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Abstract

A dynamical downscaling framework is adopted to explore historical (1950-1999)

and projected (2050-2099) behavior of extreme precipitation (PR), maximum tem-

perature (TMAX) and minimum temperature (TMIN) events within the contiguous

United States. Compared to reanalysis data, simulations represent temperature better

than precipitation, and the model performs better east of the Rocky Mountains than

over the mountainous west. Extreme events are defined according to exceedances of

percentiles of the distribution of precipitation and temperature variables (typically the

90th, 95th, and 99th percentiles), as well as the actual magnitudes corresponding to the

percentiles. After applying a bias-correction to all three variables, extreme percentile

thresholds show broadly higher values for all three variables in the projected simula-

tion compared to the historical simulation. Precipitation extremes show no systematic

trends of frequency or intensity in either the historical or the projected simulations.

Trends of TMAX and TMIN have frequency and intensity that are consistently pos-

itive in the historical simulation, but the positive trend patterns are somewhat differ-

ent in the projected simulation. In the projected simulation, all climate zones exhibit

consistent increases in PR and TMAX extremes, and a decrease in TMIN extremes,

both in the frequency and intensity. Northern zones such as Dfa and Dfb exhibit more

changes of extremes in the projected simulation compared to other zones. On the other

hand, the patterns of extreme frequency and intensity in all zones suggest their depen-

dence on regional climatologies (e.g., B class zones have more frequent TMAX and

less frequent PR than other zones, while D class zones have lower TMAX and TMIN

intensity than other zones). In the projected simulation, PR intensity increases more
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significantly than frequency, while frequency increases more than intensity for TMAX

and TMIN. The projected heat waves (defined as high temperature events lasting mul-

tiple days) are more severe in both number and duration, which results predominately

from the increasing of the mean TMAX.
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Chapter 1

Introduction

Compared to climatological studies that have primarily focused on the evolution of mean condi-

tions of precipitation and temperature, interest in studying climatic extremes has only come about

over the last 20 years (Easterling et al., 2000a). However, people have gradually accepted that even

short-term extreme climatic events can cause substantial problems to society. For example, heat

waves and drought struck the United States in the summer of 2012, the third warmest summer on

record, and caused severe losses to agriculture, economy, and human health (http://www.ncdc.

noaa.gov/news/summer-2012-drought-update). Observational data exhibits an increasing

trend of extreme temperature and precipitation events since the year 1850 (Kunkel et al., 2003;

Alexander et al., 2006; Solomon et al., 2007), and the increases have been accelerating since the

mid-1970s (Kunkel et al., 2003). The spatial distributions and temporal trends of extreme events,

as well as their potential causes, therefore constitute a critical topic to study.

Previous studies exploring extreme events have been predominately observational. Multi-

decadal observational data from weather stations indicated that the number of heavy precipitation

events increased globally over the 20th century, no matter whether the annual mean precipitation

amount over those regions increased or decreased (Alexander et al., 2006; Groisman et al., 2001),

and the increasing precipitation extremes in the second half of 20th century are largely manifested

as the amplified tail of precipitation distribution (Easterling et al., 2000a). Furthermore, the fre-
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quency and intensity of extreme events over the contiguous United States has also become greater

over the last 64 years (Higgins et al., 2011).

Episodes of extreme events lasting for multiple consecutive days cause serious impacts, in-

cluding heat and cold waves, flooding, and drought. One observational study found an increase in

heat waves and a decrease in cold waves over U.S. since 1950, though exceptions occur over rela-

tively small regions (Peterson et al., 2013). Droughts and flooding, which are precipitation-related

events, do not show any uniform changes through time (Peterson et al., 2013).

Since observations by nature address only historical events, numerical modeling thus becomes

an obvious approach for exploring projected extreme events in the future. Modeling studies have

been exploring extremes since the late 20th century when various highly advanced global models

were established. The Coupled Model Intercomparison Project phase 5 (CMIP5) (Taylor et al.,

2012) is the latest phase of CMIP, and includes global climate projections from multiple advanced

atmosphere-ocean global climate model (AOGCM) simulation products under varied forcing sce-

narios. One study based on CMIP5 ensembles found increases of extreme precipitation and tem-

perature events in both historical simulations and future projections, although the magnitudes of

increases vary from model to model (Wuebbles et al., 2014).

Limited by computational expense considerations, long-term GCM (Global Climate Model)

simulations at present are practical only for minimum grid spacings of about 1 degree and are not

capable of fully capturing mesoscale systems like storms and heavy rainfall. Dynamical down-

scaling, forcing a regional model using GCM output over a limited-area domain, is one pathway

for improving the representation of local meteorological phenomena. This downscaling approach

yields model output with both small grid spacing and long temporal coverage. Bell et al. (2004)

performed dynamical downscaling using the CCM3 (Community Climate Model version 3) to

drive the RegCM2 (Regional Climate Molde version 2) to explore both historical and projected

heavy rain and high temperature events in the State of California. CCM3-RegCM2 projected fu-

ture changes in climatic variables, and found that regions with complex topography and land use

gradients benefited from the high-resolution grid and detailed representation of atmospheric pro-
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cesses that only the RCM could provide. Downscaled output described better extreme precipitation

and temperature events in study area compared with those in GCM.

The North American Regional Climate Change Assessment Program (NARCCAP) (Mearns

et al., 2012b) is an international program that includes a number of GCM-RCM downscaling

combinations for exploring detailed historical and projected climate change over North Amer-

ica. Output from the NARCCAP simulations represent better than the GCM convective processes

over terrains with complex topography like the California coastal region, thus more accurately

reproducing extreme precipitation behavior (Gutowski et al., 2010). In particular, the tails of the

precipitation distributions from the NARCCAP simulations agree well with observational data,

suggesting the NARCCAP simulations perform reasonably in representing extreme precipitation

behavior (Weller et al., 2013). Two shortcomings of NARCCAP are that the GCMs employed

in NARCCAP are mostly from the previous generation CMIP3 participating models, and that the

only GCM simulations chosen are from the most extreme emission scenario (A2) (Nakicenovic

et al., 2000).

Summarizing the previous research in this field strengthens the essentiality of studying extreme

events over the contiguous United States, and exploring future projections of extremes necessitates

a downscaling modeling approach. This research addresses two questions: (1) What insights into

the spatial distributions and temporal trends of extreme behaviors of regional climate are provided

from dynamical downscaling? (2) What’s the dependence of these extreme statistics on climate

zone?

These two research questions lead to the following hypotheses:

Hypothesis 1: Assuming the dynamical downscaling approach reproduces reasonable precipi-

tation and temperature fields, extreme precipitation and maximum temperature events will be more

frequent and exhibit greater magnitudes in the projected simulation relative to the historical simu-

lation, while extreme minimum temperature events will be less common and less intense (warmer).

Hypothesis 2: Statistics of extreme events will vary by zone, with the northern U.S. east of the

Rocky Mountains exhibiting the greatest increase in extremes in a projected climate.
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Chapter 2

Data Source

2.1 Overview

This research employs a regional dynamical downscaling framework in which the Weather Re-

search and Forecasting model (WRF) (Skamarock et al., 2005) is forced by the Community Earth

System Model version 1 (CESM1) (Gent et al., 2011). North American Regional Reanalysis

(NARR) (Mesinger et al., 2006) data is used as the reference for model evaluation and as a ba-

sis for bias-correcting the climatic variables .

2.2 Community earth system model version 1

This research employs CESM1 output to formulate initial and boundary conditions for the RCM

(WRF in this study). CESM1 was first released on April 2010 as one of the CMIP5 participating

models (Taylor et al., 2012). The “20th Century Ensemble Member #6” simulation is the forcing

for the historical simulation, and the “RCP6.0 Ensemble Member #6” simulation is the forcing for

the projected simulation. RCP6.0, which is short for "Representative Concentration Pathway 6.0",

assumes a rising CO2 concentration in the 21st century producing an increase in radiative forcing

of 6.0 Wm−2. These two simulations are the only members for which 6-hourly output is available

online, which satisfies the WRF initialization requirement for this research.
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2.3 Weather research and forecasting model

WRF is designed to be a flexible, state-of-the-art atmospheric simulation system that is efficient on

parallel computing platforms. It provides various physical parameterization schemes for boundary

layer dynamics, microphysics, convection, and longwave/shortwave radiations, enabling simula-

tions across different scales (Skamarock et al., 2005). As previously discussed, WRF has been

used in a wide array of downscaling applications. Bukovsky and Karoly (2009) applied WRF in

a dynamical downscaling framework within the contiguous United States, finding an appropriate

combination of parameterization schemes to reproduce as accurately as possible the precipitation

field over the U.S.

We run WRF (verison 3.3) over the periods 1950-1999 (historical simulation) and 2050-2099

(projected simulation). The domain has 200×150 grid points with a horizontal grid spacing of 30

km, which includes the contiguous United States as well as part of Canada and Mexico (Fig. 2.1).

Our simulation specifies 27 vertical atmospheric levels and 4 soil layers. Various parameterization

schemes are employed for different physical processes (Table. 2.1). For microphysical processes,

the WRF single-moment 3-class scheme is chosen. The rapid radiation transfer model (RRTM)

(Mlawer et al., 1997) and Dudhia scheme (Dudhia, 1996) are used for longwave and shortwave ra-

diation, respectively. The Noah land surface model (Noilhan and Planton, 1989) is responsible for

land surface processes, and the Yonsei University scheme (Hong and Dudhia, 2003) parameterizes

planetary boundary layer dynamics. Simulations use the Kain-Fritsch convective parameterization

(Kain, 2004). All schemes are listed in Table 2.1. This parameterization combination has also been

proven to be well behaved for regional climate WRF simulations (Bukovsky and Karoly, 2009).

A series of 1-year-period test simulations conducted prior to the long-term simulations found that

more complex microphysical schemes like the WRF single-moment 5-class scheme overestimates

the spatial variability in precipitation over the eastern U.S., whereas simpler parameterization like

the Kessler scheme is not plausible since it only considers warm rain. The Betts-Miller-Janjic

(BMJ) (Betts, 1986; Betts and Miller, 1986; Janjic, 1994) convective parameterization scheme un-

derestimates precipitation over mountainous regions and produces too much precipitation over the
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Figure 2.1: The simulation region for WRF, outlined by the red box.

southeast U.S. The zonal and meridional wind speeds (u and v), temperature (T), and water va-

por mixing ratio (qvapor) above the 25th vertical level (eta < 0.032) are nudged, which is above

the pressure level of 32 mb. Nudging helps to constrain upper level modeling toward its forcing

(GCM). The nudging coefficient is set to 0.0003 for all four variables, corresponding to a nudging

time scale of about 3333 seconds.

Table 2.1: Parameterization schemes chosen for model initialization

Physics Parameterization Scheme
Microphysics Single-moment 3-class (WSM3)

Longwave Radiation Rapid Radiation Transfer Model (RRTM)
Shortwave Radiation Dudhia

Land Surface Processes Noah Land Surface Scheme
Boundary Layer Dynamics Yonsei University Scheme

Convection Kain-Fritsch
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2.4 North American regional reanalysis data

We employ North American Regional Reanalysis (NARR) (Mesinger et al., 2006) for model eval-

uation. Bukovsky and Karoly (2007) found that NARR represents precipitation behavior over

the contiguous U.S. reasonably well. Compared to previous global reanalysis products, NARR

exhibits an improved representation of land-atmosphere interactions by successfully assimilating

high-quality precipitation and surface temperature observations (Becker et al., 2009; Mesinger

et al., 2006). The grid spacing of NARR is 32 km, which is the finest reanalysis data-set available

for the North American continent at present. The high quality of assimilated climatic variable

fields and similar grid spacing to our WRF configuration both make NARR suitable for validating

and correcting downscaling output for this study. In this research, 6-hourly precipitation and tem-

perature fields from NARR are extracted from 1979 to 1999, the overlapping period of NARR and

WRF historical simulation.
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Chapter 3

Methodology

3.1 Definition of extreme events

Percentile thresholds, together with the frequency and intensity of extremes that are based on

percentile thresholds, are employed to determine extreme events. We define extreme thresholds

of daily precipitation (PR) and daily maximum temperature (TMAX) according to 90th, 95th,

and 99th percentile values of the PDFs (Probability Distribution Functions) of the corresponding

variables. Extreme minimum temperature (TMIN) thresholds correspond to 10th, 5th, and 1st per-

centile values of the TMIN PDFs. In this research, PDFs of PR, TMAX, and TMIN are constructed

at every grid point over the whole simulation period, or for selected seasons.

The frequency of extreme events (either PR, TMAX, or TMIN) for year y is defined as the ratio

of the number of events (number of days for the temperature extremes) that exceed the percentile

threshold (90% extreme threshold) to the total number of events (number of days in a whole year

for the temperature extremes), described according to the following equation. For precipitation,

the frequency has the unit of events/day, and for TMAX and TMIN, their frequencies are with the

unit of days/day.

Fy =
NP>P∗

NP
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The intensity of extreme events for the year y is defined as the sum of climatic variable values

(precipitation and temperature) that lie above the percentile thresholds (or below the thresholds for

TMIN) for that year divided by the number of the exceedances in that year, as in the following

equation. Units are in mm for PR and K for TMAX and TMIN:

Iy =

n
∑

i=1
PP>P∗

NP>P∗

Therefore, this equation defines the intensity of extremes as the mean magnitude of exceedance

of 90% extreme threshold in that year.

3.2 Model evaluation

CESM-WRF outputs precipitation and temperature fields in a 6-hour time interval, at 0000, 0600,

1200, and 1800 UTC. The highest temperature among these four values each day is picked as

TMAX, while the lowest temperature is picked as TMIN. This method of approximating TMAX

and TMIN may introduce bias compared to observations or other model datasets in which the true

TMAX and TMIN are calculated.

In our dynamical downscaling configuration, biases may arise from both the GCM and the

RCM. Model evaluation therefore becomes especially important to establish the veracity of any

dynamical downscaling approach. The evaluation of NARCCAP output compared mean precip-

itation and temperature fields between the model results and the reanalysis data sets in order to

quantify simulation bias (Mearns et al., 2012a; Bukovsky et al., 2013). In this research, we eval-

uate the CESM-WRF downscaling approach by comparing long-term means of precipitation and

temperature between every two members of these three data sets: WRF and CESM; WRF and

NARR; NARR and CESM. Data from these three data sets are all chosen from the overlapping

period of NARR and WRF, the years of 1979-1999. Fig. 3.1 presents the difference maps for PR,

TMAX, and TMIN, between WRF and CESM (WRF minus CESM), CESM and NARR (CESM

9
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Figure 3.1: (a), (b), (c) show difference between WRF and NARR (WRF minus NARR); (d), (e),
(f) show difference between CESM and NARR (CESM minus NARR); (g), (h), (i) show difference
between WRF and CESM (WRF minus CESM).

minus NARR), as well as WRF and NARR (WRF minus NARR). This approach allows us to in-

vestigate the origin of the bias between CESM-WRF and the observational fields (as represented

by NARR).

For precipitation, The region east of Mississippi River shows a good fit between WRF and

NARR (< 125 mm annual difference). However, over the western mountainous U.S., WRF-NARR

and CESM-NARR maps both show wet biases (Fig. 3.1a and Fig. 3.1d). Fig. 3.1g suggests

that WRF contributes substantially to the wet bias over the high topography, and also appears to

introduce a dry bias just downstream (east) of the mountain peaks. Dry biases found in both WRF-

NARR and CESM-NARR map lie over the central U.S. The greatest dry bias is over the southern

states adjacent to the Gulf of Mexico, and then decreases towards the north (Fig. 3.1d).

Relative to reanalysis, TMAX in the WRF simulation generally shows slight warm biases (<1

K) east of the Rocky Mountains, and about 3 K of cold biases over mountainous regions (Fig. 3.1b).

CESM is systematically warmer over much of the domain (Fig. 3.1e), except in the mountain

regions, which show a mix of warm and cold bias. Over the entire domain, TMAX in WRF is
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systematically cooler compared to CESM (Fig. 3.1h). These temperature biases are in the 2∼5 K

range, but as we discuss below, the difference in the way TMAX is calculated partially explains

the behavior of the fields in Fig. 3.1.

TMIN shows similar WRF-NARR patterns, with warm bias less than 1 K over the central and

eastern U.S., and around 3 K cold bias over western U.S. (Fig. 3.1c). CESM exhibits similar TMIN

behavior (Fig. 3.1f), with slightly greater positive bias over the central U.S. (compared to the WRF-

NARR differences) and weaker negative bias over the mountains. The difference between WRF

and CESM for TMIN (Fig. 3.1i) are somewhat weaker and not systematically negative as they are

for TMAX (Fig. 3.1h).

WRF represents the temperature field to the east of Rocky Mountains well, while TMAX and

TMIN cold biases over western U.S. on may partially result from the cooling effect of excessive

precipitation. On the other hand, temperature biases are higher in WRF-CESM and WRF-NARR

comparisons. The difference in how TMAX and TMIN are calculated in the different datasets

may have an important influence on model bias. Of the three datasets (CESM, WRF, and NARR),

only CESM extracts the true daily maximum and minimum temperatures, while WRF and NARR

estimate TMAX and TMIN based on 6-hourly output. For this reason, TMAX and TMIN obtained

from WRF and NARR are generally ∼2-3 hours away from the time when the actual TMAX

and TMIN occur each day This discrepancy may explain some portion of ∼2-5 K higher TMAX

values for CESM compared to both WRF and NARR (which also explains why the WRF-CESM

difference in Fig. 3.1h is negative). Since NARR’s TMAX and TMIN are extracted as the same

way as WRF’s, the difference of TMAX and TMIN between these two data sets to the east of

Rocky Mountains is generally less than 1 K (Fig. 3.1b-c). Over higher altitudes, WRF and CESM

show slight cold biases for both TMAX and TMIN relative to NARR.

In summary, our downscaled simulations perform better on temperature than precipitation.

Precipitation biases in WRF are particularly evident over regions of topography to the west of

the Rocky Mountains, much greater than CESM-NARR precipitation biases over the same area.

The dry biases over central U.S. including Gulf States appear to be related to the original GCM
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forcing. Except for the cool bias over mountainous area, which we speculate is mostly due to

the wet precipitation bias there, TMAX and TMIN in the WRF simulation (and in the CESM

simulation, for that matter) generally compare favorably with the reanalysis. Before performing

more in-depth analysis, we apply bias correction on the precipitation field. Although not strictly

necessary, for consistency we also apply a bias correction to the TMAX and TMIN fields.

3.3 Bias correction

In this research, bias correction is conducted using the linear scaling method (Lenderink et al.,

2007), which is relatively simple compared to other methods that rescale the whole distribution

(Teutschbein and Seibert, 2012). Linear scaling rescales the distribution such that the long-term

mean of simulated distribution and the mean of observed distribution are equal. This method

artificially rescales modeled PDFs to fit the observational long-term means and keep the same

probability densities of each percentile values as the uncorrected PDFs. The linear scaling method

is applied for precipitation using the following formulas:

P∗his(d) = Phis(d)
µm(Pobs(d))
µm(Phis(d))

P∗pr j(d) = Ppr j(d)
µm(Pobs(d))
µm(Phis(d))

in which P∗his(d) and P∗pr j(d) is the daily bias-corrected precipitation for the historical and projected

simulations, Phis(d) and Ppr j(d) are the original ones for those two simulations, Pobs(d) is the daily

precipitation from observational data (NARR in this case), and µm stands for the long-term mean

precipitation.

In this research, long-term means of observed and modeled PR are calculated choosing the
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overlapping period of NARR and WRF, the year 1979-1999. The NARR grid is interpolated onto

the CESM-WRF grid points using the nearest-neighbor method. Distances from actual location of

every grid point to their selected nearest neighbor points are all less than 3 km, which amounts to

10% of the horizontal grid spacing in WRF. Thus, any error arising from the interpolation method

is small. Grid points with high bias (> 40%) between the uncorrected WRF precipitation field and

the NARR precipitation field are removed from the study area.

Since precipitation and temperature co-vary and are also spatially and temporally autocorre-

lated, accuracy of the temperature fields must be affected over grid points with high precipitation

bias. Therefore, we eliminate 1% of the grid points within the entire domain that have highest

WRF-NARR biases of TMAX and TMIN. All these grid points are found at the upstream (west)

direction of mountain peaks over the western U.S., and with > 40% WRF-NARR precipitation

bias.

3.4 Köppen-Geiger Classification

The Köppen-Geiger classification is the most frequently used climate classification and it catego-

rizes climate zones based on seasonal mean precipitation and temperature (Kottek et al., 2006). As

the climate changes, changes of in precipitation and temperature makes local climatologies vary

through time, which makes the Köppen-Geiger zones change. The historical 1951-2000 climate

zones are representative of both historical and projected simulations in this research in order to keep

extreme zone-by-zone behavior between the historical and projected simulations comparable. The

classification is obtained online (http://koeppen-geiger.vu-wien.ac.at/usa.htm). Names

of zones are made from three letters that represent main climate, precipitation, and temperature,

respectively. Table 3.1 lists the names of zones that are chosen in contiguous U.S. and the clima-

tology each zone represents. Fig. 3.2 are colored maps of zones with pixels from the downloaded

shapefile, which has a different grid spacing from WRF. In total 12 zones are chosen from 3 main

climate types: B class for arid climate; C class for warm climate; and D class for climate with
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Figure 3.2: Chosen climate zones over contiguous United States based on Köppen-Geiger classifi-
cation.

snow during winter. Some zones like the tropical climate zones over southern Florida are excluded

from the extreme analyses. The lack of data points lead this climate zone insignificant for extreme

analysis, especially considering the high precipitation bias. These zones are colored grey on Fig.

3.2.

Table 3.1: Climatology for each Köppen-Geiger climate zone

Name of Zone Main Climate Precipitation Temperature Number of points (% of domain)
BWk arid desert cold arid 159 (1.92%)
BWh arid desert hot arid 136 (1.64%)
BSk arid steppe cold arid 1695 (20.45%)
BSh arid steppe hot arid 134 (1.62%)
Cfa warm fully humid hot summer 2625 (31.67%)
Cfb warm fully humid warm summer 205 (2.47%)
Csa warm summer dry hot summer 120 (1.45%)
Csb warm summer dry warm summer 504 (6.08%)
Dfa snow fully humid hot summer 911 (10.99%)
Dfb snow fully humid warm summer 1567 (18.90%)
Dfc snow fully humid cool summer 140 (1.69%)
Dsb snow summer dry warm summer 93 (1.12%)
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Chapter 4

Results

Bias corrected climatic variables are employed for the different types of extreme analysis. In

this section, we examine the difference of extreme thresholds between historical and projected

simulations. We also evaluate the frequency and intensity of extremes, and their spatial distribution

and temporal trends. PDFs of frequency and intensity of variables within every Köppen-Geiger

climate zone help to reveal the dependence of the extreme frequency and intensity to regional

climate. Lastly, we explore the historical and the projected durations and frequencies of multi-day

heat waves happening within each climate zone.

4.1 Percentile thresholds and their differences

Fig. 4.1 and Fig. 4.2 are the 90%, 95%, and 99% extreme threshold maps for PR, TMAX, and

TMIN in the historical and projected simulation, respectively.

In the historical simulation, greatest precipitation thresholds occur over the Gulf States, which

have magnitude from 30 mm for 90% threshold to over 80 mm for 99% threshold (Fig. 4.1a, d, ang

g). Highest TMAX thresholds are found over the southwestern and central U.S., with value from

312 K for 90% to 315 K for 99% thresholds (Fig. 4.1b, e, and h). TMIN thresholds distributes by

latitude. Highest TMIN thresholds are over souther U.S. and they decrease towards north. In 90%

extreme map, the TMIN threshold over the northern U.S. is below 254 K and threhold over the
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Figure 4.1: Historical extreme values corresponding to the 90th, 95th, and 99th percentile of
distribution for PR (left panel), and TMAX (middle panel), and to the 1st, 5th, and 10th percentile
of distribution for TMIN (right panel).

southern U.S. is above 280 K. These thresholds drop to under 240 K over the northern U.S. and

nuder 270 K over the southern U.S. in the 99% extreme map.

In the projected simulation (Fig. 4.2), the spatial distributions of extreme thresholds patterns

are with little differences compared to the distributions that the historical simulation have. But

the magnitude of thresholds in the projected simulation are greater for all three climatic variables,

including PR, TMAX, and TMIN.

The 90%, 95%, and 99% extreme threshold difference maps of the historical and projected PR,

TMAX, and TMIN are shown in Fig. 4.3. The differences are calculated by taking the threshold

values (corresponding to the 90th, 95th, and 99th percentile for PR and TMAX, and 1st, 5th, and

10th percentile for TMIN) of the projected simulation minus threshold values of the historical

simulation for each grid point. The PR difference is in millimeters (mm), and the TMAX and

TMIN difference is in Kelvin (K). For example, a value of 10 mm on the 95% difference map would

indicate that the 95th percentile precipitation value is 10 mm greater in the projected simulation

than the threshold in the historical simulation.
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Figure 4.2: As Fig. 4.1, but for the projected simulation.

For precipitation, the threshold differences increase for increasing percentiles (Fig. 4.3a, d, and

g). The highest threshold differences are found over the south-central U.S. and southeastern U.S.

near the Gulf Coast. Precipitation threshold differences increase from 3 mm in the 90% extreme

map (Fig. 4.3a) to over 15 mm in the 99% extreme map (Fig. 4.3g). The increasing differences in

precipitation for increasing threshold percentages suggests that the rarer the event, the greater (i.e.,

more extreme) will be the difference between projected and historical values.

The similar TMAX threshold difference patterns across the different percentiles indicate that

differences vary little as percentile increases (Fig. 4.3b, e, and h). Thresholds of the projected

simulation are ∼3-6 K higher than those of the historical simulation and vary widely over the

whole domain. The greatest difference occurs over the north central U.S., just west of the Great

Lakes, with a massive area of differences > 5 K on all three maps.

TMIN threshold difference patterns are also largely similar across the different percentiles, al-

though the magnitudes of the differences are greater than the increases in TMAX. This behavior is

consistent with a reduction of the diurnal temperature variation in the projected simulation relative

to the historical simulation. Greatest differences are found over the west mountainous region and
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Figure 4.3: Differences between projected and historical extreme values corresponding to the 90th,
95th, and 99th percentile of distribution for PR (left panel), and TMAX (middle panel), and to the
1st, 5th, and 10th percentile of distribution for TMIN (right panel).

northern Great Plain with more than 7.5 K increase of thresholds in the projected simulation for all

three percentiles.

In summary, systematic higher extreme percentile thresholds are found in PR, TMAX, and

TMIN in the projected simulation, indicating that daily precipitation and daily maximum temper-

ature are more extreme in the projected simulation, whereas daily minimum temperature behavior

is less extreme (cold nights become warmer). For the TMAX and TMIN, substantial changes to

TMIN thresholds appear more prevalent, a result consistent with lower projected diurnal tempera-

ture variation.

4.2 Change of extremes through time

Annual values of frequency and intensity of extreme events are calculated in order to evaluate the

change of these quantities with time. The tendencies of extreme PR, TMAX, and TMIN are based

on the 90% thresholds evaluated over the entire modeling period for each grid point. Thresholds

are calculated the same way as in the previous section. In general, the frequency trend measures if
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there are more or fewer extreme events through time, while the intensity trend focuses on whether

the extreme events become more or less intense through time. Since extreme frequency and inten-

sity are both calculated annually and are both statistical parameters that depict climate behavior,

we have assumed that they are independent sample; in other words, the temporal autocorrelation is

neglected. We evaluate the statistical significance of the trends of the annual frequency and inten-

sity values via Mann-Kendall trend test. The null hypothesis states that there is no significant trend

of frequency/intensity of extremes through time, with the significance level of α=0.05. Calculated

TMIN intensity is multiplied by -1 before mapping so that an increasing trend of extreme TMIN

intensity represents a nighttime temperature that is becoming cooler through time. In this way,

an increasing intensity trend indicates a trend of more extreme conditions with time in the same

manner as the PR and TMAX trends.

We also explore the trend seasonlly, providing a comparison between the seasonal and annual

trends, in order to find the attribution of seasonal alteration of extreme behavior to the annual

extreme trends.

4.2.1 Trends in the historical simulation

Fig. 4.4 shows the spatial distribution of trends for frequency and intensity of the three variables

in the historical simulation. The values of frequency are multiplied by 365, converting the orig-

inal unit of frequency from events/day to events/year, such that the trend of frequency is then

events/year2. The intensity trend is in mm/year for PR and K/year for TMAX and TMIN. Statis-

tically significant regions of positive trend and negative trend are outlined with red line and black

line respectively.

Fig. 4.4a shows that over most of U.S., and trend in PR frequency is negligible (absolute trend

value < 0.01 events/year2). A statistically significant region of negative trends is located over South

Dakota and Nebraska, although the trend magnitude is small (> -0.015 events/year2). On the other

hand, the intensity trend is noisy (Fig. 4.4b). Only the New England region exhibits a systematic

increase in intensity (> 0.075 mm/year).
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Trends in TMAX exhibit more organized patterns than the PR trends. The patterns of frequency

and intensity look similar (Fig. 4.4c and Fig. 4.4d). Increasing trends of both frequency and inten-

sity cover much of the contiguous U.S. except for regions over the southwest and northwest U.S.,

which exhibit negligibly slight decreasing frequency and intensity trends. Significant increasing

regions of frequency and intensity cover most of the area to the east of Rocky Mountains, with the

highest trends occurring over the northern plains (frequency > 0.019 events/year2 and intensity >

0.05 K/year). Although the bias in the temperature variables is not as great as the precipitation

bias, the large precipitation bias in the mountain regions of the western U.S. casts at least some

doubt on the behavior of temperature variables. In particular, we suspect that overestimating the

precipitation may lead to underestimates of TMAX.

TMIN frequency and intensity also exhibit organized trends (Fig. 4.4e and Fig. 4.4f). Sta-

tistically significant regions of decreasing TMIN frequent occur over most of the country. The

most negative trend is found over the mountain west, including large areas of Idaho, Nevada, Utah

and Arizona that exhibit trends below -0.015 events/year2. Statistically significant TMIN intensity

trends are negative over the northern and southeastern U.S. The statistically significant decreasing

trends over the north-central U.S. and southeastern U.S. have trend magnitudes below -0.05 K/year.

Over large areas, both TMIN frequency and intensity are found decreasing over time, indicating

that TMIN extremes have become both less frequent and warmer through time.

For seasonal trends, Fig. 4.5 exhibit the trend of precipitation seasonally. Most maps of both

the frequency and intensity trends show no systematic patterns. The frequency trends are slight in

four seasons, and intensity trends exhibit bands with great postive and negative trends expanding

from northeast to southwest. Summer frequency map (Fig. 4.5c) are found a large statistically

significant region with negative trend over north central U.S., which coincides with the statistically

significant region in annual trend map. Winter intensity map (Fig. 4.5h), on the other hand, shows

the statistically significant positive trend over New England as the annual trend does.

Fig. 4.6 are the seasonal trend maps for TMAX. Both the frequency and intensity maps show

strong positive trends over large statisticaly significant regions. Winter and spring have smaller
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statistically significant regions than do summer and fall, for both the frequency and intensity. As

for annual trends, most statistically significant positive seasonal trends are located over the area to

the east of Rocky Mountains.

Generally, the contiguous U.S. exhibits negative trends of TMIN frequency and intensity, but

the statistically significant area of is less in spring and summer than those in fall and winter. More-

over, the TMIN positive intensity trend in spring is positive over the north-central and the southern

U.S. (Fig. 4.7b), and in summer over the southeastern U.S (Fig. 4.7d). Fall exhibits the greatest

negative trends of TMIN, which covers the most of the study area.

A similar analysis based on observational data performed by Wilson et al. (2014) found that

the change of extreme precipitation events through time not only exhibits a negative trend, but also

seasonal variations. A positive trend in extreme TMAX events and a negative trend in extreme

TMIN events are also found. In our results, as the trends for extreme TMAX and TMIN are found

similar to that by Wilson et al. (2014), the only season with an increasing trend is spring in this

research, while the other three seasons show unchanged or decreasing trends.

4.2.2 Trends in the projected simulation

Fig. 4.8 illustrates trends for the projected simulation. Slight but insignificant increasing trends

of PR frequency (Fig. 4.8a) are widely distributed over the contiguous U.S., with trends less than

0.005 events/year2. The trend of PR intensity (Fig. 4.8b) is much noisier, with small areas of

positive and negative trends located close to each other, Many of these areas have large increas-

ing/decreasing trend magnitudes (absolute values > 0.05 mm/year) and are statistically significant.

Although the field is noisy, a couple of southwest-to-northeast oriented swaths of precipitation

intensity trends are evident, for example the region of positive trends running from Colorado to

Minnesota, and the band of negative trends from southwest Texas to Illinois. We speculate this be-

havior may arise from trends in the large-scale circulation pattern, although detailed examination

of that is beyond the scope of this study.

As in the historical simulation, here too the temperature statistics exhibit more organized pat-
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Figure 4.6: As in Fig. 4.5, but for TMAX.
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Figure 4.7: As in Fig. 4.5, but for TMIN.
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terns than do the precipitation statistics. Uniformly increasing trends are found in TMAX on both

frequency and intensity (Fig. 4.8c and Fig. 4.8d). Positive trends increase toward the south, and

the greatest positive trend of frequency > 0.02 events/year2 is found over the southern region of the

Gulf States. The TMAX intensity trends vary little over the U.S., with the trend between 0 to 0.02

K/year. The statistically significant area covers much of the domain, except for the northern Great

Plains, the Missouri and Mississippi River basins, the Ohio Valley, and the western coastal region.

(Fig. 4.8d).

TMIN trends are weak and less uniformly distributed (Fig. 4.8e and Fig. 4.8f). Weak (though

largely not significant) positive trends of frequency and intensity (more cold nights and colder

nights) are found mainly over north-central U.S. Regions with decreasing trends (fewer cold nights

and warmer nights) are along the south boundary of contiguous U.S. for frequency, and north cen-

tral and north eastern U.S. for intensity. Only regions of negative trends are significant, specifically

regions along south border and Atlantic coast (frequency) and small regions over north-central U.S.

(intensity).

Seasonal trends of frequency show generally positive trends, but with limited statistically sig-

nificant area, which coincides with the annual trend map of the frequency (Fig. 4.9). Intensity

trend maps display noiser patterns compared to the maps of the historical simulation. Both the

freqeuncy and intensity trend maps do not show obvious seasonal variations.

TMAX shows mostly positive trends in the frequency and intensity (Fig. 4.10). Generally, the

southern U.S. has greater frequency, and the central U.S. has greater intensity. The winter maps

have smaller statistically significant regions than other three seasons on both the frequency and

intensity, and it exhibits a slight negative trend of frequency over north central U.S.

TMIN maps (Fig. 4.11) show seasonal variations in the projected simulation. For frequency,

summer and fall maps have larger statistically significant area than those in spring and winter, and

slight positive trends are found over north central U.S. in spring and eastern and central U.S. in

winter. For intensity, regions with positive and negative trends are basically with the same area,

but most of statistically significant regions are negative trends.
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Figure 4.8: As in Fig. 4.4 but for the projected simulation.
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Figure 4.9: Contour maps of the frequency trend of PR in four seasons, as well as the corre-
sponding intensity trend (right panel) in the projected simulation. Dotted regions outlined by red
contour lines are tested significant for positive trend, and regions outlined by black contour lines
test significant for negative trend.
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Figure 4.10: As in Fig. 4.9, but for TMAX.
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Figure 4.11: As in Fig. 4.9, but for TMIN.
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4.2.3 Comparison of the historical and projected trends

Trends of frequency and intensity from three climatic variables are mapped and analyzed. The

statistics from the historical and projected simulations differ substantially. Except for a broad

region of modest PR frequency trends over Nebraska and South Dakota, the PR frequency trends

are weak in both the historical and projected simulations. PR intensity trends, on the other hand, are

noisy in both the historical and projected simulations, having small positive and negative trends

of intensity located close to each other. Although the field is noisy, some evidence of banded

structures is apparent, particularly in the projected simulation, suggesting trends in the large-scale

circulation. Seeing in a seasonal perspective, the greatest magnitudes of trends happen during fall

in both the historical and projected simulations.

For TMAX, greatest positive trends and widest statistically signifcant regions are found in

summer for both the historical and projected simulations. The biggest difference between the

historical and projected simulations occurs over the north-central U.S. In the historical simulation,

the greatest positive trends occur over the central U.S. In the projected simulation, the positive

trends is kept as in the historical simulation, but the greatest magnitudes are found over the southern

part, rather than north central U.S. in the historical simulation.

TMIN’s negative trends of frequency and intensity are found with higher magnitude and more

statistical significant regions during summer and fall. In the historical simulation, TMIN exhibits

widely distributed positive trend in frequency and negative trend in intensity, corresponding to

fewer, less intense extremes. The broad TMIN frequency and intensity trends in the historical

simulation are not present in the projected simulation.

4.3 Extremes in Köppen-Geiger climate zones

In order to gain additional insight into the behavior of the extreme value statistics previously cal-

culated, we aggregate the statistics across climate zones. We employ the Köppen-Geiger climate

classification to divide the entire domain into 12 climate zones, which are listed in Table 3.1. As
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grid points with > 40% precipitation biases are omitted, there are four zones remaining less than

20% of original number of grid points, which are BWk, Csb, Dfc, and Dsb. We assume these four

zones do not contain enough points to meaningfully determine extreme climate statistics, so that

we omit these four zones when analyzing precipitation extremes.

In this section, frequency and intensity of extremes are calculated in a slightly different way.

90% extreme thresholds for both historical and projected simulations are calculated by seasonal

precipitation and temperature fields from only historical simulation (1950-1999). For PR, we ag-

gregate statistics by seasons (March to May (MAM) for spring, June to August (JJA) for summer,

September to November (SON) for fall, and December to February (DJF) for winter). Since most

TMAX extremes and TMIN extremes happen during summer and winter, respectively, only TMAX

in JJA and TMIN in DJF are considered for temperature extremes.

The box plots show both the historical (red) and projected (blue) simulation distributions. Col-

ored dots over the median lines of some boxes indicate the statistical significance of differences

between samples from the historical and projected simulations. We employ the two-sample stu-

dent’s t-test to evaluate statistical significance. Although the samples do not strictly fit to normal

distribution, the sample sizes are sufficiently large (> 30) that the t-test is justified. The null hy-

pothesis is that there is no difference between samples of the historical simulation and projected

simulation (α = 0.05).

Fig. 4.12 shows the springtime frequency and intensity of extreme precipitation distributions.

The B class zones, which represent arid climatologies, have the lowest frequency and intensity

medians. C class zones, which represent warm and humid climatologies, have higher frequency

medians than B class zones but lower frequency medians than D class zones, and also the highest

intensity medians (30-40 mm/event). D class zones that represent cold and snowy winter climatolo-

gies have frequency medians > 0.05 events/day and intensity medians slightly below 30 mm/event.

Within the C class zones, Csa frequency and intensity behave differently compared to Cfa and Cfb.

The different behavior of the Csa is largely a function of its coastal location but also may partly be

a nonphysical result of the high precipitation bias over the mountainous west.
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Figure 4.12: Box plots for frequency (a) and intensity (b) of extreme precipitation in spring. Within
each climate zone, the red box denotes the historical simulation and the blue box denotes the
projected simulation. Colored dots indicate the difference between the two samples in that climate
zone is statistically significant.

In all zones, intensity in the projected simulation is greater than the respective historical value,

and for most zones frequency is higher, too (BWk, BWh and Csa being the only zones with lower

projected frequency). The four zones of Cfa, Cfb, Dfa, Dfb, which together includes most of U.S.

east of the Rocky Mountains, have frequency and intensity differences that are tested significant.

Fig. 4.13 shows the frequency and intensity box plots for the summer season. Summer gener-

ally exhibits similar frequency and lower intensity than springtime. For B class zones, Bsk has the

frequency median about 0.05 events/day while the other two B class zones have medians lower than

0.04 events/day. All zones in C and D classes except for Csa have medians around 0.05 events/day.

Intensity medians are all below 30 mm. The historical and projected simulations exhibit little in

the way of difference during the summer season, except for a statistically significant frequency

and intensity increases of 0.01 events/day and 1 mm/event, respectively, for the Csa zone (which

we suspect is dubious because of the precipitation bias over the coastal mountain ranges), and an

increase in intensity of 1 mm/event for the Dfb zone.

The median frequencies of extremes during fall are below 0.04 events/day (Fig. 4.14a) and are

generally smaller than during spring and summer. Intensity of extremes during fall is similar to

33



BWk BWh BSk BSh Cf a Cf b Csa Csb Dfa Dfb Dfc Dsb

0.04

0.08

0.12

BWk BWh BSk BSh Cf a Cf b Csa Csb Dfa Dfb Dfc Dsb

0

30

60

(a) (b)
Fr

eq
u

en
cy

 (e
ve

n
ts

/d
ay

)

In
te

n
si

ty
 (m

m
)

Figure 4.13: Same as Fig. 4.12 except for the season of summer.

spring, with intensity of the C class zones higher than B and D class zones. Significant increases

of frequency in the projected simulation is only found only for Bsh, but significant intensity in-

creases are found in 6 zones (Bsk, Bsh, Cfa, Cfb, Dfa, and Dfb), which together cover the most of

contiguous U.S.

Fig. 4.15 shows wintertime box plots of frequency and intensity. Winter has relatively lower

frequency than spring and summer but higher frequency than fall, especially for C and D class

zones, which have frequency medians above 0.04 events/day for all zones in these two classes.

Intensity medians are slightly higher than three other seasons in B and D classes, but slightly lower

than that fall in C class. Most zones have both significant higher frequency and intensity values in

the projected simulation. The only two exceptions are insignificant frequency increase in Bsh and

the intensity increase in Dfb.

In summary, precipitation extremes generally have the lowest frequencies in B class zones,

relatively higher frequencies in C class zones, and the highest frequencies in D class zones for

all four seasons. On the other hand, C class zones have the highest precipitation intensities in all

four seasons, while intensity medians in B and D class zones are lower and similar to each other

in magnitudes. These consistency of frequency and intensity in all four seasons patterns basically

reflect the main climatic features of each climate zone hold. Comparing historical and projected
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Figure 4.14: Same as Fig. 4.12 except for the season of fall.
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Figure 4.15: Same as Fig. 4.12 except for the season of winter.
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simulations, most zones show increases of frequencies and intensities in the projected simulation,

although not all differences are statistically significant. There are more statistically significant

intensity increases than frequency increases in all the four seasons, but the relative increase in

frequency is somewhat greater than the relative increase in intensity. This result suggests that

increasing extreme precipitation is manifested as both an increase in frequency and an increase in

intensity. Meteorologically, this would be manifested as both heavier local rainfall processes in

the projected simulation, as well as changes to the large-scale circulation pattern that influence the

frequency. The increase in intensity across most climate zones, however, does not seem to capture

the broad spatial positive and negative intensity trend bands visible in Fig. 4.8 (and to a lesser

extent, 4.2b).

For temperature extremes, only TMAX in summer and TMIN in winter are considered, since

most TMAX and TMIN extreme events occur during summer and winter, respectively. Fig. 4.16

shows summer TMAX frequency and intensity box plots in both simulations. TMAX has similar

frequency medians across most of climate zones, with medians around 0.1 for all zones in the

historical simulation. Intensity, on the other hand, varies from zone to zone. The B class zones

have relatively higher intensity, and highest intensity occurs in BWh with median above 315 K,

lowest intensity is in Dfc zone with the median of around 295 K.

Uniformly higher frequency and intensity of TMAX extremes are showed in the projected

simulation, and all the differences reject the null hypothesis in student’s t-test. Frequencies in all

zones of the projected simulation are 0.1-0.2 events/day higher than in the historical simulation,

and the magnitudes of higher TMAX intensity in the projected simulation are mostly within 2 K.

Differences in frequency between the projected and historical simulations differ substantially by

climate zone. This large dependence on climate zone is not present for intensity, a result that may

be due to the small ranges of intensity in both the historical and projected simulations.

Fig. 4.17 shows frequency and intensity box plots for TMIN. TMIN differences between pro-

jected and historical simulations do not exhibit the same level of variability across climate zones

as does TMAX. TMIN frequency boxes also exhibit little variations across each zones as TMAX.
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Figure 4.16: Box plots for frequency (a) and intensity (b) of TMAX in summer. Within each
climate zone, the red box denotes the historical simulation and the blue box denotes the projected
simulation. Colored dots indicate the difference between the two samples in that climate zone is
statistically significant.
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Figure 4.17: Same as Fig. 4.16 except for TMIN in winter.
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Historical frequency medians are around 0.09 events/day, and the projected medians around 0.05

events/day. Intensity extremes of TMIN are approximately 2 K higher in projected simulation than

the historical simulation, a value roughly consistent across the different climate zones. Frequency

and intensity differences between the historical and projected simulations are statistically signifi-

cant for most of the contiguous U.S. Only BWk, BWh, BSh, which are all small arid zones, have

the insignificant projected intensity increases.

Temperature extremes exhibit consistently warmer behavior in the projected simulation. Tem-

perature extremes have higher frequency for TMAX and lower frequency for TMIN, and the in-

tensities of extreme TMAX and TMIN are both higher (warmer) in the projected simulation. For

precipitation, the differences in extreme behavior between the projected and historical simulations

are reflected in both changes to frequency and to intensity. Differences in TMAX and TMIN, on

the other hand, are largely manifested as changes to frequency, in other words a change to the

number of events that exceeds the given thresholds. Although the increases in TMAX and TMIN

intensity are statistically significant, they are both small (< 2 K/event).

4.4 Quantification of heat waves in terms of Köppen-Geiger cli-

mate zones

The previous analysis has been confined to daily events, for example an extreme daily precipitation

event or a daily exceedance of maximum temperature. However, it is well known that multiple days

of high maximum temperature — heat waves — can substantially impact agriculture and human

health (Easterling et al., 2000b; Parmesan et al., 2000). Although there is no universal definition

of heat waves, the definition of heat wave we chose in this research was first introduced by Meehl

and Tebaldi (2004). Two thresholds of T1 and T2 are defined by the 97.5th percentile and 81th

percentile of TMAX values during summer (JJA) respectively in historical simulation. A heat wave

event is then distinguished by three criteria: (1) There must have at least three days during the heat

wave period with TMAX > T1, (2) averaged TMAX during the period must be greater than T1,
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(3) every day during the period must have TMAX > T2. For every grid point, the frequency of

heat wave (times/year) and mean duration of heat waves (days) are calculated for both historical

and projected simulations. Grid points are categorized into Köppen-Geiger climate zones and box

plots are made for each zone. We quantify heat waves in the projected simulation using T1 and T2

established in the historical simulation but recognize that in a warming climate, this will naturally

lead to more heat waves of longer duration. This can be simply a result of larger values of TMAX.

Expecting that heat waves will be more frequent and have longer durations, we also quantify heat

waves based on new thresholds defined adding the increase of mean temperature between the

projected and historical simulations to the original T1 and T2 thresholds, which we then term T1′

and T2′. These two thresholds quantify heat waves independently of the global mean temperature

increase, which helps us discern whether the change in heat wave behaviors arises primarily from

the increase of mean TMAX, or in creases in the tails of TMAX distributions in the projected

simulation.

Fig. 4.18 shows box plots of WRF simulations for the mean duration of heat waves (Fig.

4.18a) and mean number of heat waves per year (Fig. 4.18b) for every Köppen-Geiger climate

zone. Medians of heat wave durations in the historical simulation range from 6 to 8 days. C class

zones have similar duration medians as B class zones but with larger ranges. Dfa and Dfb have

the longest durations of heat waves, with a wide range and maximum values over 20 days. The

projected simulation (blue boxes) shows nearly double the heat wave durations of the historical

simulation and greater variability within each climate zone.

Box plots of mean number of heat waves per year are mostly from 1.2 to 1.5 times/year in the

historical simulation, with modest variation from zone to zone, and the numbers rise to∼3-4 events

per year in the projected simulation. Cfa, Dfa, and Dfb zones have the greatest ranges of values,

which reflect their large numbers of grid points. For box plots in the projected simulation with

T1′ and T2′, the numbers of heat waves decrease to ∼1.2-1.5 events per year, values little different

from those in the historical simulation. Cfa, Csa, and Dfa zones in the projected simulation have

higher medians than historical simulation, while other zones have lower medians.
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Figure 4.18: Box plots for downscaled mean duration of heat waves (a) and mean number of heat
waves per year (b). Red boxes correspond to the historical heat waves, and blue boxes to the
projected heat waves calculated from 20th century thresholds, T1 and T2. Purple boxes are for
projected heat waves from thresholds T1′ and T2′.

Comparing between these three series of box plots, projected heat waves are more frequent with

longer durations. The projected simulation indicates ∼3-4 heat waves that are ∼10-15 days long.

The fact that both the projected duration and frequency of heat waves calculated using T1′ and T2′

thresholds vary little from the duration and the frequency of the historical simulation suggests that

much of the increased heat wave activity arises simply from an increase in the mean temperature

(shift of the entire distribution) rather than the change to the tail of the distribution.

In order to gain more insight into the increase in heat waves in the projected simulation, we

extend the analysis to the CESM output used to drive the WRF simulations. Fig. 4.19 shows mean

durations (Fig. 4.19a) and mean numbers of heat waves (Fig. 4.19b) per year. In the historical

simulation, the CESM medians of mean heat wave durations are 6∼8 days, consistent with the

duration simulated by WRF simulation, with little variation across different zones. The projected

durations increase to ∼9-14 days with substantially greater variability, values again more or less

consistent with the WRF simulation . Using the revised T1′ and T2′ thresholds, the projected

medians drop back to ∼8-10 days near the historical durations.
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Figure 4.19: Same as Fig. 4.18 except for data from CESM.

The historical simulation averages ∼1.2-1.5 heat wave events per year, with little difference

across climate zones. As for the increase of durations, the projected mean heat wave numbers

increase to ∼3-4 events of heat waves per year, with greater variability, especially for the Cfa

zone. Calculating mean heat wave numbers using T1′ and T2′ drops the number of heat waves

back to ∼2-2.5 events per year, which is approximately ∼0.5-1 events higher than the number of

historical events per year.

In summary, heat wave behaviors in WRF and CESM are found to be largely consistent in both

the historical and projected simulations. This consistency between WRF and CESM suggests that

the increase of heat wave severity in the projected simulation of downscaled model output results

predominantly from the GCM forcing.

For both WRF and CESM, heat wave durations calculated from T1′ and T2′ all show mag-

nitudes close to those in the 20th century simulations. Calculated with these thresholds, WRF

produces slightly fewer heat waves per year while CESM exhibits slightly more. The greater heat

wave indices (both duration and number) in both WRF and CESM projected simulations are largely

a result of increases in mean TMAX, rather than a result of increases in the distribution tails.

41



4.5 Origin of more extreme TMAX events and more severe

heat waves

In order to fully understanding the causes of the more extreme TMAX events and more heat waves

with longer durations, in this section we plot the PDFs of TMAX for each climate zone in both the

historical and projected simulations, and we calculated the difference of mean percentile values

based on the historical and the projected simulations. PDFs are presented as violin plots in Fig.

4.20a. The 81st and 97.5th percentile values, as well as mean TMAX, are indicated by lines on

the distributions. Difference of these percentile values, as well as the means for each climate zone

are presented in Fig. 4.20b and listed in Table 4.1. Fig. 4.20b and Table. 4.1 also include the

difference of 90th percentile values, for better explaining the frequency and intensity increase of

the extreme TMAX values in the projected simulation.

In B class zones , the increase of the 81st percentile values are the almost same (BWh) or less

than the increase of mean TMAX. Mean TMAX increases are around 0.2 K more than the 81st

percentile values for BWk, BSk, and Bsh. These three zones also have mean TMAX increases

more than the 97.5th percentile values.

In the C class zones, the Cfa and Cfb zones located in the southeast U.S., having different

features from Csa and Csb that are located over the west coast. Cfa and Cfb both have mean

TMAX increases around 0.2 K greater than 81st percentile value increases. The increase of the

97.5th percentile values, on the other hand, is almost the same as the mean increase in Cfb, but

0.32 K higher than mean increase in Cfa. In zones of Csa and Csb, the 81st and 97.5th percentile

increases are both higher than the mean TMAX increases, the magnitude of difference are less than

0.1 K for 81st and 0.4 K for 97.5th percentile.

In the D class zones, the Dfa and Dfb zones show similar increases for both the mean and the

81st percentile. The 97.5th percentile value for the Dfa class, however, increases 0.5 K more than

the mean, and both quantities increase similarly for the Dfb zone. Dfc and Dsb show the opposite

behavior. Dfc has a higher mean increase than 81st and 97.5th percentile value increases, whereas
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for the Dsb zones the mean increases less than do the 81st and 97.5th percentile increases.

Table 4.1: Percentile values and mean difference between projected and historical simulation
(projected minus historical)

Name of Zone 81st percentile (K) 90th percentile (K) 97.5th percentile (K) mean (K)
BWk 2.66 2.60 2.83 2.85
BWh 2.71 2.74 2.79 2.71
BSk 2.83 2.74 2.80 2.94
BSh 2.27 2.22 2.24 2.49
Cfa 2.43 2.60 2.86 2.54
Cfb 2.52 2.48 2.74 2.75
Csa 2.71 2.81 3.03 2.66
Csb 2.86 2.81 2.83 2.77
Dfa 3.49 3.66 3.96 3.46
Dfb 3.02 3.15 3.00 3.01
Dfc 2.77 2.81 2.70 2.85
Dsb 3.53 3.24 3.03 3.21

Fig. 4.20b and Table 4.1 show that the mean TMAX increases in the projected simulation are

higher in the D class zones than B and C class zones, indicating that mean temperature increase is

larger over the cooler, more northerly regions, than over the south or the desert southwest.

For the two thresholds used to quantify heat waves, the 97.5th percentile value determines

how warm each heat wave is, while the 81st percentile value determines how many consecutive

days can be included in a heat wave events. Therefore the heat wave frequency and duration are

more profoundly affected by the 81st percentile value. Over most of the contiguous U.S. other

than northeast, the mean TMAX increase in projected simulation is larger than the increase of the

81th percentile TMAX value. Considering the TMAX PDFs, other than the shifting of the whole

distribution toward warmer side (increase of mean TMAX), there are also higher percentage of

days in the PDF higher than the mean TMAX in the projected simulation than in the historical

simulation.

Greater increases of the 90th and 97.5th percentile values are found over the most of the east-

ern and western U.S., including big zones like Cfa and Dfa. These greater increases of extreme

percentile values indicate more extensive right-hand tail of the TMAX PDFs. This extensive warm

(right-hand) tail of the PDF explains the increasing intensity of extreme TMAX values in the pro-
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Figure 4.20: (a): Violin plots of TMAX distribution for each climate zone in both the historical
(red) and projected (blue) simulation. (b): TMAX increases in the projected simulation compared
to the historical simulation of 81st (red), 90th (blue), and 97.5th (green) percentile values, as well
as the mean (black) for every climate zones.
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jected simulation, which is discussed in section 4.3. This feature contributes to the more extreme

temperature behavior in the projected simulation; however its effect on heat wave numbers and

durations is very limited compared to the increase in the mean value of TMAX. As a result, the

increase of mean TMAX is the predominate cause of more heat waves with longer durations in the

projected simulation.
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Chapter 5

Discussion

This research employs a dynamical downscaling modeling approach to explore extreme events

research over the contiguous Unites States. We force WRF simulations with CESM output for the

periods of the second half of 20th and 21st centuries. By defining the frequency and intensity of

extreme PR, TMAX, and TMIN based on percentile thresholds (annually or seasonally) for both

simulation periods, we are able to quantify the spatial distribution and temporal trend of extremes.

Many aspects of the downscaled simulations behaviors are reasonable. Relative to reanalysis

data (NARR), the CESM-WRF dynamical downscaling framework performs better for tempera-

ture than precipitation, and better over the eastern U.S. than over the western area. Compared to

the original GCM, the downscaling work somehow mitigate the underestimation of precipitation

over the Gulf States and the overesitimation of maximum temperature over the central U.S. The

precipitation field contains bias, particularly over regions with substantial topography. The precip-

itation bias may arise for several reasons. First, defects in current RCMs (e.g., the deep convective

or microphysics parameterizations) may yield part of the bias. Various model studies have found

the overestimation of RCM-modeled precipitation over the western mountainous area (Duffy et al.,

2006; Caldwell et al., 2009), and numerical models typically represent better stratiform precipita-

tion then convective precipitation (Maraun et al., 2010). Specifically for simulations in this study,

since stratiform precipitation is also biased over mountainous regions, we conducted a number of
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sensitivity simulations in order to reduce the substantial precipitation bias over high topography.

As a matter of fact, we found that convective and non-convective precipitation amounts are both

highly biased in all sensitivity simulations, so that the deep convective parameterization is not

completely responsible for the overestimation of total precipitation.

Test runs using different parameterization schemes fail to determine a combination of schemes

that performs well for both mountainous and plain areas. Low level zonal wind speed off the

western U.S. coast are found to be 10%-15% higher in WRF than in CESM. With the topographic

lifting of high mountains, more moisture brought by low level wind may lead to biases in both

convective and non-convective precipitation.

Our collaborator Andrew Monaghan recently discovered a flaw in the preprocessing script

where 4-D input variables like temperature and pressure from CESM are artificially perturbed to

higher altitudes. Worse yet, the higher the altitude, the greater the deviation. As a result, WRF

input fields have much warmer and wetter initial and boundary conditions at high altitudes. In

this way, the atmosphere is not only warmer and wetter than CESM’s, but also has an increased

higher temperature and humidity gradient at lower levels where precipitation processes occur. This

atmospheric profile provides too much humidity near surface and instability at lower levels. With

the help of topographic lifting, humid air rises and condensates easily, thus producing much more

precipitation than the original GCM.

New simulations with this problem fixed have been set up and are, at the time of writing,

running. The new simulations contain several fix and upgrades. New code fixes errors over moun-

tainous areas introduced when building WRF intermediate files. We also use WRF model version

3.6 instead of 3.3 in order to employ an updated version of the Kain-Fritsch convective parameteri-

zation that incorporates sub grid-scale cloud fraction and condensate feedbacks into the short wave

and long wave radiation schemes (Herwehe et al., 2014). Correspondingly, the RRTM scheme

is replaced by the RRTMG (Rapid Radiative Transfer Model-Global) to satisfy new convective

scheme’s requirement. Herwehe et al. (2014) has found that new Kain-Fritsch scheme helps to re-

duce excessive precipitation biases from WRF, especially over the northwestern U.S. The updated
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Figure 5.1: Mean annual precipitation (mm) from 1950-1960 from output of the upgraded version
of historical downscaling simulation.

simulation has finished for the first decade of both the historical and the projected simulations.

Maps of annual mean precipitation of the first decade (Fig. 5.1) clearly shows that the precipi-

tation over mountainous areas have been improved relative to the original historical simulation,

which greatly overstimated precipitation there. These new simulations will produce much more

usable output over the western U.S. From Fig. 5.1, the annual mean precipitation has a similar

spatial distribution to the annual mean precipitation of NARR over the contiguous U.S., although

a slight dry bias still presents over southeastern U.S.

Our simulation results should be interpreted with the details of RCP6.0 scenario in mind.

RCP6.0 specifies an increasing CO2 global emission rate and the corresponding radiative forcing

increasing rate that reach their peaks around 2080 and then start to decrease, unlike the continu-

ously rising trend in RCP8.5 (Sanford et al., 2014; Meinshausen et al., 2011). But for the first half

of 21st century, RCP6.0 still exhibits a rate of global temperature increase closer to RCP8.5 (Moss

et al., 2010). Thus, this downscaling framework is possibly reproducing an accelerating global

warming before 2080, and the weaker warming trend after that. For this reason, the increasing

trend of TMAX extremes in the projected simulation is somewhat blunted compared to those in

the historical simulation. Because of the nature of RCP6.0 scenario, performing an additional sim-

ulation for the first half of 21st century is critical. The new simulation will cover the entire period

from 1950-2100, with the expectation of capturing continuous temporal trends of extremes over
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that continuous period.

The stabilization of global CO2 emission rate after 2080 in RCP6.0 scenario still results in

more frequent heat waves with longer duration in the second half of 21st century, and our results

suggest these increases result from not only the mean temperature increase, but also the more days

with TMAX higher than mean TMAX. Together with the result that the frequency of extreme

TMAX and TMIN increase/decrease more substantially than intensity, we found that the global

mean temperature increase in the 21st century primarily leads to more extremely warm days and

fewer cold nights, while the increase of TMAX and TMIN thresholds are close to the magnitude

of mean temperature increase. The observation that the projected changes in TMAX and TMIN

thresholds are so similar to the projected change in mean TMAX suggests that the change of the

mean TMAX is more responsible for additional temperature extremes than are changes to the tail

of the TMAX distribution.
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Chapter 6

Conclusion and future work

This thesis uses dynamical downscaling to address the spatial distributions and temporal trends of

the frequency and intensity of extreme events, as well as the occurrence of heat waves, over the

contiguous United States. This dynamical downscaling framework performs better over the eastern

U.S. than the western U.S., and better on the temperature field than the precipitation field. After

bias-correction and omitting high-bias (> 40%) regions, precipitation and temperature fields are

generally plausible.

Extreme thresholds of PR, TMAX, and TMIN are all found to increase in the projected simula-

tion. Differences in PR threshold magnitudes between the projected and historical simulations in-

crease with increasing percentiles (i.e., from PR differences from 90%, 95%, and 99% thresholds),

whereas differences in TMAX and TMIN thresholds vary little with increasing percentiles. TMIN

threshold increases comparing between the projected simulation and the historical simulation are

greater than the TMAX threshold increases, which suggests a reduction of diurnal temperature

variation in the projected simulation.

Trend maps for the precipitation extremes exhibit substantial spatial heterogeneity for both

simulations, particularly for intensity, which depends more on small scale precipitation processes

and how they are represented in WRF. Temperature extremes exhibit consistent warming trends in

the historical simulation consistent with a warming climate, including increasing trend of TMAX
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and decreasing trend of TMIN in both frequency and intensity. This trend is decelerated, however,

in the projected simulation, especially for TMIN. We speculate that this decelerating trend at least

partially results from the RCP6.0 scenario, in which the global CO2 emission rate peaks around

2080 and decrease afterward, which ultimately slows warming in the model.

Statistics composited by Köppen-Geiger climate zones generally depict higher frequency and

intensity in the projected simulation for all three variables in the projected simulation for all three

variables (PR, TMAX, and TMIN). The increase in precipitation extremes varies substantially

across different climate zones, and in the projected simulation precipitation intensity increases

more than does frequency. This latter result is consistent with a similar number of heavy rain sys-

tems that each (on average) produce more precipitation. On the other hand, TMAX and TMIN have

more consistent and significant differences, and the increase of TMAX extremes and decrease of

TMIN extremes is better represented by changes in the frequency than intensity. This difference in

behavior between precipitation and temperature extremes indicates the different causes of increas-

ing extreme thresholds in the future. Precipitation thresholds increase by more local heavy rain

processes, while increase of temperature extremes largely increase because of more warm events.

Heat waves are quantified in both WRF and CESM using the criteria of Meehl and Tebaldi

(2004). Results indicate an increase in the duration and number of heat waves in the projected

simulation. WRF and CESM show substantial agreement on these increases of frequencies and

durations of heat waves. The heat wave increases are not only due to the daily mean temperature

increase in the second half of 21st century but also a higher percentage of TMAX days higher

than mean TMAX. Projected TMAX under RCP6.0 scenario reproduces 3.5∼4.5 heat waves with

durations of 15∼25 days on average each year, which is roughly 200% higher on the number of

heat waves per year and 100% higher on duration relative to heat waves in the historical simulation.

Newly initialized historical and projected simulations have several fixes and updates compared

to the first version. New software corrections fix the error when building initial 4-D fields for the

WRF intermediate files. The latest version of WRF involves upgraded Kain-Fristch scheme with

radiation feedbacks. Modeling entire 150-year period from 1950 to 2100 will help uncover the ex-
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treme behavior in the first half of 21st century, which is critical for fully understanding the behavior

of RCP6.0 scenario that includes decreasing trend of CO2 emission rate after 2080. Mean annual

precipitation map of the first decade of the new historical simulation indicates greatly improved

mean precipitation pattern over the contiguous United States. With these model improvements,

future work will be able to include analysis on historical and projected ENSO teleconnections to

extreme precipitation and temperature events.
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