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We present a search for the standard model Higgs boson in 9.5 fb−1 of pp̄ collisions at
√

s = 1.96 TeV
collected with the D0 detector at the Fermilab Tevatron Collider. The final state considered contains
a pair of b jets and is characterized by an imbalance in transverse energy, as expected from pp̄ → Z H →
νν̄bb̄ production. The search is also sensitive to the W H → �νbb̄ channel when the charged lepton is
not identified. The data are found to be in good agreement with the expected background. For a Higgs
boson mass of 125 GeV, we set a limit at the 95% C.L. on the cross section σ(pp̄ → [Z/W ]H), assuming
standard model branching fractions, that is a factor of 4.3 times larger than the theoretical standard
model value, while the expected factor is 3.9. The search is also used to measure a combined W Z and
Z Z production cross section that is a factor of 0.94 ± 0.31 (stat) ± 0.34 (syst) times the standard model
prediction of 4.4 pb, with an observed significance of 2.0 standard deviations.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

In the standard model (SM) [1], electroweak symmetry break-
ing is achieved via the introduction of a doublet of scalar fields, of
which one degree of freedom remains once the W and Z vec-
tor bosons have acquired their masses. This degree of freedom
manifests itself as a new scalar particle [2], the Higgs boson (H).
Associated Z H production in pp̄ collisions at

√
s = 1.96 TeV, with

Z → νν̄ and H → bb̄, is among the most sensitive processes in the
search for a Higgs boson with mass MH � 135 GeV at the Fermi-
lab Tevatron Collider [3]. The D0 Collaboration published a search
for this process based on 5.2 fb−1 of integrated luminosity [4]. In
this Letter, an extension of this search to the full Run II dataset
is presented. The CDF Collaboration recently reported results from
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a similar search [5], as well as the ATLAS and CMS Collaborations
using pp collisions at 7 TeV at the LHC [6,7]. A lower limit of
114.4 GeV was set on MH by the LEP Collaborations [8], while
an upper limit at 127 GeV has been established by the ATLAS
and CMS Collaborations [9,10]. These limits and those given be-
low are all defined at the 95% C.L. The ATLAS and CMS Collabo-
rations have also published [9,10] excesses above background ex-
pectations at approximately 125 GeV and have recently reported
results confirming these excesses at the five standard deviations
level [11,12].

The final-state topology considered in this search consists of
a pair of b jets from H → bb̄ decay and missing transverse en-
ergy (/E T ) from Z → νν̄ . The search is also sensitive to the W H
process when the charged lepton from W → �ν decay is not iden-
tified. The main backgrounds arise from (W /Z) + heavy-flavor jets
(jets initiated by b or c quarks), top quark production, and multijet
(MJ) events with /E T arising from mismeasurement of jet energies.
A boosted-decision-tree discriminant based on kinematic proper-
ties is first used to reject most of the multijet events. Next, jets
from candidate Higgs boson decays are required to be identified
as b jets. Finally, discrimination between signal and remaining
backgrounds is achieved by means of additional boosted decision
trees.

To validate the techniques used in the search for the Higgs bo-
son, the analysis is also interpreted as a measurement of W Z and
Z Z diboson production. The only modification is in the training of
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the final discriminants, for which a diboson signal is used instead
of a Higgs boson signal.

2. Data and simulated samples

The D0 detector used for Tevatron Run II (2001–2011) is de-
scribed in detail in Ref. [13]. Its main components are: a track-
ing system surrounding the beam pipe, followed by a liquid-argon
and uranium sampling calorimeter, and then a muon system. The
tracking system is immersed in a 2 T magnetic field provided by
a superconducting solenoid and consists of a silicon microstrip
tracker followed by a scintillating fiber tracker. The calorimeter is
composed of a central and two end sections housed in separate
cryostats. Each section is segmented in depth, with four electro-
magnetic layers followed by up to five hadronic layers. Scintillating
tiles provide additional sampling between the cryostats. The muon
system consists of tracking and trigger detectors in front of and
beyond 1.8 T iron toroids. Online event selection is provided by a
three-level trigger system.

The data used in this analysis were recorded using triggers de-
signed to select events with jets and /E T [14]. After imposing data
quality requirements, the total integrated luminosity recorded with
these triggers is 9.5 fb−1, corresponding to all available Run II data
for this analysis.

The analysis relies on (i) charged particle tracks, (ii) calorimeter
jets reconstructed in a cone of radius 0.5 in y–φ space, where y
is the rapidity and φ the azimuthal angle, using the iterative mid-
point cone algorithm [15], and (iii) electrons or muons identified
through the association of tracks with electromagnetic calorime-
ter clusters or with hits in the muon detector, respectively. The
/E T is reconstructed as the negative of the vectorial sum of the
transverse components of energy deposits in the calorimeter and
is corrected for identified muons. Jet energies are calibrated using
primarily transverse energy balance in photon + jet events [16],
and these corrections are propagated to the /E T assessment.

Those backgrounds arising from MJ processes with instrumental
effects giving rise to /E T are estimated from data. The remainder of
the backgrounds and the signal processes are simulated by Monte
Carlo (MC). Events from (W /Z)+ jets processes are generated with
alpgen [17], interfaced with pythia [18] for initial- and final-state
radiation and for hadronization. The pT spectrum of the Z boson
is reweighted to match the D0 measurement [19]. The pT spec-
trum of the W boson is reweighted using the same experimental
input, corrected for the differences between the W and Z pT spec-
tra predicted in next-to-next-to-leading order (NNLO) QCD [20].
To simulate tt̄ and electroweak single top quark production, the
alpgen and singletop [21] generators, respectively, are interfaced
with pythia, while vector boson pair production is generated with
pythia. The Z H and W H signal processes are generated with
pythia for Higgs boson masses from 100 to 150 GeV in 5 GeV
steps. All these simulations use CTEQ6L1 parton distribution func-
tions (PDFs) [22].

The absolute normalizations for (W /Z) inclusive production are
obtained from NNLO calculations of total cross sections [23] us-
ing the MSTW2008 NNLO PDFs [24]. The heavy-flavor fractions
in (W /Z) + jets are obtained using mcfm [25] at next-to-leading
order (NLO). The diboson cross sections are also calculated with
mcfm [27]. Cross sections for pair and single top quark production
are taken from Ref. [26]. For signal processes, cross sections are
taken from Ref. [28].

Signal and background samples are passed through a full
geant3-based simulation [29] of the detector response and pro-
cessed with the same reconstruction program as used for data.
Events from randomly selected beam crossings with the same
instantaneous luminosity distribution as data are overlaid on sim-
Fig. 1. (Color online.) The measure S of /E T significance in the analysis sample with-
out the requirement that S be larger than 5. The data are shown as points with
error bars and the background contributions as histograms: dibosons are labeled as
“VV,” “V + l.f.” includes (W /Z) + (u,d, s, g) jets, “V + h.f.” includes (W /Z) + (b, c)
jets, and “Top” includes pair and single top quark production. The distribution for
signal (VH) is scaled by a factor of 500 and includes Z H and W H production for
MH = 125 GeV.

ulated events to account for detector noise and contributions from
additional pp̄ interactions. Parameterizations of the trigger effi-
ciencies are determined using events collected with independent
triggers based on information from the muon detectors. Correc-
tions for residual differences between data and simulation are
applied for electron, muon, and jet identification. Jet energy cal-
ibration and resolution are adjusted in simulated events to match
those measured in data.

3. Event selection

A preselection that greatly reduces the overwhelming back-
ground from multijet events is performed as follows. The inter-
action vertex must be reconstructed within the acceptance of the
silicon vertex detector and at least three tracks must originate from
that vertex. Jets with associated tracks that meet criteria ensur-
ing that the b-tagging algorithm operates efficiently are denoted
as “taggable” jets, except for those also identified as hadronic de-
cays of τ leptons [30]. Exactly two taggable jets are required, one
of which must be the leading (highest pT ) jet in the event; the
Higgs candidate is formed from these two jets, denoted jet1 and
jet2 (ordered in decreasing pT ). These jets must have transverse
momentum pT > 20 GeV and pseudorapidity |η| < 2.5. The two
taggable jets must not be back-to-back in the plane transverse to
the beam direction: �φ(jet1, jet2) < 165◦ . Finally, /E T > 40 GeV is
required.

Additional selection criteria define four distinct samples: (i) an
“analysis” sample used to search for a Higgs boson signal; (ii) an
“electroweak (EW) control” sample used to validate the back-
ground MC simulation, enriched in W (→ μν) + jets events where
the jet system has a topology similar to that of the analy-
sis sample; (iii) an “MJ-model” sample, dominated by multijet
events, used to model the MJ background in the analysis sam-
ple; and (iv) a large “MJ-enriched” sample, used to validate this
MJ-modeling procedure.

The analysis sample is selected by requiring the scalar sum
of the transverse momenta of the two leading taggable jets to
be greater than 80 GeV and a measure of the /E T significance
S > 5 [31]. Larger values of S correspond to /E T values that are
less likely to be caused by fluctuations in jet energies. The S dis-
tribution is shown for the analysis sample in Fig. 1.

The dominant signal topology is a pair of b jets recoiling against
the /E T due to the neutrinos from Z → νν̄ decay, leading to the
direction of the /E T being at a large angle with respect to the
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direction of each jet. In contrast, in events from MJ background
with fluctuations in jet energy measurement, the /E T tends to be
aligned with a mismeasured jet. A second estimate of the /E T can
be obtained from the missing pT , /pT , calculated from the recon-
structed charged particle tracks originating from the interaction
vertex. This variable is less sensitive to jet energy measurement
fluctuations. In signal events, /pT is also expected to point away
from both jets, while for MJ background, its angular distribution is
expected to be more isotropic. Advantage is taken of these features
through the variable D = [�φ(/pT , jet1) + �φ(/pT , jet2)]/2. For sig-
nal events, as well as for the non-MJ backgrounds, D > π/2 in the
vast majority of events, whereas the MJ background events tend to
be symmetrically distributed around π/2. In the analysis sample,
D > π/2 is therefore required. To improve the efficiency of this
criterion for the (W → μν)H signal with non-identified muons,
tracks satisfying isolation criteria are removed from the /pT com-
putation. The reverse of the D requirement is also used to define
the MJ-model sample, as explained below.

Events containing an isolated electron or muon with pT >

15 GeV are rejected to ensure there is no overlap with the D0 W H
search in the lepton + /E T topology [32].

The EW control sample is selected in a similar manner to the
analysis sample, except that an isolated muon with pT > 15 GeV is
required. The multijet content of this sample is rendered negligible
by requiring that the transverse mass of the muon and /E T system
is larger than 30 GeV and that the /E T , calculated taking account of
the muon from the W boson decay, is greater than 20 GeV. To en-
sure similar jet topologies for the analysis and EW control samples,
the /E T , not corrected for the selected muon, is required to exceed
40 GeV. The number of selected events is in good agreement with
the SM expectation. All the kinematic distributions are also well
described once reweightings of the distributions of �η(jet1, jet2)

and η(jet2) are performed, as suggested by a comparison [33] of
data with a simulation of (W /Z) + jets using the sherpa gen-
erator [34]. The distribution of the dijet mass in the EW control
sample is shown in Fig. 2(a).

The MJ-model sample, used to determine the MJ background, is
selected in the same manner as the analysis sample, except that
the requirement D > π/2 is reversed. The small remaining con-
tributions from non-MJ SM background processes in the D < π/2
region are subtracted, and the resulting sample is used to model
the MJ background in the analysis sample. The MJ background in
the region D > π/2 is normalized by performing a fit of the sum
of the MJ and SM backgrounds to the /E T distribution of the data
in the analysis sample.

The MJ-enriched sample is used to test the validity of this ap-
proach and is defined in the same manner as the analysis sample,
except that S < 4.5 is now required (see Fig. 1). As a result, the
MJ background dominates the entire range of D values, and this
sample is used to verify that the events with D < π/2 correctly
model those with D > π/2. The distribution of the dijet mass in
the MJ-enriched sample is shown in Fig. 2(b).

A multivariate b-tagging discriminant, with several boosted de-
cision trees as inputs, is used to select events with one or more
b quark candidates. This algorithm is an upgraded version of the
neural network b-tagging technique described in Ref. [35]. The
new algorithm includes more information related to the lifetime
of the jet and results in a better discrimination between b and
light (u,d, s, g) jets. It provides an output between 0 and 1 for
each jet, with a value closer to one indicating a higher probabil-
ity that the jet originated from a b quark. The output from the
algorithm measured in simulated events is adjusted to match the
output measured in dedicated data samples as described in more
detail in Ref. [35]. From this continuous output, thirteen operat-
ing points (Lb = 0,1, . . . ,12) are defined, with b purity increasing
Fig. 2. (Color online.) Distributions of the dijet mass before b-tagging in the (a) EW
control and (b) MJ-enriched samples. The data are shown as points with error
bars and the background contributions as histograms: dibosons are labeled as “VV,”
“V + l.f.” includes (W /Z) + (u,d, s, g) jets, “V + h.f.” includes (W /Z) + (b, c) jets,
and “Top” includes pair and single top quark production.

with Lb . Jets with Lb = 0 are defined as untagged. The typical per-
b-jet efficiency and misidentification rate for light-flavor jets are
about 80% (50%) and 10% (1%) for the loosest non-zero (tightest)
b-tag operating point, respectively.

To improve the sensitivity of the analysis, two high signal purity
samples are defined from the analysis sample using the variable
Lbb = Lb(jet1) + Lb(jet2). The two samples are defined as follows:
a tight b-tag sample with Lbb � 18 and a medium b-tag sample
with 11 � Lbb � 17. The medium b-tag sample contains events
with two loosely b-tagged jets, as well as events with one tightly
b-tagged jet and one untagged jet. The signal-to-background ratios
for a Higgs boson mass of 125 GeV in the pre, medium, and tight
b-tag samples, after applying a multijet veto (defined in the next
section), are respectively 0.035%, 0.23%, and 1.00%.

4. Analysis using decision trees

A stochastic gradient boosted decision tree (DT) technique is
employed, as implemented in the tmva package [36], to improve
the discrimination between signal and background processes.

First, an “MJ DT” (multijet-rejection DT) is trained to discrimi-
nate between signal and MJ-model events before b-tagging is ap-
plied. To avoid Higgs boson mass dependence at this stage of the
analysis, signal events are not used, and the MJ DT is trained on
a sample of (W /Z) + heavy-flavor jets events instead. Variables
that provide some discrimination have been chosen for the MJ DT,
excluding those strongly correlated to the Higgs mass (such as
the dijet mass itself or the �R = √

(�η)2 + (�φ)2 between jet1
and jet2).

The MJ DT output, which ranges between −1 and +1, is shown
in Fig. 3 for the analysis sample after the medium b-tagging re-
quirement. Good agreement is seen between data and the pre-
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Table 1
The numbers of expected signal, expected background, and observed data events after the multijet veto, for the pre, medium, and tight b-tag samples. The signal corresponds
to MH = 125 GeV, “Top” includes pair and single top quark production, and “VV” is the sum of all diboson processes. The uncertainties quoted on the signal and total
background arise from the statistics of the simulation and from the sources of systematic uncertainties mentioned in the text.

Sample Z H W H W + jets Z + jets Top VV MJ Total background Observed

Pre b-tag 18.3 ±1.8 16.7±1.6 66 895 25 585 1934 3144 1977 99 535 ±12 542 98 980
Medium b-tag 6.7±0.7 6.1±0.6 3112 1074 761 237 278 5462 ±776 5453
Tight b-tag 6.0 ±0.8 5.3±0.7 443 252 377 56 6 1134 ±192 1039
Fig. 3. (Color online.) Distribution of the MJ DT output after the medium b-tagging
requirement in the analysis sample. The distribution for signal (VH), shown for
MH = 125 GeV, is scaled by a factor of 100 and includes Z H and W H production.
The data are shown as points with error bars and the background contributions as
histograms: dibosons are labeled as “VV,” “V + l.f.” includes (W /Z)+ (u,d, s, g) jets,
“V + h.f.” includes (W /Z) + (b, c) jets, and “Top” includes pair and single top quark
production.

dicted background. A value of the multijet discriminant in excess
of −0.3 is required (multijet veto), which removes 93% of the
multijet background while retaining 90% of the signal for MH =
125 GeV. The numbers of expected signal and background events,
as well as the number of observed events, are given in Table 1 after
imposing the multijet veto. Dijet mass distributions in the analy-
sis sample after the multijet veto are shown in Fig. 4 for b-tagged
events.

Next, to separate signal from the remaining SM backgrounds,
two “SM DTs” (SM-background-rejection DTs) are trained for
each MH , one in the medium b-tag channel and one in the tight
b-tag channel. Some of the MJ DT input variables are used again,
but most of the discrimination comes from additional kinematic
variables correlated to the Higgs boson mass, of which, as ex-
pected, the dijet mass has the strongest discriminating power.
The SM DT outputs, which range between −1 and +1, are used
as final discriminants. Their distributions are shown in Fig. 5 for
MH = 125 GeV.

5. Systematic uncertainties

Experimental uncertainties arise from the integrated luminosity
(6%) [37], the trigger simulation (2%), the jet energy calibration and
resolution [(1–2)%], jet reconstruction and taggability (3%), the lep-
ton identification (1%), the modeling of the MJ background (25%,
which translates into a 1% uncertainty on the total background),
and the b-tagging (from 4% for background in the medium b-tag
sample to 9% for signal in the tight b-tag sample). In addition
to the impact of these uncertainties on the integrated signal and
background yields mentioned above, modifications of the shapes
of the final discriminants are also considered, when relevant. Cor-
relations among systematic uncertainties in signal and each back-
ground are taken into account when extracting the final results.

Theoretical uncertainties on cross sections for SM processes are
estimated as follows. For (W /Z) + jets production, an uncertainty
Fig. 4. (Color online.) Dijet invariant mass in the analysis sample after the multi-
jet veto for events with (a) medium b-tag and (b) tight b-tag. The distributions for
signal (VH), which are scaled by a factor of 100 for medium b-tag and 10 for tight
b-tag respectively, include Z H and W H production for MH = 125 GeV. The data are
shown as points with error bars and the background contributions as histograms:
dibosons are labeled as “VV,” “V + l.f.” includes (W /Z) + (u,d, s, g) jets, “V + h.f.”
includes (W /Z) + (b, c) jets, and “Top” includes pair and single top quark produc-
tion.

of 10% is assigned to the total cross sections and an uncertainty
of 20% to the heavy-flavor fractions (estimated using mcfm at
NLO [25]). For other SM backgrounds, uncertainties are taken from
Ref. [26] or using mcfm [27] and range from 6% to 10%. The uncer-
tainties on cross sections for signal (7%) are taken from Ref. [28].
Uncertainties on the shapes of the final discriminants arise from
(i) the modeling of (W /Z) + jets, assessed by varying the renor-
malization and factorization scales and by comparing results from
alpgen interfaced with herwig [38] to alpgen interfaced with
pythia, and (ii) the choice of PDFs, estimated using the prescrip-
tion of Ref. [22].

6. Limit setting procedure

Agreement is found between data and the predicted back-
ground, both in the numbers of selected events (Table 1) and in
the distributions of final discriminants (Fig. 5), once systematic un-
certainties are taken into account. The modified frequentist CLs ap-
proach [39] is used to set limits on the cross section for SM Higgs
boson production, where the test statistic is a log-likelihood ratio
(LLR) for the background-only and signal + background hypotheses.
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Fig. 5. (Color online.) The SM DT output for the (W /Z)H search with MH =
125 GeV following the multijet veto for events with (a) medium b-tag and (b) tight
b-tag prior to the fit to data. The distributions for signal (VH) are scaled by a fac-
tor of 100 for medium b-tag events and 10 for tight b-tag events, respectively,
and include Z H and W H production for MH = 125 GeV. The data are shown as
points with error bars and the background contributions as histograms: dibosons
are labeled as “VV,” “V + l.f.” includes (W /Z) + (u,d, s, g) jets, “V + h.f.” includes
(W /Z) + (b, c) jets, and “Top” includes pair and single top quark production.

The result is obtained by summing LLR values over the bins in
the final discriminants shown in Fig. 5. The impact of systematic
uncertainties on the sensitivity of the analysis is reduced by max-
imizing a “profile” likelihood function [40] in which these uncer-
tainties are given Gaussian constraints associated with their priors.
Fig. 6 shows a comparison of the SM DT distributions expected
for a signal with MH = 125 GeV and observed for the background-
subtracted data. The subtracted background and its uncertainties
are the result of the profile likelihood fit to the data under the
background-only hypothesis.

7. Higgs boson search results

The results are given as limits in Table 2 and Fig. 7(a) and in
terms of LLR values in Fig. 7(b). For MH = 125 GeV, the observed
and expected limits on the combined cross section of Z H and W H
production are factors of 4.3 and 3.9 larger than the SM value,
respectively, assuming SM branching fractions. In Fig. 7(b), the me-
dian expected LLR in the presence of a Higgs boson with a mass of
125 GeV is also shown for comparison.

8. Diboson search results

The final states arising from the SM production of (Z →
νν̄)(Z → bb̄) and (W → �ν)(Z → bb̄) are the same in particle
content and topology as those used for the Higgs boson search re-
ported above when the lepton from W → �ν is not reconstructed.
Evidence for Z Z and W Z production can therefore be used to val-
idate the techniques employed in the Higgs boson search. The only
modification to the analysis is in the training of the final discrim-
Fig. 6. (Color online.) Final discriminant distributions expected for a SM VH signal
with MH = 125 GeV (filled histogram) and observed for background-subtracted data
(points with statistical error bars) for the (a) medium and (b) tight b-tag channels.
The subtracted background is the result of the profile likelihood fit to the data un-
der the background-only hypothesis. Also shown is the ±1 standard deviation (s.d.)
band on the fitted background. No scaling factor is applied to the signal.

inants, where Z Z and W Z are now treated as signal with the
remaining diboson process, W W , kept as background. A cross sec-
tion scale factor of 0.94±0.31 (stat)±0.34 (syst) is measured with
respect to the predicted SM value of (4.4 ± 0.3) pb [27], with an
observed (expected) significance of 2.0 (2.1) standard deviations.

The measurement of the diboson cross section has also been
carried out using as final discriminants the distributions of dijet in-
variant mass (as opposed to the SM DTs) in the medium and tight
b-tag samples. A cross section scale factor of 1.08 ± 0.35 (stat) ±
0.39 (syst) is measured with respect to the predicted SM value,
with an observed (expected) significance of 2.0 (1.9) standard de-
viations. The expected significance is slightly lower than the one
expected with the multivariate analysis, in which additional dis-
crimination is provided by variables such as the angular separation
between jets or the event centrality.

Fig. 8 shows the final discriminant distributions in the medium
and tight b-tag channels, as well as the dijet mass distribution
summed over the medium and tight b-tag channels, for the ex-
pected W Z + Z Z signal and for the background-subtracted data.
The subtracted backgrounds and their uncertainties are the re-
sults of the profile likelihood fits to the data under the signal +
background hypothesis.

9. Summary

We have performed a search for the standard model Higgs bo-
son in 9.5 fb−1 of pp̄ collisions at

√
s = 1.96 TeV collected with

the D0 detector at the Fermilab Tevatron Collider. The final state
considered contains a pair of b jets and is characterized by an im-
balance in transverse energy, as expected from pp̄ → Z H → νν̄bb̄
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Table 2
The expected and observed upper limits measured using 9.5 fb−1 of integrated luminosity on the Z H plus W H production cross section relative to the SM expectation,
assuming SM branching fractions, as a function of MH .

mH (GeV) 100 105 110 115 120 125 130 135 140 145 150

Expected 2.1 2.2 2.4 2.7 3.2 3.9 5.0 6.7 9.2 13.8 21.6
Observed 1.9 2.3 2.2 3.0 3.5 4.3 4.3 7.2 8.8 15.3 16.8
Fig. 7. (Color online.) (a) Ratio of the observed (solid black) and expected (dot-
ted red) exclusion limits to the SM production cross section. (b) The observed
(solid black) and expected LLRs for the background-only (black dots) and signal +
background hypotheses (short red dashes), as well as the LLR expected in the pres-
ence of a Higgs boson with MH = 125 GeV (long blue dashes). All are shown as a
function of the tested value of MH with the green and yellow shaded areas corre-
sponding to the 1 and 2 standard deviation (s.d.) variations around the background-
only hypothesis.

production and decays. The search is also sensitive to the W H →
�νbb̄ channel when the charged lepton is not identified. The data
are found to be in good agreement with the expected background.
For a Higgs boson mass of 125 GeV, we set a limit at the 95% C.L.
on the cross section σ(pp̄ → [Z/W ]H), assuming standard model
branching fractions, that is a factor of 4.3 larger than the theoreti-
cal standard model value, for an expected factor of 3.9.

To validate our analysis techniques, we also performed a search
for W Z and Z Z production, resulting in a measurement of the
combined cross section that is a factor of 0.94 ± 0.31 (stat) ±
0.34 (syst) relative to the standard model prediction, with a sig-
nificance of 2.0 standard deviations.
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