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Abstract. We discuss the single-input pole placement problem (SIPP) and analyze how the
conditioning of the problem can be estimated and improved if the poles are allowed to vary in
specific regions in the complex plane. Under certain assumptions we give formulas as well as bounds
for the norm of the feedback gain and the condition number of the closed loop matrix. Via several
numerical examples we demonstrate how these results can be used to estimate the condition number
of a given SIPP problem and also demonstrate how to select the poles to improve the conditioning.
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1. Introduction. We consider linear single-input control systems

ẋ := dx/dt = Ax+ bu, x(0) = x0,(1)

whereA ∈ Cn×n, b ∈ Cn, x, u are functions defined on [0,+∞) → Cn and [0,+∞) → C,
respectively. For such systems, we consider the single-input pole placement problem.

Single-input pole placement (SIPP). For a given set of poles P = {λ1, . . . , λn},
find a feedback gain vector f ∈ Cn such that the set of eigenvalues of the closed-loop
matrix A− bfT is P.

(Note that we use fT , although f may be complex, since this simplifies the for-
mulas.)

It is well known that for an arbitrary pole set P, the feedback f always exists
and is unique if and only if (A, b) is controllable, see, e.g., ([20, page 48, Theorem
2.1]). This problem has been studied extensively. In the literature there are some
explicit formulas known for f and the Jordan canonical form of A − bfT as well as
many perturbation results; see [1, 11, 12, 2, 17]. Also, many numerical algorithms
have been proposed for this problem; see [2, 4, 10, 14, 15, 16, 18, 8]. In order to
analyze the validity of the computed results and the robustness of the solution, it is
very important to study the sensitivity of the solution with respect to perturbations
in the data. This question has lead to some confusion in the literature [10, 11, 8, 12].
This confusion arises mainly from the fact that there are essentially two different types
of results for the SIPP, namely, the feedback gain vector f and the eigenstructure of
the closed loop matrix A− bfT . It is possible and actually quite common that, even
though f is insensitive to perturbations in the data, the spectrum of A− bfT is very
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CONDITION OPTIMIZATION FOR POLE ASSIGNMENT 665

sensitive, and vice versa. Examples 1 and 4 below demonstrate this phenomenon. It
follows that there are also two condition numbers to study here, one for the mapping
from (A, b,P) to f and one for the mapping (A, b,P) to the eigenstructure of A−bfT .
This observation, and the fact that it is often not explicitely stated which solution
of the SIPP problem is considered, explains some of the confusion in the literature.
From the point of view of applications, in our opinion the more important problem
is to guarantee that the poles of the computed closed loop system A− bfT are close
to the desired ones; the accuracy of f is less important. In particular, in applications
such as stabilization it would be fatal if the closed loop poles were made unstable by
very small perturbations. To see that this may happen very easily and unexpectedly,
consider the following example.

Example 1 (see [12]). Consider the SIPP problem with data

A = diag(1, 2, . . . , 15), b =




1
...
1


 , P = {−1, . . . ,−15}.

In this case, both f and A−bfT can be computed analytically and hence no rounding
errors occur in these quantities; see [12] for details. But the eigenvalues of the closed
loop systems are so sensitive to perturbations that some of the computed eigenvalues
of A− bfT are in the right half plane.

Unfortunately, this example is not an exception, as was pointed out in [8] and
partially proved in [12]; the SIPP problem is usually ill-conditioned. This means that
in most cases, in particular if the system size is large (n > 10), small perturbations
in the data A, b,P will cause large perturbations in the eigenstructure of A − bfT .
In practice it can be expected that if such a feedback is implemented, then the real
behavior of the closed loop system is very different than the expected behavior.

Based on these results we have to reconsider the pole placement problem. Since
in applications one almost never needs the poles of the closed-loop system in fixed
positions but rather in specific regions in the complex plane, it is natural to ask the
question of whether we can optimize the conditioning of the problem by varying the
choice of poles in the prescribed regions. If we reconsider pole placement in this way,
then we have the following problem.

Optimal single-input pole placement (OSIPP). Given A ∈ Cn×n, b ∈ Cn
and a set D ⊂ C, find poles λ1, . . . , λn ∈ D, i.e., P ⊂ D, such that the SIPP problem
is optimally conditioned among all possible choices of P ⊂ D.

To study this problem we first have to discuss what the condition number of the
SIPP problem is and how it can be computed or estimated. In particular it would be
important for an optimization to have an easily computable quantity or estimate.

In general the condition number of a problem measures the sensitivity of the
solution with repect to perturbations in the input data. As we have mentioned above,
several quantities can be viewed as solutions of the pole placement problem and
different formulas and bounds have been given in recent years; see [2, 8, 11, 17, 12].

We will base our optimization on modifications of the formula for the condition
number given in [17]. This formula is very difficult to compute so that an optimization
for this condition number seems hopeless. In [12], therefore, based on explicit solution
formulas for f and the closed loop eigenvector matrix, slightly different bounds were
obtained. We will modify these bounds again to obtain quantities which we can
optimize.
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666 VOLKER MEHRMANN AND HONGGUO XU

To do this we introduce the following notation. The scaled spectral condition
number of a diagonalizable matrix A is defined as

κ := ||G|| ||G−1||,

where G is the eigenvector matrix of A normalized such that all columns have unit
norm. The scaled spectral condition number is equivalent to the optimal spectral
condition number; see [5]. Here we use ||·|| to denote an arbitrary consistent norm and
use ||·||2, ||·||F to denote the Euclidean and Frobenius norm, respectively. We denote by
κ, κ2, and κF the associated scaled spectral condition numbers of A−bfT . By Λ(A) we
denote the set of eigenvalues of a square matrix A, and by σ1(B) ≥ · · · ≥ σp(B) ≥ 0,
p = min{m,n} we denote the singular values of an m × n matrix B; see [7]. By C+

0 ,
C−, and C−−ρ we denote closed right half plane, open left half plane, and the set of
complex numbers with real parts not larger than −ρ for ρ > 0, respectively. Finally
we set e to be the vector of all ones and ei to be the ith unit vector.

The following perturbation theorem is a combination of two perturbation results
given in [12], with slightly modified assumptions.

Theorem 1.1. Consider the SIPP problem with data A, b,P = {λ1, . . . , λn}.
Assume that (A, b) is controllable and that the n poles λi are distinct. Let λ =

[λ1, . . . , λn]T . Consider also the perturbed problem with data Â := A+δA, b̂ := b+δb,

and δλ = [δλ1, . . . , δλn]T . Assume that (Â, b̂) is also controllable and that also the
perturbed poles are distinct. Set ε := max{||[δA δb]||,maxi |δλi|} and suppose that

2ε < min
i
σn
[
A− λiI b

]
=: σλ.

Let f , f̂ := f + δf be the feedback gains of the original and perturbed problems,
respectively, then

||δf ||2 ≤ cf :=
2
√

2n

σλ
εκ̂2

√
1 + ||f ||22 max

i

√√√√( ||Â− λ̂iI||2
||b̂||2

)2

+ 1,(2)

where κ̂2 is the scaled spectral condition number of Â− b̂f̂T .
Furthermore, for each eigenvalue µi of the computed closed-loop matrix A− bf̂T ,

there exists a corresponding eigenvalue λi of the desired (unperturbed) closed-loop
system such that

|µi − λi| ≤ ce :=

(
1 + κ̂2

√
1 + ||f̂ ||22

)
ε.(3)

Proof. The proof is easily obtained from the proofs of Theorems 7 and 8 in [12],
using the slightly different assumptions on δA, δb, δλ. The estimates (2), (3) are
obtained analogously.

We see from Theorem 1.1 that several factors contribute to the perturbation
bounds and thus can be considered to create large perturbations in f and/or the
closed-loop eigenvalues. The main factors in the bound (2) are the quantity σλ and
the term κ̂

√
1 + ‖f‖22. In the following we restrict our optimization to the second

factor. This may lead to an overestimation of the bound in the optimal case but it
simplifies the optimization and can be justified as follows. The term σλ reflects the
distance to uncontrollability duc(A, b) = mins∈C σn[A − sI, b], which is independent
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CONDITION OPTIMIZATION FOR POLE ASSIGNMENT 667

1 2 3 4 5 6 7 8 9 10
-14

-12

-10

-8

-6

1 2 3 4 5 6 7 8 9 10
-14

-13.5

-13

-12.5

-12

-11.5

(a)

(b)

Fig. 1. Error and bounds in Example 2: (a) feedback gain: log(||f − f̂ ||) : + + +, log(cf ) : —,
log(eps · S) : - - -; (b) closed-loop poles: log(eige) : ∗ ∗ ∗, log(ce) : —, log(eps · S) : - - -.

of the choice of poles. So, we can replace σλ in (2) to obtain an upper bound. But it
should be noted that duc(A, b) can be much smaller than σλ, see, e.g., [3]. If duc(A, b)
is reasonably large, then replacing σλ by duc(A, b) will have only a small effect on the
bound. If, however, duc(A,B) is very small, then this may lead to an overestimation of
the condition number. This effect is demonstrated in some of our numerical examples
below. But in this case we know that the problem is very close to a problem which is
not controllable. This is a critical situation in practice and it may be reasonable to
modify the model in such a case. Consider now the term κ̂

√
1 + ‖f‖22, which governs

the perturbations in the computed closed-loop eigenvalues. This term (if large) also
makes the bound (2) very large. If this term can be made small by the choice of poles
and if duc(A, b) is reasonably large, then both bounds (2) and (3) are small and we
can expect that f can be computed accurately and that the closed loop eigenvalues
are robust. We will therefore optimize the quantity

S := κ

√
1 + ||f ||2(4)

to improve the conditioning via the choice of poles. If necessary, we use the notation
S2 := κ2

√
1 + ‖f‖22 and SF := κF

√
1 + ‖f‖22. In order to illustrate that S catches

the qualitative behavior of the errors well, we will consider the following numerical
tests.

All computations in this paper were carried out in Matlab Version 4.2 on a
pentium-s PC with machine precision eps = 2.22 × 10−16. Random matrices are
created with the Matlab rand function and uniform distribution. In the figures below
we depict cf as in (2), ce as in (3) with ε = max{||[A b]||,maxi |λi|}eps, and by eige we
denote the maximal error between an eigenvalue of the computed closed-loop matrix
and the associated pole in P.

Example 2. In this example we constructed ten problems with A ∈ R30×30,
b ∈ R30 with elements chosen randomly in [−1, 1], and for each of these problems we
chose 50 different (exact) feedback gains f ∈ R30 with random elements in [−10, 10].
For each of these 500 problems the chosen poles are the computed eigenvalues of
A− bfT (via the Matlab eig function). Then we computed the feedback gain f̂ with
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668 VOLKER MEHRMANN AND HONGGUO XU

Table 1
min and max of log(cf/||f − f̂ ||).

Problem 1 2 3 4 5 6 7 8 9 10
min 3.6 3.3 3.6 3.3 3.6 3.8 3.4 3.4 3.6 3.1
max 6.5 7.0 5.9 6.1 7.1 6.8 6.4 5.9 6.0 5.7

Table 2
min and max of log(ce/eige).

Problem 1 2 3 4 5 6 7 8 9 10
min -0.1 -0.1 1.6 1.2 1.3 0.9 1.0 1.1 0.9 0.8
max 3.2 3.1 3.2 2.9 2.1 3.1 2.8 3.3 2.8 2.6

these poles by using Miminis and Paige’s sevas Matlab code (cf. [14]). In Figure 1 for
each of the 10 pairs (A, b) we display the arithmetic means of logarithms of ce, eige,

cf and ||f − f̂ || taken over the 50 experiments and compare it with eps · S. We also

display the minimum and maximum distances between the orders of cf and ||f − f̂ ||,
ef , and eige in Tables 1 and 2, respectively, among the 50 experiments for each pair
(A, b).

1 2 3 4 5 6 7 8 9 10
-15

-10

-5

0

5

10

15
(a)

1 2 3 4 5 6 7 8 9 10
-15

-10

-5

0
(b)

Fig. 2. Error and bounds in Example 3: (a) feedback gain: log(||f − f̂ ||) : + + +, log(cf ) : —,
log(eps · S) : - - -; (b) closed-loop poles: log(eige) : ∗ ∗ ∗, log(ce) : —, log(eps · S) : - - -.

We see that the bounds and also the term S describe the qualitative behavior
of the errors quite well, although the bounds (2) and (3) sometimes tend to be too
pessimistic. In general we cannot expect to see more than the qualitative behavior,
since we have omitted terms in the bounds. In Example 2 we have that σλ contributes
a factor 102, which almost explains the difference of the bounds.

The estimate of the errors in the closed-loop eigenvalues is in general better than
that of the feedback gain, since the factors do not occur.

The reason for the negative numbers in Table 2 is an underestimation of ε.
Example 3. The conditioning becomes worse if we modify Example 2 by diagonal

scaling of A. Let A := DÃD−1, D = diag(1, 2
m+2

3 , . . . , 30
m+2

3 ) with Ã as in Example
2. Here we let m take the values 1 to 10, and the poles are formed as before. The
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CONDITION OPTIMIZATION FOR POLE ASSIGNMENT 669

0 5 10 15 20 25 30 35 40 45 50
-8

-6

-4

-2

0

2

4
(a)

0 5 10 15 20 25 30 35 40 45 50
-10

-8

-6

-4
(b)

Fig. 3. Error and bounds in Example 4: (a) feedback gain: log(||f − f̂ ||) : + + +, log(cf ) : —,
log(eps · S) : - - -; (b) closed-loop poles: log(eige) : ∗ ∗ ∗, log(ce) : —, log(eps · S) : - - -.

errors and bounds for this example are in given Figure 2.
Our next example demonstrates that it is not sufficient to consider the accuracy

of the feedback gain f alone. In this case the computed closed-loop eigenvalues are
much more accurate than the computed f .

Example 4. Let

A = QT



−1 −1 · · · −1

1 −1
. . .

...

O
. . .

. . .
...

1 −1


Q ∈ R30×30, b = QT e1 ∈ R30,

where Q is a random orthogonal matrix, f = 105QT f1, and f1 ∈ R30 has elements
randomly selected in [−1, 1]. We chose 50 random vectors f1 and produced the poles
as in Example 2.

Figure 3 shows that, even though on the average the computed f has no correct
digit, the closed loop eigenvalues still carry essentially eight correct digits.

2. Minimization of S. In view of the discussion in the previous section, we now
consider the minimization of S, as defined in (4), when the closed-loop eigenvalues
are allowed to vary in a given set D ⊂ C.

In the following we restrict our minimization to the case that all elements in
P are distinct so that A − bfT is diagonalizable. Although condition numbers are
also interesting in the degenerate case, they are more complicated and usually the
conditioning is much worse ([19, pages 87–90]).

If we consider the SIPP problem with data A, b, λ, where (A, b) is controllable
and the components of λ are distinct, then explicit formulas for the solution of the
SIPP problem are known; see [1, 4, 12]. For the case of distinct poles we have the
following formula from [12]. Let

G = [u1, . . . , un], ||ui||2 = 1, i = 1, . . . , n,(5)
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670 VOLKER MEHRMANN AND HONGGUO XU

and α = [α1, . . . , αn] such that for each i, [uTi ,−αi]T is nonzero and satisfies

[A− λiI, b]

[
ui
−αi

]
= 0.(6)

Then G is nonsingular,

fT = αTG−1 = eTn [b, Ab, . . . , An−1b]−1
n∏
i=1

(A− λiI),(7)

A− bfT = G diag(λ1, . . . , λn)G−1,

and

κ = ||G|| ||G−1||.(8)

In principle we could employ nonlinear optimization methods to compute the
required minimum, but considering the explicit formulas (5), (6), and (7), this is a
very difficult problem, in particular when n is large.

We will now discuss some cases where we can give explicit formulas for ||f || and
κ and thus, also, the optimization problem becomes much simpler.

Theorem 2.1. Let A = Γ := diag(γ1, . . . , γn), b = e, and (Γ, e) be controllable,
let P = {λ1, . . . , λn} be a pole set with distinct elements and Λ(A) ∩ P = ∅. Then

||f ||22 =

n∑
i=1

∏n
k=1 |γi − λk|2∏n

k=1,k 6=i |γi − γk|2 ,(9)

κ2
F = n

n∑
i,j=1

∑n
l=1

∏n
k=1,k 6=l |λi − γk|2∏n

k=1,k 6=i |λi − λk|2
∏n

k=1,k 6=i |γj − λk|2∏n
k=1,k 6=j |γj − γk|2 .(10)

Proof. Define the Cauchy matrix C = [cij ]n×n with cij = 1
γi−λj . Then it follows

from the inversion formula for Cauchy matrices in [6] that C−1 = −W CT H, where
W := diag(w1, , . . . , wn), H := diag(h1, . . . , hn), and

wi :=

∏n
k=1(λi − γk)∏n

k=1,k 6=i(λi − λk)
, hi :=

∏n
k=1(γi − λk)∏n

k=1,k 6=i(γi − γk)
, i = 1, . . . , n.(11)

Applying formulas (5)–(8) to these special data A, b and P we get fT = eTC−1.
Using the formula for C−1 we get fi = hi, k = 1, . . . , n, where fi is the ith component
of f . With the formulas of hi in (11) we obtain (9).

Using the definition of κ in (8) and noticing that C is an eigenvector matrix
of A − bfT = Γ − efT , we only need to normalize the columns of C to one. Let
U := diag(µ1, . . . , µn), where

µi :=

√√√√ n∑
k=1

1

|γk − λi|2 =

√∑n
l=1

∏n
k=1,k 6=l |γk − λi|2∏n

k=1 |γk − λi|2 ,

and let C0 := CU−1; then we get κ2
F = ||C0||2F ||C0

−1||2F . Clearly ||C0||2F = n, and using
the formulas for C−1 and U we get (10).
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CONDITION OPTIMIZATION FOR POLE ASSIGNMENT 671

Remark 1. Let ψ(t) =
∏n

k=1(t− λk) be the characteristic polynomial of Γ− efT .
It is easy to check with fi = hi as in (11) that the components of f are just the
coefficients of the Lagrange interpolating polynomial for the n points {γk, ψ(γk)}nk=1,
i.e., the polynomial η(t) =

∑n
k=1 fk

∏n
l=1,l 6=k(t−γl) satisfies η(γk) = ψ(λk). Moreover

we have ψ(t)−η(t) =
∏n

k=1(t−γk) =: φ(t), which is just the characteristic polynomial
of Γ.

In Theorem 2.1 we have obtained κF and ||f ||2 in terms of the pole set and the

spectrum of Γ. The evaluation of the polynomial ||f ||22 and the rational function κ2
F in

an optimization code is relatively simple; however, there are still difficulties when n,
the size of the problem, is large. The second difficulty in employing an optimization
procedure is the selection of the initial value. A bad initial value will lead to an
extremely large S and for large n this may lead to overflow in the computations.
So even if P exists such that the given SIPP problem is well conditioned, it will be
difficult to start the optimization procedure. The third difficulty is that for some
systems (A, b) and sets D, even the OSIPP problems is ill conditioned, as we will
show in Example 5. In such a case there is no need to use an optimization procedure.
Theorem 2.1 also shows that the minimum of S approaches infinity if some |λi| → ∞,
since in this case ||f || → ∞ and κ ≥ 1, so S → ∞.

The following result shows that if A has all distinct and simple eigenvalues, then
it is usually sufficient to restrict our discussion to the special case (Γ, e,P).

Theorem 2.2. Let (A, b) be controllable, A = XΓX−1, Γ := diag(γ1, . . . , γn),
and let P = {λ1, . . . , λn} have distinct elements. Denote by fd, f the unique feedback
gains of (A, b,P) and (Γ, e,P), respectively, and by κdF , κF denote the associated
scaled spectral condition numbers of A − bfTd and Γ − efT in Frobenius norm. Let

b̃ =
[
b̃1 · · · b̃n

]T
:= X−1b and B := diag(b̃1, . . . , b̃n). Then

||f ||2
||XB||2

≤ ||fd||2 ≤ ||(XB)
−1||2||f ||2(12)

and

κF√
n ||XB||2 ||(XB)

−1||2
≤ κdF ≤

√
n ||XB||2 ||(XB)

−1||2κF .(13)

Proof. Let

A− bfTd = GΛG−1, Λ = diag(λ1, . . . , λn), κdF = ||G||F ||G−1||F ,
i.e., the columns of G have unit norm. With A = XΓX−1 and B defined as above,
we have

Γ−BefTd X = X−1GΛG−1X.

Since (A, b) is controllable if and only if (Γ, e) is, we obtain (see also [12]) b̃i 6= 0,
i = 1, . . . , n, so B is nonsingular. Performing a similarity transformation with B−1,
B, and using that B and Γ are diagonal, we have

Γ− efTd XB = (XB)
−1
GΛ((XB)

−1
G)

−1
.

By the uniqueness of the feedback gain, we then have fT = fTd XB, which implies

(12). Let C0 be defined as in the proof of Theorem 2.1; then C0 = (XB)
−1
GZ, for
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672 VOLKER MEHRMANN AND HONGGUO XU

some diagonal matrix Z = diag(z1, . . . , zn) so that the columns of C0 have unit norm.
So we have

√
n = ||C0||F ≥

||GZ||F
||XB||2

=

√∑n
k=1 |zk|2

||XB||2
≥ maxk |zk|

||XB||2
=

||Z||2
||XB||2

,(14)

i.e., ||Z||2 ≤ √
n ||XB||2 . Similarly, by using G = XBC0Z

−1, we get ||Z−1||2 ≤√
n||(XB)

−1||2. Since G−1 = ZC0
−1(XB)

−1
, we obtain from (14) that

||C−1
0 ||F√

n||(XB)
−1||2 ||XB||2

≤ ||G−1||F ≤
√
n ||XB||2 ||(XB)

−1||2||C−1
0 ||F .

Using κdF =
√
n||G−1||F , κF =

√
n||C0

−1||F , we obtain (13).

We see from this result that since ||XB|| ||(XB)
−1|| is independent of the chosen

poles, we can restrict ourselves to the special case (Γ, e,P). It is obvious that (12)
and (13) and also all subsequent bounds can be extended to the case when (A, b) is
controllable and A is diagonalizable.

To analyze the problem further in this case, we will give several bounds for S, as
defined in (4).

Theorem 2.3. Let Γ := diag(γ1, . . . , γn), let (Γ, e) be controllable, and let
P = {λ1, . . . , λn} with distinct elements. Suppose that λ(Γ) ∩ P = ∅ and set du =

maxi,j |γi − λj |, dl = mini,j |γi − λj |. Furthermore, set w := [w1, . . . , wn]
T

with

wi =

∏n

k=1
(λi−γk)∏n

k=1,k 6=i(λi−λk)
. Then

n
||w||2 ||f ||2

√
1 + ||f ||22

d2
u

≤ SF ≤ n
||w||2 ||f ||2

√
1 + ||f ||22

d2
l

.(15)

Proof. Considering the formulas for κF and f in Theorem 2.1 and (11), we obtain

κ2
F = n

n∑
i,j=1

∑n
l=1

∏n
k=1,k 6=l |λi − γk|2∏n

k=1,k 6=i |λi − λk|2
∏n

k=1,k 6=i |γj − λk|2∏n
k=1,k 6=j |γj − γk|2

= n

n∑
i,j=1

∏n
k=1 |λi − γk|2∏n

k=1,k 6=i |λi − λk|2
(

n∑
l=1

1

|λi − γl|2
)

1

|γj − λi|2
∏n

k=1 |γj − λk|2∏n
k=1,k 6=j |γj − γk|2

= n
n∑

i,j=1

(
n∑
l=1

1

|λi − γl|2
)

1

|γj − λi|2 |wi|2|fj |2.

Since for all i, j we have dl ≤ |λi − γj | ≤ du, it follows that

n

d4
u

≤
(

n∑
l=1

1

|λi − γl|2
)

1

|γj − λi|2 ≤
n

d4
l

,

and hence

n2

d4
u

n∑
i,j=1

|wi|2|fj |2 ≤ κ2
F ≤

n2

d4
l

n∑
i,j=1

|wi|2|fj |2.
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CONDITION OPTIMIZATION FOR POLE ASSIGNMENT 673

Thus,

n

d2
u

||w||2 ||f ||2 ≤ κF ≤ n

d2
l

||w||2 ||f ||2 ,

and multiplying with
√

1 + ‖f‖22 yields the conclusion.
The quantities dl, du are the smallest and largest distances between the sets Λ(Γ)

and P. If dl << du, in particular when dl is very small, the upper bound in (15) will
usually be an overestimate. But if du/dl is not too large, (15) will be a good estimate
for S.

Note that w is the feedback gain for a SIPP problem with A = diag(λ1, . . . , λn),
b = e, and the pole set P = {γ1, . . . , γn}. So it has a similar interpretation as f
in Remark 1 but in general there is no explicit relationship between ||w|| and ||f ||.
However, if P is selected in a particular way, we can get ||w|| = ||f ||.

Corollary 2.4. Let Γ := diag(γ1, . . . , γn) and let (Γ, e) be controllable. If P =
{−γ1, . . . ,−γn}, {γ1, . . . , γn}, or {−γ1, . . . ,−γn}, then ||w||2 = ||f ||2 and

n

d2
u

||f ||22
√

1 + ||f ||22 ≤ SF ≤ n

d2
l

||f ||22
√

1 + ||f ||22.(16)

Proof. We consider just the case when P = {−γ1, . . . , γn}; the other two cases
are analogous.

Now λi = −γi, i = 1, . . . , n, so

wi =

∏n
k=1(λi − γk)∏n

k=1,k 6=i(λi − λk)
=

∏n
k=1(−γi − γk)∏n

k=1,k 6=i(−γi + γk)

= −
( ∏n

k=1(γi + γk)∏n
k=1,k 6=i(γi − γk)

)
= −

( ∏n
k=1(γi − λk)∏n

k=1,k 6=i(γi − γk)

)
= −f i.

Hence ||w||2 = ||f ||2, and then (16) follows from (15).
Since the solution of the SIPP problem consists of the computation of f , it is

natural that we try to estimate κ in terms of ||f ||.
Such a result is useless for an optimization procedure since the poles are fixed,

but it is valuable in some typical cases arising in applications, i.e., the cases when P
is chosen such that the eigenvalues of A are reflected at the real axis, imaginary axis,
or origin, as for example in the well-known Lyapunov method; see, e.g., [9]. A (lower)
bound for S in terms of ||f || is the following.

Theorem 2.5. Consider the SIPP problem with data A, b, P, where (A, b) is
controllable and the poles in P are distinct. Then

S2 ≥ ||b||2√∑n
i=1 ||A− λiI||22

||f ||2
√

1 + ||f ||22.(17)

Proof. In this case we can apply formulas (5)–(8). From fT = αTG−1 we get
||f ||2 ≤ ||α||2

∣∣∣∣G−1
∣∣∣∣
2
, i.e. ,

||G−1||2 ≥ ||f ||2
||α||2

.

Now αi, the ith component of α together with ui, the ith column of G, with ||ui||2 = 1,
satisfies

[A− λiI, b]

[
ui
−αi

]
= 0, ∀i = 1, . . . , n.
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674 VOLKER MEHRMANN AND HONGGUO XU

Thus, it follows that

||b||22 |αi|2 = ||(A− λiI)ui||22 ≤ ||A− λiI||22 ||ui||22 = ||A− λiI||22 ,

which means that |αi| ≤ ||A−λiI||2
||b||2 . So

||α||2 ≤
√∑n

i=1 ||A− λiI||22
||b||2

,

and by using ||G||2 ≥ maxi ||ui||2 = 1, we finally get

κ2 ≥ ||G||2 ||G−1||2 ≥ ||G||2
||f ||2
||α||2

≥ ||b||2 ||f ||2√∑n
i=1 ||A− λiI||22

.

This lower bound may be very weak. For example, if all poles are selected in a
small neighborhood of a single point λi, then ||f ||2 is bounded but κ will be very large.

But nevertheless, Theorem 2.5 gives a cheap way to estimate S = κ
√

1 + ‖f‖2. If,
for example, the computed ||f || is large, say ||f || > 1/

√
eps, where eps is the machine

epsilon, then S > c/eps for some constant c. In this case, we can expect that the
computed results have lost all significant digits. Consider again special cases where
we have explicit solutions.

Theorem 2.6. Let Γ := diag(γ1, . . . , γn), with γj ∈ C+
0 , j = 1, . . . , n and assume

that (Γ, e) is controllable.
(a) If we require that P = {λ1, . . . , λn} ⊂ C−−ρ, i.e., Reλj ≤ −ρ, j = 1, . . . , n

for a given real number ρ > 0, then min ||f ||2 is obtained when Reλj = −ρ, for all
j = 1, . . . , n.

(b) If the γj are such that Re γj + ρ ≥ | Im γj |, for j = 1, . . . , n, and we require
that the set of poles is as in (a) and closed under conjugation, then

min ||f ||2 =

√√√√ n∑
j=1

|γj + ρ|2n∏n
k=1,k 6=j |γj − γk|2 ,(18)

and the corresponding optimal poles satisfy λj = −ρ, for all j = 1, . . . , n.
Proof. (a) Let γj = aj + ibj , λj = xj + iyj , where aj , bj , xj , yj are real. Then

||f ||22 =
n∑

j=1

∏n
k=1 |γj − λk|2∏n

k=1,k 6=j |γj − γk|2 =
n∑

j=1

∏n
k=1((aj − xk)

2 + (bj − yk)
2)∏n

k=1,k 6=j((aj − ak)2 + (bj − bk)2)
.

Since aj ≥ 0, xj ≤ −ρ for all j, a necessary condition for a minimum is that (aj−xk)2
is minimal for all k, which is clearly the case if xk = −ρ, for all k = 1, . . . , n.

(b) From (a) we obtain that at a minimum all poles have real part −ρ. Suppose
that, at the minimum, there exists a pole with nonzero imaginary part λs = −ρ+ iys.
Since the pole set is closed under conjugation, we obtain, for each γj ,

|γj − λs|2|γj − λ̄s|2 = ((aj + ρ)2 + (bj − ys)
2)((aj + ρ)2 + (bj + ys)

2)

= y4
s + 2((aj + ρ)2 − b2j )y

2
s + ((aj + ρ)2 + b2j )

2.

By assumption, aj + ρ ≥ |bj |, and thus we have

min
ys

|γj − λs|2|γj − λ̄s|2 = ((aj + ρ)2 + b2j )
2,
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Fig. 4. Conditioning in Example 5: (a) S; (b) ||f ||; (c) κ; optimal: —, P1 : - - -, P2 : − · −·

i.e., the minimum occurs for ys = 0.
Since each component |fk| must include a factor of the form |γk − λs||γk − λ̄s|,

to minimize ||f ||2 we must have ys = 0, which is a contradiction to our assumption.
Consequently we have λj = −ρ for all j and hence we obtain (18).

Part (b) of Theorem 2.6 shows that, in a particular situation, to get a minimal
||f || is equivalent to getting the worst conditioning for the closed-loop matrix (in the
sense of eigenvalue perturbation theory) since we have to place all poles in one point
and the controllability forces the closed-loop matrix to be similar to an n× n Jordan
block. This result also explains the extreme ill conditioning of Example 1.

We also see that, in the situation of Theorem 2.6 (a), at least half of the variables
can be removed and that the minimization problem for ||f || is restricted to a line rather
than a half plane. In this situation, suppose that P0 ⊂ C−−ρ is a pole set that minimizes
S and let f0 be the feedback gain obtained with P0. Then with Theorems 2.5 and 2.6
we obtain

min
P⊂C−−ρ

S ≥ c ||f0||2 ≥ c min
P⊂{−ρ+yi|y∈R}

||f ||2 ,(19)

for a constant c determined by A, b, P0. Thus, if min ||f || is large, then the OSIPP
problem is incurably ill conditioned and we cannot hope to improve the problem by
choosing the poles. Consider the following example.

Example 5. Let A = diag(1, . . . , n), b = e, P ⊂ C−−1, and let n vary from 1 to 15.
We used a heuristic “random search” algorithm to choose the set P0 that minimizes S
and determine a minimal value for S. The resulting condition numbers are shown in
Figure 4, as well as the related numbers κ and ||f ||. For comparison we also display the
three numbers ||f ||, κ, and S for the pole sets P1 = {−1− n−1

2 i,−1− n−3
2 i, . . . ,−1 +

n−3
2 i,−1 + n−1

2 i} and P2 = {−1,−2, . . . ,−n}, respectively.
We see that the magnitude of S can be reduced, but even so, when n = 11,

Sopt = 1016. For n = 15, Sopt = 7.5 × 1021 and 10 eigenvalues of A − bfT are in
C+
0 . So for n ≥ 15, it is impossible to place the poles to the left of the line −1 + yi

via a numerical procedure. We can also check the ill conditioning by the results in
Theorems 2.5 and 2.6. Actually, for n = 15, min ||f || = 3.45× 108.
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676 VOLKER MEHRMANN AND HONGGUO XU

Table 3
Eigenvalue error and eps · S.

n 1 2 3 4 5 6 7
eps · S 5.0e-16 3.3e-14 1.6e-12 6.5e-11 2.3e-9 7.9e-8 2.5e-6
En 0 1.8e-15 6.7e-14 1.8e-12 6.7e-11 1.2e-10 3.7e-9

8 9 10 11 12 13 14 15
8.0e-5 0.0024 0.0741 2.2217 66.0347 2.0e+3 5.7e+4 1.7e+6
3.6e-8 1.1e-7 3.4e-5 3.5e-4 4.2e-3 6.0e-2 0.6371 7.132

To illustrate again the importance of S, in Table 3 we list eps·S and the eigenvalue
errors for the poles obtained from our heuristic search algorithm for different n. Here
En = maxj |µj − λj |, where Λ(A − bf̃T ) = {µ1, . . . , µn}, and f̃ is the computed
feedback with these poles. We see that the error in the eigenvalues grows roughly in
the same way as eps · S. Observe that ||f || is smaller in case P1 than in the optimal
case. As we discussed above, this shows that just minimizing ||f || is not sufficient to
minimize S.

Note that the choice of poles in Theorem 2.6 is quite common. In practice, we
often require P to be in the left half plane so that the closed-loop matrix A − bfT

is stable. Also, one often does the pole placement only on the eigenvalues of A with
nonnegative real parts, while keeping the rest of the eigenvalues fixed, since this can
save a lot of computational work; see [8].

We have seen under the assumptions of Theorem 2.6 that min ||f || is achieved with

poles on the line −ρ+ yi. From (15) of Theorem 2.3, SF ≈ ||w||2 ||f ||22. When the pole
set P moves away from the line −ρ+ yi, ||f || will increase. Clearly it is possible that
||w|| decreases, but ||f || enters quadratically in S, so an increasing magnitude of ||f ||
usually quickly compensates a decreasing magnitude of ||w||.

Although we are not able to minimize the condition number of the SIPP problem
directly, our analysis of the governing factors in this condition number leads us to the
following conjecture.

CONJECTURE. Suppose that (A, b) is controllable and that A has all eigenvalues
in the right half plane. If we require that P = {λ1, . . . , λn} ⊂ C−−ρ, then the pole
placement problem with minimal condition number is achieved when all elements of
P are on the line −ρ+ yi.

Such a selection of poles may help to check the conditioning of the SIPP problem
and may also be a good choice for the initial poles in an optimization of S.

3. Numerical experiments. In this section we will give some further numerical
examples which illustrate the theoretical results from the previous sections, and we
will also illustrate other factors that contribute to the conditioning and that may
be used to improve the bounds. A factors that contributes to the conditioning is the
width in the set of imaginary parts of Λ(A), but in the case of a stabilization problem,
the distance between the real parts of the unstable eigenvalues of A and the desired
new locations for these is also a contributing factor.

The observations made in this section are still based only on numerical experi-
ments, but they indicate directions of research.

In all examples, the spectral condition number of the closed loop matrices κ were
computed by first forming the matrix G in (5) and then applying the Matlab cond
function. The feedback gain f was generated either via the Miminis–Paige algorithm
[14] or via the formulas (5)–(7).
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Fig. 5. Conditioning in Example 6: poles reflected at the imaginary axis S:—, ||f ||: - - -,
κ: − · −·
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Fig. 6. Optimal conditioning in Example 6. S:—, Sref : · · ·, ||f ||: - - -, κ: − · −·

Our first example demonstrates that a certain geometric relationship between the
eigenvalues of A and the chosen poles can lead to a reasonable conditioning.

Example 6. Let A = In + idiag(−n−1
2 ,−n−3

2 , . . . , n−3
2 , n−1

2 ), b = e, and P ⊂ C−−1.
Let P be the set of poles obtained by reflecting the eigenvalues of A about the

imaginary axis, i.e., P = {λ1, . . . , λn} and λj = −1 + in+1−2j
2 . The values of ||f ||, κ,

and S with n = 1 : 150 are displayed in Figure 5. For comparison we again used a
“random search” method for n = 1 : 30 to determine a set of “optimal” poles P0. The
condition estimates for P0 and P are given in Figure 6. In both cases, S increases
monotonially with n, but as n > 10, it grows very slowly. In the first case, when
n = 150, S = 1.9362× 108.

The magnitude of S is reduced with the pole set P0, but just marginally. We also
depict eps · S, and the error for the closed-loop eigenvalues En, in Figures 7 and 8 for
both cases.
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Fig. 7. Eigenvalue error and eps · S in Example 6 with poles reflected at the imaginary axis.
eige : + + +, eps · S : —.
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Fig. 8. Eigenvalue error and eps · S in Example 6 with “optimal poles” eige : + + +, eps · S : —.

Unlike in Example 5, the conditioning of the SIPP problems in Example 6 seems to
be reasonable. This asks for an explanation. Let A = ρ1In+i·d·diag(−n−1

2 , . . . , n−1
2 ),

b = e, and P = {−ρ2 − dn−1
2 i, . . . ,−ρ2 + dn−1

2 i}. Suppose that d > 0, ρ1, ρ2 > 0.
Introducing ρ := ρ1 + ρ2 we obtain, for each component of f ,

|fj |2 =

∏n
k=1 |γj − λk|2∏n

k=1,k 6=j |γj − γk|2

=

∏n
k=1(ρ

2 + d2(j − n+1
2 − (k − n+1

2 ))2)

d2
∏n

k=1,k 6=j(j − n+1
2 − (k − n+1

2 ))2

= ρ2
n∏

k=1,k 6=j

(
1 +

(ρ/d)2

(j − k)2
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CONDITION OPTIMIZATION FOR POLE ASSIGNMENT 679

= ρ2

j−1∏
k=1

(
1 +

(ρ
d

)2 1

k2

) n−j∏
k=1

(
1 +

(ρ
d

)2 1

k2

)

≤ ρ2e(
ρ
d )2
∑n−j

k=1

1
k2 e(

ρ
d )2
∑j−1

k=1

1
k2 ≤ ρ2e4(

ρ
d )2 .

So, ||f ||2 ≤
√
nρe2(

ρ
d )2 . Similarly, we get ||w||2 ≤

√
nρe2(

ρ
d )2 and hence

SF ≈ ||f ||2 κF ≤
n

ρ
||w||2 ||f ||22 ≤ n

5
2 ρ2e6(

ρ
d )2 .(20)

In Example 6 we have ρ = 2, d = 1, so S ≤ 1.06n
5
2 × 1011. Clearly this is a large

overestimate, but the bound increases polynomially in n. Consider a generalized
problem as Example 5, with A = diag(ρ1 + d, . . . , ρ1 + (n − 1)d), b = e, and P =
{−ρ2 − d, . . . ,−ρ2 − (n − 1)d}. Suppose also that d, ρ1, ρ2 > 0 and let ρ := ρ1 + ρ2.
Then for the nth components of f and w, we have

|fn| = |wn| = (ρ+ 2(n− 1)d)

∏n−1
k=1(ρ/d+ (n− 2 + k))

(n− 1)!

> (ρ+ 2(n− 1)d)
(2n− 3)!

(n− 1)!(n− 2)!
.

Hence by (15),

SF ≥ n

(ρ+ 2(n− 1)d)2
|fn|2|wn| ∼ O(43n).

So SF increases exponentially in n regardless of the magnitude of ρ
d .

We also see the importance of the scalar ρ
d for the problems in Example 6. The

smaller it is, the better conditioned the related SIPP problem will be. Since ρ
d is

determined not only by d, which describes the width in the set of imaginary parts of
the eigenvalues of A, but also by the distance between the real parts of Λ(A) and those
in P, one should observe that S changes when the real parts of Λ(A) vary. Consider
the following example.

Example 7. Let

A =
1

2
I31 − i cos

(
(m− 1)π

180

)
diag(−15,−14, . . . , 14, 15)

+ sin

(
(m− 1)π

180

)
diag(15, 14, . . . , 14, 15),

m = 1 : 90, b = e. P is selected in the following two different ways.
Case I. P = −λ(Ā).

Case II. P = {−0.5− 15 cos( (m−1)π
180 )i, . . . ,−0.5 + 15 cos( (m−1)π

180 )i}.
The condition estimates are depicted in Figure 9. As m increases, ρ grows and d

decreases, so S grows, too. The test results support this observation.
We have so far mostly considered matrices A with regular eigenvalue patterns,

but the same behavior is observed in the general case.
From all examples that we have tested, we see that the wider the set of imaginary

parts of Λ(A) and the smaller the distance between the set of real parts of Λ(A) to
that of P, the better conditioning of the corresponding SIPP problem we can expect.
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Fig. 9. Conditioning in Example 7: (a) S; (b) ||f ||; (c) κ; Case I: - - -, Case II: —.

With these observations, the class of SIPP problems in Example 5 is probably the
worst class of problems, while the class of problems in Example 6 is probably the best
class.

In many control problems, for example in robust stabilization, the choice of the
imaginary parts of Λ(A) seems to be unimportant. But the above observations indi-
cate that the imaginary parts are of great importance since they participate heavily
in the conditioning of the SIPP problem.

We also tested many examples with multiple poles in P, but then, as could be
expected, the conditioning is much worse than in the case of distinct poles. If the
matrix A has eigenvalues with negative real parts, which can also be moved to improve
the conditioning, then it can be predicted that S can be reduced compared to the
case when just the eigenvalues with nonnegative real parts are assigned. Numerical
examples support this prediction. For more examples, see [13].

4. Conclusions. In this paper we have studied the problem of optimizing the
conditioning of the single input pole placement problem when the poles are allowed to
vary in specific regions of the complex plane. It is in general very difficult to minimize
the condition number or the bounds for the eigenvalue error (or the error in f) in the
SIPP problem, since these functions are very complicated and, in particular, for large
n a numerical minimization seems prohibitive. To get arround this difficulty, we have
studied two of the factors in the perturbation bounds, f and κ, the scaled spectral
condition number of the closed-loop matrix and, we have neglected the effects of the
condition number of the matrix A and the distance to uncontrollability of (A, b).

For problems where the optimization of f and κ can be carried out explicitly, we
have determined formulas for the minima. From these formulas we are motivated to
conjecture the location for the optimal pole selection in the important stabilization
problem, where Λ(A) ⊂ C+

0 , P ⊂ C−−ρ.
By several numerical tests we have indicated how the conditioning of the SIPP

problem is determined by the distribution of the eigenvalues of A and the geometric
relationship to the selected poles.

Also, we have pointed out that in order to study the accuracy of the results of
the SIPP problem, it is not enough to consider just the accuracy of the feedback gain.
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In Example 4, the computed gain vectors have no correct digits, while the associated
eigenvalues of the computed closed-loop matrix still have about eight correct digits.
But as shown by Example 1, the converse may also be the case, i.e., even though f
is very accurate, the poles of the computed closed-loop system are far away from the
desired poles.
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