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A New Pruning Method for Solving Decision Trees and Game Trees
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Abstract

The main goal of this paper is to describe a new
pruning method for solving decision trees and
game trees. The pruning method for decision
trees suggests a slight variant of decision trees
that we call scenario trees. In scenario trees, we
do not need a conditional probability for each
edge emanating from a chance node. Instead, we
require a joint probability for each path from the
root node to a leaf node. We compare the pruning
method to the traditional rollback method for
decision trees and game trees. For problems that
require Bayesian revision of probabilities, a
scenario tree representation with the pruning
method is more efficient than a decision tree
representation with the rollback method. For
game trees, the pruning method is more efficient
than the rollback method.

INTRODUCTION

Bayesian decision problems.

The decision tree representation method was formulated
Raiffa and Schlaifer [1961] based on von Neumann and
Morgenstern’s [1944] extensive form game representatio
of n-person games. In extensive form games, informatio

available to the decision makers is encoded using

information sets. In decision trees, however, information

game tree. Game trees generalize decision trees in the
sense that a decision tree is a game tree in which all
information sets are singletons. The rollback method of
decision trees generalizes to game trees [Shenoy 1993b].
An advantage of game trees over decision trees is that if
we have a Bayesian network model [Pearl 1988] for the
uncertainties in a problem, then no preprocessing is ever
required before a problem can be represented as a game
tree. This is because information sets allow us to sequence
the chance variables in the game tree as in the Bayesian
network model.

In this paper, we propose a new pruning method to solve
decision trees and game trees. The pruning method for
decision trees is as follows. First we compute the path
probabilities for each path from the root node to a leaf
node by simply multiplying all the probabilities on the
path. Next, we compute the weighted utility for each leaf
node by multiplying the utility and the path probability.
Next we prune all nodes starting from the nodes adjacent
to leaf nodes and proceeding toward the root node as in the
rollback method. Chance nodes are pruned by adding the
weighted utilities at the ends of its edges, and decision

Qbdes are pruned by maximizing the weighted utilities at
2 ends of its edges. This pruning method generalizes to

game trees.

BNotice that in the pruning method for decision trees, the

probabilities on the chance edges are used only to compute

the path probabilities (they are not used to prune chance

nodes). The path probabilities are in fact joint
probabilities. In decision problems that require a Bayesian
revision of probabilities, we can avoid computation of the

about uncertainties is encoded by sequencing of the chan
and decision variables. One consequence of this encodin

is that Bayesian revision of probability models may be - ypapilities. Since conditionals are not necessary, we do
required before decision problems can be represented as ot have to include them in the representation. We call

decision trees. Decision trees are solved using the rollbackis gjight variant of decision trees scenario trees.
method in which decision and chance nodes in the tree are

pruned recursively starting from nodes adjacent to the For decision problems that involves Bayesian revision of
leaves. Chance nodes are pruned by averaging the utilitieBrobabilities, a scenario tree representation solved using
at the ends of its edges, and decision nodes are pruned byhe pruning method requires less computation than a
maximizing the utilities at the ends of its edges. decision tree representation solved using the rollback
method. For solving game trees, the pruning method
requires less computation than the rollback method.

“onditionals by simply computing the joint probability
Qistribution and using the joint probabilities as path

Recently, Shenoy [1993b] has suggested using
information sets to encode information constraints in _ _ _
decision problems. The resulting representation is called &n outline of the remainder of the paper is as follows.



Table I. The Physician’s Utility Function For All Act-State Pairs
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Section 2 describes a medical diagnosis (MD) problem, a
small symmetric decision problem involving Bayesian
revision of probabilities. Section 3 describes a strategy
matrix representation and solution of the MD problem.
Section 4 describes a decision tree representation and
solution of the MD problem. Section 5 describes the
scenario tree representation and the new pruning method

variable S denote the presence or
absence of symptom We

assume D and S are conditionally independent given P.
Table | shows the physician’s utility function.

3 STRATEGY MATRICES
In this section, we describe the strategy matrix

representation and solution technique for decision

Section 6 describes a game tree representation of the MD,ohjems. A strategy matrix representation of a decision

problem and its solution using the rollback method and

problem is derived from von Neumann and Morgenstern’s

the pruning method. Section 7 describes a comparison of[1944] normal form representation of aperson game.

the different techniques. Finally, in section 8, we
conclude.

2 A MEDICAL DIAGNOSIS PROBLEM

The main task in the MD problem is to determine an
optimal strategy. Since the physician observes the
symptom before making a diagnosis, she has four distinct
strategies as followssiq = (t, t) meaning choose T tif

In this section, we give a statement of a medical diagnosi§ =s and choose T &if S =~s (i.e., choose regardless

(MD) problem [Shenoy 1994]. The MD problem is a
simple symmetric decision problem that involves
Bayesian revision of probabilities. We will use this
problem to illustrate the different representation and
solution techniques.

A physician is trying to devise a policy for treating
patients suspected of suffering from a disehskcauses a
pathological state that in turn causes symptasnThe
physician first observes whether or not a patient has
symptoms. Based on this observation, she either treats
the patient (fod andp) or not. The physician’s utility
function depends on her decision to treat or not, the
presence or absence of disedsgnd the presence or
absence of pathological stageThe prior probability of
diseasdal is 10%. For patients known to suffer frahm

of the observed value of S), = (t, ~t), o3 = (~t, t), and

o4= (~t, ~t). There are eight possible events in the joint
space of D, P, and Sd,(p, s), (d, p, ~9), (d, ~p, 9), (d,

~p, ~9), (~d, p, ), (~d, p, ~9), (~d, ~p, s), and d, ~p,

~9). In a strategy matrix representation, each strategy
constitutes a row of the matrix, each event constitutes a
column, and for each strategy-event pair, there is a unique
utility value determined by the utility function. For
example, consider the pait,({t), (~s, p, d)). Since S =

~s, the strategyt(~t) specifies T =-t. Accordingly, the
utility associated with this pair is the utility valué-~t,

p, d) = 0. Table Il shows a strategy matrix representation
of the MD problem. (In Table II, the expected utilities
shown in bold are computed during the solution phase and
are not part of the strategy matrix representation.)

Table Il. A Strategy Matrix Representation and Solution of the MD Problem

EVENTS
UTILITIES | (spd) (sp~d) (s~pd) (s~p~d (~spd) (-sp~d (~s~pd (~s~p~ | EU
) ) ) d)
(t, 1) 10 6 8 4 10 6 8 4 |4.8300
STRA- (t,~t) | 10 6 8 4 0 2 1 10 |7.9880
TEGIES (~t,t) 0 2 1 10 10 6 8 4 |4.7820
(~t, 0 2 1 10 0 2 1 10 |7.9400
.,t)
PROBABILITY [ 0.0560 _0.0945 0.0040 _0.1530 _ 0.0240 _ 0.0405 _ 0.0160 _ 0.6120




The probabilities of all event are obtained by computing
the joint probability distribution of all random variables
in the problem (see left-hand side of Figure 1).

Solving a strategy matrix representation is
straightforward. For each strategy, we compute its
expected utility. Next, we identify an optimal strategy by
identifying the maximum expected utility. In the MD

problem, the expected utility of each strategy is shown i

the last column in Table Il. The maximum expected
utility is 7.998. Thus the optimal strategy ts+t), i.e.,
treat if S =s, and not treat if S =s.

4 DECISION TREES

In this section, we describe a decision tree representatior
and solution of the MD problem. See Raiffa [1968] for a
primer on the decision tree representation and solution
method.

Decision Tree RepresentationFigure 1 shows the
preprocessing of probabilities that has to be done before
we can complete a decision tree representation of the M
problem. In the probability tree on the left, we compute
the joint probability distribution by multiplying the
conditionals. For example, B (p, s) =

Prd) Pr(p|d) Pr(s|p) = (.10)(.80)(.70) = .0560. In the
probability tree on the right, we compute the desired
conditionals by additions and divisions.

Figure 2 shows a complete decision tree representation ¢f

the Medical Diagnosigproblem. (In Figure 2, the utility
values shown in bold are computed during the solution
phase and are not part of the representation.) Each path
from the root node to a leaf node represersisemario

This tree has 16 scenarios. The tregyimmetrici.e.,

each scenario includes the same four variables S, T, P,
D, in the same sequence STPD.

Rollback Method. Starting from the leaves, we
recursively delete all random and decision variable nodes
the tree. We delete each random variable node by averag
the utilities at the end of its edges with the probability
distribution at that node (“averaging out”). We delete each
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Figure 1. The Preprocessing of Probabilities in the MD
Problem
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decision variable node by maximizing the utilities at
the end of its edges (“folding back”). This method is

calledrollback The results of the rollback method for
the MD problem are shown in Figure 2.

5 SCENARIO TREES

In this section, we describe the scenario tree
representation and solution technique.

A scenario tree representation of the MD problem is
shown in Figure 3. (In Figure 3, the utility values
shown in bold are computed during the solution phase
and are not part of the representation.) A scenario tree
is slightly different from a decision tree. In a scenario
tree, we do not have to specify probabilities for each
edge emanating from a chance node. Instead we have to
specify probabilities for each scenario, i.e., for each



the produc as the functiom®g,:
Figure 3. A Scenario Tree Representation and Solution of the MD | ¢ _)p[o li] 2u®§r¥thatr(®§§)(x)l _ ®5y

Problem n(x) §,(x) for eachx € ¥. A path

Path  Weighted ){) . . .
Utility Probability Utility probability functionrt has the following
property. Ify is a strategy, then®g,, is a
1127 O 10 0560 2560 probability distribution function, i.ey,
D 2{(n®Ey)(x) [ xed}=1.
1771 ~d 6 .094c 0567 Letv: ¥ — R denote the utility function,

i.e.,v(x) is the DM'’s utility under

B d 8 0040 20%2 scenaria. Consider the produat®v: &
t P @ — 9% defined as follows:A®v)(x) =
e 4 1530  oael2 m(x) v(x) for allx € ¥. We calla@v the
1-771 weighted utility function
d 0 .0560 0 If the DM chooses strategy then the
189 DM’s expected utility is
-t p 2{((n®§y)®v)(x) | x € ¥}. Notice that
. ~d 2 0945 0189 (T®E )@V = (T®V)®E,. Thus the
(P) problem can be stated as follows: Find
1723 y 10040 0004 strategyy so as to maximize
P ©) F{((x@V)®E)(x) | X E F}. The pruning
L34 10 1530 1530 method that we will now describe solves
7.988 ' ' precisely this problem using deterministic
d 10 0240 0240 dynamic programming.
48 The Pruning Method. First, for each
p ) leaf node, we compute the weighted utility
3.059 ~d 6 040 D243 by multiplying the utility and the path
(P probability. Hence forth, we use the
~s d 8 0160 0128

weighted utilities for pruning chance and

decision nodes.
2.576

4 6120 2448 Pruning Chance NodesIf we have a
chance node all of whose edges end in leaf
6.217 d 0 -0240 0 nodes, first we compute the sum of the
08t weighted utilities at the end of its edges,
~t p and next we replace the subtree associated
~d 2 bae o with the chance node by a payoff node
(P whose value is set equal to the computed
i y L0180 sum of weighted utilities.
5,136 Pruning Decision Nodes If we have a
~d 10 6120 612 decision node all of whose edges end in

payoff nodes, first we compute the
path from the root node to a leaf node. We call these  maximum of the weighted utilities, and next we replace
probabilitiespath probabilities For a leaf node, the path  he subtree associated with the decision node by a payoff
probability represents the conditional probability of node whose value is set at the computed maximum value
reaching the leaf node conditional on a DM's strategy thalyf weighted utilities. Each time we prune a decision node,

makes the leaf node reachable. This probability is simply\e keep track of a value of the decision node where the
the conditional probability of all events on the path maximum is achieved.

conditional on all acts on the path. For example, the o
probability of the top-most path in the scenario tree of ~ When we have pruned all decision nodes, we have an

Figure 3 is Pr($s, P =p, D =d | T =t). optimal strategy. When we have pruned all decision and
. ) chance nodes, we end with one payoff node whose utility
Let ¥ denote the set of all scenarios. Consider the value is the expected utility of an optimal strategy. This

probability functions: ¥ — [0, 1] that assigns the path  hryning method is illustrated in Figure 3.
probability (x) to each scenariw€ &¥. We call the

functionx thepath probability functionConsider a 6 GAME TREES

strategyy available to the DM. We can encogles a ) ] o
function&,: ¥ — {0, 1}such thatgy(x) = 0 if scenarioK The game tree representation technique for decision
has a zerd probability of occurring, x) =1 problems is described in [Shenoy 1993b]. It is based on

otherwise. We calt,, a strategy function corresponding to von Neumann and Morgenstern’s [1944] extensive form
strategyy. Given a strategy functid;y, we can define representation af-person games. Figure 4 shows a game



tree representation of the MD problem. (In Figure 4, the
utilities shown in bold are computed during the solution
phase and are not part of the game tree representation.)

of node T. In information sej | the physician knows that
S =s, but not the values of D and P. In information set
I, the physician knows that S~s, but not the values of
D and P. In game trees, the sequence of variables on a

Game trees are similar in many ways to decision trees. path from the root node to a leaf node need not represent

The main difference between the two representation
techniques is the encoding of information constraints. In
decision tree, information constraints are encoded in the
sequencing of chance and decision nodes in each scenari
Thus if the value of a chance variable R is known to the

information constraints. Instead, the sequence may
represent time, causation, etc. If we have a causal
(probability model (as we do in the MD problem), and we
use the sequence to represent causation, then no

decision maker when she chooses a value of a decision preprocessing is required to represent a decision problem

variable N, then R must precede N on the paths from the
root node to leaf nodes. In game trees, information
constraints are encoded by information sets. Information
sets are a partition of the set of decision nodes in a game
tree. When faced with a decision, a decision maker know:
which information set she is in, but does not know which
node in an information set she is at. In Figure 4, there ar
two information sets;land b, each containing 4 instances

Figure 4. A Game Tree Representation and Solution of the

Problem
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as a game tree. In Figure 4, for example, all the
probabilities on edges are specified in the statement of the
MD problem.

The Rollback Method for Game Trees The

decision tree rollback method generalizes to game trees
Shenoy 1993b]. We start from the neighbors of payoff
é\odes and go toward the root until the entire tree has been
pruned. The rule for pruning chance nodes is exactly the

same as in the rollback procedure of decision trees.
The rule for pruning decision nodes is slightly

Mdifferent from the rollback procedure of decision
trees.

Suppose we have an information set such that the
edges leading out of the decision nodes end at payoff
nodes. First, we compute the conditional probability
distribution on the decision nodes of the information
set conditioned on the event that we have reached the
information set (the details of this step are explained
in the following paragraph). Second, for each value
of the decision variable associated with the
information set, we compute the expected payoff
using the payoffs at the end of corresponding edges
and using the conditional distribution computed in
the first step. Third, we identify a value of the
decision variable (and the corresponding edges of
each decision node) associated with the maximum
expected payoff. Fourth, we prune each decision
node by replacing the corresponding subtree by a
payoff node whose payoff is equal to the payoff at
the end of its edge identified in step 3. We call this
technique (for pruning decision nodes in an
information set) pruning bgnaximization of
conditional expectatianPruning by maximization

of conditional expectation generalizes the method of
pruning a singleton information set by
maximization.

Computing the conditional distribution for an
information set is easy. For each decision node in
the information set, we simply multiply all
probabilities on the chance edges in the path from
the root to the decision node. This gives an
unconditional distribution on the nodes in the
information set. The sum of these probabilities
gives us the probability of reaching the information
set assuming prior decisions that allow us to get
there. To compute the conditional distribution, we
normalize this unconditional distribution by
dividing by the sum of the probabilities. From a



computational perspective, the normalization step is
unnecessary and can be dispensed with.

We will illustrate pruning decision nodes by conditional
expectation for the game tree representation of the MD
problem. Consider information sgtih Figure 4. Notice
that all four decision nodes ip have edges leading to
payoff nodes. The unnormalized distribution for the three

nodes in { (from top to bottom) is
probability vector (0.40.8<0.7, 0.%

0.9-0.15:0.7, 0.90.85:0.2) = (0.0560, 0.0040, 0.0945,
0.1530). Thus for T ¢, the (unnormalized) expected

payoff is (0.0560:10) + (0.00488)

(0.15364) = 1.771, and for T =t, the expected payoff is
(0.05660) + (0.00481) + (0.09452) + (0.153810) =

1.723. Since 1.771 > 1.723, we id

each node injl The rollback method is illustrated in

Figure 4.

The Pruning Method for
Game Trees Next, we describe a

given by the
0.2:0.2,

+ (0.09456) +

entify edge fTwith

the weighted utilities is 0 + .004 + 0.189 + 1.530 =
1.723. Since 1.771 > 1.723, we identify edge fTwith
each node inql The results of executing the pruning
method for the MD game tree are shown in Figure 5.

The correctness of this method follows from exactly the
same arguments as in the case of scenario trees. The
computational efficiencies of the rollback method and the
pruning method are compared in the next section.

7 COMPARISON

In this section, we compare scenario trees and game trees
to strategy matrices and decision trees. Also we compare
the pruning method of scenario trees and game trees to the
rollback method of decision trees and game trees.

Strategy Matrices. The strategy matrix representation
involves considerable preprocessing. Not only do we have
to compute the joint probability distribution of all chance

generalization of the pruning
method described in the previous
section so that it applies to game
trees. First, we compute path
probabilities and weighted utilities
for all payoff nodes. The rule for
pruning chance nodes is exactly th

same as in decision trees. The rulg

for pruning decision nodes is as
follows.

Pruning Decision Nodes
Suppose we have an information
set such that the edges leading oJ
of the decision nodes end at payof|
nodes. First, for each value of the
decision variable, we compute the
sum of the weighted utilities at thd
end of the respective edges of the
decision nodes in the information
set. Second, we identify a value of
the decision variable that has the
maximum sum of weighted
utilities computed in the first step.
Third, we prune each decision nod
by replacing the corresponding
subtree by a payoff node whose
value is equal to the weighted
utility at the end of its edge
corresponding to the value of the
decision variable identified in the
second step.

We will illustrate the method for
pruning decision nodes in game
trees using the MD problem.
Consider decision nodes in
information set {. For T =t, the
sum of the weighted utilities is
0.560 + 0.032 + 0.567 + 0.612 =
1.771, and for T =t, the sum of

Figure 5. The MD Game Tree Solved Using the Pruning Method
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chance variables is an exponential | Initial influence diagram:

function of the number of chance Numerical details of arc reversal

variables, and the number of

strategies is an exponential function 080 080
of the number of decision nodes in a

decision tree. Thus, representation | After reversing arc B>P: 020 135
and solution of strategy matrices ) :
involve global computation (on the

space of configurations of all chance|

variables) to compute the joint 138 020
probability distribution, and global

computation (on the space of all 708 765
strategies) to compute an optimal

strategy. Strategy matrices have some +1505 -1505
advantages. They can be used to After reversing arc PS:

define optimal strategies. Also, the .0645 1570
solution method of strategy matrices

yields not only the utility of an

optimal strategy but also the utilitieg .1570 .0645
of all strategies. For example, in the

MD problem, the strategy-{, ~t) .6280 6280
has a utility of 7.940 that is only

marginally lower than the utility of
the optimal strategy. configurations. The rollback method however computes an

In the MD problem, representation and solution of the optimal strategy using local computation.

strategy matrix (shown in Table II) involves a total of 75 In the MD problem, representation and solution of the
operations (where we count each addition, multiplication, decision tree (shown in Figure 2) involve a total of 71
division, and comparison as an operation). A breakdown igperations. A breakdown of the total is as follows.

as follows. Computing the joint probability distribution ~Computing the conditional probability distributions as
involves 12 operations, and computing the maximum  shown in Figure 1 involves 30 operations, and executing
expected utility involves 63 operations (15 operations to the rollback method as shown in Figure 2 involves 41

compute the expected utility of each strategy and 3 operations (3 operations for each of the chance nodes and 1
operations to identify the maximum). operation for each of the decision nodes).

In general, suppose we have a symmetric decision The decision tree representation and solution technique can
problem withm chance variables each of which has 2 be made more efficient as follows. First, we can use the
values, withn decision variables each of which has 2 arc-reversal method [Olmsted 1983, Shachter 1986] to

values, and with ®distinct strategiéls Then representing  compute the conditional probability distributions. The arc-
and solving the problem using the strategy matrix methodeversal method uses local computation. This is illustrated

requires a total of approximatelJipk+1 4+ om+1 in Figure 6. Only 20 operations are needed to compute the
operations (approximately"™1to compute the joint requisite conditionals using the arc-reversal method.
probability distribution, #*1 — 1 to compute the Second, the decision tree solution can be made more
expected utility of each strategy, and approximatbio2  efficient by identifying coalescence [Olmsted 1983]. In the
identify an optimal strategy). MD problem, by using coalescence, we can simplify the

decision tree as shown in Figure 7. The rollback method
can be executed for the coalesced decision tree using only
23 operations (3 operation for each chance node and 1
operation for each decision node). Thus by using the arc-
reversal method and coalescence, we can represent and
solve the MD problem using only 43 operations. We are
assuming here that identifying coalescence is done during
the representation phase by the modeler.

Decision Trees The decision tree representation
requires conditional probability distributions for each
chance node in a decision tree. If we compute the
conditional probability distributions from the joint
probability distribution (as described in Figure 1), then
this involves global computation on the space of all

In general, automating coalescence in decision trees is not
easy. However, coalescence is automatically achieved in

) ; ) ; influence diagrams and valuation networks [Shenoy 1994].
tree representation, or the number of information sets in a game tree In infl di d valuati twork |
representation. The value bfdepends on the information constraints. .n In ‘?ence lagrams and va l.Ja 10N NEWOrKS, coalescence
It can be easily shown thaf 2 1< k < 271 _ o1 is achieved by local computation. The arc-reversal method

1 k denotes, for example, the number of decision nodes in a decision



Figure 7. A Decision Tree Representation and Solutjon

of the MD Problem Using Coalescence

Utilities
10
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of influence diagrams solves the MD problem using 43
operations, and the fusion algorithm of valuation

networks [Shenoy 1992, 1993a] solves the MD problem

using 31 operations [Shenoy 1994].

Scenario Trees Scenario trees do not require
conditional probability distributions. However, we do
require path probabilities. In the MD problem,
computation of the path probabilities is achieved by
computing the joint distribution of all chance variables.
This involves 12 operations. Executing the pruning
method for the scenario tree representation shown in

Figure 3 involves a total of 31 operations (16 operations

to compute the weighted utilities, and 1 operation per

decision and chance node). Thus a total of 43 operations
are required to represent and solve the MD problem using

the scenario tree method.

In general, the scenario tree method involves working on

the global space of all configurations. Unlike decision

trees, we cannot use either arc-reversal or coalescence to
make the representation and solution more efficient. The

pruning method of scenario trees does use local

computation to identify an optimal strategy and compute

its utility.

chance nodes, and?" leaf nodes. Suppose that the
decision tree representation has approximately the same
number of decision and chance nodes, chance
nodes and ™1 decision nodes. Then the rollback
method would require a total of approximatelyt2+1
operations (3 operations to prune each chance node and 1
operation to prune each decision node), and the pruning
method would require a total of approximatel§*9+1 +
2m*1 gperations (P to compute the joint probability
distribution, 2" to compute the weighted utilities, 1
operation to prune each chance node and 1 operation to
prune each decision node). In this case, the rollback
method is more efficient than the pruning method.

Now suppose that we have the same decision problem as
above except that Bayesian revision of probabilities is
required before the problem can be represented as a
decision tree. In this case, if we compute the required
conditionals by computing the joint, this would require a
total of approximately P*N+1 + 22 + oM gperations
(21 operations to compute the joinf™L + 2
operations to compute the required conditionals, and
2mn+1 operations for rollback). If we use a scenario tree
representation with the pruning method, then we would
need a total of approximately™®n*1 + 21 gperations
(21 to compute the joint probability distribution™

to compute the weighted utilities, and"2? operations to
prune the nodes). In this case, the scenario tree
representation with the pruning method is more efficient
than the decision tree with the rollback method.

Game Trees If we assume that we have a causal
probability model for all chance variables, then unlike
strategy matrices, decision trees, and scenario trees, game
trees do not require any preprocessing. Executing the
rollback method for the MD game tree (see Figure 4)
requires 63 operations (12 to compute conditional
probabilities of reaching decision nodes in information
sets, 15 operation to prune each information set, and 3
operations to prune each chance node). In comparison,
executing the pruning method for the MD game tree (see
Figure 5) requires only 49 operations (12 operations to
compute the path probabilities, 16 operations to compute
the weighted utilities, 7 operations to prune the decision
nodes in each of 2 information sets, and 1 operation to
prune each of 7 chance nodes).

In general, suppose we have a game treemithance

variables each of which has 2 values, wiithecision
variables each of which has 2 values, with?-1chance

nodes, and with™"™1 decision nodes ik information
sets. If we use the rollback method to solve the game tree,

we would need a total of approximateRr2+1 + 2mn 4

2mn=1 4+ o1 gperations (1 operations to compute
the unnormalized conditional probability distributions at
each information set™®N*1 to prune thé information

Suppose that we have a symmetric decision problem wittsets, and 321y operations to prune thépn-1 o
m chance variables amddecision variables, suppose that chance nodes). If we use the pruning method described in

each variable has two values, and suppose that all
conditional probabilities required in the decision tree

this paper, then we need a total of approximat8i11
+ 2mn=14 oM+l gperations (P*1 operations to

representation are specified in the problem. A decision treeompute the path probabilitied]"®" operations to

representation would have a total 82 — 1 decision and

compute the weighted utilities™?" to prune the



Table Il . A Comparison of Computational Efficiency of Different
Techniques for the MD Problem

# Operations (+x, +, =) || Representation

in MD Problem (Preprocessing)  Solution  TOTAL
Strategy Matrix

with Expected Valugs 12 63 75
Decision Tree

with Rollback 30 41 71
Scenario Tree

with Pruning 12 31 43
Game Tree

with Rollback 0 63 63
Game Tree

with Pruning 0 49 49
Influence Diagram

with Arc Reversal 0 49 49

Table IV. A Comparison of Computational Efficiencies of Different Techniques

generalizes to game trees and it is more
efficient than the rollback method for game
trees.
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