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Abstract 

Recent laboratory experiments have documented microbial mediation of low temperature 

dolomite precipitation via nucleation on microbial surfaces that have high (>0.06 groups Å-2) 

carboxyl group densities.  It is hypothesized that carboxyl groups form a cell wall complex with 

Mg2+, dewatering the magnesium ion and overcoming kinetic barriers that allow dolomite 

formation at low temperature.  Three microorganisms, two that precipitate dolomite in 

laboratory and field settings (Desulfovibrio brasiliensis; Haloferax sulfurifontis) and a control 

organism, not associated with dolomite precipitation (Shewanella putrefaciens), were selected 

for this research and were grown in media of varying salinities.  Acid-base titrations were 

performed on the microorganisms, revealing an increase in buffering capacity of 

microorganisms grown in higher salinity growth conditions.  Using ProtoFit 2.1 (Rev 1), site 

density values (mol/kg) were calculated for various functional groups (carboxyl, phosphoryl, 

and amine).  For D. brasiliensis and H. sulfurifontis a 175% increase in carboxyl group density 

was measured (when doubling ionic strength from 0.5 M to 1.0 M) and a decrease in carboxyl 

group density by 47% (when reducing ionic strength from 3.2 M to 0.8 M), respectively.              

S. putrefaciens, the control specimen, also increased carboxyl group density by 70% (when 

increasing ionic strength from 0.1 M to 2.0 M).  Calculated carboxyl group density, normalized 

to surface area (Å2), revealed 5.56 x 10-1 sites Å-2 for D. brasiliensis (at 1.0 M ionic strength), 

1.15 x 10-1 sites Å-2 for S. putrefaciens (at 2.0 M ionic strength), and 1.53 sites Å-2 for H. 

sulfurifontis (at 3.2 M ionic strength), the cell wall of all three microorganisms show an 

increased carboxyl group density at higher salinities, and a lower carboxyl group density when 

grown at lower salinities. These data demonstrate that increases of carboxyl group density are 

evidence for environmental control on microorganisms.  Microorganisms respond to increasing 

salinities by modifying their exterior cell wall as a coping mechanism to high ionic strength and 

osmotic pressure.  Under these conditions, typical of mixing zones of fresh and marine waters, 

sabkha and hypersaline lagoon environments, microbial cell walls may serve as nucleation sites 

for low temperature dolomite when geochemical conditions for dolomite are favored.  
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Chapter 1: Introduction 
 
Overview 
 
 Dolomite [CaMg(CO3)2], a carbonate mineral, is found in abundance within the rock 

record, but forms scarcely in modern environments (Vasconcelos and McKenzie, 1997). 

Understanding the relative scarcity of dolomite in modern environments is due to a lack of 

secondary dolomite, e.g. active dolomitization of limestone by Mg-rich fluids (McKenzie & 

Vasconcelos, 2009), but also by a significant kinetic barrier to primary dolomite precipitation at 

low temperature (<50 °C), confounding its laboratory synthesis (Land, 1998).  Much of the 

laboratory synthesis of dolomite at low-temperature has produced negative results (e.g., 

Braithwaite et al., 2004; McKenzie, 1991), leading geoscientists to consider parameters other 

than purely abiotic components that may play a role in low temperature dolomite nucleation 

and precipitation (Vasconcelos and McKenzie, 1997).  

 Recent biotic models and experimentation, that includes microorganisms and their 

exudates, have demonstrated that dolomite precipitation is possible at low temperatures 

(<50°C) in laboratory settings, by microbial influence and mediation (e.g., Vasconcelos et al., 

1995; Roberts et al., 2004; Mastandrea et al., 2006; Sánchez-Román et al., 2008; Kenward et al., 

2013).  Many of these studies have observed dolomite precipitates that are intimately 

associated with microbial surfaces (Warthmann et al., 2000; van Lith et al., 2003) and recent 

studies have implicated microbial exopolymeric substances (Rivadeneyra et al., 1996; Dupraz et 

al., 2004; Sánchez-Román et al., 2007) in its formation (Krause et al. 2012).   
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Dolomite Formation in Modern Low-Temperature Environments 

 Modern precipitation of dolomite has been documented in various locations around the 

world.  One prominent research location is found in the coastal hypersaline lagoon "Lagoa 

Vermelha" (Portuguese for "Red Lagoon"), found 90 kilometers east of Rio de Janeiro, Brazil 

(Vasconcelos and McKenzie, 1997).  Weakly-lithified dolomite concretions have been collected 

from the lagoon, from an anoxic "black sludge" layer (10-14 cm depth).  Between depths of 20-

40 cm, aggregates of triangular prisms of dolomite appear to diverge from a common nucleus, 

while other crystals form a radial aggregate dolomite structure with twisted interlocking semi-

dumbbells.  At depths of 70 cm, well-developed euhedral crystals of dolomite have also been 

collected.   

 The formation of these dolomite crystals has been linked to interactions with sulfate-

reducing bacteria found in the lagoon.  The salinity of Lagoa Vermelha is supported by a 

delicate balance of freshwater input, via wet season precipitation, and marine water influx via 

landward percolation, during the dry season.  The continuous input and recirculation of 

dissolved ions (Ca2+, Mg2+, CO3
2-, SO4

2-) provide the necessary chemical mix for dolomite 

precipitation to occur (with SO4
2- serving as the terminal electron acceptor for metabolic 

activity of sulfate-reducing bacteria).  One isolated strain of sulfate-reducing bacteria, 

Desulfovibrio brasiliensis, later became the central focus of dolomite precipitation in Lagoa 

Vermelha. 

 Another area of modern dolomite precipitation is found in distal ephemeral lakes of the 

Coorong region of South Australia (Wright, 1999).  This region of Australia has a climate 

conducive to dolomite precipitation, with salinity increases during the late spring/summer 
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driven by increased rates of evaporation with decreased rates of freshwater recharge.  The 

dolomite found in this area has been determined to be recent, with radiocarbon dating giving 

results to an age of 300 ± 250 years.  The dolomite is primary (precipitated in situ), and 

evidence for secondary replacement (dolomitization) is absent.  No dolomite is found in nearby 

interdune flats or calcareous dunes, and therefore, related solution chemistry favoring 

dolomite precipitation is found in the immediate area.  Similar to conditions described in Brazil, 

a variety in seasonal evaporation maintains high salinity values within the lake.  In this case, 

local sulfate-reducing bacteria have also been linked to dolomite precipitation, in the form of 

aggregations of submicron-sized dolomite sediments.  The dolomite grains are 

subspherical/elliptical in morphology, with a "bacterial-shaped" core, covered with a 

overgrowth of white dolomite.  These grains are interpreted to be dolomite-encapsulated 

bacterial cells.   

 

The Role of Cell Wall Functional Groups 

 In addition to linkages between low temperature dolomite formation and different 

microbial metabolism, such as sulfate reducers, methanogens, methanotrophs, aerobic 

heterotrophs and sulfide oxidizers, many of these reports also include observations of dolomite 

in close proximity to microbial surfaces or exopolysaccharides (EPS; van Lith et al., 2003, 

Roberts et al., 2013, Kenward et al., 2013, Braissant et al., 2007, etc.).  Despite these reports of 

involvement of microbial surfaces in low temperature dolomite formation, specific mechanisms 

have remained elusive until recent work by Kenward et al. (2013) and Roberts et al. (2013) 

demonstrated that microbial cells with relatively high densities of carboxyl groups (>0.06 
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groups Ångstrom-2) and carboxylated organic matter promote dolomite formation at laboratory 

temperatures of 25°C.    

A relatively high abundance of carboxyl groups (R-COOH) is present on bacterial cell wall 

surfaces, in comparison with other functional groups.  When found in circum-neutral pH (6.0-

8.0), most carboxyl groups are found in a deprotonated state (-), allowing positively-charged 

cations, such as magnesium, to be attracted to the negatively-charged functional groups.  

Solutions that contain high concentrations of dissolved ions (e.g., magnesium, sodium, chloride) 

have an increased probability of chemical interaction between dissolved metals and ligands, 

such as carboxyl groups.  

 As a solution's pH becomes more alkaline, passing the pKa value (50% deprotonation) 

for various functional groups (carboxyl, phosphoryl, and amine), a transition to complete 

deprotonation occurs.  However, the range for pKa values are unique for each functional group.  

Previous titration experiments by Haas et al. (2001) with Shewanella putrefaciens demonstrate 

distinct deprotonation ranges of functional groups, progressing from carboxyl to phosphoryl 

and ending with amine groups.  The determined pKa values for Shewanella putrefaciens were 

5.16 ± 0.04 for carboxyl, 7.22 ± 0.15 for phosphoryl, and 10.04 ± 0.67 for amine groups.  These 

distinct ranges of deprotonation allow comparative study of carboxyl group density of the cell 

wall of microorganisms. 

 Many microbial cell wall surfaces have been characterized but few, if any, organisms 

from dolomite-forming environments have been characterized.  However, recent work 

(Kinnebrew, 2012) suggests that archaean cells grown under high dissolved ion concentrations 

could promote a relatively high density of cell wall functional groups, including carboxyl groups.  
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These surface-bound carboxyl groups (R-COO-) serve as potential binding sites for cations, 

initiating surface complexation between Mg2+ and carboxyl groups (Kenward, 2013).  Dissolved 

Mg2+ ions are covered by a "hydration sphere" of six molecules of water, creating a kinetic 

barrier around the magnesium ion. As the magnesium-carboxyl group complex forms, a 

dehydration reaction occurs, and one of the initial six water molecules surrounding the Mg2+ 

ions is ejected into solution.  This reaction is energetically favorable, as the difference in Gibb's 

free energy is 13.6 kcal mol-1 lower (Katz, 1996). 

Mg(H2O)6]2+ + R-COO− → [Mg(H2O)5(R-COO)]+  (ΔH = -199.8 kcal mol-1)  

 Following the formation of the magnesium-carboxyl complex, a carbonate ion (CO3
2-) 

may bind to the magnesium ion, creating a template for subsequent binding of Ca2+ and CO3
2-, a 

thin layer of dolomite.  Experimental research has determined that microorganisms and natural 

organic matter with a high density of surface-bound carboxyl groups (>0.06 groups Å-2) readily 

bind Mg2+ ions, facilitating a template for dolomite precipitation (Roberts et al., 2013; Kenward 

et al., 2013).  After growing in increased ionic strength conditions, multiple microorganisms 

have been documented to increase apparent total site (functional group) densities (Borrok et 

al, 2005).  Modification of the cell wall is a direct response to an increase in salinity, possibly as 

a survival mechanism. 

 The goal of this research project is to test the following hypothesis: The density of 

surface-bound carboxyl groups in microorganisms is, in part, controlled by salinity, with 

increasing densities at higher salinity (>50 ‰) and lower densities at lower salinities (<30 ‰).  

It follows then, that microbial biomass in hypersaline or slightly evaporated marine 
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environments may serve as effective nucleation sites for the formation of dolomite (e.g. 

Roberts et al., 2013). 
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Chapter 2: Quantifying Carboxyl Group Density Via Titration 
 
Introduction 

 The exterior cell walls of microorganisms host a variety of functional groups (e.g. 

carboxyl, phosphoryl, amine) (Figure 1), allowing each cell to interact with its surrounding 

environment by chemical and electrostatic interactions with dissolved ions (e.g. cadmium, 

copper, lead, aluminum, magnesium; Fein et al., 1997).  Understanding how these surface-

bound functional groups specifically interact with these ions, can provide insight into metal 

toxicity, metabolic uptake, and biomineralization by microorganisms (Daughney et al., 1998).  

Therefore, it is of critical importance to develop mechanistic models to quantify ion interaction 

with cell surfaces.  Borrok et al. (2005) have created a universal surface complexation 

framework model that has determined pKa values of 3.1, 4.7, 6.6, and 9.0 for cell wall 

functional groups (as phosphodiester, carboxyl, phosphoryl, amine, respectively).  When in a 

deprotonated state, these functional groups can potentially create bonds with dissolved 

cations, allowing such microorganisms to be used in bioremediation efforts of metal 

contaminants (Gadd, 2004).  When microorganisms are grown in harsh, dynamic salinity fluxes, 

as seen in: mixing zones in sabkha environments of the Persian Gulf (Müller, et al., 1990), 

hypersaline lagoons of Brazil (Warthmann et al., 2000), and the Coorong lakes of Australia 

(Warren, 1990), the total site (functional group) density can increase (Borrok et al., 2005).  

When grown in stressful environmental conditions, microorganisms may exhibit cell wall 

thickening, a modification that increases survival probability (Cunningham & Spreadbury, 1998; 

Van Houte & Saxton, 1971; Shockman, 1965).  Thickened cell walls can offer protection from 



 

9 
 

increased osmotic pressures, by increasing cell wall rigidity, as experienced in hypersaline 

conditions. 

 A series of acid-base titration experiments can be used to test functional group density 

of the cell wall, by observing an increased buffering capacity for microorganisms resulting from 

increased functional group density.  An increased buffering capacity is observed when an 

increased amount of acid or base is necessary to titrate to reach a desired pH endpoint.  The 

buffering capacity of a microorganism increases as an increased functional group density readily 

binds with free ions of H+.   

 This research aims to grow three microorganisms in a variety of solution salinities and 

measure any response cells may have in adapting to changes in salinity by changing functional 

group density (Borrok et al., 2005) of the exterior cell wall. 

 
Methods 
 
 Three microorganisms, two that have been shown to precipitate dolomite in laboratory 

and field settings at a range of salinities (Desulfovibrio brasiliensis; Haloferax sulfurifontis) and a 

control organism, that has not previously been associated with dolomite precipitation 

(Shewanella putrefaciens), were selected for this research (Table 1).   

 The bacterial species Desulfovibrio brasiliensis strain LVform1 (DSMZ; DSM# 15816), 

known to precipitate dolomite crystals in the hypersaline lagoon, Lagoa Vermelha (Brazil), 

acquired from the DSMZ (Deutsche Sammlung Mikroorganismen Zellkulturen), were cultured 

under anaerobic conditions in 10 mL batches in 15 mL Hungate tubes using 0.5 M ionic strength 

DSMZ recipe Medium 383 (Table 2) and incubated at 30°C on a rotisserie at 8 rpm.  
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 The bacterial species Shewanella putrefaciens strain 200R (ATCC® 51753™), acquired 

from ATCC (American Type Culture Collection), a well studied microorganism that has not been 

implicated in dolomite precipitation (Kenward et al., 2013), is a facultative anaerobe, isolated 

from an oil pipeline in Alberta, Canada.  The bacteria were cultured under aerobic conditions in 

10 mL batches in 15 mL Falcon tubes of BD™ Trypticase™ soy broth (calculated initial ionic 

strength of 0.1 and additional ionic strength increases by addition of NaCl), and incubated at 

30°C in an agitating incubator at 170 rpm.  

 The archaeal species Haloferax sulfurifontis strain M6 (DSMZ; DSM# 16227) was 

acquired from DSMZ.  It is known to precipitate dolomite crystals under laboratory conditions 

(e.g. Kenward et al., 2013) and was isolated from a southwestern Oklahoma spring (rich in both 

sulfide and sulfur ions).  It was cultured under aerobic conditions in 10 mL batches in 15 mL 

Falcon tubes of ATCC® Medium 2448, yeast extract medium (original ionic strength 3.2 M), and 

incubated at 37°C in an agitating incubator at 170 rpm.  

 Media were prepared with deionized water (18MΩ) by process of reverse osmosis.  All 

prepared media solutions were autoclaved for 30 minutes at 121°C.  Growth curves were 

generated by completing cell counts (e.g. Yu et al., 1995) after the following time intervals: D. 

brasiliensis reached mid-exponential growth phase after 2.0-2.5 days of incubation (Figure 2), S. 

putrefaciens after 4-5 hours (Figure 3), and H. sulfurifontis after 6-8 hours (Figure 4).  These 

times were used for the incubation period for harvesting and titration.   

 Each microorganism was grown in various ionic strength medium solutions (Table 5) by 

creating calculated changes in concentrations of medium reagents: increased and decreased 

proportioned amounts of reagents listed under "Solution A" for Desulfovibrio brasiliensis (Table 
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2), NaCl concentrations for Shewanella putrefaciens (Table 3), and NaCl concentrations for 

Haloferax sulfurifontis (Table 4).  D. brasiliensis was grown in ionic strength conditions that 

were higher (up to 1.5 M ionic strength) and lower (down to 0.2 M ionic strength) than optimal 

growth conditions (original 0.5 M ionic strength).  S. putrefaciens was grown in higher ionic 

strengths (up to 3.0 M ionic strength) compared to optimal medium conditions (original 0.1 M 

ionic strength).  H. sulfurifontis was grown in lower ionic strengths (down to 0.2 M ionic 

strength) from optimal growth conditions (original 3.2 M ionic strength).  Microorganisms 

experienced three generations (and ten generations) growth time in their selected ionic 

strength medium before being harvested for titration experimentation.   

 Microorganisms were grown to mid-exponential phase, harvested and centrifuged into 

pellets at 3,750 rpm for 15 minutes.  Pellets were reduced to a wet mass of 0.05 g, and rinsed 

(5x) with 50 mL 0.1 M NaCl solution.  The 0.1 M NaCl solution was previously bubbled with N2 

gas for one hour, to remove any dissolved CO2.  Titrations were performed using Tiamo® 

Titration hardware (Metrohm Titrando 842 autotitrator) and associated software created by 

Metrohm USA Inc.  Microbial pellets submerged in 50 mL 0.1 M NaCl solutions were titrated 

down to pH 3.2 (0.1 M HCl), up to pH 8.0 (0.1 M NaOH), and again down to pH 3.2.  Laboratory 

temperatures, during titrations, were 22±1°C. Raw titration data (pH levels and acid/base 

added) and associated curves were exported from output reports (Turner & Fein, 2006). 

 Titration data, including: acid/base added (mL), pH changes, initial temperature, pellet 

mass, specific surface area of absorbent, and the number of titration steps, was input and 

evaluated by ProtoFit software 2.1 Rev1 (Turner and Fein, 2006).  Analysis by ProtoFit 

generated estimated pKa values (acid dissociation constants) for various functional groups 
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(carboxyl, phosphoryl, amine) found on the cell wall exterior of the microorganisms studied.  

Functional group concentrations were calculated in units of "moles of functional group per 

kilogram" of microorganism (mol/kg), and then converted for easy comparison.  Example: Site 

density of log C -1.00 converts to 10-1.00 which equals 0.1 moles of functional group sites per 

kilogram (mol/kg) of microorganism. 

 Calculations of high, medium, and low surface areas were completed for each of the 

microorganisms by using measurements of length and width (Warthmann, 2005; Sokolov et al., 

2001; Elshahed, et al., 2004).  Carboxyl group density per Å2 was calculated and compared 

among the microorganisms.  

 
Results 
 
Titrations 
 
 All titration data was exported from the Tiamo® Titration software and plotted for 

comparison purposes. Acid titrations for D. brasiliensis were compared to a mean pKa curve 

with mean site densities, to show reproducibility (Figure 5).  Titration data was also plotted 

showing differences in cell wall buffering capacity between D. brasiliensis and H. sulfurifontis, 

depending on ionic strength growth conditions (Figure 6).  D. brasiliensis required 0.50 mL of 

acid to reach the titration goal (pH 3.2), during 0.5 M ionic strength growth conditions (Figure 

6A).  However, when D. brasiliensis was grown in increased ionic strength conditions (1.5 M), 

0.77 mL of acid was required to reach the titration goal (pH 3.2), an acid increase of 53.7%.  

During optimal (0.1 M) ionic strength growth conditions S. putrefaciens required 0.69 mL of acid 

to reach the titration goal (pH 3.2), with other trials within a similar range (Figure 6B).  During 

optimal (3.2 M) ionic strength conditions, H. sulfurifontis required 0.75 mL of acid to reach the 
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titration goal (down to pH 3.2) (Figure 6C), and only needed 0.48 mL of acid when grown in a 

reduced ionic strength of 0.2 M; a decrease in acid by 36.2%.   

 

ProtoFit Analysis Results 
 
 All titration data was input into ProtoFit 2.1 (Rev 1; Turner and Fein, 2006), and analyzed 

to calculate the acid dissociation constants (pKa values) and site density (mol/kg). Analysis by 

ProtoFit 2.1 revealed increased carboxyl group densities for all three microorganisms after 

multi-generational growth in higher salinity conditions (Table 6).   

 

Desulfovibrio brasiliensis  
 
 Initial site density of carboxyl groups was measured to be 0.09 (± 0.01) mol/kg.  After 

growing D. brasiliensis in ionic strength conditions of 1.0 M, the carboxyl group density 

increased by 189% to 0.26 (± 0.01) mol/kg.  Total site density measurements followed a similar 

trend from 0.27 (± 0.02) mol/kg to 0.60 (± 0.07) mol/kg, an increase of 122%.  These changes in 

functional group density occurred within three generations of growth in increased ionic 

strength conditions.  Measurements were taken after ten generations of growth with similar 

results (Figure 7).  Averaged values from low ionic strength conditions (0.2-0.5 M), 1.0 M, and 

1.5 M ionic strength conditions have also been summarized (Figure 8). 

 

Shewanella putrefaciens 
 
 Initial site density of carboxyl groups was measured to be 0.13 (± 0.01) mol/kg.  After 

growing S. putrefaciens in ionic strength conditions of 2.0 M, the carboxyl group density 
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increased by 69% to 0.22 (± 0.02) mol/kg.  Total site density measurements showed another 

increasing trend from 0.88 (± 0.06) mol/kg to 1.1 (± 0.1) mol/kg, an increase of 25%.  

Measurements of carboxyl group density after three generations displayed an overall decrease 

in total site density, followed by an increasing rebound in total site density after ten 

generations (Figure 9).  Averaged values from initial conditions (0.1 M ionic strength), 1.0-3.0 M 

ionic strength (three generations), and 1.0-3.0 M ionic strength (ten generations) conditions 

have also been summarized (Figure 10).  

 
Haloferax sulfurifontis 
 
 Initial site density of carboxyl groups was measured to be 0.34 (± 0.04) mol/kg.  After 

growing H. sulfurifontis in decreased ionic strength conditions of 1.0-0.2 M, the carboxyl group 

density decreased by 47% to 0.18 (± 0.04) mol/kg.  Total site density measurements also 

decreased from 0.77 (± 0.11) mol/kg to 0.60 (± 0.15) mol/kg, a decrease of 22%.  These 

measured changes in functional group density were all taken after three generations of growing 

in decreased ionic strength conditions (Figure 11).  Averaged values from low ionic strength 

conditions (0.2-0.5 M), 1.0 M, and 1.5 M ionic strength conditions have also been summarized 

(Figure 8). 

 
Carboxyl Group Density per Å2 
 
 Carboxyl group density values were converted to carboxyl site density per Å2.  At 

optimal growth conditions (0.5 M ionic strength) D. brasiliensis had an initial carboxyl group 

density of 2.02 x 10-1 sites Å-2, and after growth in experimental ionic strength media (1.0 M), 

the carboxyl group density increased to 5.56 x 10-1 sites Å-2.  At optimal growth conditions (0.1 



 

15 
 

M ionic strength) S. putrefaciens had an initial carboxyl group density of 6.76 x 10-2 sites Å-2, and 

after growth in experimental ionic strength media (2.0 M), the carboxyl group density increased 

to 1.15 x 10-1 sites Å-2.  At optimal growth conditions (3.2 M ionic strength), H. sulfurifontis had 

an initial carboxyl group density of 1.53 sites Å-2, and after growth in experimental ionic 

strength media (0.4-0.8 M), the carboxyl group density decreased to 8.07 x 10-1 sites Å-2.  

Calculated surface areas are displayed for each microorganism (Table 7).  Initial carboxyl group 

density per Å2 was calculated and compared with the carboxyl group density of the 

experimental batch trials (Figure 13). 

 
Discussion  

Desulfovibrio brasiliensis 
 
 Desulfovibrio brasiliensis (strain LVform1) was isolated from the hypersaline lagoon 

"Lagoa Vermelha" near Rio de Janeiro, Brazil (Figure 14) (22°55'50"S, 42°23'40"W).  This 

hypersaline lagoon experiences greater rates of evaporation than precipitation for ten months 

of the year (Figure 15), creating high salinity conditions that support various microbial 

communities (Vasconcelos and McKenzie, 1997).  Wet season conditions create an influx of 

freshwater that temporarily produce brackish conditions, followed by a dry season, returning 

conditions to saline conditions.  After several months of intense evaporation, the salinity values 

(ionic strength) of the lagoon are great enough to be considered hypersaline (>3.5% dissolved 

mineral salts; >0.72 M ionic strength).   

 However, daily rainfall during the wet season, or a landward influx of seawater (storm 

surge) could influence salinity changes on a daily basis.  Microorganisms of the lagoon would 

require cell wall modification mechanisms, as described in this research, to survive the flux in 
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salinity.  These mechanisms may increase the probability of dolomite precipitation by increasing 

the associated carboxyl group density found on the exterior cell wall.  

 Research completed by Warthmann et al. (2005) has shown field precipitation of 

dumbbell-shaped dolomite minerals occurs within Lagoa Vermelha, however, these findings do 

not elaborate on the live/dead status of D. brasiliensis at the time of crystal development.  

Complete dolomite crystal encapsulation is also ambiguous, and can be assumed, but 

conclusive evidence is currently absent.  Phoenix et al. (2002) suggest that bacterial sheaths, 

similar to dolomite precipitation, might be loosely bound to the cell surface, easily sloughed off, 

by breaking weak bonds between the sheath and the bacterial cell wall.  Another study 

suggests that the sloughing of cyanobacteria sheaths may provide a protective mechanism 

against biomineralization, specifically silicification of the cell wall (Phoenix et al., 2000).  The 

dolomite template formed on the cell wall of D. brasiliensis may serve as a protective 

mechanism from temporary inhospitable conditions, that may also be sloughed off when 

conditions are favorable for survival (lower salinities).  Upon cellular death, perhaps complete 

encapsulation (Warthmann's "Dolomite Dumbbell") of the dolomite template may be complete, 

as the bacteria is unable to slough off the dolomite crystals.  Alternatively, Kenward et al. 

(2013) demonstrated that only dead or non-metabolizing cells precipitated dolomite under 

laboratory conditions, therefore encapsulation during precipitation may only occur on dead 

biomass. 

 When examining Lagoa Vermelha environmental data collected by Vasconcelos and 

McKenzie, seasonal temperatures vary between 23-32°C and the pH range is well buffered 

between 8.0-8.5 (Table 8).  Magnesium to calcium ratios range from 1.66-3.17, throughout the 
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year. During the dry season, from April through June, environmental conditions become ideal 

(e.g. high ionic strength, low Mg:Ca ratio) for microbial dolomite precipitation and therefore 

low temperature dolomite formation requires both favorable geochemical conditions as well as 

appropriate microbial biomass to serve as nucleation surfaces.  These requirements may also 

be present in other geologic environments that support high salinity fluxes (hypersaline lagoons 

of Brazil, Coorong lakes of Australia, and mixing zones of sabkha of the Persian Gulf) have 

documented modern dolomite precipitation (Müller, et al., 1990; Warthmann et al., 2000; 

Warren, 1990).   

 This strain of Desulfovibrio brasiliensis (LVform1) survives in dynamic salinity conditions, 

both on a daily and seasonal basis, and displays rapid exterior cell wall modification (three 

generations) as a means of adaptation and proliferation.  This accelerated method of 

adaptation not only increases survival probability, but also increases probability of dolomite 

precipitation.   

 Roberts et al. (2013) describes the carboxyl group density for the average bacteria to be 

6.0 x 10-2 sites Å-2 on the exterior cell wall.  Kenward et al. (2013) describes a dolomite 

precipitation threshold value to be greater than, or equal to, 0.06 sites Å-2 (Table 9).  The initial 

carboxyl group density measurement, taken after growth in optimal ionic strength, of D. 

brasiliensis was 2.02 x 10-1 sites Å-2, and after growth in twice the ionic strength (0.5 to 1.0), the 

carboxyl group density increased by 175% to 5.56 x 10-1 sites Å-2.  Both low ionic strength (0.5 

M) and high ionic strength conditions (1.0 M) produced carboxyl group density values (Å-2) 

above the threshold value of >0.06 sites Å-2.  High ionic strength conditions increased the 
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carboxyl group density (Å-2) and ultimately increases the probability for the dehydration of 

Mg2+, a key step in the precipitation of dolomite, as described by Roberts et al. (2013). 

 

Shewanella putrefaciens 
 
 Shewanella putrefaciens (strain 200R) was isolated from an oil pipeline in Alberta, 

Canada (Obuekwe, 1980).  Environmental conditions of the oil pipeline have subjected S. 

putrefaciens to a wide range in salinity and pH, driving cell wall adaptations to occur.  However, 

these conditions found in the pipeline, relatively consistent in the short term, allow S. 

putrefaciens to adapt to fluxes in salinity but at a much slower rate than bacteria that 

experience great fluxes in salinity changes on a daily basis (D. brasiliensis). 

 In this study, S. putrefaciens responded to increases in ionic strength, however, at a 

much slower rate of cell wall modification, when compared to D. brasiliensis.  S. putrefaciens 

required at least four generations to begin adaptation to increased ionic strengths, with a net 

result of increased carboxyl group density and total site density after ten generations of 

growth.  The measured initial carboxyl group density 6.76 x 10-2 sites Å-2 is slightly greater than 

the average bacterial carboxyl group density of 6.0 x 10-2 sites Å-2 (Roberts et al., 2013).  After 

ten generations of growth in 2.0 ionic strength, S. putrefaciens increased the carboxyl group 

density to 1.15 x 10-1 sites Å-2, an increase of 70%.   

 Multigenerational adaptation (e.g. cell wall thickening/increased functional groups) 

occurs after successive negative environmental conditions continuously threaten the survival of 

the microorganism.  Each successive generation of S. putrefaciens survived the subsequent 

increase in salinity by cell wall modification, by increasing cell wall components and functional 
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groups.  S. putrefaciens is not currently associated with dolomite precipitation, however, future 

experimentation could show otherwise. 

 

Haloferax sulfurifontis 
 
 Haloferax sulfurifontis (strain M6) was isolated from a microbial mat from a sulfur spring 

in Oklahoma, United States of America.  Members of the archaean domain are known for their 

incredible resiliency to thrive in inhospitable environments, and H. sulfurifontis is no exception.  

H. sulfurifontis optimally grows in high ionic strength conditions (3.2 M initial ionic strength) 

and adapts quickly (three generations) to decreased ionic strength conditions, however 

potentially shedding its surficial S-layer.   

 H. sulfurifontis possesses an S-layer that provides reinforcement and rigidity to the cell 

exterior (Sára & Sleytr, 2000), as well as allowing protection from the environment and other 

microorganisms (Beveridge & Graham, 1991). As the S-layer can provide protection from harsh 

environmental conditions, perhaps the S-layer was shed as ionic strength was reduced 

throughout the duration of the experimental trials, and as a result, any carboxyl groups that 

were bound to the S-layer were also lost. A color change was noted between 1.6-1.0 M ionic 

strength from dark red to light peach coloration, possibly as a loss of the S-layer (surface 

protein layer) found on the cell wall.   

 The measured initial carboxyl group density 1.53 sites Å-2 places H. sulfurifontis into the 

high probability category for dolomite precipitation to occur.  After decreasing ionic strength to 

0.8 M, the carboxyl group density also decreased to 8.07 x 10-1 sites Å-2, a decrease of 47%.  

 Research completed by Kenward et al. (2013) has shown that ordered dolomite can be 
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precipitated by non-metabolizing cells of H. sulfurifontis, while supersaturated solutions did not 

produce dolomite in the absence of H. sulfurifontis cell material.  The carboxyl group covered 

archaeal biomass is thought to have overcome the kinetic barrier of the hydration sphere 

surrounding the free Mg2+ ions, as the proposed mechanism that serves as the initial step of 

creating a dolomite template (Figure 16).   

 H. sulfurifontis research completed by Kinnebrew (2012) has correlated high site 

densities with high ionic strengths, which is in accordance with research described in this thesis 

(Figure 17).  Kinnebrew has demonstrated that adsorption reactions, the binding of free cations 

(hydrogen and lead) onto the exterior cell surface of H. sulfurifontis, occur readily and are 

reversible among the functional group sites of the cell surface.  Kinnebrew suggests that this 

adaptation is a passive protection mechanism against heavy metal cations (e.g. Pb2+, Cd2+) of 

the surrounding environment. 

 Research completed by Dawson et al. (2012) analyzed cell wall lipids of archaeans with 

different salinity tolerances has demonstrated that dialkyl glycerol diether compounds (location 

where functional groups bind on the cell wall) increase when archaeans are grown in higher 

salinity conditions, consistent with the results from this study.  The fraction of unsaturated 

dialkyl glycerol diether compounds of Halorhabdus utahensis, Natronomonas pharaonis, 

Haloferax sulfurifontis, and Halobaculum gomorrense show a distinct increasing trend when 

plotted against optimal salinity growth strength (Figure 18), suggesting that archaeans (H. 

utahensis, N. pharaonis) may have even greater functional group densities than examined in 

this research. 
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Additional Mechanisms for Surviving Osmotic Stresses 

 Microorganisms that flourish in hypersaline conditions must find ways to survive the 

high osmotic stresses (water moving from the cell interior to create equilibrium with the 

environment exterior) that is experienced in high salinity conditions.  Microorganisms have two 

options to create "osmotic equilibrium" within and around the cells: (1) cells may maintain high 

intracellular salt concentrations (the "salt-in" strategy) or (2) cells may maintain minimal salt 

concentrations within the cytoplasm, and instead, store organic solutes within the cytoplasm 

(the "compatible-solute" strategy) (Oren, 1999).  Many halophilic archaeans take in KCl, while 

excluding Na+ (solution 1), and conversely, eukaryotes and halophilic bacteria survive by intake 

and storage of organic solutes (solution 2) (Dawson et al., 2012).   

 

Conclusions 
 
 Environmental salinity conditions influence microbial cell wall modification by increasing 

or decreasing functional group density within ten growth generations.  Desulfovibrio brasiliensis 

increases carboxyl group density by 175%, when grown in increased (2x) ionic strength salinity 

conditions.  Shewanella putrefaciens increases carboxyl group density by 70%, when grown in 

increased (20x) ionic strength salinity conditions.  Conversely, Haloferax sulfurifontis can 

decrease carboxyl group density by 47% when grown in decreased (1/4x) ionic strength salinity 

conditions.  These findings serve as evidence for environmental controls on cell wall exteriors, 

and provide a mechanism for cell surface nucleation in environments in which low temperature 

dolomite forms. 
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Chapter 3: Geologic Implications 

 This research extends previous research completed on the cell walls of microorganisms 

by measuring changes in functional group density, when grown in a variety of salinities (Borrok 

et al., 2005).  The findings of this research have shown that microorganisms can rapidly modify 

their exteriors to survive harsh large changes in solution salinity, and, in turn, foster the 

necessary conditions that may elicit nucleation points for low temperature dolomite 

precipitation.   

 Data collected in this research provide a plausible explanation for why dolomite forms 

where it does (i.e. sabkha, mixing zones, hypersaline lagoons).  The geochemical conditions 

must be favorable, but biomass with the proper carboxyl group density (>0.06 carboxyl groups 

Å-2) must also be present for to serve as nucleation sites for dolomite templates to form. 

 This research provides opportunities for additional studies investigating cell wall 

modification that occur with other microorganisms associated with low temperature dolomite 

precipitation (including, but not limited to Virgibacillus marismortui and Marinobacter sp, 

Desulfobulbus mediterraneus, etc.).  These additional studies could confirm increased carboxyl 

group density among various microorganisms to show environmental influence on cell wall 

structure and function.  Additionally, studies that utilize native microbial communities, rather 

than pure cultures, will further elucidate the role that microorganisms play in low temperature 

dolomite formation. 

 Beyond its relation to low temperature dolomite precipitation, this research has 

practical applications for metal bioremediation in aqueous environments.  These 

microorganisms could be engineered to maximize surface functional groups, allowing ventures 
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in bioremediation to successfully (and efficiently) bioaugment soil and groundwater systems 

(Vogel, 1995; Fantroussi & Agathos, 2005) to adsorb free cations, such as lead, cadmium, zinc, 

cobalt, nickel, chromium, aluminum that are then extracted with the cations still attached. 

Perhaps this division of bio-engineering (Pieper & Reineke, 2000; Sayler & Ripp, 2000) will solve 

problems of ecosystem contamination that were once deemed impossible to remedy. 

 Additional applications include the injection of polystyrene spheres (covered with 

carboxyl groups), acting as surrogate microorganisms, or engineered biomass into the 

subsurface, providing necessary nucleation points for dolomite formation.  These techniques 

would be appropriate to sequester heavy metals in dolomite, a phase that is less soluble than 

calcite the mineral typically used for radionuclide/heavy metal sequestration in the subsurface 

(White et al., 1995; Knox et al., 2003).  Furthermore, CO2 sequestration in dolomite would be an 

attractive long term storage solution in deep saline aquifers targeted for CCUS (carbon capture 

and underground storage) (Anderson & Newell, 2004; Azar et al., 2006) . Additional research in 

these areas are necessary to initiate these engineering endeavors. 
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Appendix: Tables and Figures 

Table 1: Morphological, metabolic, and incubation differences between the microorganisms of study 
 

Microorganism Desulfovibrio 
brasiliensis 

Shewanella 
putrefaciens 

Haloferax   
sulfurifontis 

Domain Bacteria Bacteria Archaea 
Strain Designation LVform1 (DSM# 15816) 200R (ATCC® 51753™) M6 (ATCC® BAA-897™) 
Oxygen Tolerance Anaerobe Facultative Anaerobe Aerobe 

Metabolism Sulfate Reduction Iron & Manganese 
Reduction 

Sulfur Oxidation 

Shape Vibrio Rod Rods, Flattened Discs, 
and Irregular 

Size (µm, width X 
length) 

0.30-0.45 X 1.0-3.5 
(Warthmann, 2005) 

0.5-1.0 X 2.0-5.0 
(Sokolov et al., 2001) 

0.5-0.6 X 1.5-1.7 
(Elshahed, et al., 2004) 

Calculated Surface Area 
Per Microbial Cell 

5.58 µm2  High 
3.09 µm2  Medium 

1.23 µm2  Low 

18.85 µm2 High 
10.01 µm2 Medium 

3.93   µm2 Low 

1.88 µm2 High 
1.62 µm2 Medium 

1.37 µm2 Low 
Cell Density 1.27 x 108 cells/mL 6.8 x 108 cells/mL 5.0 x 108 cells/mL 

Color (in Liquids) White/Translucent Bright Pink Red 
Gram Type Negative Negative Negative 

Isolation Location Lagoa Vermelha, Rio 
de Janeiro, Brazil 

Alberta, Canada Oklahoma, USA 

Isolation Environment Hypersaline Lagoon Oil Pipeline Microbial Mat in a 
Sulfur Spring 

Carboxyl Group Density 
(from literature) 

1.64−2.39 mol/kg (EPS) 
(Braissant et al., 2007) 

0.45 mol/kg 
(Sokolov et al., 2001) 

1.6 mol/kg 
(Kinnebrew, 2012) 

Growth Temperature 30-33°C 30°C 35-37°C 
pH Growth Range 6.3-9.0 7.4-8.6 6.5-7.5 

Salinity Growth Range 0.15-1.1 M NaCl 0.1-3.0 M NaCl 0.3-2.6 M NaCl 
Liquid Media DSMZ Medium 383 ATCC® Medium 18 ATCC® Medium 2448 

Mid-Exponential 
Growth Incubation 

Period 

2.0-2.5 Days 4-5 Hours 6-8 Hours 
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Table 2: DSMZ Desulfovibrio brasiliensis media recipe for creating 0.5 M ionic strength media 
 
DSMZ Recipe 383 Desulfobacterium Medium   Solution D: Substrate  
Solution A: Salts 0.5 M 1.0 M 1.5 M  Na-L-lactate                                                   2.3 g 
Na2SO4 3 g 6 g 9 g  Distilled water 10 mL 
KH2PO4 0.2 g 0.4 g 0.6 g    
NH4Cl 0.3 g 0.6 g 0.9 g  Solution E: Vitamin solution (Med 141) 
NaCl 21 g 42 g 63 g  Biotin  2 mg 
MgCl2 x 6 H2O 3 g 6 g 9 g  Folic acid  2 mg 
KCl 0.5 g 1.0 g 1.5 g  Pyridoxine-HCl 10 mg 
CaCl2 x 2 H2O 0.15 g 0.3 g 0.45 g  Thiamine-HCl x 2 H2O 5 mg 
Resazurin 1 mg -- --  Riboflavin 5 mg 
Distilled water 930 ml -- --  Nicotinic acid 5 mg 
 D-Ca-pantothenate 5 mg 
Solution B: Trace elements SL-10 (Med 320) Vitamin B12                                                  0.1 mg 
HCl (25%; 7.7 M) 10 ml  p-Aminobenzoic acid  5 mg 
FeCl2 x 4 H2O 1.5 g  Lipoic acid  5 mg 
ZnCl2  70 mg  Only use 10.00 ml for final media 

solution. 
MnCl2 x 4 H2O  100 mg   
H3BO3  6 mg  Solution F: Sodium Selenate 
CoCl2 x 6 H2O  190 mg  Na2SeO3 x 5 H2O-sol (3 mg in 0.01 M 

NaOH) 1 ml CuCl2 x 2 H2O  2 mg   
NiCl2 x 6 H2O  24 mg  Solution G: Sodium Sulfide Nonahydrate 
Na2MoO4 x 2 H2O  36 mg  Na2S x 9 H2O 0.4 g 
Distilled water  990 ml  Distilled water 10 ml 
Only use 1.00 ml for final media solution.  First 
dissolve FeCl2 in the HCl, then dilute in water, 
add and dissolve the other salts.  Finally make up 
to 1000.0 ml. 

 

  
Solution C: Sodium Bicarbonate  
NaHCO3  2.5 g  
Distilled water 50 ml  
Solution A is prepared and autoclaved anoxically under 80% N2 + 20% CO2 gas atmosphere. 
Solution C is filter-sterilized and gassed for 20 min with 80% N2 + 20% CO2 gas mixture. 
Solutions B, D, E and F are filter-sterilized and gassed with 100% N2. Solution G is autoclaved 
under 100% N2.  Solutions B to G are added to the sterile, cooled solution A in the sequence 
as indicated.  Final pH of the medium should be 7.0.  Addition of 10 - 20 mg sodium dithionite 
per liter (e.g. from 5% (w/v) solution freshly prepared under N2 and filter-sterilized) may 
stimulate growth of all strains at the beginning. For transfers use 5 - 10% inoculum. Incubate 
all strains in the dark.  
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Table 3: Shewanella putrefaciens media recipe for creating various ionic strength media 
 

ATCC® S. putrefaciens 0.1 M IS 1.0 M IS 2.0 M IS 3.0 M IS 
BD™ Trypticase™ Soy Broth 30 g/L -- -- -- 
Pancreatic Digest of Casein (17 g) -- -- -- 
Papaic Digest of Soybean (3 g) -- -- -- 

NaCl (5 g) + 50.9 g + 109.4 g +167.9 g 
K2HPO4 (2.5 g) -- -- -- 
C6H12O6 (2.5 g) -- -- -- 

Distilled Water 1,000 mL -- -- -- 
 
 
Table 4: Haloferax sulfurifontis media recipe for creating various ionic strength media 
 
ATCC® H. sulfurifontis Medium 2448 3.2 M IS 1.6 M IS 0.8 M IS 0.4 M IS 0.2 M IS 

NaCl 150 g 75 g 37.5 g 18.75 g 9.375 g 
MgCl2 20 g 21.35 g 10.675 g 5.3375 g 2.66875 g 
K2SO4 0.5 g 0.25 g 0.125 g 0.0625 g 0.03125 g 

CaCl2 x H2O 0.1 g 0.066 g 0.033 g 0.0165 g 0.00825 g 
Yeast Extract 5 g -- -- -- -- 

Distilled Water 1 L -- -- -- -- 
 
 
Table 5: Optimal ionic strength growth conditions and experimental trial conditions. 
 

Microorganism 
Optimal Ionic 

Strength Conditions 
for Growth (M) 

Experimental Ionic Strength Trials (M) 

Desulfovibrio brasiliensis 0.5 0.2 0.3 0.4 0.6 1.0 1.5 
Shewanella putrefaciens 0.1 1.0 2.0 3.0 -- -- -- 
Haloferax sulfurifontis 3.2 1.6 1.0 0.8 0.4 0.2 -- 
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Table 6: Microorganism ProtoFit Data Outputs: Calculated Acid Dissociation Constant (pKa), 
Initial (Optimal) & Experimental Trial Site Density (SD), and Total Site Density 

 
Desulfovibrio brasiliensis Site 1* Site 2 Site 3 Total Site 

Density pKa 4.58 ± 0.11 6.09 ± 0.08 7.61 ± 0.11 
Initial SD (kg/mol) 

0.5 M Ionic Strength 0.09 ± 0.01 0.08 ± 0.01 0.09 ± 0.01 0.27 ± 0.02 

Trial SD (kg/mol) 
1.0 M Ionic Strength 0.26 ± 0.01 0.16 ± 0.01 0.19 ± 0.05 0.6 ± 0.07 

 
Shewanella putrefaciens Site 1 Site 2* Site 3 Site 4 Total Site 

Density pKa 3.86 ± 0.20 5.09 ± 0.22 6.65 ± 0.17 8.19 ± 0.13 
Initial SD (kg/mol) 

0.1 M Ionic Strength 0.31 ± 0.01 0.13 ± 0.01 0.22 ± 0.04 0.23 ± 0.04 0.88 ± 0.06 

Trial SD (kg/mol) 
2.0 M Ionic Strength 0.37 ± 0.03 0.22 ± 0.02 0.25 ± 0.02 0.37 ± 0.04 1.1 ± 0.1 

 
Haloferax sulfurifontis Site 1* Site 2 Site 3 Total Site 

Density pKa 4.38 ± 0.14 5.98 ± 0.10 8.38 ± 0.16 
Initial SD (kg/mol) 

3.2 M Ionic Strength 0.34 ± 0.04 0.18 ± 0.03 0.25 ± 0.05 0.77 ± 0.11 

Trial SD (kg/mol) 
0.8 M Ionic Strength 0.18 ± 0.04 0.09 ± 0.02 0.33 ± 0.1 0.6 ± 0.15 

*Carboxyl group sites.  
 
 
 
Table 7: Calculated range of microorganism surface area with high, medium, and low values 

 
Microorganism Desulfovibrio brasiliensis Shewanella putrefaciens Haloferax sulfurifontis 

Range of 
calculated 

surface area per 
microorganism 

5.58 µm2  High 
3.09 µm2  Medium 

1.23 µm2  Low 

18.85 µm2 High 
10.01 µm2 Medium 

3.93   µm2 Low 

1.88 µm2 High 
1.62 µm2 Medium 

1.37 µm2 Low 

Surface area 
value selected 3.09 µm2  Medium 10.01 µm2 Medium 1.62 µm2 Medium 

(Calculations with data from Braissant et al., 2007; Sokolov et al., 2001; & Elshahed, et al., 2004) 
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Table 8: Physico-Chemical Data for Studied Waters from Lagoa Vermelha and Surroundings 
 

Samples Temp 
(°C) pH Mg 

(mg/L) 
Ca 

(mg/L) 
Mg/Ca 
Ratio 

Conductivity 
(mS) 

Ionic Strength 
(M) 

Lagoa Vermelha 
July 1991 23 8.2 975 330 2.95 43.00 0.70 

August 1991 26 8.3 1,745 580 3.01 60.00 0.97 
September 1991 24 8.0 1,400 455 3.07 51.00 0.83 

October 1991 26 8.5 920 305 3.01 42.00 0.68 
November 1991 27 8.1 540 170 3.17 27.30 0.44 
December 1991 29 8.3 545 175 3.10 28.20 0.46 

January 1992 28 8.1 400 130 3.07 24.20 0.39 
February 1992 31 8.2 800 255 3.13 36.50 0.59 

March 1992 29 8.3 680 230 2.95 34.00 0.55 
April 1992 30 8.1 1,100 660 1.66 68.00 1.10 
May 1992 32 8.3 2,200 870 2.52 78.00 1.27 
June 1992 29 8.0 2,000 825 2.42 78.00 1.27 

Other Nearby Waters 
Atlantic Ocean 22 -- 1,590 620 2.56 42.00 0.68 

Araruama (lagoon) 23 -- 1,100 990 1.11 57.00 0.93 
Jaconé (lagoon) 22 -- 90 1,400 0.06 7.60 0.12 

Jacarépia (lagoon) 22 -- 131 1,010 0.13 2.30 0.04 
Well -- -- 170 250 0.68 0.30 0.003 

 (Modified from Vasconcelos and McKenzie, 1997) 
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Table 9: Carboxyl Site Densities for Microorganisms and Exopolymeric Substances 
 

Substrate Carboxyl Site Concentration 
(mol g-1) 

Carboxyl Site Density 
(Carboxyl Å-2) Mineral Precipitate 

Bacillus subtilis 1.2 x 10-4  
(Daughney et al., 2001) 0.01 No dolomite* 

Shewanella 
putrefaciens 

4.5 x 10-4  
(Sokolov et al., 2001) 0.03 No dolomite* 

Microspheres 1.4 x 10-4* 0.02 No dolomite* 
Methanobacterium 

formicicum 8.1 x 10-4* 0.06 Disordered dolomite 
and Mg calcite* 

Haloferax 
sulfurifontis 

1.6 x 10-3  
(Kinnebrew, 2012) 0.1 Ordered dolomite* 

Exopolymeric 
substances 

(Desulfovibrio sp.) 

1.6 x 10-3 - 2.4 x 10-3 
(Braissant et al., 2007) 0.02-0.03 

Disordered dolomite, 
Mg calcite, and Ca 

dolomite** 
Exopolymeric 

substances 
(Hymenobacter 

aerophilus) 

2.4 x 10-3  
(Baker et al., 2010) 0.03 Unknown capacity 

*Results from Kenward's research    ** Results from Bontognali et al., 2008 and Vasconcelos et al., 2006 
 
(Reproduced from Kenward et al., 2013) 
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Figure 1: Diagram showing four common functional groups associated with exopolymeric 
substances (EPS), and theoretical interactions with positively-charged metals (M+). The listed 
pKa ranges for each functional group are indicated at the top of the figure.   
 
(Modified from Braissant et al., 2007)  
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Figure 2: Growth curve of Desulfovibrio brasiliensis over 3.5 days.  Mid-exponential growth was 
reached after 2.0 - 2.5 days for multiple growth conditions.  
 

 Figure 3: Growth curve of Shewanella putrefaciens over 30 hours.  Mid-exponential growth was 
reached after approximately four hours for low ionic strength conditions.  
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Figure 4: Growth curve of Haloferax sulfurifontis over 30 hours.  Mid-exponential growth was 
reached after approximately 6-8 hours for low ionic strength conditions.  
 

 
 
Figure 5: Desulfovibrio brasiliensis mean pKa value curve (generated by ProtoFit 2.1) and 0.5 M 
ionic strength acid titration curve.   
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Figure 6: Acid titrations of microorganisms when grown in various ionic strengths with optimal 
growth conditions indicated by an asterisk (*).  A. D. brasiliensis.  B. S. putrefaciens.  C. H. 
sulfurifontis. 
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Figure 7: Carboxyl group density and total site density of Desulfovibrio brasiliensis after growth 
in various ionic strength conditions.  A slight decrease in carboxyl group density occurs between 
1.0 and 1.5 M ionic strength conditions. 
 

 
Figure 8: Summarized site densities for D. brasiliensis. 
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Figure 9: Carboxyl group density and total site density of Shewanella putrefaciens after growth 
in increased ionic strength conditions.  A decrease in total site density occurs after three 
generations of growth in increased ionic strength conditions.  After ten generations, an overall 
increase of total site density and carboxyl group density is measured. 
 

 
Figure 10: Summarized site densities for S. putrefaciens after multi-generational growth. 
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Figure 11: Carboxyl group density and total site density of Haloferax sulfurifontis after growth in 
decreased ionic strength conditions.  A decrease in total site density and carboxyl group density 
occurs after three generations growth in decreased ionic strength conditions. 
 

 
Figure 12: Summarized site densities for H. sulfurifontis after three generations of growth. 
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Figure 13: Carboxyl group density per Å2 with measurements from both initial and experimental 
trials.  S. putrefaciens has a relatively low carboxyl group density per Å2, with an associated 
large relative cell size.  Conversely, H. sulfurifontis has a relatively high carboxyl group density 
per Å2, with an associated small relative cell size.  D. brasiliensis also displays a relatively high 
carboxyl group density, when compared to S. putrefaciens. 
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Figure 14: Schematic diagram showing various seasonality of Lagoa Vermelha.   IS = Ionic 
Strength  A. The increased rainfall during the wet season of Lagoa Vermelha produces brackish 
salinity conditions, as the water becomes dilute in dissolved ions.  B. As the early dry season 
begins, rainfall becomes reduced, and salinity values increase to marine salinity.  C. By the late 
dry season, all freshwater influx has ceased, and evaporation rates are at their peak, further 
increasing the ionic strength to hypersaline levels.  Average marine ionic strength = 0.72 M. 
 
(Figure modified from Vasconcelos & McKenzie, 1997)  
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Figure 15: Lagoa Vermelha monthly evaporation and precipitation rates (in mm), and associated 
effect on ionic strength.  (Figure modified from Vasconcelos and McKenzie, 1997.) 
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Figure 16: A: Displays behavior of the aqueous [Mg(H2O)6]2+ with a negatively-charged carboxyl 
group (functional group) found on a microbial cell wall.  The aqueous Mg2+ ion ejects a single 
molecule of H2O, binding to the carboxyl group. B: Displays an energetically-favorable reaction 
(equation as shown).  C: The new [Mg(H2O)5(R-CO2)]+ complex holds a positive charge that 
subsequently attract carbonate (CO3

2–) or bicarbonate (HCO3
2–) ions. 

 
(Figure is reproduced from Kenward et al., 2013) 
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Figure 17: A plot of the total site density versus the growth media ionic strength.  Lighter-filled 
markers indicate lower ionic strength growth media, while darker-filled markers indicate higher 
ionic strength growth media.  A general trend is apparent: high ionic strength media correlates 
with increased total site density (carboxyl groups included). 
 
  

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 0.5 1 1.5 2 2.5 3 3.5 

To
ta

l S
ite

 D
en

si
ty

 (m
ol

/k
g)

 

Growth Media Ionic Strength (mol/liter) 

D. brasiliensis 
S. putrefaciens 
H. sulfurifontis 



 

45 
 

 
 
Figure 18: A plot of the average fraction of unsaturated DGDs vs. optimal % NaCl (w/v) for four 
different halophilic archaeal strains. 
 
(Figure is reproduced from Dawson et al., 2002) 
 


