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Effects of Pulse Shape on rf SQUID Quantum Gates
Zhongyuan Zhou, Shih-I Chu, and Siyuan Han

Abstract—Effects of control-signal microwave pulse shapes on
rf SQUID quantum gates are investigated. It is shown that the gate
operations are mainly affected by microwave pulse area and are
independent of pulse shape in the weak field limit.

Index Terms—Pulse shaping methods, quantum computers,
SQUID qubits.

I. INTRODUCTION

RECENTLY, quantum computing has stimulated strong
interests because of its potential for solving problems

that are intractable for conventional computers. Among the
many approaches, building quantum computers with the use of
superconducting qubits is considered very promising because
the intrinsically high degree of coherence of the Cooper pair
condensate, the ability of engineering qubits with desirable
properties, and the high potential for scaling up. Furthermore,
superconducting qubits can be driven by pulsed microwaves
to perform various 1-bit and 2-bit quantum gate operations
required for processing quantum information. In this work
we study the effects of pulse shape on the 1-bit rotation
of SQUID qubits by evaluating intrinsic gate errors using
rectangular-shaped pulses (ideal) and pulses with finite rise
and fall times (realistic). We found that in the weak field limit
there essentially is no difference between the rate of intrinsic
gate errors (i.e., errors that exist without decoherence) for the
ideal and realistic pulse shapes. Namely, the angle of 1-bit
rotation depends only on the pulse area. However, at higher
field intensity the gate error rate caused by pulses with finite
rise and fall times become greater than that of the ideal pulses
with the same pulse area. Our result shows that the increased
error rate is due entirely to the effects of applying strong fields.

II. THEORETICAL METHOD

A. Theoretical Model of an rf SQUID

An rf SQUID qubit consists of a superconducting ring of in-
ductance closed with a Josephson tunnel junction. Applying
the resistively-shunted junction (RSJ) model [1], the junction is
characterized by its critical current, shunt capacitance and
shunt resistance . The Hamiltonian of the SQUID qubit is
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Fig. 1. Potential energy and the first six energy levels of a SQUID withL =

100 pH,C = 40 fF, andI = 3:95 �A (Z = 50 
, � = 1:2, and! =

5� 10 rad/s). The flux biasx = �0:501.

where the potential energy is given by [2]

(2)

Here, is the mass of the fictitious “flux” particle,
is the particle’s position, is the total magnetic flux

enclosed in the SQUID loop, is the flux quantum;
is the normalized external magnetic flux applied

to the SQUID; is the momentum operator con-
jugate to , is the characteristic frequency of
the SQUID, and . Equation (2) shows that the
shape of the SQUID potential is determined uniquely by the di-
mensionless parameter and the external flux . In the pres-
ence of an external flux the SQUID generates a superconducting
current circulating the loop to keep the total number of flux-
oids in the SQUID quantized. For , the potential has
symmetric double wells. The left (right) well corresponds to the

fluxoid state. Increasing (decreasing)slightly
from 1/2 tilts the potential to the right (left) that provides an
easy way to control the potential and interwell level separations
of the SQUID qubit (Fig. 1).

The eigenenergies and eigenstates of a SQUID qubit
can be obtained by numerically solving Schrödinger’s equation
with the anharmonic Hamiltonian . It has been shown that
the eigenstates depend only on two independent SQUID param-
eters: the potential shape parameterand the characteristic
impedance , while the eigenenergies are scaled to

[3]. The potential and the energy levels of a SQUID with
(i.e., pH, and fF), , and

rad/s are plotted in Fig. 1 for external flux
.
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B. Operation by Microwave Pulses

The conventional two-level SQUID qubit utilizes the lowest
level in each of the double wells, denoted as and in
Fig. 1, as the computational basis. Unitary transformations re-
quired to accomplish 1-bit rotations, such as the Hadamard and
NOT gates, are implemented by controlling the pulse area of mi-
crowaves with frequency tuned to the level separation. The in-
teraction between the SQUID and the microwave pulse, treated
here as a linearly polarized electromagnetic field with its mag-
netic field component perpendicular to the plane of the SQUID
loop, is

(3)

for and zero otherwise. Here, , , , and
are the frequency, amplitude (normalized to), dura-

tion, and the shape factor of the microwave pulse. The total
Hamiltonian of the system, , is
now time-dependent. The time evolution of the system can be
obtained by numerically integrating the corresponding time-de-
pendent Schrödinger equation (TDSE)

(4)

C. Numerical Algorithms

To compute the evolution of the eigenstate populations of the
SQUID qubit, the time-dependent wave function is expanded in
the eigenstates of :

(5)

where, is the number of eigenstates included in the
calculation. The time-dependent expansion coefficients

(6)

are obtained by solving the time-dependent matrix equation,
where is the reduced time. The matrix elements
of the reduced Hamiltonian are given by

(7)

In general, the are complex which can be divided into real
and imaginary parts, . Substituting
this into (6), a canonical equation is obtained for coefficient vec-
tors and , which can be expressed in ma-
trix form as

(8)

where, is the reduced Hamiltonian matrix. Time
evolution of the expansion coefficients can be obtained by
solving the canonical (8) using the symplectic scheme [2]. The

Fig. 2. Pulse shapes used in the computation. (a) Square pulse of duration� ;
(b) Gaussian-shaped pulse of duration� with equal rising (turn-on) and falling
(turn-off) time� .

method is efficient and capable of providing accurate informa-
tion about the dynamics of the SQUID qubit. The propagator
of the second order explicit symplectic scheme is given by

(9)

where, , and so on, and
is the time-step.

III. RESULTS AND CONCLUSIONS

The gate operations of the SQUID qubits can be realized
by applying microwave pulses. In ideal cases, the microwave
pulses are square-shaped (with zero rise and fall times) and
therefore the pulse durations required to accomplish desired
quantum logic operations can be readily determined. However,
real pulse shapes are always nonideal and have finite rise and fall
times, which may have adverse effects on pulse-driven quantum
gates. To study the effects of such pulse shapes on gate opera-
tions, we evaluate the gate speed and gate errors for different
pulse shapes. For simplicity, the conventional 2-level SQUID
qubits,i.e., the states and in Fig. 1, are used as the
computational basis. The conclusion here can be extended to
optimized three-level qubits [2].

In this investigation, two types of pulse shape are used: (i) the
square pulse (SP) with infinite sharp rising and falling edges,
and (ii) pulse with Gaussian-shaped rising and falling edges
(GP). The shape of GP is specified by the shape factor func-
tion

(10)
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Fig. 3. Evolution of populations of the qubit statesj0 > andj1 > for the SP
and GP shapes. The solid (open) squares and circles are populations of the state
j0 >(j1 >) with the squares (circles) for the SP (GP) shape.

which are shown in Fig. 2. In our computations, the pulse du-
ration is taken to be T, where is the
period of an “optical” cycle of the microwave, and the rise and
fall times are set to T. The same pulse area is used for
both the SP and GP. The frequency of microwaves is tuned to
the level separation.

In Fig. 3, the time evolution of the populations of qubit states
and are shown for pulses. It is interesting to notice

that although the amplitude of GP is slightly larger than that of
SP (see Fig. 4(b)) for the same pulse area, the gate speed of GP
is slightly slower than that of SP because of the finite falling
time of GP (Fig. 1(b)). However, the populations of the qubit
states and at the end of the pulses are essentially
the same for both pulse shapes. Therefore, in weak field regime
nonideal pulse shape works as well as the ideal SP shape as long
as its effect on pulse area is taken into account. However, this
conclusion is not valid for strong fields as demonstrated by the
results in Fig. 4.

In Fig. 4(a) the numerically calculated populations of the
and states as a function of pulse area are shown for both
SP and GP. In these calculations the pulse duration was kept
constant and the pulse area was adjusted by varying microwave
amplitude as shown in Fig. 4(b). The results presented in Fig. 4
clearly show that for small pulse areas, where the microwave
fields are weak, the populations at the end of the pulses are in
good agreement with each other for both pulse shapes and the in-
trinsic gate errors are negligible. However, for larger pulse areas
intrinsic gate error becomes significant for both pulse shapes.

Fig. 4. (a) Populations of the qubit statesj0 > and j1 > vs the pulse area.
Solid (open) squares and circles are populations of the statej0 > (j1 >) with
the squares (circles) for the SP (GP). (b) Amplitude of the microwaves vs the
pulse area. The solid (dashed) line is the amplitude of SP (GP).

Note that the slightly higher error rate of GP is due to the fact
that for the same pulse area the field intensity of GP is higher
than that of SP.

In summary, we investigated the effects of microwave pulse
shapes on the quantum 1-bit gate operations of conventional
2-level SQUID qubits by comparing the populations of the qubit
states at the end of microwave pulses for different pulse shapes
with the same pulse area. It is found that the gate errors are es-
sentially independent of the pulse shapes in the weak field limit.
Our result also shows that when the weak field condition is not
satisfied the larger gate error rate of GP can be accounted for
entirely by the larger field amplitude required by GP.
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