THE STRUCTURE OF QUANTUM SPHERES

ALBERT JEU-LIANG SHEU

(Communicated by David R. Larson)

Abstract

We show that the C^{*}-algebra $C\left(\mathbb{S}_{q}^{2 n+1}\right)$ of a quantum sphere $\mathbb{S}_{q}^{2 n+1}, q>1$, consists of continuous fields $\left\{f_{t}\right\}_{t \in \mathbb{T}}$ of operators f_{t} in a C^{*} algebra \mathcal{A}, which contains the algebra \mathcal{K} of compact operators with $\mathcal{A} / \mathcal{K} \cong$ $C\left(\mathbb{S}_{q}^{2 n-1}\right)$, such that $\rho_{*}\left(f_{t}\right)$ is a constant function of $t \in \mathbb{T}$, where $\rho_{*}: \mathcal{A} \rightarrow$ $\mathcal{A} / \mathcal{K}$ is the quotient map and \mathbb{T} is the unit circle.

Introduction

Some interesting C^{*}-algebras that arise from geometric objects have been successfully studied, using the groupoid C^{*}-algebraic approach R CM, MR, SaShU Sh1 Sh2]. In particular, the C^{*}-algebra $C\left(\mathbb{S}_{q}^{2 n+1}\right)$ of a quantum sphere $\mathbb{S}_{q}^{2 n+1}$ VSo], $q>1$, was realized as a concrete groupoid C^{*}-algebra $C^{*}\left(\mathfrak{F}_{n}\right)$ independent of q Sh3]. Decomposing the underlying groupoid \mathfrak{F}_{n}, we were able to conclude that $C\left(\mathbb{S}_{q}^{2 n+1}\right)$ is an extension of $C\left(\mathbb{S}_{q}^{2 n-1}\right)$ by $C(\mathbb{T}) \otimes \mathcal{K}$, which well reflects, at the quantum level, the symplectic leaf space structure [W] of the $S U(n+1)$-homogeneous Poisson $\mathbb{S}^{2 n+1}[\mathrm{D}]$ because $\mathbb{S}_{q}^{2 n+1} \backslash \mathbb{S}_{q}^{2 n-1}$ is a disjoint union of a \mathbb{T}-family of symplectic leaves \mathbb{C}^{n}, where \mathbb{T} is the unit circle. However since the extensions of C*-algebras are usually not unique, the algebra $C\left(\mathbb{S}_{q}^{2 n+1}\right)$ is not completely determined up to isomorphism. In this paper, we find an explicit recursive description that completely determines the algebra $C\left(\mathbb{S}_{q}^{2 n+1}\right)$ up to isomorphism. This description would be very useful, for example, in the study of the cancellation problem of "vector bundles" over $\mathbb{S}_{q}^{2 n+1}$.

1. Quantum sphere and groupoid

In this section, we identify the C^{*}-algebra $C\left(\mathbb{S}_{q}^{2 n+1}\right)$ of a quantum sphere $\mathbb{S}_{q}^{2 n+1}$, $q>1$, with a concrete groupoid C^{*}-algebra $C^{*}\left(\mathfrak{G}_{n}\right)$ of a concrete groupoid \mathfrak{G}_{n}, independent of q, whose description is simpler and easier to handle than that of \mathfrak{F}_{n} found in [Sh3]. For the background material of groupoid and group C^{*}-algebras, we refer readers to the books of Renault $[\underline{R}]$ and Pedersen $[\mathrm{P}]$.

Recall that the C^{*}-algebra of the quantum group $S U(n)_{q}$ is generated by elements $u_{i j}$ satisfying certain commutation relations and the C^{*}-algebra of quantum

[^0]spheres $S_{q}^{2 n+1}=S U(n)_{q} \backslash S U(n+1)_{q}$ defined as homogeneous quantum spaces \mathbb{N}] can be identified with
$$
C\left(S_{q}^{2 n+1}\right)=C^{*}\left(\left\{u_{n+1, m} \mid 1 \leq m \leq n+1\right\}\right)
$$

Let $\mathbb{Z}_{\geq}=\mathbb{N} \cup\{0\}$, and regard $\overline{\mathbb{Z}}:=\mathbb{Z} \cup\{+\infty\}$ and $\overline{\mathbb{Z}}_{\geq}:=\mathbb{Z}_{\geq} \cup\{+\infty\}$ as topological spaces with their canonical topologies. We use $\mathcal{H}^{n}:=\left.\mathbb{Z}^{n} \ltimes \overline{\mathbb{Z}}^{n}\right|_{\mathbb{Z}_{\geq}^{n}}$ to denote the transformation group groupoid $\mathbb{Z}^{n} \ltimes \overline{\mathbb{Z}}^{n}$ restricted to the positive "cone" $\overline{\mathbb{Z}}_{\geq}^{n}$ of its unit space $\overline{\mathbb{Z}}^{n}$, and use $\mathcal{F}^{n}=\mathbb{Z} \times\left(\left.\mathbb{Z}^{n} \ltimes \overline{\mathbb{Z}}^{n}\right|_{\mathbb{Z}} ^{\geq}, ~\right)$ to denote the direct product of the group \mathbb{Z} and the groupoid \mathcal{H}^{n} (R MR, CM].

Let \approx be the equivalence relation on $\overline{\mathbb{Z}}_{\geq}^{n}:=\left(\overline{\mathbb{Z}}_{\geq}\right)^{n}$ that is generated by $w \approx w^{\prime}$ for $w, w^{\prime} \in \overline{\mathbb{Z}}_{\geq}^{n}$ such that for some $1 \leq i \leq n, w_{j}=w_{j}^{\prime}$ for all $j \leq i$ and $w_{j}^{\prime}=\infty$ for all $j \geq i$. This equivalence relation can be canonically extended to equivalence relations \sim on spaces like \mathcal{H}^{n} or \mathcal{F}^{n} by defining $(x, w) \sim\left(x^{\prime}, w^{\prime}\right)$ if and only if $x=x^{\prime}$ and $w \approx w^{\prime}$ for $(x, w),\left(x^{\prime}, w^{\prime}\right) \in \mathcal{H}^{n}$, and $(z, x, w) \sim\left(z^{\prime}, x^{\prime}, w^{\prime}\right)$ if and only if $(z, x)=\left(z^{\prime}, x^{\prime}\right)$, and $w \approx w^{\prime}$ for $(z, x, w),\left(z^{\prime}, x^{\prime}, w^{\prime}\right) \in \mathcal{F}^{n}$.

It is proved in Sh3 that $C\left(S_{q}^{2 n+1}\right) \simeq C^{*}\left(\mathfrak{F}_{n}\right)$ with $\mathfrak{F}_{n}:=\widetilde{\mathfrak{F}_{n}} / \sim$ a subquotient groupoid of \mathcal{F}^{n} where

$$
\begin{gathered}
\widetilde{\mathfrak{F}_{n}}:=\left\{(z, x, w) \in \mathcal{F}^{n} \mid \text { for any } 1 \leq i \leq n, \text { if } w_{i}=\infty,\right. \text { then } \\
\left.x_{i}=-z-x_{1}-x_{2}-\ldots-x_{i-1} \text { and } x_{i+1}=\ldots=x_{n}=0\right\}
\end{gathered}
$$

is a subgroupoid of \mathcal{F}^{n}.
We first note that by a "change of variables" $k:=z+x_{1}+x_{2}+\ldots+x_{n}$, the conditions

$$
x_{i}=-z-x_{1}-x_{2}-\ldots-x_{i-1} \text { and } x_{i+1}=\ldots=x_{n}=0
$$

in defining $\widetilde{\mathfrak{F}_{n}}$, can be replaced by

$$
k=0 \text { and } x_{i+1}=\ldots=x_{n}=0
$$

More precisely, the bijection

$$
(z, x, w) \mapsto\left(z+x_{1}+x_{2}+\ldots+x_{n}, x, w\right)
$$

defines a homeomorphic groupoid isomorphism from $\widetilde{\mathfrak{F}}_{n}$ to the subgroupoid

$$
\begin{gathered}
\widetilde{\mathfrak{G}_{n}}:=\left\{(k, x, w) \in \mathcal{F}^{n} \mid \text { for any } 1 \leq i \leq n, \text { if } w_{i}=\infty,\right. \\
\text { then } \left.k=0=x_{i+1}=\ldots=x_{n}\right\}
\end{gathered}
$$

of \mathcal{F}^{n}. Defining $\mathfrak{G}_{n}:=\widetilde{\mathfrak{G}_{n}} / \sim$, we get a groupoid \mathfrak{G}_{n} isomorphic to \mathfrak{F}_{n} since the above groupoid isomorphism preserves the equivalence relation \sim.

Proposition 1. For $q>1$,

$$
C\left(S_{q}^{2 n+1}\right) \simeq C^{*}\left(\mathfrak{G}_{n}\right)
$$

2. Structure theorem

In this section, we recursively characterize $C\left(S_{q}^{2 n+1}\right)$ as an algebra of fields of operators and hence determine $C\left(S_{q}^{2 n+1}\right)$ up to isomorphism.

We first note that $\widetilde{\mathfrak{G}_{n}} \subset \mathbb{Z} \times \widetilde{\mathfrak{H}_{n}} \subset \mathcal{F}^{n}$ and

$$
\mathfrak{G}_{n} \subset \mathbb{Z} \times \mathfrak{H}_{n}
$$

where $\widetilde{\mathfrak{H}_{n}}$ is the subgroupoid

$$
\widetilde{\mathfrak{H}_{n}}:=\left\{(x, w) \in \mathcal{H}^{n} \mid \text { for any } 1 \leq i \leq n, \text { if } w_{i}=\infty\right.
$$

$$
\text { then } \left.x_{i+1}=\ldots=x_{n}=0\right\}
$$

of \mathcal{H}^{n} and $\mathfrak{H}_{n}:=\widetilde{\mathfrak{H}_{n}} / \sim$. The unit space of $\widetilde{\mathfrak{H}_{n}}\left(\right.$ or $\mathbb{Z} \times \widetilde{\mathfrak{H}_{n}}$, or $\left.\widetilde{\mathfrak{G}_{n}}\right)$ is $\widetilde{W}:=\overline{\mathbb{Z}}_{\geq}^{n}$ while the unit space of $\mathfrak{H}_{n}\left(\right.$ or $\mathbb{Z} \times \mathfrak{H}_{n}$, or $\left.\mathfrak{G}_{n}\right)$ is the quotient space $W:=\widetilde{W} / \approx$.

The closed subset $\widetilde{W}_{n}:=\overline{\mathbb{Z}}_{\geq}^{n} \backslash \mathbb{Z}_{\geq}^{n}$ of \widetilde{W} and its complement $\widetilde{W} \backslash \widetilde{W}_{n}=\mathbb{Z}_{\geq}^{n}$ are closed under the equivalence relation \approx and are invariant (under the $\widetilde{\mathfrak{H}_{n}}$-action) subsets of \widetilde{W}. Correspondingly, we have the closed subset $W_{n}:=\widetilde{W}_{n} / \approx$ of W and its complement $W \backslash W_{n}$ as invariant subsets of the unit space W of \mathfrak{H}_{n}. By the general theory of groupoid C^{*}-algebras $[\mathrm{R}]$, we have the short exact sequence

$$
0 \rightarrow C^{*}\left(\left.\mathfrak{H}_{n}\right|_{W \backslash W_{n}}\right) \xrightarrow{\iota_{*}} C^{*}\left(\mathfrak{H}_{n}\right) \xrightarrow{\rho_{*}} C^{*}\left(\left.\mathfrak{H}_{n}\right|_{W_{n}}\right) \rightarrow 0
$$

where ρ_{*} is induced by the restriction map ρ on $C_{c}\left(\mathfrak{H}_{n}\right)$ and ι_{*} is induced by the inclusion map ι on $C_{c}\left(\left.\mathfrak{H}_{n}\right|_{W \backslash W_{n}}\right)$, and similarly the short exact sequence

$$
0 \rightarrow C^{*}\left(\left.\left(\mathbb{Z} \times \mathfrak{H}_{n}\right)\right|_{W \backslash W_{n}}\right) \rightarrow C^{*}\left(\mathbb{Z} \times \mathfrak{H}_{n}\right) \rightarrow C^{*}\left(\left.\left(\mathbb{Z} \times \mathfrak{H}_{n}\right)\right|_{W_{n}}\right) \rightarrow 0
$$

Since clearly $\left.\left(\mathbb{Z} \times \mathfrak{H}_{n}\right)\right|_{W \backslash W_{n}} \cong \mathbb{Z} \times\left(\left.\mathfrak{H}_{n}\right|_{W \backslash W_{n}}\right)$ and $\left.\left(\mathbb{Z} \times \mathfrak{H}_{n}\right)\right|_{W_{n}} \cong \mathbb{Z} \times\left(\left.\mathfrak{H}_{n}\right|_{W_{n}}\right)$, we get the commuting diagram
of exact rows.
Clearly the equivalence relation \approx on $\widetilde{W} \backslash \widetilde{W}_{n}=\mathbb{Z}_{\geq}^{n}$ is trivial, and hence $\left.\mathfrak{G}_{n}\right|_{W \backslash W_{n}}$ $\left.\cong \widetilde{\mathfrak{G}_{n}}\right|_{\widetilde{W} \backslash \widetilde{W}_{n}}$ and $\left.\left.\mathfrak{H}_{n}\right|_{W \backslash W_{n}} \cong \widetilde{\mathfrak{H}_{n}}\right|_{\widetilde{W} \backslash \widetilde{W}_{n}}$. Furthermore

$$
\left.\widetilde{\mathfrak{G}_{n}}\right|_{\widetilde{W} \backslash \widetilde{W}_{n}}=\left\{(k, x, w) \in \mathcal{F}^{n} \mid w \in \mathbb{Z}_{\geq}^{n}\right\}=\mathbb{Z} \times\left.\mathcal{H}^{n}\right|_{\mathbb{Z}_{\geq}^{n}}
$$

and similarly $\left.\widetilde{\mathfrak{H}_{n}}\right|_{\widetilde{W} \backslash \widetilde{W}_{n}}=\left.\mathcal{H}^{n}\right|_{\mathbb{Z}_{\geq}^{n}}$. So we get $\left.\mathfrak{G}_{n}\right|_{W \backslash W_{n}}=\mathbb{Z} \times\left(\left.\mathfrak{H}_{n}\right|_{W \backslash W_{n}}\right)$, and the commuting diagram
via the faithful regular representation [R, MR] of $C^{*}\left(\mathfrak{H}_{n}\right)$ on $\ell^{2}\left(\mathbb{Z}_{\geq}^{n}\right)$.
On the other hand, $\left.\widetilde{\mathfrak{G}_{n}}\right|_{\widetilde{W}_{n}}$ consists of $(k, x, w) \in \widetilde{\mathfrak{G}_{n}}$ with $w_{i}=\infty$ for some $i \leq n$ and hence $k=0$. So $\left.\widetilde{\mathfrak{G}_{n}}\right|_{\widetilde{W}_{n}}=\{0\} \times\left.\widetilde{\mathfrak{H}_{n}}\right|_{\widetilde{W}_{n}}$ and

$$
\left.\mathfrak{G}_{n}\right|_{W_{n}}=\{0\} \times\left.\mathfrak{H}_{n}\right|_{W_{n}} \subset \mathbb{Z} \times\left.\mathfrak{H}_{n}\right|_{W_{n}} .
$$

$$
\begin{aligned}
& 0 \quad \rightarrow \quad C^{*}\left(\left.\mathfrak{H}_{n}\right|_{W \backslash W_{n}}\right) \xrightarrow{\iota_{*}} \quad C^{*}\left(\mathfrak{H}_{n}\right) \quad \xrightarrow{\rho_{*}} \quad C^{*}\left(\left.\mathfrak{H}_{n}\right|_{W_{n}}\right) \quad \rightarrow \quad 0 \\
& 0 \rightarrow \mathcal{K}\left(\ell^{2}\left(\mathbb{Z}_{\geq}^{n}\right)\right) \quad \rightarrow \mathcal{B}\left(\ell^{2}\left(\mathbb{Z}_{\geq}^{n}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 0 \quad \rightarrow \quad C^{*}\left(\mathbb{Z} \times\left(\left.\mathfrak{H}_{n}\right|_{W \backslash W_{n}}\right)\right) \quad \rightarrow \quad C^{*}\left(\mathbb{Z} \times \mathfrak{H}_{n}\right) \quad \rightarrow \quad C^{*}\left(\mathbb{Z} \times\left(\left.\mathfrak{H}_{n}\right|_{W_{n}}\right)\right) \quad \rightarrow \quad 0
\end{aligned}
$$

Now it is clear that

$$
\begin{aligned}
\mathfrak{G}_{n} & =\left(\left.\mathfrak{G}_{n}\right|_{W \backslash W_{n}}\right) \cup\left(\left.\mathfrak{G}_{n}\right|_{W_{n}}\right)=\left(\mathbb{Z} \times\left(\left.\mathfrak{H}_{n}\right|_{W \backslash W_{n}}\right)\right) \cup\left(\{0\} \times\left.\mathfrak{H}_{n}\right|_{W_{n}}\right) \\
& =\left(\mathbb{Z} \times\left(\left.\mathfrak{H}_{n}\right|_{W \backslash W_{n}}\right)\right) \cup\left(\{0\} \times \mathfrak{H}_{n}\right)
\end{aligned}
$$

is an open subgroupoid of $\mathbb{Z} \times \mathfrak{H}_{n}$, and we have the commuting diagram

$$
\begin{aligned}
& C^{*}\left(\underset{\left.\mathfrak{G}_{n} \mid W_{n}\right)}{\downarrow \underline{\underline{1}}}\right. \\
& 0 \rightarrow C^{*}\left(\left.\mathfrak{G}_{n}\right|_{W \backslash W_{n}}\right) \quad \rightarrow \quad C^{*}\left(\mathfrak{G}_{n}\right) \quad \rightarrow \quad C^{*}\left(\{0\} \times\left(\mathfrak{H}_{n} \mid W_{n}\right)\right) \quad \rightarrow \quad 0
\end{aligned}
$$

$$
\begin{aligned}
& 0 \quad \rightarrow \quad C(\mathbb{T}) \otimes \mathcal{K}\left(\ell^{2}\left(\mathbb{Z}_{\geq}^{n}\right)\right) \quad \stackrel{\mathrm{id} \otimes \stackrel{\iota}{*}}{\rightarrow} C(\mathbb{T}) \otimes C^{*}\left(\mathfrak{H}_{n}\right) \stackrel{\mathrm{id} \otimes \rho_{*}}{ } C(\mathbb{T}) \otimes C^{*}\left(\mathfrak{H}_{n} \mid W_{n}\right) \quad \rightarrow \quad 0
\end{aligned}
$$

of exact rows, in which $C^{*}\left(\mathfrak{G}_{n}\right)$ is embedded in $C(\mathbb{T}) \otimes C^{*}\left(\mathfrak{H}_{n}\right) \cong C\left(\mathbb{T}, C^{*}\left(\mathfrak{H}_{n}\right)\right)$ as an algebra containing $C(\mathbb{T}) \otimes \mathcal{K}\left(\ell^{2}\left(\mathbb{Z}_{\geq}^{n}\right)\right)$ and $C^{*}\left(\left.\mathfrak{G}_{n}\right|_{W_{n}}\right)$ is embedded in $C(\mathbb{T}) \otimes$ $C^{*}\left(\mathfrak{H}_{n} \mid W_{n}\right)$ as

$$
C^{*}\left(\{0\} \times\left(\left.\mathfrak{H}_{n}\right|_{W_{n}}\right)\right) \cong C^{*}(\{0\}) \otimes C^{*}\left(\left(\left.\mathfrak{H}_{n}\right|_{W_{n}}\right)\right) \cong \mathbb{C} \otimes C^{*}\left(\left(\left.\mathfrak{H}_{n}\right|_{W_{n}}\right)\right) .
$$

So

$$
C^{*}\left(\mathfrak{G}_{n}\right) \cong\left(\operatorname{id} \otimes \rho_{*}\right)^{-1}\left(\mathbb{C} \otimes C^{*}\left(\left(\left.\mathfrak{H}_{n}\right|_{W_{n}}\right)\right)\right) .
$$

We claim that $\left.\mathfrak{G}_{n}\right|_{W_{n}}$ is isomorphic to the groupoid \mathfrak{G}_{n-1}. In fact, $\left.\widetilde{\mathfrak{G}_{n}}\right|_{\widetilde{W}_{n}}$ consists of $(k, x, w) \in \widetilde{\mathfrak{G}_{n}}$ with $w_{i}=\infty$ for some $i \leq n$ and hence $k=0$. So by considering the smallest i with $w_{i}=\infty$, we get

$$
\begin{gathered}
\left.\widetilde{\mathfrak{G}_{n}}\right|_{\widetilde{W}_{n}}=\left\{(0, x, w) \in \mathcal{F}^{n} \mid \text { for some } i \leq n, w_{i}=\infty, x_{i+1}=\ldots=x_{n}=0\right. \\
\text { but } \left.w_{j}<\infty \text { for all } j<i\right\}
\end{gathered}
$$

Note that the map $\tilde{\phi}$ sending $\left.(0, x, w) \in \widetilde{\mathfrak{G}_{n}}\right|_{\widetilde{W}_{n}}$ to $\left(k^{\prime}, x^{\prime}, w^{\prime}\right) \in \mathcal{F}^{n-1}$, where $k^{\prime}=x_{n}$, and $x_{i}^{\prime}=x_{i}$ and $w_{i}^{\prime}=w_{i}$ for all $i \leq n-1$, takes values in $\widetilde{\mathfrak{G}_{n-1}}$, because if $w_{i}^{\prime}=\infty$ for some $i \leq n-1$, then $w_{i}=\infty$ and hence $k^{\prime}=x_{n}=0$ and $x_{j}^{\prime}=x_{j}=0$ for all $i<j \leq n-1$. It is not hard to verify that $\tilde{\phi}$ is a surjective groupoid morphism from $\left.\widetilde{\mathfrak{G}_{n}}\right|_{W_{n}}$ to $\widetilde{\mathfrak{G}_{n-1}}$. Furthermore $\tilde{\phi}$ preserves the equivalence relation \sim and hence induces a homeomorphic groupoid isomorphism ϕ from the quotient groupoid $\left.\mathfrak{G}_{n}\right|_{W_{n}}=\left.\widetilde{\mathfrak{G}_{n}}\right|_{W_{n}} / \sim$ to the quotient groupoid $\mathfrak{G}_{n-1}=\widetilde{\mathfrak{G}_{n-1}} / \sim$. So we have

$$
C^{*}\left(\left.\mathfrak{H}_{n}\right|_{W_{n}}\right) \cong C^{*}\left(\left.\mathfrak{G}_{n}\right|_{W_{n}}\right) \cong C^{*}\left(\mathfrak{G}_{n-1}\right) \cong C\left(\mathbb{S}_{q}^{2 n-1}\right)
$$

We conclude the above discussion in the following theorem.
Theorem 2. There is a C^{*}-subalgebra $\mathcal{A} \supset \mathcal{K}\left(\ell^{2}\left(\mathbb{Z}_{\geq}^{n}\right)\right)$ of $\mathcal{B}\left(\ell^{2}\left(\mathbb{Z}_{\geq}^{n}\right)\right)$ and a short exact sequence

$$
0 \rightarrow \mathcal{K}\left(\ell^{2}\left(\mathbb{Z}_{\geq}^{n}\right)\right) \subset \mathcal{A} \xrightarrow{\rho_{*}} C\left(\mathbb{S}_{q}^{2 n-1}\right) \quad \rightarrow 0
$$

such that

$$
\begin{gathered}
C\left(\mathbb{S}_{q}^{2 n+1}\right) \cong\left(\mathrm{id}_{C(\mathbb{T})} \otimes \rho_{*}\right)^{-1}\left(\mathbb{C} \otimes C\left(\mathbb{S}_{q}^{2 n-1}\right)\right) \\
\cong\left\{f \in C(\mathbb{T}, \mathcal{A}) \mid \rho_{*} \circ f \text { is a constant function on } \mathbb{T}\right\}
\end{gathered}
$$

where $\operatorname{id}_{C(\mathbb{T})} \otimes \rho_{*}: C(\mathbb{T}) \otimes \mathcal{A} \rightarrow C(\mathbb{T}) \otimes C\left(\mathbb{S}_{q}^{2 n-1}\right)$ and $C(\mathbb{T}, \mathcal{A})$ is the algebra of continuous fields of operators in \mathcal{A} over the unit circle \mathbb{T}.

References

[CM] R. E. Curto and P. S. Muhly, C*-algebras of multiplication operators on Bergman spaces, J. Funct. Anal. 64 (1985), 315-329. MR 86m:47044
[D] V. G. Drinfeld, On Poisson homogeneous spaces of Poisson Lie groups, Theo. Math. Phys. 95 (1993), 226-227. MR 94k:58045
[MR] P. S. Muhly and J. N. Renault, C^{*}-algebras of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc. 274 (1982), 1-44. MR 84h:46074
[N] G. Nagy, On the Haar measure of the quantum $S U(N)$ group, Comm. Math. Phys. 153 (1993), 217-228. MR 94e:46124
[P] G. K. Pedersen, "C*-algebras and their Automorphism Groups", Academic Press, New York, 1979. MR 81e:46037
[R] J. Renault, A Groupoid Approach to C^{*}-algebras, Lecture Notes in Mathematics, Vol. 793, Springer-Verlag, New York, 1980. MR 82h:46075
[SaShU] N. Salinas, A. J. L. Sheu, and H. Upmeier, Toeplitz operators on pseudoconvex domains and foliation C^{*}-algebras, Annals of Mathematics 130 (1989), 531-565. MR 91e:47026
[Sh1] A. J. L. Sheu, Reinhardt domains, boundary geometry and Toeplitz C*-algebras, J. Func. Anal. 92 (1990), 264-311. MR 92a:46068
[Sh2] _ , Compact quantum groups and groupoid C^{*}-algebras, J. Func. Anal. 144 (1997), 371-393. MR 98e:46090
[Sh3] , Quantum spheres as groupoid C^{*}-algebras, Quarterly J. Math. 48 (1997), 503510. MR 99b:46112
[VSo] L. L. Vaksman and Ya. S. Soibelman, The algebra of functions on the quantum group $S U(n+1)$, and odd-dimensional quantum spheres, Leningrad Math. J. 2 (1991), 10231042. MR 92e:58021
[W] A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom. 18 (1983), 523-557. MR 86i:58059

Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
E-mail address: sheu@falcon.cc.ukans.edu

[^0]: Received by the editors March 15, 2000.
 2000 Mathematics Subject Classification. Primary 46L05; Secondary 17B37, 46L89, 47B35, 58B32, 81R50.

 Key words and phrases. Quantum spheres, quantum groups, groupoid C^{*}-algebras, Toeplitz algebras.

 The author was partially supported by NSF Grant DMS-9623008.

