected as23 log10(k) and

the Pèclet number Pe is fixed at 2. Based on a large

number of flow simulation tests, it is found that k5 4:0

robustly work for sharp front capturing, and even for the

problems with strong shock waves (Yu andWang 2014).

We note that since the free parameters in the localized

Laplacian artificial viscosity are modeled based on both

physical criteria and numerical features of the DG dis-

cretization, no parameter tuning is required. A caveat

is that to achieve the best possible performance of

FIG. 2. Zoom-in view of the solutions of the one-dimensional Burger’s equation near the shock wave with different

artificial viscosity models at t5 1 on 10 elements: (a) P3 reconstruction and (b) P8 reconstruction.

FIG. 3. Solutions of the one-dimensional Burger’s equation at t5 1 on different grids: (a) P3 reconstruction and

(b) P8 reconstruction.
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localized Laplacian artificial viscosity, the free param-

eters can be slightly adjusted for different flow prob-

lems. As discussed in section 3, the parameter k, which

indicates to what extent the flow features are deemed as

nonsmooth, affects the performance of artificial viscos-

ity more than the other parameters. As a result, this

parameter will be slightly adjusted among different flow

problems for the purpose of the best flow resolution.

Meanwhile, in order to quantitatively judge the effect of

the localized Laplacian artificial viscosity on non-

hydrostatic mesoscale atmospheric modeling, we in-

tentionally vary k in the range of [0:25, 6] for benchmark

atmospheric flow tests.

a. One-dimensional and two-dimensional
benchmarks involving shock waves

1) ONE-DIMENSIONAL BURGER’S EQUATION

TESTS

In this section, we test the efficacy of the localized

Laplacian artificial viscosity for the one-dimensional

Burger’s equation. The one-dimensional inviscid Burger’s

equation augmented by an artificial diffusive term reads

as follows:

›U

›t
1

›

›x

�
1

2
U2

�
1

›

›x

�
«
e

›U

›x

�
5 0, (32)

FIG. 4. Local error of computed solutions of the one-dimensional Burger’s equation at t5 1 on different grids: (a) P3

reconstruction and (b) P8 reconstruction.

FIG. 5. Distribution of the artificial viscosity from the one-dimensional Burger’s equation simulation at t5 1 on

different grids: (a) P3 reconstruction and (b) P8 reconstruction.
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where x 2 [21, 1]. Periodic boundary conditions are

enforced at x521 and x5 1. The initial conditions are

defined as U(x, 0)5U0(x)5 11 sin(px)/2. According

toHarten et al. (1987), a moving shockwave will develop

after t5 2/p under the given initial conditions. An

element-wise constant distribution of «e is used to sta-

bilize the shock wave. In all simulations presented in this

section, k is chosen as 6.

First of all, the results of different artificial viscosity

models presented in section 3 are compared. The re-

sults are shown in Fig. 2. In Fig. 2, ‘‘Log’’ denotes the

case with f (Djmax)5 (12 logDjmax)/Pe, ‘‘Linear(2)’’

denotes the case with f (Djmax)5 (22Djmax)/Pe,

‘‘Constant’’ denotes the case with f (Djmax)5 1/Pe,

and ‘‘Linear(1)’’ denotes the casewith f (Djmax)5Djmax/Pe.

Simulations with both P3 and P8 reconstructions on 10

elements are carried out. From Fig. 2, we observe that

the model Log is the most dissipative method and the

model Linear(1) is the least dissipative. It is also clear

that the performance of the model Linear(1) is

sensitive to the polynomial order, while that of the

other models is not. The performance of the model

Constant is similar to that of the model Linear(1)

for the P3 reconstruction, and similar to that of the

model Linear(2) for the P8 reconstruction. But small

oscillations show up near the shock region for

both cases with the Constant model. Based on

these observations, the model Linear(2) will be

used exclusively in all simulations for the rest of

the paper.

FIG. 6. Density and artificial viscosity distribution at t5 1.8 s for the shock–entropy wave interaction problemusing

P2 ;P4 reconstruction. (a) Overview of the density distribution, (b) overview of the artificial viscosity distribution,

(c) zoom-in view of the density distribution after the shock wave, and (d) zoom-in view of the artificial viscosity

distribution after the shock wave.
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Next we compare the results with P3 and P8 re-

construction on different grids. The solutions at t5 1

are presented in Fig. 3. The corresponding local solu-

tion errors with respect to the exact solution of the

inviscid Burger’s equation and the distribution of ar-

tificial viscosity at t5 1 are plotted in Figs. 4 and 5,

respectively. Several observations are summarized as

follows. From Fig. 3, we find that the localized Lap-

lacian artificial viscosity works robustly for a wide

range of high-order reconstruction (e.g., from P3 to P8

in the current test). For all cases, the shock is sharply

captured at the boundary of two adjacent elements.

From Figs. 4 and 5, it is clear that the localized Lap-

lacian artificial viscosity does not contaminate the

smooth flow features away from the shock, but

concentrates in the nonsmooth flow regions to sup-

press the Gibbs oscillation. From Fig. 5, we observe

that as the resolution of the numerical scheme be-

comes finer (i.e., the element size becomes smaller or

the order of the reconstruction polynomial becomes

higher), the amount of artificial viscosity localized in

the vicinity of the shock wave becomes smaller. This

obeys the modeling rules as stated in section 3.

2) ONE-DIMENSIONAL SHOCK–ENTROPY WAVE

INTERACTION

The interaction between a shock and an entropy wave,

or the Shu–Osher problem (Shu and Osher 1989), is

simulated in this section. The initial profile is given as

follows:

FIG. 7. Pressure (60 equally spaced contour lines from 0.9 to 1.33) and artificial viscosity (60 equally spaced

contour lines from 0 to 53 1023) distribution at t5 0.2 and t5 0.8 s for the shock–vortex interaction problem using

P2 reconstruction. (a) Density distribution at t 5 0.2 s, (b) artificial viscosity distribution at t 5 0.2 s, (c) density

distribution at t 5 0.8 s, and (d) artificial viscosity distribution at t 5 0.8 s.

FIG. 8. Pressure distribution at t 5 0.8 s for the shock–vortex interaction problem using P2 ;P4 reconstruction: (a) P2 reconstruction,

(b) P3 reconstruction, and (c) P4 reconstruction.
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(r

L
,u
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,p

L
)5 (3:857143,2:629369,10:3333) if x,24

(r
R
,u

R
,p

R
)5 [110:2 sin(5x), 0:0, 1:0] if x$24

.

(33)

The computational domain is [25, 5] and is divided into

300 elements. The simulation is carried out until t 5
1.8 s. In this case, an element-wise linear distribution of

artificial viscosity is adopted. In all simulations pre-

sented in this section, k is chosen as 4.

The density distribution and the corresponding ar-

tificial viscosity distribution at t 5 1.8 s using different

reconstruction accuracy, namely, degrees 2–4, are

displayed in Fig. 6. The overview of the results is pre-

sented in Figs. 6a and 6b. It is clear that the localized

Laplacian artificial viscosity method can sharply cap-

ture the interaction between the shock wave and the

entropy wave, and the artificial viscosity only concen-

trates on flow discontinuities. Note that a large amount

of artificial viscosity is concentrated at the shock lo-

cation around x5 2:5. Besides, there exists a small

amount of artificial viscosity near x 5 22.5 and

x 5 21.5 to stabilize the density oscillation with sharp

gradients. From the enlarged view as shown in Figs. 6c

and 6d, it is observed that the localized Laplacian ar-

tificial viscosity method can accurately resolve high-

frequency entropy waves for all reconstructions of

different orders of accuracy. It is also found that as the

reconstruction order is increased, better resolution of

flow features is obtained.

3) TWO-DIMENSIONAL SHOCK–VORTEX

INTERACTION

This test case describes the interaction between a

stationary shock wave and a propagating isentropic

vortex (Jiang and Shu 1996). The computational domain

is [0, 2]3 [0, 1], and is tessellated with uniform elements

of size 1/100. A stationary shock with a preshock Mach

number ofMs 5 1:1 is positioned at x5 0:5. Its upstream

state is (rL, uL, yL, pL)5 (1:0, Ms
ffiffiffi
g

p
, 0:0, 1:0). The

right quantities are calculated from the left ones using

jump conditions. An isentropic vortex is superposed

to the flow left to the shock and centers at (xc, yc)5
(0:25, 0:5) with the following flow conditions:

y
u
5 «tea(12t2), r5

�
12

g21

4ag
«2e2a(12t2)

�1/(g21)
, p5 rg ,

(34)

with t5 r/rc and r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 xc)

2 1 (y2 yc)
2

q
. Herein, yu is

the circumferential velocity, « is the strength of the

vortex, a is the decay rate of the vortex, and rc is the

critical radius for which the vortex has the maximum

strength. In this study, these parameters are set as

«5 0:3, a5 0:204, and rc 5 0:05. Simulation is carried

out until t 5 0.8 s. In this case, an element-wise linear

distribution of artificial viscosity is adopted, with k

chosen as 4.

Pressure distribution and the corresponding artificial

viscosity distribution at t 5 0.2 s and t 5 0.8 s for P2

reconstruction are presented in Fig. 7. The pressure

contour has 60 equally distributed levels from 0.9 to

1.33. The artificial viscosity contour has 60 equally dis-

tributed levels from 0 to 5 3 1023. It is clear from

Figs. 7b and 7d that the artificial viscosity is localized in

the vicinity of the shock, and does not affect the smooth

propagating vortex during the entire flow field devel-

opment process. Comparison of pressure contours at t5
0.8 s using different reconstruction accuracy, namely,

FIG. 9. Themaximumandminimumpotential temperature perturbations u0max and u
0
min of the rising thermal bubble at

t 5 700 s with various flow field resolutions: (a) u0max vs degree of polynomial and (b) u0min vs degree of polynomial.

4834 MONTHLY WEATHER REV IEW VOLUME 143



degrees 2–4, is presented in Fig. 8. Similarly to the ob-

servation in section 4a(2), better resolution of flow

features is obtained as the reconstruction order is

increased.

b. Rising thermal bubble

The rising thermal bubble problem is driven by buoy-

ancy effects. Specifically, a dry warm bubble rises in a

FIG. 10. Potential temperature perturbation fields of the rising thermal bubble at t 5 700 s for different k with P10

reconstruction on the 20 3 20 mesh.
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constant potential temperature environment, and in-

teracts with the ambient air during this process. The initial

potential temperature perturbation is given as follows

(Giraldo and Restelli 2008):

u0 5

8><
>:
0 if r. r

c
,

u
c

2

�
11 cos

�
pr

r
c

��
if r# r

c
,

(35)

where uc 5 273:65K, rc 5 250m, r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2xc)

2 1 (z2zc)
2

q
,

and (xc, zc)5 (500, 300)m is the initial geometric center

of the bubble. The hydrostatic potential temperature

u0 for this case is 300K. The simulation domain is

(x, z) 2 [0; 1000]2 m. The thermal bubble evolves until

t 5 700 s. Four resolutions, namely, 20, 10, 5, and 3.5m,

as presented byGiraldo andRestelli (2008), are adopted in

the simulations. The resolution is defined as L/(ngrid 3 k),

where L is the domain size in the x or z direction, ngrid is

the number of elements in the corresponding direction,

and k is the polynomial order.Unless explicitly specified, k

in the artificial viscositymodel is set as 0.5 in all simulations

presented in this section.

1) RESULTS FROM LOCALIZED LAPLACIAN

ARTIFICIAL VISCOSITY

The maximum and minimum potential temperature

perturbations u0max and u0min at t5 700 s with various flow

field resolutions are presented in Fig. 9. Note that since

initially u0 2 [0, 0:5], it is then expected that during the

evolution of the thermal bubble, u0 is bounded in this

range. From Fig. 9, it is found that the localized Laplacian

artificial viscosity functions perform well for a wide range

of grid sizes and polynomial orders.Only small overshoots

of potential temperature perturbation appear in the re-

sults. As the resolution of flow fields becomes finer, the

numerical dissipation becomes smaller. Correspondingly,

both maximum and minimum potential temperature

perturbations approach the theoretical bounds.

We now study the effects of k on flow field features

with P10 reconstruction on a 20 3 20 mesh (i.e., the

resolution is 5m). The potential temperature perturba-

tion fields with different k, namely, 0.5, 1, 2, 3, and 4, are

shown in Fig. 10. It is observed that as k increases, the

plumelike flow features near the thermal front are

gradually damped. From the maximum and minimum

potential temperature perturbations u0max and u0min at t5
700 s as tabulated in Table 1, it is clear that the overshoot

of u0min for all cases is very small, and decreases quickly as

k increases.

The mass and energy conservation properties are

studied for low-resolution cases, including both 20- and

10-m cases. The mass and energy are defined as

M(t)5

ð
V

r(t) dV and E(t)5

ð
V

r(t)e(t) dV , (36)

TABLE 1. The maximum and minimum potential temperature

perturbations u0max and u0min of the rising thermal bubble at t5 700 s

for different k with P10 reconstruction on a 20 3 20 mesh.

k Max u0 Min u0

0:5 0:5049 24.889 3 1024

1:0 0:4919 22.972 3 1024

2:0 0:4774 21.356 3 1024

3:0 0:4506 24.311 3 1025

4:0 0:4381 26.841 3 1026

FIG. 11. Conservation of (a) mass and (b) energy for the rising thermal bubble simulations using localized artificial

viscosity on two sets of meshes (i.e., 5 3 5 and 10 3 10) with P10 reconstruction.
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FIG. 12. Potential temperature perturbation fields of the rising thermal bubble at t5 700 s for constant viscosity with

different m using P10 reconstruction on the 10 3 10 mesh.
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where e is the total energy. In this case, e is calculated as

[p/(g2 1)]1 (1/2)(u2 1 y2)1 gz. Correspondingly, the

mass and energy conservation loss are defined as

M
Loss

(t)5

����M(t)2M(0)

M(0)

���� and E
Loss

(t)5

����E(t)2E(0)

E(0)

����.
(37)

The results for P10 solution reconstruction on both 53 5

and 103 10meshes are shown in Fig. 11. It is found that the

localized Laplacian artificial viscosity can ensure mass

conservation and only dissipates internal energy, which is

expected since the artificial viscosity used here is notmeant

to represent the proper Navier–Stokes viscous stress terms.

2) COMPARISON BETWEEN LOCALIZED

LAPLACIAN ARTIFICIAL VISCOSITY AND

CONSTANT VISCOSITY

Currently a common practice to suppress Gibbs os-

cillation in thermal front capturing is to add constant

viscosity (Yelash et al. 2014) to the governing equa-

tions. Specifically, the physical viscous diffusion term

= � Fy(Q, =Q) is added to the right-hand side of Eq. (4).

The term Fy(Q, =Q) in the x and z directions can be

written as

f y 5

0
BBBBBBBBBB@

0

mr
›u

›x

mr
›w

›x

mr
›u

›x

1
CCCCCCCCCCA

and gy 5

0
BBBBBBBBBB@

0

mr
›u

›z

mr
›w

›z

mr
›u

›z

1
CCCCCCCCCCA
, (38)

where m is a constant viscosity.

It is obvious that this approach adds numerical dissi-

pation to the entire flow field, no matter whether the

local flow features are smooth or not. The potential

temperature perturbation fields at 700 s for P10 solution

reconstruction on a 10 3 10 mesh using a series of

constant viscosity, namely, 0.1, 0.2, 0.3, 0.5, 1, and

2m2 s21, are presented in Fig. 12. The corresponding

maximum and minimum potential temperature pertur-

bations u0max and u0min at t 5 700 s using localized Lap-

lacian artificial viscosity and constant viscosity are

tabulated in Table 2. Note that the nominal resolution

for all the presented results with constant viscosity is

10m. For comparison purpose, the potential tempera-

ture perturbation fields at 700 s for P10 solution re-

construction on both 5 3 5 (i.e., resolution of 20m) and

10 3 10 (i.e., resolution of 10m) meshes using localized

Laplacian artificial viscosity with k5 0:5 are displayed in

Fig. 13. From these results, we observe that for the rising

TABLE 2. The maximum and minimum potential temperature

perturbations u0max and u0min of the rising thermal bubble at t5 700 s

for localized Laplacian artificial viscosity and constant viscosity

with different m using P10 reconstruction on a 10 3 10 mesh.

Max u0 Min u0

Localized Laplacian artificial

viscosity

0:4409 26.196 3 1023

Constant viscosity, m 5 0.1m2 s21 0:4828 24.905 3 1022

Constant viscosity, m 5 0.2m2 s21 0:4404 22.115 3 1022

Constant viscosity, m 5 0.3m2 s21 0:4065 29.665 3 1023

Constant viscosity, m 5 0.5m2 s21 0:3611 21.919 3 1023

Constant viscosity, m 5 1m2 s21 0:3012 24.290 3 1025

Constant viscosity, m 5 2m2 s21 0:2431 21.655 3 1029

FIG. 13. Potential temperature perturbation fields of the rising thermal bubble at t5 700 s for localized artificial

viscosity with k5 0:5 using P10 reconstruction on both (a) 5 3 5 (i.e., resolution of 20m) and (b) 10 3 10 (i.e.,

resolution of 10m) meshes.
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thermal bubble case, the performance of constant vis-

cosity with m 5 0.2m2 s21, as presented in Fig. 12b, is

very similar to that of localized Laplacian artificial vis-

cosity as shown in Fig. 13b. If the constant viscosity is

very large (e.g., m 5 2m2 s21), as shown in Fig. 12f, the

flow structures can be severely dissipated. Although a

10 3 10 mesh is used, the resolution of the case with

m 5 2m2 s21 is very similar to the localized Laplacian

artificial viscosity case on a 5 3 5 mesh as show in

Fig. 13a. More advantages of the localized Laplacian

artificial viscosity approach over the constant viscosity

approach will be demonstrated in section 4c(2).

c. Density current

Now we study the density current problem. In this

case, a cold bubble drops in a neutrally stratified atmo-

sphere, hits the ground, and generates Kelvin–Helmholtz

rotors. The initial potential temperature perturbation is

given as follows (Giraldo and Restelli 2008):

u0 5
u
c

2

�
11 cos

�
pr

r
c

��
, (39)

where uc 5 258:15 K, rc 5 1 m, r 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[(x2xc)/xr]

21[(z2zc)/zr]
2

q
, (xc,zc)5 (0, 3000) m is the

initial center of the bubble, and (xr,zr)5(4000,2000)m.

Similarly to the rising thermal bubble case, the hydrostatic

potential temperature u0 is set to 300K. The simulation

domain is (x,z)2 [0, 25600]3[0, 6400]m. The cold bubble

evolves until t5 900 s. Four resolutions, namely, 400, 200,

100, and 50m, are used in the simulations. As discussed by

Skamarock and Klemp (2008) and Jebens et al. (2009),

flow discontinuities develop quickly in the density

current problem for the inviscid Euler equations.

In the work by Giraldo and Restelli (2008), a constant

dynamic viscosity is used to ensure a grid-converged so-

lution at approximately 50-m resolution. The convergence

property of the present flow solver has been demonstrated

in previous work (Giraldo andRestelli 2008). In this study,

we focus on the solutions for the inviscid Euler equations.

The flow feature based localized Laplacian artificial vis-

cosity is used to stabilize the DG discretization near flow

discontinuities self-adaptively. Unless explicitly specified,

k in the artificial viscositymodel is set as 1 in all simulations

presented in this section.

1) RESULTS FROM LOCALIZED LAPLACIAN

ARTIFICIAL VISCOSITY

The maximum and minimum potential temperature

perturbations u0max and u0min at t5 900 s with various flow

field resolutions are presented in Fig. 14. Similar con-

clusions can be drawn from this figure as those for the

rising thermal bubble case. The localized Laplacian ar-

tificial viscosity works well in a wide range of grid sizes

and polynomial orders.

The effects of k on flow field features are studied with

P8 reconstruction on both 8 3 2 (i.e., 400-m resolution)

and 643 16meshes (i.e., 50-m resolution). The potential

temperature perturbation fields with different k,

namely, 0.25, 0.5, and 1, on the coarse mesh, and those

with k5 0:5, 1, 2, 4, and 6 on the fine mesh are dis-

played in Figs. 15 and 16, respectively. It is found that

the artificial viscosity is very dissipative on the coarse

mesh, even when a small k is used. For the fine grid re-

sults, as k increases, fewer Kelvin–Helmholtz rotors are

generated. In Table 3, we tabulate the maximum and

minimum potential temperature perturbations u0max and

u0min at t 5 900 s for the fine grid results. It is clear from

FIG. 14. The maximum andminimum potential temperature perturbations u0max and u0min of the density current flow at

t 5 900 s with various flow field resolutions: (a) u0max vs degree of polynomial and (b) u0min vs degree of polynomial.
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Table 3 that the overshoot of u0max for all cases is small,

and decreases quickly as k increases, especially when k

exceeds 2.

2) COMPARISON BETWEEN LOCALIZED

LAPLACIAN ARTIFICIAL VISCOSITY AND

CONSTANT VISCOSITY

The potential temperature perturbation fields at 900 s

for P8 solution reconstruction on a 16 3 4 mesh using

localized Laplacian artificial viscosity and a series of

constant viscosity, namely, 50, 75, 100, and 125m2 s21,

are displayed in Fig. 17. The corresponding maximum

and minimum potential temperature perturbations

u0max and u0min at t 5 900 s using localized Laplacian

artificial viscosity and constant viscosity are tabulated

in Table 4. A similar trend can be concluded as that in

section 4b(3).

It is found that if the constant viscosity is ‘‘small’’ (e.g.,

m 5 25m2 s21) the simulation diverged. Note that

m5 2m2 s21 is considered as a ‘‘large’’ viscosity value in

the rising thermal bubble case. Thus, one drawback

of the constant viscosity approach is that the selection of

the stabilization viscosity parameter is largely problem

dependent. In contrast, the value of localized Laplacian

FIG. 15. Potential temperature perturbation fields of the density current at t 5 900 s for

different kwithP8 reconstruction on the 83 2mesh.A total of 31 contour levels from215.00 to

0.01 are used in the figure with every third contour level presented in the legend to avoid it

being overly crowded.
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artificial viscosity is automatically determined from the

design mechanism considering key factors such as the

smoothness of the flow field and the numerical resolu-

tion of the scheme, and no parameter adjustment is

needed in simulations of different problems. This ap-

pears to be one big advantage of the localized Laplacian

artificial viscosity over the constant viscosity approach.

5. Summary and outlook

We present a flow-feature-based localized Laplacian

artificial viscosity method for DG discretization of

nonhydrostatic mesoscale atmospheric modeling. This

method can effectively suppress Gibbs oscillation near

sharp thermal fronts, while not affecting smooth flow

features elsewhere. Specifically, the original inviscid

governing equations are augmented by localized Lap-

lacian artificial diffusive terms. The diffusivity is a

function of the local smoothness of the flow fields. Thus,

the proposed method has a favorable subcell shock

capturing property, and does not contaminate the

smooth flow features away from the nonsmooth re-

gions. To alleviate the sensitivity of the free parameters

in artificial viscosity modeling on both grid sizes and

polynomial orders, a family of localized Laplacian ar-

tificial viscosity models is proposed based on both

physical criteria and numerical features of the DG

discretization.

The efficacy of the proposed localized Laplacian ar-

tificial viscosity method is then demonstrated by using

three one-dimensional and two-dimensional bench-

marks involving shock waves, including shock capturing

for the one-dimensional Burger’s equation, one-

dimensional shock–entropy wave interaction, and two-

dimensional shock–vortex interaction. Finally, we use

the developed numerical framework to simulate two

classical two-dimensional test cases from nonhydrostatic

mesoscale atmospheric modeling, namely, rising ther-

mal bubble and density current tests. It is found that a

fixed set of parameters in artificial viscosity work ro-

bustly for both problems with a wide range of grid sizes

and polynomial orders. In addition, the artificial vis-

cosity only slightly dissipates total energy but not affects

mass conservation. The results using localized Laplacian

artificial viscosity are then compared with those using

constant viscosity. It is found that for the constant

FIG. 16. Potential temperature perturbation fields of the density

current at t5 900 s for different k with P8 reconstruction on a 643
16 mesh. A total of 31 contour levels from215.00 to 0.01 are used

in the figure with every third contour level presented in the legend

to avoid it being overly crowded.

TABLE 3. The maximum and minimum potential temperature

perturbations u0max and u0min of the density current at t 5 900 s for

different k with P8 reconstruction on a 64 3 16 mesh.

k Max u0 Min u0

0:5 1.425 3 1022 213.59

1:0 7.743 3 1023 214.60

2:0 4.007 3 1024 212.17

4:0 4.740 3 1028 211.03

6:0 2.457 3 1028 210.33
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viscosity method, m 5 2m2 s21 is considered to be a

‘‘large’’ viscosity value in the rising thermal bubble case,

whereas m 5 25m2 s21 is considered to be a ‘‘small’’

viscosity value in the density current case. In contrast,

the value of localized Laplacian artificial viscosity is

automatically determined from both flow smoothness

and numerical resolution features, with no parameter

adjustment needed in simulations of different problems.

To quantitatively judge the effect of the localized Lap-

lacian artificial viscosity on nonhydrostatic mesoscale

atmospheric modeling, we intentionally vary k, a pa-

rameter in the artificial viscosity model distinguishing

the nonsmooth range of the flow field, for the two

benchmark atmospheric flow tests. It is observed in both

cases that the small flow features near the thermal front

are gradually damped as k becomes larger.

It is concluded from all the simulation results that the

proposed flow-feature-based localized Laplacian artifi-

cial viscosity method can sharply detect the nonsmooth

flow features, and stabilize the DG discretization

nearby. Furthermore, compared with the constant vis-

cosity approach, the localized Laplacian artificial vis-

cosity method works robustly for a wide range of grid

sizes and polynomial orders without parameter tuning in

the artificial viscosity model.

We will continue our work on the application of the

developed localized Laplacian artificial viscosity and its

extension to hyperviscosity for nonhydrostatic meso-

scale atmospheric modeling. One example is the atmo-

spheric flow over topography. In this case, when

constant viscosity or hyperviscosity is used, mass and

potential temperature can be diffused along terrain-

following surfaces leading to a loss of hydrostatic bal-

ance and the generation of spurious vertical noise. The

localized Laplacian artificial viscosity will be used to

suppress disturbances in hydrostatic balance near to-

pography by not triggering diffusion in smoothly varying

fields over topography. Furthermore, we will also work

on the following question: how to quantify the

FIG. 17. Potential temperature perturbation fields of the rising

thermal bubble flow at t5 700 s for localized artificial viscosity and

constant viscosity with different m using P8 reconstruction on the

16 3 4 mesh. A total of 31 contour levels from 215.00 to 0.01 are

used in the figure with every third contour level presented in the

legend to avoid it being overly crowded.

TABLE 4. The maximum and minimum potential temperature

perturbations u0max and u0min of the density current at t 5 900 s for

localized Laplacian artificial viscosity and constant viscosity with

different m using P8 reconstruction on a 16 3 4 mesh.

Max u0 Min u0

Localized Laplacian artificial

viscosity

4.753 3 1024 29.548

Constant viscosity, m 5 25m2 s21 Diverged Diverged

Constant viscosity, m 5 50m2 s21 8.161 3 1021 212.39

Constant viscosity, m 5 75m2 s21 1.981 3 1021 210.85

Constant viscosity, m 5 100m2 s21 1.369 3 1021 29.387

Constant viscosity, m 5 125m2 s21 9.243 3 1022 28.835
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interference between artificial viscosity and physically

motivated diffusion in complex flow phenomena in

which flow discontinuity or sharp fronts can interact with

turbulence? It is likely that the interference between ar-

tificial viscosity and physically motivated diffusion can be

minimized by using very high-order numerical schemes,

which have sufficiently high resolution of smooth flow

features, equipped with the localized Laplacian artifi-

cial viscosity stabilization technique. More results and

discussion will be presented in future publications.
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