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Abstract 

 

    Enhanced expression of CXCL1 in tumor epithelium is associated with cell invasion 

and angiogenesis in melanoma, bladder, ovarian and breast cancer, yet CXCL1 

expression in tumor associated stroma is largely undefined. In this dissertation, we show 

evidences that increased CXCL1 expression in breast cancer stroma correlates with 

poor patient prognosis, including increased rate of recurrence and shorter relapse-free 

survival, and co-localizes to alpha Smooth Muscle Actin (-SMA) and Fibroblast Specific 

Protein 1 (FSP1) positive fibroblasts. Fibroblasts are important cellular components of 

the breast tumor microenvironment, and their accumulation correlates with invasive 

cancer progression and poor patient prognosis. However, the understanding of 

functional contribution of fibroblast secreted factors to breast tumor progression still 

remains limited. In this dissertation, we demonstrate that breast cancer associated 

fibroblasts (CAFs) overexpress CXCL1, which promotes luminal and basal-like breast 

cancer cell survival, invasion and mammary tumor progression through CXCR2-

dependent mechanisms in vitro and in vivo. By candidate profiling, we have found the 

TGF- signaling pathway as a regulator of CXCL1 expression in mammary fibroblasts. 

Mechanistically, we show that TGF- suppresses CXCL1 expression through Smad2/3-

dependent mechanisms, and, as a secondary mechanism, TGF- suppresses CXCL1 

expression through down-regulation of HGF/c-Met signaling. In summary, we document 

the prognostic relevance and significance of CXCL1 protein expression in breast cancer 

stroma, characterize the molecular mechanisms of CXCL1 expression in mammary 

fibroblasts in the context of TGF- signaling, and demonstrate the functional contribution 

of fibroblast-derived paracrine CXCL1/CXCR2 signaling in mediating breast cancer cell 

survival, invasion and tumor progression.    
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Preface 

    Breast cancer is the most commonly diagnosed cancer in females in the US and 

worldwide, with 232,670 estimated new cases domestically in 2014 and over 1.3 million 

new cases annually in the world (1-3). Also, it is estimated that 40,000 women will die 

from breast cancer in 2014, which accounts for 15% of all cancer-related death. Breast 

cancer is a disease develops from breast tissue, including milk ducts and lobules 

supplying ducts with milk. Among all patients diagnosed with breast cancer, 60% of 

patients are diagnosed with localized disease, and 32-38% with regional disease, which 

show 94% and 74% of five-year survival rate respectively. However, patients diagnosed 

with distant metastatic breast cancer, which accounts for less than 8% of cases, have 

less than 25% five-year survival rate. Current treatments include hormone deprivation 

therapy, surgery, chemotherapy and radiation therapy. However, these treatments are 

not effective against metastatic breast cancer and are toxic to normal tissues, leading to 

side effects that include cardiac toxicity, immune cell depletion, pain, fatigue and anemia 

(4, 5). Understanding the molecular mechanisms through which breast cancer cells 

survive and become metastatic is of fundamental significance in improving breast cancer 

treatment.  

Breast cancer progression 

    Breast cancer is a complicated multi-step disease that begins as proliferation of 

normal cells in breast tissues, also referred as hyperplasia. The cells develop 

abnormalities that make them different from normal cells yet not cancerous (atypical 

hyperplasia) and may keep changing their morphology and evolving into non-invasive 

cancer (in situ) or invasive cancer eventually. Furthermore, invasive breast cancer may 
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lead to metastasis to lymph nodes and other distant organs, including bone, lungs, liver 

and brain through bloodstream or the lymphatic system.  

    Atypical hyperplasia, which is defined as accumulation of abnormal cells in breast 

duct [atypical ductal hyperplasia (ADH)] or lobule (atypical lobular hyperplasia) due to 

increased cell proliferation, is classified as a benign condition, but may increase the risk 

of subsequent invasive breast cancer by up to five times (6). ADH can evolve to ductal 

carcinoma in situ (DCIS), a heterogeneous noninvasive breast cancer in which abnormal 

cells are found in the lining of a breast duct (NIH definition). While gene expression 

profiles dramatically vary from normal cells to cancer cells in DCIS, there is no unique 

gene change from DCIS to invasive cancer cells (7). However, quantitative changes of 

gene expression associated with progression from DCIS to invasive carcinomas have 

been identified (7).  

Breast cancer grade, stage and subtype 

    The grade of breast cancer is representative of the aggressive potential of the tumor 

and generally classifies the cancer as well differentiated (low-grade), moderately 

differentiated (intermediate-grade), and poorly differentiated (high-grade). Breast cancer 

can be graded in different ways, one of the most commonly used scoring system is the 

Nottingham Histologic (also called Elston-Ellis) Score system. In this system, breast 

cancer grading is based on the microscopic morphologies, including tubule formation, 

mitotic count and nuclear pleomorphism of the tumor. Each component is given a score 

from 1 to 3 and the sum of the three elements determines the grade of a tumor. A tumor 

with score of 3-5 is considered as low grade or grade 1. Cancer cells of grade 1 are well 

differentiated and have the closest features as normal breast epithelial cells. 

Intermediate grade or grade 2 breast cancer (score 6-7) is featured by moderately 
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differentiated cells, higher growth rate and moderate variation in size and shape. High 

grade or grade 3 breast cancer has a score of 8-9 and the cells are poorly differentiated 

with marked variation in size and shape, proliferate fast and have the tendency to spread. 

Generally, breast cancers with lower grade have more favorable prognosis, higher 

survival rate, and can be more effectively treated. It was reported that different tumor 

grades are associated with distinct gene expression profiles (7). 

    The stage of breast cancer describes the extent or severity of cancer in the body. The 

most commonly used staging system is TNM system, which classifies cancers based on 

their T (Tumor size), N (lymph Node involvement), and M (Metastasis). Staging of breast 

cancer is an important aspect for cancer classification and is always considered in 

combination with other classification aspects, such as receptor expression patterns in 

making appropriate treatment choices.  

    Breast cancer is classified to four major subtypes (Luminal A, Luminal B, Triple 

negative/basal-like, HER2 type) based on the presence of estrogen receptors (ER), 

progesterone receptors (PR) and HER2/neu. Receptor status determines the suitability 

of using targeted treatments, thus is essential assessment for all breast cancers.  

Breast cancer prognostic marker 

    The use of prognostic markers ensures optimal treatments are applied to breast 

cancer patients. Traditional prognostic factors include tumor size, lymph node status, 

nuclear and histological grade (8). A few other biomarkers such as estrogen receptor 

(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 

(HER2/neu) were established and applied to optimize personalized therapies. Also, 

recent studies have suggested the importance of other prognostic markers such as Ki67, 

cyclin D1, cyclin E, p53, BRCA1/2 and VEGF (9). Although these prognostic markers 
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have been proven to be effective in providing comparatively accurate prognostic 

outcomes and predicting effectiveness for certain specific targeted therapies such as 

ER+ breast cancer, there is currently no effective predictive marker for many of the ER- 

subtypes, and the general accuracy of current prognostic markers are still far from 

optimal. Previous studies primarily examined the prognostic significance of CXCL1 

expression in tumor epithelium (10). Yet, biomarker expression patterns in the stroma 

and epithelium can have vastly different relationships to known prognostic factors and 

clinical outcomes (11). In Chapter II of this dissertation, we further characterized the 

expression patterns of CXCL1 in breast cancer stroma and determined the prognostic 

significance of stromal CXCL1 expression in the context of known prognostic markers.   

Therapies for breast cancer 

    A variety of treatments have been adopted to treat breast cancer patients including 

surgery, radiation therapy, chemotherapy, and targeted therapies (12-14). The strategies 

for optimal treatment of breast cancer are partially determined by accurate classification 

of subtypes in combination with other prognostic markers. For example, ER+ breast 

cancer cell growth is estrogen-dependent, thus its growth can be effectively retarded by 

drugs that reduce either the level of estrogen (e.g., aromatase inhibitors) or the effect of 

estrogen (e.g., tamoxifen). In addition, HER2+ cancer cells are responsive to monoclonal 

antibody (e.g., trastuzumab) blockade of epidermal growth factor receptor 2 

(EGFR2/HER2/neu) and can be effectively treated in combination with conventional 

chemotherapy (15).  

    Despite advances in treatment, patients with invasive breast carcinoma still face 

around 80% mortality rate, partially due to drug toxicity and drug resistant disease. Also, 

the understanding for basal-like / triple negative breast cancer (TNBC) progression is still 
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limited, leading to the lack of effective targeted therapies. Furthermore, although 

expression patterns of the known prognostic markers have been well characterized, 

treatment effectiveness is complicated by the presence of reactive stroma, which is 

associated with tumor invasiveness and drug resistance (16-19). In order to tailor 

treatments more effectively to individual patient, it may be important to define clearly the 

breast tumor stroma at a molecular level, which could contribute to the identification of 

novel breast cancer prognostic markers with enhanced predictive potential for ER- 

targeted therapies.  

Tumor Microenvironment 

    The tumor microenvironment is composed of the tumor, surrounding blood vessels, 

immune cells, fibroblasts, signaling molecules, and the extracellular matrix (NCI 

Dictionary of Cancer Terms). Tumors recruit these components to facilitate their 

progression and metastasis through bidirectional talk between tumor cells and the 

microenvironment (20, 21). In contrast to the well-organized homeostasis of the normal 

cells, tumor microenvironment is deregulated at molecular and cellular levels. 

Fibroblast in cancer 

    Fibroblasts are a major cell type in connective tissues throughout the body, which 

regulate multiple physiological processes including inflammation, wound healing and 

senescence (22). Fibroblasts normally play an important role in maintaining the 

structural integrity of connective tissues through secretion of extracellular matrix 

precursors including type I, type III and type V collagen, and fibronectin (23). In addition 

to deposition of extracellular matrix (ECM), fibroblasts play an essential role in   
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maintaining ECM homeostasis through secretion of ECM-degrading proteases such as 

matrix metalloproteinases (MMPs) as well (24).  

    As a key cellular component in breast stroma, fibroblasts normally get activated during 

mammary gland development to regulate ductal branching and morphogenesis (25, 26). 

Fibroblasts are also a major cellular component of the breast tumor microenvironment, 

yet the molecular signals that identify cancer associated fibroblasts (CAFs) still remain 

poorly understood. CAFs are not a uniform population of cells and may be derived from 

different origins, including embryonic mesenchyme, endothelial cells, macrophages and 

cancer cells (27). CAFs are generally identified by their spindle cell morphology and 

expression of mesenchymal markers, including Fibroblast Specific Protein 1 (Fsp1), 

alpha Smooth Muscle Actin (-SMA), and Fibroblast Activating Protein (FAP) (27, 28). 

Accumulation of CAFs strongly correlates with tumor grade and poor patient prognosis 

(29-31). Recent studies demonstrated the importance of CAFs in chemo-resistance. 

Fibroblasts are more resistant to chemotherapy than cancer cells, including melanoma 

and squamous cell carcinoma (32). In animal models, Doxorubicin treatment results in 

increased CAF secretion of growth factors and cytokines involved in the development of 

drug-resistant prostate and colorectal cancers (33, 34). Targeting FAP-expressing CAFs 

in animal models has been shown to inhibit growth of invasive tumors and enhance 

chemo-sensitivity to Doxorubicin in colon and breast cancers (35, 36). Yet the use of 

FAP inhibitors has not been successful in clinical trials (37, 38). This result may be due 

in part to the complex identity of CAFs, as well as possible functional redundancy. 

    De-regulated growth and activity of fibroblast is associated with progression and poor 

patient prognosis of invasive breast cancer, which is characterized by the presence of 

dense collagenous tumor stroma and accumulation of activated fibroblasts (3,4). 

Activated fibroblasts exhibit enhanced secretion of extracellular matrix proteins, 
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proteases and growth factors, mediating tissue remodeling in tumor microenvironment. 

In animal studies, co-grafting of mammary CAFs with mammary carcinoma cells results 

in increased tumor growth, survival and metastasis (5-7). Conversely, breast tumor 

outgrowth and cellular invasiveness is inhibited by co-transplantation of normal tissue-

associated fibroblasts (NAFs) (8,9). While NAFs and CAFs exhibit a uniform cell 

morphology, molecular profiling studies reveal that CAFs show increased expression of 

extracellular matrix proteins, growth factors and cytokines, which may contribute to 

tumor progression (10-12). Interestingly, metastatic carcinoma cells (Ki-67 positive) 

down-regulate E-cadherin expression at the periphery of cancer islands, where they are 

in direct contact with CAFs, leading to the hypothesis that CAFs not only promote tumor 

invasion but also facilitate metastases, either by co-metastasizing and/or being recruited 

to lymph nodes (39). 

Epithelial cell: fibroblast interactions 

    Epithelial cell: fibroblast interactions are well known to contribute to the pathogenesis 

of fibrotic diseases in multiple organs including lung, kidney and liver, where fibroblasts 

and epithelial cells normally reside in close proximity. For example, mechanical injury to 

lung alveolar epithelial cells (AEC) provoke expression of α-SMA and type I and III 

collagen in co-cultured fibroblasts, which in turn amplify AEC injury and apoptosis 

through paracrine mechanisms (40).   

    Epithelial cell: fibroblasts interactions also play important roles in aging and cancer 

progression. Senescent stromal fibroblasts secret soluble factors including inflammatory 

cytokines, epithelial growth factors and matrix matalloproteinases (MMPs) that can 

disrupt the architecture and function of the surrounding tissues and regulate proliferation 

of neighboring cells including epithelial cells (41). In this way, senescent fibroblasts 
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create a tissue environment to facilitate epithelial senescence or malignancies (42, 43). 

Additionally, a number of studies provide strong evidence that cancer-associated 

fibroblasts (CAFs) enhance tumorigenic potential of prostate epithelial cells and  gland-

forming capability of prostate cancer stem cells, yet the molecular mechanisms remains 

to be elucidated (44, 45).   

Chemokines  

    Chemokines, also referred to as chemotactic cytokines, are a family of small soluble 

proteins (8-10 kDa) secreted by a variety of cells, including neutrophils, monocytes, 

macrophages, epithelial cells and fibroblasts. While fibroblasts are commonly recognized 

to play a role in regulating recruitment of immune cell recruitment during inflammatory 

response, studies in the last decades have revealed important roles of chemokine 

signaling in many types of cancer (46-48). More than 50 chemokine ligands and 18 

chemokine receptors have been identified so far in human. Chemokines are categorized 

into four distinct families based on the spacing of their first two N-terminal cysteine 

residues: C, CC, CXC, and CX3C in which a conserved cysteine motif may also include 

an amino acid in their NH2 terminal domain. The CXC chemokines can be further 

classified as Glu-Leu-Arg positive (ELR+) and ELR- based on the presence or absence 

of this motif before the first cysteine. ELR+ chemokines specifically induce the migration 

of neutrophils, and were found to be potent angiogenic factors (49-51). CXCL1 is a 

ELR+ member of the CXC subfamily and is also referred as GRO1 oncogene, GROα, 

KC, neutrophil-activating protein 3 (NAP-3) and melanoma growth stimulating activity, 

alpha (MGSA-α) (52). Other than CXCL1, there are currently 16 other CXC chemokine 

ligands identified, which bind promiscuously to 7 chemokine receptors (CXCR1, CXCR2, 

CXCR3, CXCR4, CXCR5, CXCR6, CXCR7). 
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    Generally, chemokines bind to seven-transmembrane-domain receptors, which couple 

to G proteins and activate signaling pathways involved with cell migration and 

differentiation. The biological effects of CXCL1 are mediated through two class A, 

rhodopsin-like guanine-protein-coupled receptors (GPCRs): CXCR1 and CXCR2 (53). 

CXCR1 and CXCR2 have 78% identical amino acid sequences (54, 55), however, due 

to the differences in the receptor N-terminal sequences, CXCL1 predominantly binds to 

CXCR2 instead of CXCR1 under physiologic conditions (56). CXCR2 binds to multiple 

chemokine ligand in addition to CXCL1, including CXCL2, CXCL3, CXCL5, CXCL6, 

CXCL7 and CXCL8. 

Chemokine signaling in cancer 

    Inflammatory chemokines such as CXCL1, CXCL8, CCL2, CCL5 are overexpressed 

in melanoma, ovarian, prostate cancers, correlating with poor diagnosis, shortened 

patient survival, increased angiogenesis (57-59). Interestingly, overexpression of 

chemokines is tissue specific, indicating their specific roles in tumor progression. For 

instance, CXCL3 is up-regulated in prostate cancer, whereas CXCL5 has been detected 

in lung and liver cancers (60, 61).  

    Generally, chemokines are known to promote tumor progression through recruiting 

immune cells such as neutrophils and macrophages to primary tumor sites, leading to 

inflammatory responses (62). Additionally, a number of studies suggest that chemokine 

signaling is essential in metastatic disease, in which specific expression patterns of 

chemokine ligands and receptors in tissues or regional lymph nodes may potently 

facilitate tumor dissemination at several key steps of metastasis, including adherence of 

tumor cells to endothelium, extravasation from blood vessels, metastatic colonization, 

angiogenesis, proliferation, and protection from the host response (63).  
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CXCL1/CXCR2 signaling in cancer 

    Increased expression of CXCL1 in tumors has been reported in multiple tumor types 

including prostate cancer, gastric cancer, renal cell carcinoma and melanoma (64, 65). 

In breast cancer, increased CXCL1 protein expression has been reported in HER2 

positive metastatic breast cancer (66) and was associated with increased tumor growth 

and pulmonary metastasis of MDA-MB231 breast cancer cells grafted in the mammary 

fat pads of nude mice (67). Moreover, increased plasma levels of CXCL1 protein are 

associated with decreased survival of breast cancer patients with metastatic disease 

(68). Similarly, increased tumoral expression of CXCL1 RNA is associated with 

metastatic disease, correlating with tumor grade and decreased survival of patients with 

ER positive breast cancer (10).  

    Emerging studies have suggested important tumorigenic roles of chemokines in 

breast tumor stroma. For instance, CXCL12 derived from CAFs promotes tumor growth 

and angiogenesis through endocrine and paracrine mechanisms; CCL5 from 

mesenchymal stem cells acts in a paracrine fashion on cancer cells to enhance cell 

motility, invasion and metastasis (69, 70). However, the expression, clinical relevance of 

CXCL1 in breast tumor stroma and its role in breast cancer progression has not been 

fully characterized. Recently, it has been reported that a CXCL1 paracrine network links 

breast cancer chemo-resistance and metastasis via recruitment of myeloid cells, which 

enhance tumor cell survival through secretion of S100A8/9 (71). In this dissertation, we 

have systematically characterized the expression patterns of CXCL1 in breast cancer 

stroma, determined the prognostic significance of stromal CXCL1 expression in the 

context of other known prognostic factors, and identified factors affecting stromal CXCL1 

expression in Chapter II.  Additionally, in Chapter IV, we demonstrate that CXCL1 

signals to its receptor CXCR2 to promote breast cancer cell survival and invasion 
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without influencing cell proliferation, suggesting a novel role for CXCL1/CXCR2 signaling 

in breast tumors. Furthermore, in Chapter IV, we have shown evidence that CXCL1 

stimulates Akt and NF-κB signaling in breast cancer cells, indicating a potential role for 

these signaling pathways in CXCL1-induced cell invasion and survival. 

Signal Transduction 

CXCL1/CXCR2 signaling  

    Like many other GPCR-induced signaling pathways, binding of CXCL1 activates its 

receptor CXCR2, resulting in activation of the associated G protein (72). The G protein 

disassociates into the GTP-bound Gα-subunit and the Gβγ-complex, which activate 

different signaling molecules. The Gα-subunit either inhibits some isoforms of adenylyl 

cyclase leading to decrease of intracellular cAMP-levels and cAMP-dependent protein 

kinase activity or activates some small GTPases (73). The Gβγ-complex is able to 

activate PI3Kγ and  β2/β3 isoforms of phospholipase C (PLC), which hydrolyzes 

phosphatidylinositol 4,5-bisphosphate to generate inositol trisphosphate (IP3), followed 

by mobilization of calcium and diacylglycerol (DAG) and eventually activates Ca2+-

independent and Ca2+-dependent protein kinase C. In addition, activation of PI3Kγ 

catalyzes conversion of phosphatidylinositol-3,4-bisphosphate (PIP2) to 

phosphatidylinositol-3,4,5-trisphosphate (PIP3), leading to activation of downstream 

signaling such as Akt (74, 75). In addition to activation by the Gα-subunit, Small 

GTPases of Rho family such as Rac1 and 2 can also be activated downstream of PI3K 

(76, 77).  

TGF-β Signaling  
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    Transforming Growth Factor-beta (TGF-β) signaling is an important regulator of 

fibroblast activity. TGF-β signals through TGF-β type I and II receptors on cell surface, 

which activate Smad2 and Smad3 proteins, resulting in a complexes with Smad4. These 

complexes translocate into the nucleus and regulate transcription of genes related to the 

cell cycle, adhesion and invasion (78).  

    TGF-β signaling in fibroblasts can be activated by tumor cells. For example, increased 

protease expression and plasmin generation by tumor cells enhances activation of TGF-

β and degradation of the extracellular matrix, with a consequent release of TGF-β (79). 

TGF-β signaling plays an important role in regulating fibroblasts activity. In vitro, TGF-β 

induces anchorage-dependent growth of mouse fibroblasts (80). In vivo, TGF-β 

regulates desmoplastic responses by activating fibroblasts to acquire a myofibroblast 

state, characterized by spindle-shaped morphology and increased expression of α-SMA, 

growth factors, angiogenic factors, extracellular matrix proteins and proteases, 

corresponding with enhanced tumor growth and metastasis (81, 82).  

    Studies indicate that TGF-β signaling in fibroblasts either promotes or suppresses 

tumor progression in adjacent epithelia, depending on tissue of origin (83). To 

understand the role of TGF-β signaling in such epithelial-mesenchymal interactions, the 

TGF-β type II receptor gene was conditionally knocked out in mouse fibroblasts 

(Tgfbr2FspKO). Loss of TGF-β responsiveness in fibroblasts enhanced proliferation of 

both fibroblasts and adjacent epithelia and resulted in intraepithelial neoplasia in the 

prostate, and invasive squamous cell carcinoma in fore stomach, both associated with 

an increased abundance of stromal cells (84, 85).  

    In contrast, in the mammary gland, TGF-β signaling plays a tumor suppressive role. 

TGF-β signaling and HGF signaling play antagonistic roles in mammary gland 
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development and tumor progression. Female Tgfbr2FspKO mice exhibit severe defects 

in mammary gland development, including increased ductal epithelial cell turnover and 

increased fibroblast abundance. Transplantation of mammary carcinoma cells with 

Tgfbr2FspKO fibroblasts enhances mammary tumor growth and metastasis in MMTV-

PyVmT transgenic mice and in co-transplantation models (86-88). Furthermore, 

Tgfbr2FspKO fibroblasts show increased expression of growth factors, including 

Transforming Growth Factor-α and Hepatocyte Growth Factor (HGF), which act on 

mammary carcinoma cells to promote epithelial cell growth and migration (87, 88). All 

these factors are similarly overexpressed in CAFs (80, 89), suggesting a link between 

decreased TGF-β signaling in breast CAFs and enhanced expression of tumor 

promoting factors. Interestingly, up-regulation of CXCL1 was identified in Tgfbr2FspKO 

fibroblasts by DNA microarray and by luciferase promoter activity assay in our 

preliminary studies, indicating a negative correlation of CXCL1 expression and TGF-β 

signaling. In chapter II, we have systematically characterized the expression pattern and 

prognostic significance of CXCL1 and TGF-β signaling components in breast tumor 

stroma. In chapter III, we provide strong evidences to address the hypothesis that TGF-β 

signaling coordinates with HGF signaling to regulate CXCL1 expression in mammary 

fibroblasts.  

Summary 

    Taken together, our studies have for the first time revealed the clinical relevance and 

prognostic significance of up-regulated CXCL1 expression in breast tumor stroma and 

poor prognosis of breast cancer patients, identified the molecular mechanisms through 

which CXCL1 expression was regulated in mammary carcinoma-associated fibroblasts 

in the context of TGF- signaling, and characterized the role of fibroblast-derived 
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paracrine CXCL1/CXCR2 signaling in promoting breast cancer cell survival, invasion 

and tumor progression. These studies provide new insights into the understanding of 

breast cancer progression at molecular levels, and underline the significance of blocking 

CXCL1/CXCR2 signaling-mediated epithelial cell: fibroblast interactions as a novel 

therapeutic strategies against breast cancer progression.  
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Chapter II: Elevated CXCL1 expression in breast cancer 
stroma predicts poor prognosis and is inversely associated with 

expression of TGF- signaling proteins 
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Abstract 

    Fibroblasts are important cellular components of the breast tumor microenvironment; 

yet, the molecular signatures that identify cancer-associated fibroblasts (CAFs) remain 

poorly understood. In addition, CXCL1 is a chemotactic cytokine shown to regulate 

breast cancer progression and chemo-resistance. However, the prognostic significance 

of CXCL1 expression in breast cancer has not been fully characterized. Furthermore, 

recent studies indicate that stromal fibroblasts are potential sources of CXCL1 

expression in breast tumors. The goals of these studies were to further characterize the 

expression patterns of CXCL1 in breast cancer stroma, to determine the prognostic 

significance of stromal CXCL1 expression, and to identify factors affecting stromal 

CXCL1 expression. Stromal CXCL1 protein expression was analyzed in 54 normal and 

83 breast carcinomas by immunohistochemistry. RNA expression of CXCL1 was 

analyzed in breast cancer stroma through data mining in  www.Oncomine.org. The 

relationships between CXCL1 expression and risk factors were analyzed by univariate 

analysis. Co-immunofluoresence staining for CXCL1, alpha Smooth Muscle Actin (-

SMA) and Fibroblast Specific Protein 1 (FSP1) was performed to analyze expression of 

CXCL1 in fibroblasts. By candidate profiling, the TGF- signaling pathway was identified 

as a regulator of CXCL1 expression in fibroblasts. Expression of TGF- and SMAD gene 

products were analyzed by immunohistochemistry and data mining analysis. The 

relationships between stromal CXCL1 and TGF- signaling components were analyzed 

by univariate analysis. Carcinoma associated fibroblasts isolated from MMTV-PyVmT 

mammary tumors were treated with recombinant TGF- and analyzed for CXCL1 

promoter activity by luciferase assay, and protein secretion by ELISA. Elevated CXCL1 

expression in breast cancer stroma correlated with tumor grade, disease recurrence and 
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decreased patient survival. By co-immunofluorescence staining, CXCL1 expression 

overlapped with expression of -SMA and FSP1 proteins. Expression of stromal CXCL1 

protein expression inversely correlated with the expression of TGF- signaling 

components. Treatment of fibroblasts with TGF- suppressed CXCL1 secretion and 

promoter activity. In conclusion, increased CXCL1 expression in breast cancer stroma 

correlates with poor patient prognosis. Furthermore, CXCL1 expression is localized to -

SMA and FSP1 positive fibroblasts, and is negatively regulated by TGF- signaling. 

These studies indicate that decreased TGF- signaling in carcinoma associated 

fibroblasts enhances CXCL1 expression in fibroblasts, which could contribute to breast 

cancer progression.  

Introduction 

    Breast cancer remains to be the most common cancer diagnosed in women in the US 

and in the world, with over 1.3 million new cases annually (2, 3). 80% of all invasive 

breast cancers in the US are diagnosed as invasive ductal carcinoma (IDC). Current 

treatments include radiation, chemotherapy, hormone therapy and targeted HER2 

therapy (12-14).  Despite advances in treatment, patients with invasive breast carcinoma 

still face an 80% mortality rate, due in part to drug toxicity and drug resistant disease. 

Treatment effectiveness is complicated by the presence of reactive stroma, which is 

associated with tumor invasiveness and drug resistance (16-19). In order to tailor 

treatments more effectively to the individual patient, it may be important to define clearly 

the breast tumor stroma at a molecular level, which will enable us to identify biomarkers 

that will more accurately predict patient responsiveness to treatments.  

    Fibroblasts are key cellular components in breast stroma and are normally activated 

during mammary gland development to regulate ductal branching and morphogenesis 
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(25, 26). De-regulation of fibroblast growth and activity is associated with breast cancer. 

Carcinoma-associated fibroblasts (CAFs) are commonly identified by their spindle cell 

morphology and expression of mesenchymal markers including Fibroblast Specific 

Protein 1 (FSP1), alpha Smooth Muscle Actin (-SMA), and Fibroblast Activating Protein 

(FAP) (27, 28). Accumulation of CAFs strongly correlates with tumor grade and poor 

patient prognosis (29-31). Co-transplantation studies and transgenic mouse studies 

have demonstrated  that CAFs enhance breast tumor growth and invasion (70, 90, 91). 

Conversely, co-transplantation of normal fibroblasts with breast cancer cells inhibits 

cellular invasiveness and inhibits tumor progression (92). These studies indicate that 

fibroblasts may enhance or inhibit breast cancer progression depending on the tissue of 

origin.   

    Recent studies demonstrate the importance of CAFs in chemo-resistance. Fibroblasts 

are more resistant to chemotherapy than cancer cells, including melanoma and 

squamous cell carcinoma (32). In animal models, Doxorubicin treatment results in 

increased CAF secretion of growth factors and cytokines involved in the development of 

drug resistant prostate and colorectal cancers (33, 34). Targeting FAP expressing CAFs 

in animal models has been shown to inhibit growth of invasive tumors and enhance 

chemo-sensitivity to Doxorubicin of colon and breast cancers (35, 36). Yet the use of 

FAP inhibitors has not been successful in clinical trials (37, 38). This result may be due 

in part to the complex identity of CAFs. Fibroblasts are not a uniform population of cells. 

One type of CAF in breast cancer is the myofibroblast, which expresses -SMA (93, 94). 

Another type of breast CAF expresses FSP1 but not -SMA (95). Furthermore, 

fibroblasts may be derived from different origins including embryonic mesenchyme or 

endothelial cells (27). These studies indicate the presence of different populations of 
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CAFs. Currently, the molecular signatures that identify tumor-promoting fibroblasts 

remain incompletely understood.  

    Emerging studies indicate an important clinical significance for chemokine expression 

in cancer stroma. Chemokines are a family of small soluble proteins (8-10 KD) that 

regulate angiogenesis and immune cell recruitment during inflammation and cancer (46-

48). Chemokines bind to seven transmembrane spanning receptors that couple to G 

proteins and activate signaling pathways involved with cell migration and differentiation. 

As a large family of molecules, chemokines are categorized into distinct families: C, C-C, 

C-X-C, and CX3C, in which a conserved cysteine motif may also include an amino acid 

(X) in their NH2 terminal domain. The C-X-C chemokine family is currently comprised of 

17 ligands, which bind promiscuously to 7 chemokine receptors (CXCR1-7). A 

conserved glutamic acid-leucine-arginine (ELR) motif has been detected in a small 

subset of C-X-C chemokines (CXCL1,2,3,5,8), which is important for stimulating 

angiogenesis and regulating recruitment of neutrophils (50, 51). Up-regulated expression 

of ELR positive chemokines have been detected in various cancers, associated with 

increased angiogenesis and immune cell recruitment. CXCL3 is up-regulated in prostate 

cancer (96) while CXCL5 has been detected in lung and liver cancers (60, 61). 

Increased expression of CXCL1 has been reported in multiple tumor types including 

prostate cancer, gastric cancer, renal cell carcinoma and melanoma (64, 65). These 

studies indicate aberrant expression of C-X-C chemokines in cancer. 

    Recent reports have implicated a role for CXCL1 in breast cancer. Increased CXCL1 

protein expression was associated with increased tumor growth and pulmonary 

metastasis of MDA-MB231 breast cancer cells grafted in the mammary fat pads of nude 

mice (67). Increased CXCL1 protein expression has been reported in HER2 positive 

metastatic breast cancer (66). Increased plasma levels of CXCL1 protein are associated 
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with decreased survival of patients with metastatic disease (68). Similarly, increased 

tumoral expression of CXCL1 RNA is associated with metastatic disease, correlating 

with tumor grade and decreased survival of patients with ER- positive breast cancer 

(10). Recently studies have shown that CXCL1 expression is up-regulated in breast 

cancer associated fibroblasts (10), indicating that CXCL1 expression is not restricted to 

epithelial cells. 

    Previous studies primarily examined the prognostic significance of CXCL1 expression 

in tumor epithelium (10). Yet, biomarker expression patterns in the stroma and 

epithelium can have vastly different relationships to known prognostic factors and clinical 

outcomes (11). The goals of these studies were to characterize further the expression 

patterns of CXCL1 in breast cancer stroma, to determine the prognostic significance of 

stromal CXCL1 expression, and to identify factors affecting stromal CXCL1 expression. 

We used a combination of data mining analysis and immunohistochemistry staining of 

patient samples to investigate the RNA and protein expression patterns of CXCL1 RNA 

and protein in the breast cancer stroma. Our studies indicate that patient samples 

express high levels of CXCL1 RNA and protein in breast cancer stroma, correlating with 

tumor grade. CXCL1 RNA expression levels significantly associated with tumor 

recurrence and decreased patient survival. CXCL1 protein expression co-localized to 

FSP1 and -SMA positive cells, indicating that CXCL1 is expressed in more than one 

population of CAFs. Increased CXCL1 in CAFs correlated with decreased TGF- 

expression. Immunostaining analysis of breast tumor tissues indicated that increased 

CXCL1 expression inversely correlates with expression of TGF-, phospho-SMAD2 and 

phospho-SMAD3. Treatment of cultured CAFs with TGF- suppresses CXCL1 secretion 

and promoter activity. In summary, these studies indicate a prognostic significance for 
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CXCL1 expression in breast cancer stroma, showing that CXCL1 is localized to multiple 

fibroblast populations, and is negatively regulated by TGF- signaling. 

Materials and Methods 

Patient samples used for immunohistochemistry analysis 

    Samples were collected from commercial and institutional resources (Table 2.1). 

Tissues microarrays (TMA) containing de-identified cores of 18 normal and 26 invasive 

breast ductal carcinoma samples were obtained from US Biomax (cat nos. 8032 and 

241). Information included data on age, tumor grade and clinical diagnosis. Additional 

patient samples of normal, DCIS and IDC were obtained from the Biospecimen 

Repository Core Facility (BRCF), an IRB approved facility at the University of Kansas 

Medical Center. 14 normal, 5 DCIS and 13 IDC cases were obtained as individual 

specimens. Tissue microarrays were generated from an additional 22 normal, 20 DCIS 

and 14 IDC specimens. All tissues were obtained under a human subjects exemption 

policy. As these samples were collected within the last 4 years, no follow-up data was 

available. From the BCRF sample collection, 13 samples of normal tissues originated 

from adjacent breast tissues of cancer patients. 26 samples of normal tissues were 

collected from patients undergoing reduction mammoplasty. Tumor samples were 

collected under the following criteria: Patients were diagnosed with primary breast ductal 

carcinoma and had not been treated with radiation or chemotherapy before surgery and 

sample collection. Reports included data on biological risk factors, clinical diagnosis and 

histo- and cyto-pathology. The Van Nuys system was used to grade DCIS samples. IDC 

samples were graded according to the Scarff-Bloom and Richardson system. 

Characteristics of tumor samples are described in Table 2.1. Intensity of staining or 

percentage of positive cells were reported for BCL2, p53, ER, PR, Her2 and EGFR  
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Table 2.1. Characteristics of breast ductal carcinoma samples from US Biomax 

and the BRCF core. 
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biomarkers, and are summarized as positive or negative. The number of samples with 

risk factor data is from a total of 25 DCIS samples and 58 IDC samples (US Biomax and 

BRCF samples combined). 100% of risk factor data from US Biomax samples, and risk 

factor data included in more than 55% of pathology reports from BRCF specimens are 

reported here. In total, normal tissues were collected from patients with median age of 

48.6 years. Median age of patients with DCIS was 51 years. IDC patients had a median 

age of 50.5 years. 

Ethics and Consent Statements 

    The tissues collected for these studies were categorized under the “Exemption Class”, 

according to regulations set forth by the Human Research Protection Program (ethics 

committee) at the University of Kansas Medical Center (#080193). Written informed 

consent for tissue collection was obtained by the BRCF. Tissue samples were de-

identified by the BRCF prior to distribution to the investigators. Existing medical records 

were used in compliance with the regulations of the University of Kansas Medical Center. 

These regulations are aligned with the World Medical Association Declaration of Helsinki. 

Immunohistochemistry staining 

    CXCL1 protein expression was examined on patient samples obtained from US 

Biomax arrays and samples from the BRCF core. Expression of TGF-, phospho-

SMAD2 and phospho-SMAD3 proteins were primarily analyzed on patient samples 

obtained from the BRCF core. Tissue sections (5 µm) were de-waxed and rehydrated in 

PBS. Sections were subjected to antigen retrieval in 10 mM sodium citrate buffer pH 6.0 

for 10 minutes at 100oC and washed in PBS. Endogenous peroxidases were quenched 

in PBS containing 3% H202 and 10% methanol for 30 minutes. After rinsing in PBS, 

samples were blocked in PBS containing 5% rabbit serum and incubated with antibodies 
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(1:100) to CXCL1 (cat. no. 1374, Santa Cruz Biotechnology), TGF- (cat. no.  MAB 240, 

R&D Systems), phospho-SMAD2 (Ser465/467) (cat. no. 3101, Cell Signaling 

Technologies), or phospho-Smad3 (Ser423/425) (cat. no. C25A9, Cell Signaling 

Technologies) overnight at 4oC.  Samples were washed in PBS and incubated with 

secondary goat biotinylated antibodies (1:500) (cat. no. BA-5000, Vector Labs), 

conjugated with streptavidin peroxidase (cat. no. PK-4000, Vector Labs) and incubated 

with 3,3'-Diaminobenzidine (DAB) substrate (cat. no. K346711, Dako). Sections were 

counterstained with Harris’s hematoxylin for 5 minute, dehydrated and mounted with 

Cytoseal.   

Quantification of Immunohistochemistry staining 

    Immunohistochemistry staining was imaged at 10 x magnification using a Motic AE 31 

microscope with Infinity 2-1c color digital camera. Four fields were captured for each at 

10 x magnification. To analyze biomarker expression in stromal tissues, we adapted 

methods described in previous studies (88, 97, 98). Images were first imported into 

Adobe Photoshop®. Hue and saturation of images were normalized using Auto-Contrast.  

Tumor epithelium was distinguished from stroma by differences in nuclear and cellular 

morphology, and tissue architecture. Using the lasso tool, epithelial tissues were 

selected and cropped out from the image, leaving the stromal tissues behind. These 

stromal tissues were labeled as “ total stromal area”. DAB chromogen staining (brown) 

was selected using the Magic Wand Tool in the Color Range Window, with a specificity 

range of 66. The selected pixels were copied and pasted into a new window and saved 

as a separate file. DAB positive images were opened in Image J and converted to 

greyscale. Background pixels resulting from luminosity of bright-field images were 

removed by threshold analysis. Images were then subjected to particle analysis.  
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Positive DAB staining and total stromal areas were expressed as particle area values of 

arbitrary units. Positive DAB values were normalized to total stromal values. 

Immunofluorescence staining 

    Normal or breast cancer sections were de-paraffinized, and treated with sodium 

citrate as described for immunohistochemistry. Sections were permeabilized in PBS 

containing 10% Methanol for 30 minutes, washed in PBS and blocked for 1 hour with 

PBS containing 3% fetal bovine serum. Mouse IgGs were blocked using the M.O.M kit 

(cat. no. BMK-2202, Vector Labs) according to manufacturer’s protocol. For co-

immunofluorescence staining of CXCL1 and FSP1, sections were incubated with goat 

polyclonal antibodies to CXCL1 at a 1:100 dilution (cat. no. 1374, Santa Cruz 

Biotechnology) and with rabbit polyclonal antibodies to FSP1 (pre-diluted solution, cat. 

no. 27597, Abcam) in PBS/3% FBS overnight. For co-staining of CXCL1 and -SMA, 

sections were incubated with antibodies to CXCL1, and mouse monoclonal antibodies to 

-SMA (cat. no. ab134813, Abcam) at a 1:100 dilution. Sections were then washed with 

PBS and incubated with the following secondary antibodies at 1:500 dilution in blocking 

buffer for 1 hour: anti-goat-alexa-488 to detect CXCL1, anti-mouse-alexa-568 to detect 

-SMA, or anti-rabbit-alexa-488 to detect FSP1. Sections were washed with PBS and 

countered with DAPI. Slides were mounted in Anti-Fade (cat. no. P36935, Invitrogen). 

Fluorescence images were taken at 20 x magnification using the Motic AE-31 

microscope.  

RNA expression analysis 

    RNA expression values in breast stromal samples were obtained from the microarray 

database in www.Oncomine.org, characterized by Finak et al. in previous studies (17, 

99). Briefly, tissue samples were collected from 53 patients with invasive breast 
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carcinoma, of which 50 were diagnosed as IDC. Stromal samples were collected by 

laser capture micro-dissection and hybridized to microarrays. 6 normal samples were 

obtained from adjacent tissues of breast cancer patients. Patient samples included 

follow-up data, including information on recurrence within 5 years, and poor survival 

outcome. Poor survival outcome was defined as patients who died from disease at the 

time of follow-up. Median follow-up time was 3.58 years. The Finak database, provided  

as Log2 median RNA expression values and prognostic information, including age, tumor 

grade and tumor size. The database did not include information on which cases were 

invasive lobular carcinoma, and were therefore included in the analysis.  

Cell Culture 

    Primary mammary carcinoma-associated fibroblasts (CAFs) were isolated from 

transgenic mice (FVB) expressing the PyVmT oncogene under the control of Mouse 

Mammary Tumor Virus Promoter (MMTV) (100) at 12-16 weeks of age. Primary normal 

mammary tissue associated fibroblasts (NAFs) were isolated from wild-type C57/BL6 

mice at 12-16 weeks of age. FspKO fibroblasts were isolated from FspKO knockout mice 

as described (88). Fibroblasts cell lines were generated by spontaneous immortalization 

of primary mammary fibroblasts and clonal populations of fibroblasts were obtained as 

described (88). Primary human fibroblasts were isolated from patient samples from 

reduction mammoplasty or invasive ductal carcinoma from the BRCF, using methods as 

described (88). Primary cells were cultured on 10-cm dishes coated with rat tail collagen 

I.  All cells were cultured in Dulbecco’s modified Eagle medium (DMEM) containing10% 

fetal bovine serum (FBS) (cat. no. FR-0500-A, Atlas Biological), 2 mM L-glutamine (cat. 

no. 25-005-CI, Cellgro) and 100 I.U/ml penicillin / 100 µg/ml of streptomycin (cat. no. 10-

080, Cellgro). 
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ELISA 

    Cells were seeded in a 24-well plate at a density of 20,000 cells for 24 hours. 

Conditioned media was generated by incubating cells in 500 µl Opti-MEM media for 24 

hours, and were centrifuged to eliminate cell debris. 100 µl of conditioned media 

generated from indicated cell lines was subjected to TGF- ELISA (cat. no. DY1679, 

R&D Systems) or CXCL1 ELISA (cat. no. 250-11, Peprotech). Samples were analyzed 

according to manufacturer’s protocol. Reactions were catalyzed using 

tetramethylbenzidine substrate (cat. no. 34028, Thermo Scientific) according to 

manufacturer’s protocol. Reactions were stopped with 1M HCl, and absorbance was 

read at A450nm using a 1420 multi-label plate reader (VICTOR3 TM V, PerkinElmer). All 

the samples were analyzed in triplicate. 

Luciferase Assay 

    Cells were seeded in 6-cm dishes at a density of 150,000 cells for 24 hours, and then 

co-transfected with 8 µg of firefly luciferase plasmids (PGL3.luc.CXCL1) and 400 ng of 

Renilla luciferase plasmids (plasmid 12177: plS2, Addgene) using 8.4 µl Lipofectamine 

LTX and 15 µl Plus reagents according to manufacturer’s protocols (Invitrogen, life 

technologies). After 24 hours, cells were allowed to recover in Opti-MEM media 

containing 10% FBS for 24 hours. Cells were reseeded in 24-well plates at a density of 

20,000 cells for 24 hours followed by incubation in serum free Opti-MEM media 

overnight. Cells were treated with Opti-MEM media containing 10% FBS in the presence 

or absence of 5 ng/ml TGF- for 24 hours. Cell lysates were analyzed using Dual-

Luciferase Reporter Assay system (cat. no. E1910, Promega) according to 

manufacturer’s protocol. Cells were rinsed twice with PBS, lysed in 100 µl passive lysis 

buffer for 15 min at room temperature on a shaker. Cell lysates were sonicated for 10 
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seconds on ice, followed by centrifugation to eliminate cell debris. 20 µl lysates were 

assayed in triplicate in 96-well opaque plate (cat. no. 3912, Corning Costar) using the 

Veritas Microplate Luminometer (model no. 9100-202, Turner BioSystems). 

Statistical Analysis 

    In vitro experiments were performed at minimum in triplicate. Data are expressed as 

Mean±SEM. Statistical analysis for in vitro experiments was determined using two-tailed 

t test or One-way ANOVAs with Bonferonni’s post-test comparisons in Graphpad 

Software. Statistical Significance was determined as p ≤ 0.05. 

    Sample populations did not fit a Gaussian distribution and were observed to be 

uneven. The uneven sample populations were due to two factors. Not all risk factors 

were consistently reported on pathology reports provided with the biospecimens. In 

addition, some tissue samples on tissue microarrays did not adhere to the slide during 

staining. Therefore, RNA and protein expression values and their relationships with risk 

factors were analyzed using non-parametric methods. Level of biomarker expression 

between two groups was analyzed by Wilcoxon Two-Sample Tests. Level of biomarker 

expression among more than 2 groups was analyzed by Kruskall-Wallis test with Dunn’s 

post-hoc comparison between groups. Spearman rank correlation was used to analyze 

the relationship between biomarker expression and prognostic factors that were 

expressed as continuous variables. Wilcoxon Two-Sample Tests were used to analyze 

the relationship between biomarker expression and risk factors (such as tumor grade), 

which were expressed as discrete variables. Statistical significance was determined by 

confidence levels >95% and p ≤ 0.05.   

Results 
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Expression of CXCL1 RNA and proteins are elevated in breast cancer stroma 

    To assess the significance of CXCL1 expression in breast stroma, we compared 

protein and RNA levels of CXCL1 in breast cancer stroma. We first analyzed protein 

expression patterns in tissues from multiple stages of ductal carcinoma. Samples were 

collected from 54 normal breast tissues and 58 IDC tissues. We also collected 25 

samples of DCIS, which is recognized as the immediate precursor to IDC (12, 101). 

Samples were subjected to immunohistochemistry staining for CXCL1 expression. 

Expression in the stromal tissues was quantified by software analysis using methods 

adapted from previous studies (97, 98). These methods were shown to be more 

reproducible and consistent compared to manual scoring. Consistent with previous 

studies (10, 71), CXCL1 was expressed in the tumor epithelium as well as stromal 

tissues (Figure 2.1A). By immunohistochemistry, 87% of normal samples and 100% of 

DCIS and IDC samples were positive for CXCL1 protein expression. CXCL1 expression 

was significantly higher in DCIS and IDC stroma compared to normal stroma (Figure 

2.1B). Expression of CXCL1 in IDC stroma was higher than DCIS stroma; however, the 

differences were not significant. To determine RNA expression patterns of stromal 

CXCL1, we analyzed the microarray dataset on invasive breast cancer stroma 

generated by Finak et al., which consists of 53 cases of invasive breast carcinoma and 6 

cases of normal breast samples (17). We observed that 33% of normal samples (n = 2) 

and 24% of IDC samples (n = 12) were positive for CXCL1 RNA expression (Figure 

2.1C). In the subset of positive samples, mean intensity of expression in normal sample 

was 0.19 ± 0.07 (Mean ± SD) compared to 2.18 ± 1.23 in IDC stroma. Overall, these 

data indicate higher intensity of CXCL1 expression in breast cancer stroma compared to 

normal breast stroma. Breast ductal carcinoma is a heterogeneous disease, exhibiting  
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Figure 2.1. CXCL1 expression is up-regulated in the stroma of breast ductal 

carcinomas. 

(A). CXCL1 expression was analyzed by immunohistochemistry staining in normal 

(n=54), DCIS (n=25) or IDC (n=58) tissues. Representative staining shown. S= Stroma, 

E= epithelium. Arrows point CXCL1 positive staining in stroma. Scale bar= 50 microns. 

(B). Staining in stroma was quantified by Image J analysis. Statistical analysis  was 

determined by Kruskall Wallis Test with Dunn’s post-test comparison. (C). CXCL1 RNA 

expression values were obtained from the Finak microarray database. (Oncomine.org), 

and analyzed for expression among patient samples. *, p<0.05; ***, p<0.001. Values are 

expressed as Mean ± SEM. Error bars represent SEM.  
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different architectural patterns defined by histological analysis. Ductal carcinomas have 

been categorized into multiple histological subtypes. The most common form of ductal 

carcinoma is ductal carcinoma-not otherwise specified (NOS) (102). Less common 

subtypes include comedo and solid ductal carcinomas. Rarer subtypes include mucinous, 

micropapillary and cribribiform breast cancers. While the comedo subtype is associated 

with increased invasiveness, cribribiform, mucinous and papillary tumors are associated 

with a good prognosis. Ductal carcinomas with mixed histological subtypes have also 

been observed, complicating prognostic evaluation (102, 103). In these studies, we 

examined for differences in expression of stromal CXCL1 among the different subtypes. 

CXCL1 expression levels varied among groups. We found no significant differences in 

stromal CXCL1 expression among subtypes of DCIS and IDC. We were unable to draw 

conclusions on mucinous, micropapillary and micropappillary/solid tumors with only one 

sample provided in each group, reflecting the rarity of these subtypes (Figure 2.2 and 

2.3). In these studies, we can only conclude that CXCL1 is expressed in the stroma of 

breast ductal carcinomas of multiple histologic subtypes. 

Associations between stromal CXCL1 expression with risk factors and patient 

outcomes 

To determine the factors affecting stromal CXCL1 expression, we examined for 

associations with commonly used prognostic markers through univariate analysis. We 

first analyzed the protein datasets. There were no significant associations between 

protein expression of CXCL1 among DCIS and IDC stroma with tumor size, BCL2 

expression, p53 status, ER, PR, Her2 status, EGFR expression, lymph node status, Ki67 

expression or age (Table 2.2).  Increased stromal CXCL1 expression did not significantly 

correlate with grade of DCIS (Figure 2.4) but was significantly associated with IDC tumor 
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Figure 2.2. Expression of stromal CXCL1 in DCIS subtypes.  

DCIS patient specimens were immunostained for CXCL1 protein expression and 

quantified for expression in the stroma among the different classified subtypes. Subtypes 

are organized in descending order of diagnosis. Statistical analysis among groups was 

performed using the Kruskall-Wallis test. Statistical significance determined by p<0.05.  

*, p<0.05 compared to all groups. Values are expressed as Mean+SEM. 
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Figure 2.3. Expression of stromal CXCL1 in IDC subtypes.  

IDC patient specimens were immunostained for CXCL1 and quantified for expression in 

the stroma among the different classified subtypes classified. Subtypes are organized in 

descending order of diagnosis. Statistical analysis among groups was performed using 

the Kruskall-Wallis test. Statistical significance determined by p<0.05. NOS= Not 

Otherwise Specified.  *, p<0.05 compared to all groups. Values are expressed as 

Mean+SEM. 
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Table 2.2. Relationship between known prognostic factors and CXCL1 protein 

expression in breast cancer stroma. 
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Figure 2.4. Stromal CXCL1 expression is not associated with grade of DCIS. 

DCIS patient specimens were immunostained for CXCL1 protein expression and 

analyzed for association with histologic grade. N= 2 for DCIS grade 1, N=7 for DCIS 

grade 2 and N=13 for DCIS grade 3. Statistical analysis among groups was performed 

using the Kruskall-Wallis test. Statistical significance determined by p<0.05. *,p<0.05 

compared to all groups. Values are expressed as Mean+SEM. 
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grade (Figure 2.5A). When we analyzed for associations between stromal CXCL1 RNA 

expression and risk factors, we also found a significant association with IDC grade 

(Figure 2.5B), but there was no significant association with age or tumor size (Table 2.3). 

In summary, these data indicate a statistically significant association between stromal 

CXCL1 expression and tumor grade, and modest association between stromal CXCL1 

protein expression and age. 

    Patent samples used for immunohistochemistry analysis were collected within the last 

4 years and therefore did not include outcome data. However, by RNA expression 

analysis in the Finak database, we found a significant correlation between increased 

CXCL1 RNA expression in breast cancer stroma and increased tumor recurrence and 

decreased patient survival (Figure 2.6). These data indicate that increased CXCL1 in the 

breast cancer stroma is associated with poor outcome.  

Elevated expression of CXCL1 in stromal derived fibroblasts is associated with 

decreased TGF- signaling 

    To identify the cellular components of the stroma that express CXCL1, we used 

immunofluorescence. CXCL1 has been shown to be induced in fibroblasts by melanoma 

cells (104). Breast CAFs were also positive for CXCL1 RNA expression (10). These 

studies indicate that cancer associated fibroblasts are a potential source of CXCL1 

expression.  Fibroblasts in breast cancer stroma show non-overlapping expression of a-

SMA and FSP1, indicating the presence of different subsets of fibroblasts (95). To 

determine whether CXCL1 was expressed in particular fibroblast subsets in breast 

cancer, we performed co-immunoflourescence staining for CXCL1 expression with -

SMA or FSP1. Fluorescence expression of CXCL1 was positive in the tumor epithelium  
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Figure 2.5. Associations between CXCL1 expression and tumor grade.  

(A). Stromal CXCL1 protein expression was analyzed for associations with tumor grade 

of IDC by Kruskall Wallis Test, followed by Dunn’s post-test comparison. (B). CXCL1 

RNA expression values were analyzed for associations for tumor grade. Statistical 

analysis was performed using Wilcoxon Two Sample T Test. Statistical significance 

determined by p<0.05. ns, p>0.05; ***p<0.001. Values expressed as Mean+SEM.  
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Table 2.3. Relationship between known prognostic factors and CXCL1 RNA 

expression in breast cancer stroma. 
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Figure 2.6. Increased RNA CXCL1 expression in breast stroma associated with 

poor prognosis.  

CXCL1 RNA expression values were obtained from the Finak microarray database, and 

analyzed for associations with (A). Tumor Recurrence, and (B). Decreased survival. 

Mean+Stdev. Statistical analysis was performed using Wilcoxon Two Sample T Test. 

Statistical significance determined by p<0.05. *, p<0.05.  
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and stroma, consistent with DAB expression patterns. In particular, we observed that 

CXCL1 overlapped with both -SMA and FSP1 expressing cells (Figure 2.7). The 

absence of CXCL1 expression was noted in some -SMA and FSP1 expressing cells, 

indicating that these fibroblasts were not expressing CXCL1. In summary, these data 

indicate CXCL1 is expressed in both -SMA and FSP1 positive fibroblasts in breast 

cancer stroma. 

    We had observed that stromal CXCL1 expression was independent of many known 

risk factors (Table 2.2), and that CXCL1 was localized to CAFs. We therefore analyzed 

for molecular factors affecting CXCL1 expression in fibroblasts. Transforming Growth 

Factor Beta signaling (TGF-) is an important regulator of fibroblast activity. In cultured 

fibroblasts, TGF- modulates cell proliferation and induces production of growth factors, 

angiogenic factors, extracellular matrix proteins and proteases, vital for mammary ductal 

branching and morphogenesis during mammary gland development (105). TGF 

carries out its functions by signaling through its TGF- type II receptor to activate the 

Type I receptor, and downstream effectors including Smad2/3 transcription factors to 

regulate cellular behavior (105, 106). Dominant negative expression of the TGF-type II 

receptor in mammary stroma of transgenic mice result in mammary hyperplasia, 

indicating that a tumor suppressive role for TGF- signaling in mammary stroma (107). 

Cre-mediated deletion of exon 2 of TGF- type II receptor gene (Tgfbr2) in mammary 

fibroblasts (FspKO) had been shown to inhibit TGF- mediated suppression of fibroblast 

proliferation. Co-transplantation of FspKO fibroblasts with 4T1 and PyVmT mammary 

carcinoma cells in the sub-renal capsule of nude mice enhanced tumor progression. 

These tumor promoting phenotypes were associated with changes in paracrine signaling  
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Figure 2.7. CXCL1 co-localizes with -SMA and FSP1 positive stroma.  

Patient samples of breast ductal carcinoma were co-immunofluorescence stained for 

expression of CXCL1 (green), -SMA and/or FSP1 (red). Representative samples of 

CXCL1, -SMA, and FSP1 shown.  Sections were counterstained with DAPI. Secondary 

antibody only controls are shown: anti-goat 488 for CXCL1, anti-mouse-568 for -SMA 

and anti-rabbit-568 for FSP1. Arrows point to positive staining in fibroblastic cells. Scale 

bar= 100 microns. 
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and increased expression of growth factors and pro-metastasis factors (86-88).  Given 

that TGF- signaling in fibroblasts functioned to suppress tumor progression, we 

hypothesized that TGF- would be negatively associated with CXCL1 expression in 

breast cancer stroma.   

    To determine the relationship between stromal CXCL1 and TGF- signaling, we 

analyzed the protein expression patterns of TGF-, and activation of downstream 

effectors, phosphorylated Smad2 and phosphorylated Smad3 in breast tumor samples.  

In order to perform pairwise correlation analysis, immunostaining was performed on 

tumor samples obtained from the BRCF core that were stained for CXCL1 expression. 

Decreased expression of TGF-, phosphorylated Smad2 and phosphorylated Smad3 

proteins were observed in DCIS and IDC stroma (Figure 2.8).  Positive expression of 

stromal CXCL1 was inversely correlated with expression of TGF-, phosphorylated 

Smad2 and phosphorylated Smad3 proteins (Table 2.4). These data indicate an inverse 

correlation between stromal CXCL1 protein expression and expression of TGF- related 

proteins. We also analyzed the RNA expression patterns of CXCL1 and TGF- related 

genes including TGFB, TGFBR2, SMAD2 and SMAD3. By Spearman correlation 

analysis, we detected no significant associations with stromal CXCL1 and SMAD3 

expression. CXCL1 expression positively correlated with TGFBR2 and SMAD2 gene 

expression (Table 2.5). These data indicate a positive correlation between CXCL1 and 

expression of TGF- related genes.  

    Given the differences in association between CXCL1 RNA and protein with TGF- 

related gene and protein expression, we performed further studies to clarify the role of 

TGF- signaling on CXCL1 expression in fibroblasts. In previous studies, a conditional 

knockout mouse model (FspKO) was generated. In that model, exon2 of the Tgfbr2 gene  
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Figure 2.8. Expression patterns of CXCL1 and TGF- signaling proteins in breast 

cancer stroma.  

Adjacent sections of normal breast and invasive breast carcinoma on TMAs were 

subject to immunohistochemistry staining for TGF-, phosphorylated Smad2 and 

phosphorylated Smad3 expression. Representative staining is shown. Expression was 

quantified by Image J, arbitrary units. Scale bar= 50 microns. Statistical analysis was 

performed using Kruskall Wallis Test, followed by Dunn’s post-test comparison. 

Statistical significance determined by p<0.05. **, p<0.01; ***, p<0.001. Values are 

expressed as Mean+SEM. 
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Table 2.4. Protein expression of TGF- signaling components inversely correlate 

with CXCL1 expression in breast stroma. 
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Table 2.5. Correlation between RNA expression of CXCL1 and gene expression of 

TGF- signaling components. 
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was deleted by cre, placed under the control of the Fsp1 promoter. Mammary fibroblasts 

isolated from FspKO mice and control mice (Flox/Flox) were isolated and immortalized. 

Immortalized fibroblasts were shown to be genetically stable and behave similarly to 

primary fibroblasts in vitro and when transplanted into mice (88). These studies 

demonstrate a reliable model to study the role of TGF- signaling on CXCL1 expression 

in mammary fibroblasts. In FspKO fibroblasts, a significant increase in CXCL1 protein 

secretion was detected by ELISA, compared to control fibroblasts (Figure 2.9A). The 

increased protein secretion corresponded to elevated luciferase activity of the CXCL1 

promoter in FspKO fibroblasts (Figure 2.9B). To determine whether FspKO fibroblasts 

phenocopied CAFs, we analyzed for CXCL1 expression in mammary fibroblasts isolated 

from MMTV-PyVmT transgenic mice. CXCL1 expression was significantly higher in CAF 

cell lines compared to normal fibroblasts and corresponded to lower levels of TGF- 

expression in CAFs (Figures 2.9C-D). Furthermore, treatment of TGF- inhibited CXCL1 

secretion in the fibroblast cell lines (Figure 2.9E). These data demonstrate that TGF- 

signaling negatively regulates expression of CXCL1 in CAFs. 

Discussion 

    Empirical studies in animal models and human tissues have established the 

importance of stromal derived fibroblasts on cancer progression (27, 108). However, the 

idea of the “tumor promoting” fibroblast has been unclear. While recent studies have 

shown that the CXCL1 chemokine is expressed in tumor epithelial cells and stromal cells, 

the relevance of stromal CXCL1 expression has remained poorly understood. The goals 

of these studies were to characterize the protein and gene expression patterns of 

CXCL1 in breast cancer stroma, and identify factors affecting stromal CXCL1 expression. 

Here we report that elevated CXCL1 expression in breast cancer stroma is associated 



56 
 

 

 

 

 

  



57 
 

 

 

 

 

 

Figure 2.9. CXCL1 expression is inversely associated with TGF- signaling in 

mammary fibroblasts.  

(A). Conditioned media from Flox/Flox or FspKO fibroblasts were analyzed for CXCL1 

secretion by ELISA. (B). Flox/Flox control or FspKO fibroblasts were co-transfected with 

CXCL1 firefly and Renilla luciferase reporter constructs and analyzed for luciferase 

activity. Values are normalized to Renilla. (C-D). Conditioned medium of cultured 

Carcinoma associated fibroblast cell lines (41CAF, 83CAF) or normal fibroblasts (NAF) 

were analyzed by ELISA for CXCL1 (C) or TGF- secretion (D).  (E). Fibroblasts were 

treated with 5 ng/ml TGF- for 48 hours and analyzed for CXCL1 secretion by ELISA. 

Statistical analysis was determined by two-tailed student t-test. Statistical significance 

determined by p<0.05. *,p<0.05; ***, p<0.001. Values are expressed as Mean ± SEM.  
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with tumor recurrence and decreased patient survival. We also show that CXCL1 is 

localized to -SMA and Fsp1 expressing fibroblasts, and is negatively regulated by TGF-

 signaling. These studies contribute to the definition of the tumor promoting fibroblast, 

identify similarities and differences in the RNA and protein expression patterns, and 

provide insight into the prognostic value of examining biomarker expression in cancer 

stroma. 

    Previous studies have reported elevated CXCL1 RNA expression in breast cancer, 

stroma (10). Some studies have shown significant correlations between RNA and protein 

expression in simple organisms such as yeast and E. Coli (109).  High correlations of 

RNA and protein levels in mammalian cells referred to genes involved in structural and 

cellular homeostasis (110). Other studies have reported variations between RNA and 

protein levels in biomarker studies in various cancer cell lines of various origins 

(lymphoid, myeloid, melanoma, glioma, sarcoma, neuronal, and endometrial, colorectal 

and bladder carcinomas) through microarray and protein arrays over 1000 gene 

products (111). In our studies, we observed some similarities between stromal CXCL1 

protein and RNA expression levels in breast stromal tissues. Intensity of RNA and 

protein expression levels were higher in breast tumors compared to normal breast 

tissues. Elevated expression levels of stromal CXCL1 RNA and protein were associated 

with tumor grade, but there were no significant differences in association with the other 

risk factors examined.  

    These studies indicate some associations between RNA levels and protein expression 

in breast cancer stroma. Yet, we also observed several differences in RNA and protein 

expression. Incidence patterns differed, with stromal CXCL1 protein expression 

expressed in all tumors examined, while the RNA was expressed in a small subset of 

breast tumor samples. In addition, the stromal CXCL1 protein expression inversely 
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correlated with expression of TGF-, phosphor-Smad3 and phospho-Smad2. In contrast, 

CXCL1 RNA levels positively correlated with TGFBR2 and SMAD2 gene expression. It is 

highly possible that multiple post-transcriptional and post-translational mechanisms 

contribute to the differences in RNA and protein expression in breast cancer stroma. 

Studies have shown that NF-kB, PARP and CREB binding proteins positively regulate 

CXCL1 transcription, while CAAT displacement proteins negatively regulate CXCL1 

transcription. Their activities have been reported in breast cancer and could affect 

CXCL1 transcript levels (112, 113). It would be of interest to examine the transcriptional 

mechanisms of CXCL1 expression in stromal cells. Post-transcriptional mechanisms 

active in breast cancer include RNA stabilization through RNA binding protein activity 

(114) and microRNAs (115) or up-regulated (mir 143) (116). However, studies have 

shown that RNA binding protein HuR regulates stability of CCL2 and CCL8 chemokines, 

but not CXCL1 (117).  Mir7641 has been shown to regulate CXCL1 expression in 

endothelial cells (118).  Mir200 has been shown to modulate CXCL1 mRNA expression 

in invasive breast cancers (119).  These studies indicate that microRNA levels in breast 

tumor tissues may affect CXCL1 expression. The post-translational mechanisms for 

CXCL1 are less clear, studies have reported biochemical binding between CXCL1 and 

heparin normally present in extracellular matrix to enhance CXCL1 protein half-life (120). 

Thus, it is possible for stromal CXCL1 protein expression levels to be sustained in the 

absence of RNA expression. It would be of interest to further study post-transcriptional 

and post-translational mechanisms in the context of breast stromal tissues and 

fibroblasts to understand how RNA and protein levels are modulated.    

    We report here that CXCL1 is elevated in breast CAFs and is associated with 

increased tumor recurrence and tumor grade. As the binding receptors CXCR1 and 

CXCR2 are expressed on myeloid derived cells and carcinoma cells, CXCL1 expression 
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in CAFs may serve to regulate paracrine signaling interactions with immune cells and 

cancer cells to chemo-resistance and tumor progression. This hypothesis is supported 

by previous studies in which CXCL1 expression in MMTV-PyVmT transgenic mouse 

model functioned  to recruit myeloid immune suppressor cells that enhanced survival 

and invasion of  mammary tumors. Treatment of mammary tumors with Doxyorubicin, a 

commonly used chemotherapy, resulted in the selection of drug resistant mammary 

carcinoma cells with elevated CXCL1 expression in cancer cells (71). Studies have 

shown that chemotherapies do not efficiently target CAFs for cell death but rather  

enhance the tumor promoting activities through enhanced secretion of growth factors 

and cytokines (33, 34). It is possible that CXCL1 expression in CAFs is retained or 

further elevated after chemotherapy treatment, serving to promote the survival and 

selection of chemoresistant tumor cells. It would of interest in future studies to conduct 

further expression studies on stromal CXCL1 on breast tumor tissues from patients 

treated with chemotherapies, followed by studies in animals to clarify the role of CAF-

derived CXCL1 on breast cancer progression and tumor recurrence. 

    A few studies have been conducted to report the prognostic significance of TGF-

signaling protein expression in breast stroma. One study reported that increased TGF-

 type II receptor in breast cancer stroma (121) but did not identify the specific stromal 

cell type. In these studies, we report decreased expression of TGF-, phosphorylated 

Smad2 and phosphorylated Smad3 in CAFs, which are associated with positive CXCL1 

expression. These studies indicate that CAFs exhibit decreased TGF- signaling, and 

that TGF- signaling in fibroblasts may function as tumor suppressor. These 

observations are consistent with previous studies showing that TGF- signaling deficient 

fibroblasts enhanced progression of 4T1 and PyVmT mammary carcinoma cells in the 

subrenal capsule model (87, 88). In breast tumor epithelial cells, TGF- signaling 
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functions as both a tumor suppressor and tumor promoter (122-124). While it is 

recognized that expression of TGF- related proteins are clinically significant in breast 

cancer, studies have reported opposing results, with some studies reporting that positive 

expression of TGF- or phospho-Smad proteins is related to longer patient survival and 

decreased recurrence (125, 126), Other studies have reported the opposite associations 

(125, 127-129). Expression of TGF- signaling proteins in cancer cells may be 

dependent on biological factors such as age and clinical factors including mutation 

status and stage of disease (125, 127).  With different factors regulating TGF- 

expression, it is possible that TGF- signaling in stromal derived fibroblasts would be 

independent from the epithelium. In support of this hypothesis, TGF- expression has 

been shown to be regulated by an autocrine feedback loop in mouse embryonic 

fibroblasts and lung carcinoma cells (130, 131). As fibroblasts are more genetically 

stable than cancer cells (132), it is possible that mechanisms other than genetic 

mutations would down-regulate TGF- signaling in CAFs.  Stat3, MAPK and NF-b 

inhibit TGF- signaling (133, 134) and may contribute to decreased TGF- expression 

and phosphorylated Smad2 or Smad3 expression in stromal derived CAFs.  In addition, 

epigenetic mechanisms, including methylation of TGF- and Smad promoters to silence 

gene expression have been demonstrated in ovarian and breast cancer (135, 136). It 

would be of interest to further study how TGF- signaling is regulated in the context of 

breast stromal tissues, in order to further define breast CAFs.  

    In summary, we report that elevated CXCL1 expression in breast cancer stroma is 

associated with poor patient prognosis. We provide further insight into the clinical 

significance of stromal derived CXCL1 expression, and demonstrate that multiple types 

of breast CAFs are sources of CXCL1 expression. In addition, we also demonstrate that 

CXCL1 expression in breast CAFs is in part, determined by TGF- signaling. As CXCL1 
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is increasingly shown to play important roles in tumor recurrence and chemo-resistance, 

further studies on the impact of CXCL1 expression on the breast tumor 

microenvironment will aid in the development of novel anti-cancer therapies to combat 

drug resistant tumors. 
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Chapter III: Up-regulated CXCL1 expression in mammary 
carcinoma associated fibroblasts is negatively regulated by 

TGF-signaling through Smad2,3-dependent mechanisms and 
through HGF/c-Met-dependent mechanisms. 
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Abstract  

    Fibroblasts are important cellular components of the breast tumor microenvironment, 

whose accumulation correlates with invasive cancer progression and poor patient 

prognosis. We previously demonstrated that breast cancer associated fibroblasts (CAFs) 

overexpress CXCL1, a chemotactic cytokine involved in cancer progression and chemo-

resistance. In order to understand the molecular mechanisms regulating CXCL1 

expression in CAFs, we examined the role of TGF-β, a key modulator of fibroblast 

activity in breast cancer. In time course studies, TGF-β inhibited CXCL1 mRNA and 

protein expression in CAFs within 24 hours, and continuing through 120 hours. The early  

reduction in CXCL1 expression correlated with TGF-β phosphorylation of Smad2/3 

proteins. siRNA knockdown studies revealed that Smad2 and Smad3 were important for 

suppressing CXCL1 promoter activity in CAFs. Chromatin Immunoprecipitation (ChIP) 

assays revealed that Smad2 and Smad3 proteins bind to the CXCL1 promoter region 

which contains potential binding sites at  -249 bp to -246 bp and -144 bp to -141 bp, 

relative to the transcriptional start site. These Smad binding elements are proximal to 

binding sites for C/EBP-β, a trans-activator of CXCL1 expression. siRNA knockdown 

studies showed that C/EBP-β activity was repressed by Smad3, but not Smad2. Long-

term suppression of CXCL1 by TGF-β correlated with decreased expression of the 

growth factor, HGF. siRNA knockdown and pharmacologic inhibition studies revealed 

that HGF signaled through c-Met receptors expressed on CAFs to positively regulate 

CXCL1 expression through NF-κB dependent mechanisms. HGF expression was found 

to be negatively regulated by TGF-β signaling. These studies provide novel insight into 

how TGF-β and HGF signaling coordinate CXCL1 chemokine expression in CAFs. 
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Introduction 

    Fibroblasts are a major cell type in connective tissues throughout the body, that 

regulate multiple biological processes including inflammation, wound healing and tumor 

progression (27, 81, 82). Fibroblasts are normally quiescent, and become activated in 

response to inflammatory cytokines. Activated fibroblasts enhance secretion of 

extracellular matrix proteins, proteases and growth factors, which regulate tissue 

remodeling. In breast cancer, the accumulation of fibroblasts correlates with invasive 

cancer progression and poor patient prognosis (23, 27). In animal studies, co-grafting of 

carcinoma associated fibroblasts (CAFs) with breast carcinoma cells results in increased 

tumor growth, survival and metastasis (70, 80, 90). Breast tumor outgrowth is inhibited 

by co-transplantation of normal fibroblasts (NAFs) (83, 92). While NAFs and CAFs 

exhibit a uniform cell morphology, molecular profiling studies reveal that CAFs show 

increased expression of extracellular matrix proteins, growth factors and cytokines, 

which may contribute to tumor progression (17, 137, 138). Transforming Growth Factor-

beta (TGF-β) signaling is an important regulator of fibroblast activity. TGF-β signals 

through TGF-β type I and type II receptors, which activate Smad2 and Smad3 proteins 

resulting in complexes with Smad4. This complexes translocate into the nucleus to 

regulate transcription of genes related to the cell cycle, adhesion and invasion (78). 

Studies indicate that TGF-β signaling in fibroblasts can promote or suppress tumor 

progression, depending on the cancer type. In prostate cancer, increased TGF-β 

expression enhances fibroblast proliferation, contributing to tumor progression (84, 85). 

In breast cancer, TGF-β signaling in fibroblasts is tumor suppressive. Inactivation of 

TBRII mammary fibroblasts through cre-lox mediated deletion (Tgfbr2FspKO) enhances 

mammary tumor growth and metastasis in MMTV-PyVmT transgenic mice and in co-

transplantation models (86-88). Tgfbr2FspKO fibroblasts show increased expression of 
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growth factors, including Transforming Growth Factor-α and Hepatocyte Growth Factor 

(HGF), which act on mammary carcinoma cells to promote epithelial cell growth and 

migration (88, 89). These factors are similarly overexpressed in CAFs (80, 89), 

suggesting a link between decreased TGF-β signaling in breast CAFs and enhanced 

expression of tumor promoting factors. CXCL1 is a tumor promoting factor recently 

shown to be up-regulated in CAFs. CXCL1 is a member of the chemokine family, 

normally involved in regulating recruitment of bone marrow derived cells during wound 

healing and inflammation (64, 139, 140). In melanoma and breast cancer, CXCL1 

recruits myeloid cells to primary tumors to promote cancer cell survival, invasion and 

drug resistance (71, 141). CXCL1 expression is de-regulated in a number of cancers, 

including: melanoma, prostate cancer, and bladder cancer (64, 142, 143). In breast 

cancer, CXCL1 overexpression is associated with metastasis of the HER2 

overexpressing subtype (66). Recent studies show that breast CAFs express high levels 

of CXCL1, correlating with tumor recurrence and poor patient survival (10). CXCL1 

levels expression in CAFs correlates with decreased expression of Transforming Growth 

Factor-β as described in Chapter II, revealing an inverse relationship between CXCL1 

expression and TGF-β signaling. It has been unclear how CXCL1 expression is 

regulated in CAFs. Using mammary CAF cell lines isolated from Polyomavirus Middle T 

(PyVmT) transgenic mice, we characterized the mechanisms regulating expression of 

CXCL1. Through siRNA knockdown studies, we showed that TGF-β activated Smad2/3 

proteins, which repressed CXCL1 promoter activity, contributing to an early reduction in 

CXCL1 levels. Through siRNA and pharmacologic inhibitor studies, we showed that 

TGF-β treatment of CAFs blocked expression of HGF, a positive regulator of CXCL1, 

contributing to a long-term reduction in CXCL1 levels. These studies reveal novel insight 

into how TGF-β and HGF signaling coordinate CXCL1 chemokine expression in CAFs in 
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a temporal manner, enhancing our understanding how expression of soluble factors are 

regulated in the cancer stroma. 

Materials and methods 

Cell culture 

Primary CAFs (41CAF, 83CAF, 232CAF) were isolated from transgenic mice (FVB) 

expressing the PyVmT oncogene under the control of Mouse Mammary Tumor Virus 

Promoter (MMTV), at 12-16 weeks of age. Primary normal mammary tissue associated 

fibroblasts (NAFs) (311NAF, 4f NAF) were isolated from wild-type C57BL/6 mice at 12-

16 weeks of age. Tgfbr2FspKO fibroblasts were isolated from Tgfbr2FspKO mice as 

described (88). Fibroblasts cell lines were generated by spontaneous immortalization of 

primary mammary fibroblasts and clonal populations of fibroblasts were obtained as 

described (88). Cells were cultured in Dulbecco’s modified Eagle medium (DMEM) 

containing 10% fetal bovine serum (FBS)/ MEM nonessential amino acids/ 2 mM L-

glutamine/ 100 I.U/ml penicillin/ 100 μg/ml streptomycin/ 0.5 μg/ml amphotericin B.  

siRNA silencing 

    Negative control siRNAs (cat. no. AM4613) were obtained from Ambion. siRNAs 

targeting Smad2 (cat. no. sc-38375), Smad3 (cat. no. sc-38377), and HGF (cat. no. sc-

37112) were obtained from Santa Cruz Biotechnology. Transfection of siRNA into the 

cells was performed according to manufacturer’s protocols. Briefly, cells were seeded in 

a 24-well plate at a density of 20,000 cells per well and cultured for 24 hours. Cells were 

then rinsed with PBS and Opti-MEM (Gibco cat. no. 11058-021), and incubated in Opti-

MEM with complexes of 12 pmol siRNA and 2.4 μl Lipofectamine TM 2000 reagent 
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(Invitrogen Life technologies) for 24 hours. The medium was replaced with Opti- 

MEM/10%FBS for 24 hours prior to stimulation or starvation.  

Luciferase assay 

    The firefly luciferase reporter construct containing the CXCL1 promoter region 

between position -701 to +30 (PGL3.luc.CXCL1) was kindly provided by Katherine Roby, 

Ph.D (University of Kansas Medical Center, Kansas City, KS). Renilla luciferase reporter 

plasmid was obtained from Addgene (plasmid 12177: plS2). The firefly luciferase 

reporter construct containing the NF-κB promoter (pNFκB-luc) was obtained from Agilent 

Technologies (cat. no. 219078). The firefly luciferase reporter contruct containing the 

pC/EBP-β promoter (pC/EBP-β.luc) was obtained from Agilent Techologies (cat. no. 

24011). The Smad2/3 firefly luciferase reporter, 3TP-lux (144) was kindly provided by 

Harold L. Moses, M.D (Vanderbilt University, Nashville, TN). Cells were seeded in 6 cm-

dishes at a density of 150,000 cells and cultured for 24 hours. Cells were then co-

transfected with 8 μg firefly luciferase plasmids and 400 ng Renilla luciferase plasmids 

for 24 hours using 8.4 μl Lipofectamine LTX and 15 μl Plus reagents according to 

manufacturer’s protocol (Invitrogen Life technologies). Cells were recovered in Opti-

MEM/10% FBS for an additional 24 hours. Cells were re-seeded into 24-well plate, 

20,000 cells/well for 24 hours prior to siRNA knockdown. After stimulation, cell lysates 

were analyzed using the Promega Dual-Luciferase Reporter Assay system (cat. no. 

E1910). Cells were rinsed twice with PBS, lysed in100 μl passive lysis buffer for 15 min 

at room temperature on shaker. Cell lysates were sonicated for 10 seconds on ice and 

centrifuged to eliminate cell debris. 20 μl lysates were assayed in triplicate in 96-well 

opaque plate (Corning Costar, cat. no. 3912) using a Veritas Microplate Luminometer 

(Turner BioSystems, model number 9100-202). 

Site-directed mutagenesis 
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    Site-directed mutagenesis for Smad Binding Elements (SBE) were generated using 

QuickChange Lightning Site-Directed Mutagenesis Kit (cat. no. 210518, Agilent) 

following manufacturer’s protocol. The firefly luciferase reporter plasmids containing the 

CXCL1 promoter region between position -701 to +30 (PGL3.luc.CXCL1) was used as 

DNA templates. SBE1 (from -249 bp relative of TSS) was mutated from  5’-GTCTC-3’ to 

5’-TGAGA-3’ using primers of:  

SBE1_mut sense (5’ to 3’) cctgagcactggagactctgaatgagaactactcctccccccccca,  

SBE_mut anti-sense (5’ to 3’) tgggggggggaggagtagttctcattcagagtctccagtgctcagg.  

SBE2 (from -144bp relative of TSS) was mutated from 5’-GTCTA-3’ to 5’-TGAGC-3’ 

using primers of:  

SBE2_mut sense (5’ to 3’) cccccttgctccactcccaaggatgctcatctgggatttttgctttttgcccc,  

SBE2_mut anti-sense (5’ to 3’) 

ggggcaaaaagcaaaaatcccagatgagcatccttgggagtggagcaaggggg.  

SBE1 and SBE2 double mutant was generated by mutating SBE2 using generated 

SBE1 mutant as DNA template. All mutated plasmids was sequenced using primers of:  

SBE mutagenesis sequencing sense (5’ to 3’) CCACCTCACGTGGGATAAGA. 

Inhibitor reagents 

    c-Met kinase inhibitor II (cat. no.448102) and NF-κB cell-permeable inhibitor peptide 

SN50 (cat. no. 481480) were obtained from Calbiochem.  

ELISA  

    Cells were seeded in 24-well plate at a density of 20,000 cells per well and cultured 

for 24 hours prior to treatment. To generate conditioned media, cells were incubated in 
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500 μl Opti-MEM/10%FBS media for 24 hours for TGF-β treatment experiments, or in 

500ul Opti-MEM media for 24 or 48 hours for all other experiments. Conditioned media 

was collected and centrifuged to eliminate cell debris. For HGF ELISA, 100 μl of 

conditioned media was analyzed for HGF expression according to manufacturer protocol 

(capture antibody cat. no. AF2207; detection antibody cat. No. BAF2207, R&D Systems). 

For CXCL1 ELISA, 20 μl conditioned media was diluted in 80 μl Opti-MEM media and 

analyzed by CXCL1 ELISA kit following manufacturer’s instructions (cat. no. 900-K27 for 

mouse CXCL1; cat. no. 900-K38 for human CXCL1, Peprotech). For TGF-β ELISA, 100 

μl conditioned media was analyzed for TGF-β expression according to the 

manufacturer’s protocol (cat. no. DY1679, R&D Systems) Reactions were catalyzed 

using tetramethylbenzidine substrate (cat. no. 34028, Thermo Scientific). Reactions 

were stopped using 50 μl/well of 2N HCl and read at A450nm using a 1420 multi-label 

counter (VICTOR3 TM V, PerkinElmer). All samples were analyzed in triplicate.  

Immunoblot analysis  

    Cells were rinsed with PBS twice and lysed in RIPA buffer containing 10 mM Tris-HCl, 

pH 8.0, 0.1 mM EDTA, 0.1% sodium deoxycholate, 0.1% SDS, and 140 mM NaCl, 

supplemented with a Sigma cocktail of protease and phosphatase inhibitors (cat. no. 

P8340) and 10 mM of sodium orthovanadate (cat. no. S6508). 80 μg of protein were 

resolved by 10% SDS-PAGE. The proteins were transferred to nitrocellulose 

membranes and then probed with antibodies (1:1000) to Smad2 (cat. no.610843, BD 

Biosciences), Smad3 (cat. no. 9523, Cell Signaling Technology), phospho-Smad2 (Ser-

465/467, Cell Signaling Technology, cat. no.3101), phospho-Smad3 (Ser-423/425, cat. 

no.9520, Cell Signaling Technology), c-Met (cat. no. 4560, Cell Signaling Technology), 

phospho-c-Met (Tyr-1234/1235, cat. no. 3077, Cell Signaling Technology), or pan-actin 

(cat. no. 4698, Cell Signaling Technology). Specific immunoreaction was detected with 
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rabbit or mouse secondary antibodies conjugated to horseradish peroxidase and West 

Pico ECL Western blotting substrate (cat. no. 34080, Thermo SCIENTIFIC)  

Flow cytometry analysis 

    Cells were cultured in complete medium in 10 cm dishes to 80% of sub-confluence. 

To detach cells from the plastic, cells were rinsed with PBS twice followed by incubation 

with 3 mM EDTA at 37Ԩ for 10-15 min. Cells were washed with 10 ml of complete 

medium twice, and fixed by neutral formalin buffer (VWR) for 10 min. To remove traces 

of formalin, cells were washed with PBS twice. For combined extracellular and 

intracellular c-Met staining, 500,000 cells were permeabilized with 0.2% of Tween 20 / 

PBS at 37Ԩ for 15 min (180), followed by wash with 0.1% Tween/PBS three times. Cells 

were incubated with Alexa Fluor 488 conjugated-c-Met antibody (cat. no. 11-8854-80, 

eBiosciences) at 1: 100 dilution in PBS on ice for 30 min. Cells were washed with 0.1% 

Tween/PBS three times and filtered in PBS prior to analysis. Cells were compared with 

unstained control and secondary antibody-only controls. CXCR2 expression was 

analyzed on an LSRII flow cytometer (BD Biosciences).      

qRT-PCR  

    41CAFs (20,000 cells) were treated with or without recombinant TGF-b for indicated 

time periods. Total RNA was extracted using E.Z.N.A.® Total RNA Kit I (cat. no. R6834, 

Omega) following manufacturer’s protocol. One microgram of total RNA was reverse 

transcribed with the following in a total of 30μl volume: 4 μl of 25 mM MgCl2, 2 μl of 10 x 

PCR buffere II, 1 μl of 10 mM dNTPs (cat. no. 18427-013, Invitrogen), 1 μl of RNAse 

inhibitor (cat. no. EN0531, Thermo Scientific), 1 μl of random primers (cat. no. 48190-

011, Invitrogen) and 1 μl SuperScript® II Reverse Transcriptase (cat. no. 18064-014, 

Invitrogen). PCR reactions were performed at 25°C for 10 minutes, 42°C for 45 minutes 
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and 99 °C for 5 minutes. Approximately 2% of each reverse transcription reaction 

mixture was added to reactions containing the following in a total volume of 50 μl: 25 μl 2 

X SYBR green master mix (cat. no. 4309155, Applied Biosystems) and 1μl of 10μM 

forward and reverse primers for mouse CXCL1 gene. PCR primers were obtained from 

IDT (http://www.idtdna.com):   

mouse CXCL1 sense (5’-3’) TCCCCAAGTAACGGAGAAAGAA, 

mouse CXCL1 anti-sense (5’-3’) AGCCAGCGTTCACCAGACA, 

mouse GAPDH sense (5’-3’) CTGGCATGGCCTTCCGTG, 

mouse GAPDH anti-sense (5’-3’) GAAATGAGCTTGACAAAG.   

The  PCR reactions were performed at 95°C for 15 seconds, 60°C for 1 minute for 40 

cycles using using StepOne™ System (cat. no. 4376357, Applied Biosystems). Samples 

were assayed in triplicate. 

Chromatin immunoprecipitation (ChIP)  

    The ChIP method was previously detailed in (144), with the following modifications. 

Cells were treated with 5 ng/ml TGF-β for 6 hours in 10% FBS / Opti-MEM. DNA was 

fragmented to 200-1000 bp by sonicating 24 times for 10 sec each using a Vibra Cell 

Sonicator set at 30% output. Sonicated samples were incubated overnight at 4°C with 

1.2 μg of antibody to Smad2 (Cell Signaling, cat. no. 5339), 0.96 μg of antibody to 

Smad3 (Cell Signaling, cat. no. 9523), or corresponding amounts of rabbit IgG. 30 μl of 

ChIP grade Protein G magnetic beads (Cell Signaling, cat. no. 9006) was added to the 

samples and incubated at 4°C for 2 hours. Beads were captured using a DynaMag-2 

magnetic rack (Life Technologies). Samples were eluted with 400 μl of elution buffer and 

incubated at 65°C for 15 minutes. To prepare input controls for analysis, 350 μl of elution 
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buffer and 16 μl of 5 M NaCl were added to 50 μl of sonicated lysates. Samples were 

de-crosslinked at 95°C for 30 min and cooled down to room temperature. 40 μg of 

RNAase (cat. no. EN0531, Thermo Scientific) was added to each tube, and the samples 

were incubated at 37°C for 20 min. DNA was purified using QIAquick PCR purification kit 

(cat. no. 28104, QIAGEN Science) according to manufacturer’s instructions. A total of 4 

μl of each immunoprecipitate was assayed by real time PCR using primers recognizing 2 

different regions of interest on the mouse CXCL1 or PAI-1 promoters. CXCL1_p1 

primers amplified the promoter region from position from -271 to -123 upstream of the 

transcriptional start site (TSS). CXCL1_p2 primers amplified the promoter region from 

position -212 to -62. PAI_p primers amplified the promoter region at position -800 to -637. 

The following primers were synthesized by IDT Technologies:  

CXCL1p_1 sense (5’ to 3’): CCTGAGCACTGGAGACTCTG,  

CXCL1p_1 anti-sense (5’ to 3’): TGCTCCACTCCCAAGGATTA,  

CXCL1p_2 sense (5’ to 3’): CACTTGTCCAGCGAAGCAC,  

CXCL1p_2 anti-sense (5’ to 3’): GGAAATTCCCGGAGTACAGG,  

PAI_p sense (5’ to 3’): CAGTCATCTCAGGCTGCTGT,  

PAI_p anti-sense (5’ to 3’): GGCTCGCTCTTTGTGTCAAT.  

PCR reactions were performed at 95°C for 15 seconds, 60°C for 1 minute for 40 cycles 

using using StepOne™ System (cat. no. 4376357, Applied Biosystems). Samples were 

run in triplicate, and the signals were normalized to signals obtained from input control 

samples. 

Statistical Analysis 

Experiments were performed in a minimum of triplicate. Values are expressed as 

Mean ± SEM. Statistical analysis was performed by Two-tailed student t-test or One-

Way ANOVA with Bonferroni post-test as indicated. Statistical significance was 
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determined by p<0.05. not significant (ns); *, p<0.05; **, p<0.01; ***, p<0.001. 

StepOne™ System (Applied Biosystems, cat. no. 4376357). Samples were run in 

triplicate. In ChIP assays the signals were normalized to signals obtained from input 

control samples. 

Results  

TGF-β suppresses CXCL1 expression in mammary carcinoma associated 

fibroblasts over time 

    In chapter II, we reported that increased CXCL1 expression in breast cancer stroma 

inversely correlated with expression of TGF-β, indicating a possible functional 

relationship between TGF-β signaling and CXCL1 expression. Consistently, mammary 

CAF cell lines derived from PyVmT mammary tumors (86), 41CAF and 83CAF, showed 

increased expression of CXCL1 and decreased expression of TGF-β protein compared 

to the normal mammary fibroblast cell line, 311NAF (Chapter II). These mammary 

fibroblast lines represented physiologically relevant models to characterize the molecular 

mechanisms of CXCL1 expression. To determine the role of TGF-β signaling on CXCL1 

expression in CAFs, we first examined the effects of TGF-β treatment on CXCL1 

expression in time course studies using the 41CAF cell line. By real-time PCR, we 

observed a 20% reduction in CXCL1 mRNA expression 2 hours after TGF-β treatment. 

TGF-β continued to inhibit CXCL1 mRNA levels 24 hours after treatment, maximally 

inhibiting CXCL1 mRNA levels by 60%, 12 hours after treatment (Figure 3.1A). By 

ELISA analysis, TGF-β significantly inhibited CXCL1 protein expression by 50% at 24 

hours post treatment, and maximally inhibiting expression by 85% after 120 hours of 

treatment (Figure 3.1B). The results show that TGF-β inhibits mRNA expression of 

CXCL1, followed by a reduction in CXCL1 protein levels over time in mammary CAFs. 
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Figure 3.1.  TGF-β suppresses CXCL1 expression in mammary carcinoma 

associated fibroblasts.  

41CAFs were treated with 5 ng/ml of TGF-β for the indicated time points and analyzed 

for (A). CXCL1 mRNA expression by real time PCR, (B). CXCL1 secretion in conditioned 

media by ELISA. Statistical significance was determined by p<0.05. not significant (ns), 

p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001. Values are expressed as Mean ± SEM.  
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Smad2 and Smad3 are required for TGF-β mediated suppression of CXCL1 

expression in mammary carcinoma associated fibroblasts 

    TGF-β signaling activates Smad2 and Smad3 transcription factors, which form 

heterotrimeric complexes with Smad4 to positively or negatively regulate the expression 

of genes encoding extracellular matrix proteins, proteases and cell cycle proteins (105). 

Smad2 and Smad3 can also function independently of each other, forming Smad2/4 or 

Smad3/4 heteromeric complexes to regulate transcription (145-147). Given the 

importance of Smad2 and Smad3 in mediating TGF-β signaling, we determined the 

functional contribution of Smad2 and Smad3 in suppressing CXCL1 expression in 

mammary CAFs by siRNA knockdown studies. By western blot analysis, transfection of 

siRNAs to Smad2 or Smad3 in 41CAFs decreased expression of Smad2 by 80% or 

Smad3 by 86%, and significantly inhibited expression of phosphorylated proteins (Figure 

3.2A). siRNA knockdown inhibited transcriptional activity mediated by Smad2 and 

Smad3, as determined by luciferase assay using the 3TP_lux promoter, a well 

characterized promoter region for Smad2/3 binding, which contains three consecutive 

tetradecanoylphorbol acetate response elements and a portion of the plasminogen 

activator/inhibitor promoter region (144) (Figure 3.2B). 41CAFs expressing control 

siRNAs, or siRNAs to Smad2, Smad3 were transfected with a luciferase reporter under 

the control of the CXCL1 promoter (148). In control siRNA expressing cells, TGF-β 

significantly inhibited CXCL1 promoter activity, as determined by luciferase assay. 

Knockdown of Smad2 or Smad3 enhanced luciferase activity in TGF-β treated cells 

(Figure 3.2C). By ELISA, TGF-β treatment decreased CXCL1 expression in control 

siRNA expressing cells, while knockdown of Smad2 or Smad3 resulted in a modest 

increase in CXCL1 protein expression with TGF-β treated cells (Figure 3.2D). These  
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Figure 3.2. siRNA knockdown of Smad2 and Smad3 up-regulates CXCL1 promoter 

activity and protein expression in mammary carcinoma-associated fibroblasts.  

(A) 41CAFs were transfected with control siRNA (Con), siRNAs to Smad2 (S2), Smad3 

(S3) or both (S2S3), treated with 5 ng/ml of TGF-β for 1 hour, and analyzed by western 

blot for expression of the indicated proteins. Expression levels of Smad2 and Smad3 

were normalized to actin through densitometry analysis. (B) 41 CAFs co-expressing 

3TP_lux and Renilla luciferase reporter constructs were transfected with siRNAs, treated 

with 5 ng/ml of TGF-β for 24 hours, and analyzed for TGF-β responsiveness by 

luciferase assay. (C-D) 41CAFs co-expressing PGL3.luc.CXCL1 firefly and Renilla 

luciferase reporter constructs were transfected with siRNAs, treated with TGF-β for 24 

hours, and assayed for luciferase activity (C), or analyzed by ELISA for CXCL1 

expression in conditioned medium (D). Firefly luciferase values are normalized to Renilla 

luciferase. Statistical significance was determined by p<0.05. not significant (ns), p>0.05; 

*, p<0.05; **, p<0.01; ***, p<0.001. Values are expressed as Mean ± SEM.  
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data indicate that Smad2 and Smad3 are important for TGF-β suppression of CXCL1 

promoter activity. To determine whether Smad2 or Smad3 functioned independently to 

suppress CXCL1 expression, Smad2 and Smad3 were simultaneously knocked down in 

41CAFs by co-transfection of Smad2 and Smad3 siRNAs. If Smad2 and Smad3 

functioned independently to inhibit CXCL1 promoter activity, we would anticipate that 

dual knockdown of Smad2 and Smad3 would inhibit CXCL1 promoter activity more 

significantly than knockdown of individual Smad proteins. Co-transfection of Smad2 and 

Smad3 siRNAs resulted in 80% knockdown for Smad2 and an 84% knockdown in 

Smad3, demonstrating similar levels of knockdown (Figure 3.2A). By luciferase assay, 

dual knockdown of Smad2 and Smad3 did not further enhance CXCL1 promoter activity 

in TGF-β treated cells, compared to knockdown of Smad2 or Smad3 (Figure 3.2C). In  

contrast, by ELISA, knockdown of both Smad2 and Smad3 further enhanced CXCL1 

protein expression compared to single knockdown of Smad2 or Smad3 (Figure 3.2D). 

Interestingly, in the absence of TGF-β, Smad3 knockdown enhanced Smad2 protein 

expression (Figure 3.2A) but did not significantly affect CXCL1 promoter activity or 

protein levels (Figure 3.2C-D). Similar effects of Smad2 and Smad3 inhibition on CXCL1 

expression and promoter activity was also observed in other mammary CAFs and NAFs 

(83CAF, 311NAF), as well as cultured human breast ductal carcinoma associated 

fibroblasts (huCAF) (Figure 3.3). These results indicate that both Smad2 and Smad3 are 

required for TGF-β suppression of CXCL1 promoter activity and protein expression in 

mammary carcinoma associated fibroblasts.  

 
Smad2 and Smad3 bind to the CXCL1 promoter to modulate transcriptional 

activity  

    Knockdown of Smad2 and Smad3 enhanced CXCL1 promoter activity in TGF-β 

treated cells to similar levels, and dual knockdown of Smad2 and Smad3 did not further  
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Figure 3.3. TGF- suppress CXCL1 promoter activity and protein expression in 

Smad2- and Smad3-dependent manner in human breast ductal carcinoma 

associated fibroblasts (HuCAF), and other mouse mammary fibroblasts.  

(A) HuCAF were transfected with control siRNA (Con), siRNAs to Smad2 (S2), Smad3 

(S3) or both (S2S3), and treated with 5 ng/ml of TGF-β for 24 hours. Conditioned media 

was analyzed by ELISA. (B-C) 83CAF, 311NAF co-expressing PGL3.luc.CXCL1 firefly 

and Renilla luciferase reporter constructs were transfected with siRNAs, treated with 

TGF-β for 24 hours, and assayed for luciferase activity. Firefly luciferase values are 

normalized to Renilla luciferase. Statistical significance was determined by p<0.05. not 

significant (ns), p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001. Values are expressed as 

Mean ± SD. 
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affect CXCL1 promoter activity. These data indicated that Smad2 and Smad3 functioned 

together to suppress CXCL1 gene expression. As the mechanisms of Smad2/3 binding 

to the CXCL1 promoter had not been clearly investigated, we searched for possible DNA 

binding sites in the CXCL1 promoter. Smad2/3 binding could suppress CXCL1 gene 

expression by binding to TGF-β inhibitory elements (TIE) (149, 150), or could bind to 

canonical Smad binding elements (SBEs), enabling Smad2/3 proteins to interact and 

suppress the activity of nearby cofactors (78, 151). We searched the upstream region 

sequence of the mouse CXCL1 TSS but did not identify the putative TIE sequence: 5’- 

GGCTT-3’ (149, 150). Two SBEs with the sequence 5’- GTCT-3’ (152, 153) were 

identified in the CXCL1 promoter region at -249 to -246 and - 144 to -141 relative to the 

TSS. In order to determine whether Smad2/3 proteins bound to the SBEs in the CXCL1  

promoter, Chromatin Immunoprecipitation assays (ChIP) were performed. 41CAFs were 

treated with TGF-β for 6 hours, allowing sufficient time for Smad2/3 to translocate to the 

nucleus and suppress CXCL1 mRNA expression, as determined in earlier studies 

(Figure 3.1A). Cell lysates were immunoprecipitated with antibodies to Smad2, Smad3, 

or rabbit IgG as an isotype negative control. Real time PCR analysis was performed on 

immunoprecipitated DNA using 2 different sets of primers. One set of primers 

(CXCL1_p1) amplifies a 148 bp fragment containing both SBEs at -249 to -246 and -144 

to -141. A second set of primers (CXCL1_p2) amplifies a 150 bp fragment containing 

only the SBE at -144 to - 141, enabling us to determine the relative importance of both 

SBEs to Smad2/3 binding. We predicted that if both SBEs were important for Smad2/3 

binding, we would observe lower level PCR amplification with CXCL1_p2 primers. As a 

positive control, a set of primers was designed to amplify Smad2/3 binding regions on 

the Plasminogen Activating Inhibitor 1 promoter (PAI1_p), which is activated with TGF-β 

treatment of fibroblasts (154, 155). CXCL1_p1 primers amplified DNA that was 

immunoprecipitated with Smad2 or Smad3 antibodies, and which were from untreated 
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cells. PCR expression levels were further increased in samples treated with TGF-β 

(Figure 3.4A-B). Interestingly, amplicon levels with CXCL1_p1 primers were significantly 

higher than the positive control (Figure 3.4A-B). CXCL1_p2 primers amplified DNA from 

samples immunoprecipitated with Smad2 or Smad3 antibodies, but at lower levels than 

samples using CXCL1_p1 primers. Amplicon levels were increased in samples treated 

with TGF-β (Figure 3.4A-B). To further validate the functional contribution of the two 

identified SBEs, we performed site-directed mutagenesis for SBE1 (-249bp to -246bp), 

SBE2 (-144bp to -141bp), and both sites. Studies have shown that mutagenesis of 

“GTCT” to “TGAG” in SBEs results in complete loss of TGF-β responsiveness (156). We 

mutated “GTCTC” in SBE1 to “TGAGA”, “GTCTA” in SBE2 to “TGAGC”. As shown in  

Figure 3.4C, either SBE1 or SBE2 mutation significantly blunted responsiveness to TGF-

β. Interestingly, while mutating SBE2 in addition to SBE1 mutation further blunted TGF-β 

responsiveness, mutating SBE1 in addition to SBE2 mutation did not achieve additive 

effect. These results indicate that in the absence of TGF-β, Smad2/3 proteins bind to 

SBEs identified in the CXCL1 promoter, and that TGF-β treatment promotes additional 

Smad2/3 binding to these elements. 

    As ChIP assays revealed binding of Smad2 and Smad3 to the CXCL1 promoter 

without a TIE sequence, we hypothesized that Smad2/3 proteins would inhibit CXCL1 

gene transcription by blocking activity of adjacent co-factors. C/EBP-β is a possible co-

factor positively regulating CXCL1 transcription in mammary CAFs. A C/EBP-β binding 

motif (5’-TGGAGCAAG-3’) was identified at position -128 to -120 in the mouse CXCL1 

promoter, proximal to the SBEs. C/EBP-β has been shown to positively regulate CXCL1 

gene transcription in lung epithelial cells and mesenchymal stem cells. Smad3 and 

Smad4 have also been shown to complex and repress C/EBP-β transcriptional activity in 

glioma cells and mouse 3T3 fibroblasts (157, 158). To determine whether Smad2 or 

Smad3 suppressed C/EBP-β activity in mouse CAFs, 41CAFs co-expressing Renilla  
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Figure 3.4. Smad3 but not Smad2 suppresses CXCL1 transcription through 

C/EBP-β dependent mechanisms.  

(A-B). 41CAFs were treated with 5 ng/ml of TGF-β for 6 hours, and analyzed for 

Smad2/3 DNA binding by ChIP assay. DNA was immunoprecipitated using antibodies to 

(A). Smad2 or (B). Smad3, or IgG as an isotype control, and amplified by real-time PCR 

for the CXCL1 promoter region from -271 to -123 using CXCL1_p1 primers, and from -

212 to -62 using CXCL1_p2 primers. Smad2/3 binding to PAI_1 promoter was used as a 

positive control, which was amplified using PAI_p primers. Background from IgG control 

was subtracted from samples. Left panels show fraction of Smad2 or 3 binding to DNA 

relative to input control. Right panel shows Smad2 or 3 binding normalized to (-) TGF-β 

group for each promoter region. (C). 41CAFs were transfected with Renilla luciferase 

plasmids and firefly luciferase reporter plasmids with wild type (WT) CXCL1 promoter 

region with or without site-directed mutation at SBE1 (SBE1_mut), SBE2 (SBE2_mut) or 

both (SBE1 and 2_mut). Cells were treated with 5 ng/ml of TGF-β for 24 hours, and 

assayed for luciferase activity. (D). Cells co-expressing C/EBP-β.luc firefly and Renilla 

luciferase reporter constructs were transfected with control siRNA (Con), siRNAs to 

Smad2 (S2), Smad3 (S3). Cells were treated with 5 ng/ml of TGF-β for 24 hours, and 

assayed for luciferase activity. Firefly luciferase values were normalized to Renilla 

luciferase. Statistical significance was determined by p<0.05. not significant (ns), p>0.05; 

*, p<0.05; **, p<0.01; ***, p<0.001. Values are expressed as Mean ± SEM for (A) and (B), 

and as Mean ± SD for (C) and (D) as representative experiments.  
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luciferase and C/EBP-β firefly luciferase reporter plasmids, were transfected with control 

siRNAs, or siRNAs to Smad2, Smad3 or both. The cells were treated with TGF-β, and 

then analyzed for changes in C/EBP-β promoter activity by luciferase assay. 41CAFs 

expressing control siRNAs showed visible C/EBP-β promoter activity, which was 

inhibited by TGF-β treatment. Knockdown of Smad3, but not Smad2 increased C/EBP-β 

promoter activity, compared to control siRNA expressing cells treated with TGF-β 

(Figure 3.4D). Taken together, these data indicate that both Smad2 and Smad3 bind to 

the CXCL1 promoter, but Smad3 is required for repression of C/EBP-β, an activator of 

CXCL1 transcription.  

Smad2 and Smad3 proteins negatively regulate CXCL1 expression by inhibiting 

expression of HGF in mammary CAFs 

    In addition to decreased expression of TGF-β, mammary CAFs showed increased 

expression of HGF, compared to normal fibroblasts (Figure 3.5A), consistent with 

expression patterns of HGF in breast cancer stroma (80, 159). We investigated the 

possibility that CXCL1 expression was positively regulated by HGF signaling. 

Transfection of 41CAFs with HGF siRNAs significantly knocked down HGF protein 

expression, leading to a 62 % decrease in CXCL1 promoter activity, and 26 % reduction 

in CXCL1 protein expression (Figure 3.5B-D). To further illustrate the functional 

contribution of HGF in regulating CXCL1 secretion in the context of TGF- signaling, 

41CAFs were treated with increasing doses of HGF in the presence or absence of TGF-

. Secretion of CXCL1 was significantly increased at 20 ng/ml of HGF treatment, and 

was completely rescued at 40 ng/ml of HGF treatment (Figure 3.5E). Conditional 

deletion of Tgfbr2 in mammary fibroblasts increased HGF expression (87, 160). These 

studies indicated that TGF-β signaling negatively regulated HGF, a positive regulator of 

CXCL1 expression. To determine this possibility, 41CAFs were treated with TGF-β and  
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Figure 3.5. HGF regulates CXCL1 expression in mammary fibroblasts.  

(A). Normal mammary fibroblasts (311NAF) or mammary CAF cell lines (83CAF, 41CAF) 

were analyzed for HGF expression in conditioned media by ELISA. (B-D). 41CAFs 

expressing control siRNA (Con) or siRNAs to HGF were analyzed for HGF expression in 

conditioned media by ELISA (B), transfected with PGL3.luc.CXCL1 and Renilla 

luciferase plasmids and assayed for luciferase activity, (C).  or were analyzed for CXCL1 

expression in conditioned media by ELISA (D).  (E).  41CAFs were treated with 5 ng/ml 

TGF-β with or without increasing concentrations of HGF for 24 hours, and analyzed for 

CXCL1 expression in conditioned media by ELISA. Firefly luciferase values were 

normalized to Renilla luciferase. Statistical significance was determined by p<0.05. not 

significant (ns), p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001. Values are expressed as 

Mean ± SD in (E), and as Mean ± SEM in (A-D).  
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examined for changes in HGF expression over time by ELISA. TGF-β treatment did not 

affect HGF protein expression after 24 hours, but a significant reduction in the level of 

HGF was observed after 48 hours of TGF-β treatment (Figure 3.6A). We next 

determined the possibility that Smad2 and Smad3 mediated TGF-β suppression of HGF 

expression. siRNA knockdown of Smad2 or Smad3 enhanced HGF protein expression in 

41CAFs (Figure 3.6B). In summary, these data indicate that TGF-β down-regulates HGF 

expression through Smad2 and Smad3 dependent mechanisms, in order to suppress 

CXCL1 expression. 

HGF signals to c-Met to positively regulate CXCL1 expression through NF-κB 

dependent mechanisms 

    HGF is best known for regulating epithelial cell survival, growth and migration by 

signaling through c-Met receptor tyrosine kinases (161, 162). Several studies have 

shown that c-Met is expressed in skin fibroblasts and osteoarthritis (OA) synovial 

fibroblasts (163, 164). However, HGF signaling in mammary fibroblasts has not been 

clearly investigated. Our studies indicated that HGF served as a positive regulator of 

CXCL1 expression in mammary CAFs, we further characterized the mechanisms 

through which HGF positively regulated CXCL1 expression. We determined whether c-

Met receptors were expressed in mammary CAFs, and whether there were any 

differences in expression, compared to normal mammary fibroblasts. By flow cytometry 

analysis, the majority of NAFs and CAFs expressed c-Met receptors (Figure 3.7A). By 

western blot analysis, c-Met receptor expression levels in NAFs and CAFs were lower 

compared to 4T1 mammary carcinoma cells but were still detectable (Figure 3.7B and 

Figure 3.8A). To determine whether c-Met receptors were active in mammary CAFs, we 

assayed for c-Met tyrosine phosphorylation at Tyr1234/1235, auto-phosphorylation sites 

critical for receptor activation (165). By western blot analysis, 41CAFs showed  
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Figure 3.6. TGF-β inhibits HGF expression through Smad2/3 dependent 

mechanisms. 

(A) 41CAFs were treated with 5ng/ml TGF-β for 24 or 48 hours, and analyzed for CXCL1 

expression in conditioned media by ELISA. (B) 41CAFs transfected with control siRNA 

(Con), or siRNAs to Smad2 (S2) or Smad3 (S3), were analyzed for HGF expression in 

conditioned media by ELISA. Statistical significance was determined by p<0.05. not 

significant (ns), p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001. Values are expressed as 

Mean ± SEM.  
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Figure 3.7. HGF signals to c-Met to regulate CXCL1 expression. 

(A-B) 311NAFs and 41CAFs were analyzed for c-Met expression by flow cytometry (A), 

or western blot analysis, with 4T1 mammary carcinoma cells as a positive control (B). (C) 

41CAFs were transfected with control or HGF siRNAs and analyzed for expression of 

phosphorylated c-Met by western blot. Expression of phospho-c-Met was normalized to 

total c-Met by densitometry analysis. (D) 41CAFs were treated with c-Met kinase 

inhibitor type II (CKII) for 1 hour, and analyzed for expression of phosphorylated c-Met 

(Tyr-1234/1235) and total c-Met by western blot. (E) 41CAFs treated with CKII for 48 

hours were analyzed for CXCL1 expression by ELISA. Statistical significance was 

determined by p<0.05. not significant (ns), p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001. 

Values are expressed as Mean ± SEM.  
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Figure 3.8. c-Met is expressed in mammary fibroblasts and is required for CXCL1 

secretion in carcinoma associated fibroblasts.  

(A) 41CAF, 83CAF, 311NAF and 4f NAF were analyzed for c-Met expression by western 

blot analysis. (B-C) 83CAF, 311NAF were treated with CKII for 48 hours, and analyzed 

for CXCL1 secretion by ELISA. Statistical significance was determined by p<0.05. not 

significant (ns), p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001. Values are expressed as 

Mean ± SEM. 

   



97 
 

detectable levels of phosphorylated c-Met protein, which was inhibited by siRNA 

knockdown of HGF (Figure 3.7C). These data indicate that endogenously expressed 

HGF bound and activated c-Met receptors on mammary CAFs. To determine the 

functional contribution of c-Met in the regulation of CXCL1 expression, 41CAFs were 

treated with CKII (also known as PHA665752), a small molecule inhibitor to c-Met, with 

an IC50 of 200nM (166, 167). CKII treatment of 41CAFs inhibited phosphorylation of c- 

Met, and significantly reduced CXCL1 protein levels in a dose-dependent manner 

(Figure 3.7D-E). Similar effect was also observed in another CAF (83CAF) but not in 

NAF (311NAF) (Figure 3.8), possibly because the expression of HGF in 311NAF is 

much lower than CAFs (Figure 3.5A). These results indicate that HGF signals to c-Met in 

mammary CAFs to positively regulate CXCL1 expression. We next examined the 

downstream mechanisms to understand how CXCL1 expression was positively 

regulated by HGF/c-Met signaling. Through candidate screening of HGF signaling 

pathways and known regulators of CXCL1 expression, we identified NF-κB as a possible 

downstream effector of HGF/c-Met signaling in mammary CAFs. HGF has been shown 

to regulate activity of NF-κB in various cell types (168, 169), and two NF-κB binding sites 

have been identified in the CXCL1 promoter (148). We first determined whether NF-κB 

was regulated by HGF in mammary CAFs. HGF gene expression was silenced in 

41CAFs and analyzed for changes in NF-κB activity by luciferase assay. Compared to 

control siRNA expressing cells, HGF siRNA expressing cells showed a significant 

reduction in NF-κB activity (Figure 3.9A), indicating endogenous HGF expression 

regulated NF-κB transcriptional activity in CAFs. 41CAFs were then treated with 

increasing concentrations of the NF-κB peptide inhibitor, SN50, which inhibits 

translocation of the NF-κB active complex into the nucleus at an IC50 of 18 μM (170). 

SN50 treatment of CAFs inhibited NF-κB activity, significantly reducing CXCL1 protein 

expression in a dose dependent manner (Figure 3.9B). The inhibitory activity of SN50 
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Figure 3.9. HGF/c-Met signaling regulates CXCL1 expression in mammary 

fibroblasts through NF-κB dependent mechanisms.  

(A) 41CAFs co-expressing pNF-κB.luc firefly and Renilla luciferase reporter plasmids 

were transfected with control (Con) or HGF siRNAs, and analyzed for NF-κB activity by 

luciferase assay. (B) Cells were treated with increasing concentrations of SN50 for 24 

hours, and analyzed for CXCL1 expression in conditioned media by ELISA. (C) 41CAFs 

co-expressing pNF-κB.luc and Renilla luciferase reporter plasmids were treated with 36 

μm SN50 for 24 hours, and analyzed for changes in NF-κB activity by luciferase assay. 

Firefly luciferase values were normalized to Renilla luciferase. Statistical significance 

was determined by p<0.05. not significant (ns), p>0.05; *, p<0.05; **, p<0.01; ***, 

p<0.001. Values are expressed as Mean ± SEM.  

   



100 
 

was validated through luciferase assay of an NF- κB reporter (Figure 3.9C), 

characterized in previous studies (171). These data indicate that HGF positively 

regulates CXCL1 expression in mammary CAFs through an NF-κB dependent manner. 

Discussion  

    CXCL1 is an important regulator of cancer progression and is overexpressed 

numerous cancer types. Recent studies indicate that fibroblasts are an important source 

of CXCL1 expression in breast tumors. To understand the mechanisms through which 

CXCL1 was regulated, we characterized the role of TGF-β and HGF signaling in 

mammary CAFs. In these studies, we demonstrate that TGF-β negatively regulates and 

HGF positively regulates CXCL1 expression in mammary CAFs. We propose that TGF-β 

suppresses CXCL1 expression in mammary fibroblasts partly through Smad2/3 

repression of the CXCL1 promoter. TGF-β also inhibits CXCL1 expression by down-

regulating expression of HGF. HGF functions as a positive regulator by signaling through 

c-Met to enhance NF-κB transcriptional activation of CXCL1 (Figure 3.10). Inflammatory 

cytokines including TNF-α and IL1β positively regulate CXCL1 expression in cancer cells 

and endothelial cells (71, 172). However, few studies have examined how CXCL1 is 

negatively regulated in cells. In breast cancer stroma, TGF-β expression was found to be 

decreased compared to normal breast stroma, inversely correlating with CXCL1 

expression (manuscript submitted to BMC Cancer). The present studies show that TGF-

β suppresses CXCL1 expression in CAFs. In total, these data suggest that TGF-β 

suppresses CXCL1 expression in normal breast stroma, and TGF- β expression is down 

regulated in breast cancer, to enable up-regulation of CXCL1 expression in the stroma. 

Supporting this hypothesis, we found HGF, a factor overexpressed in CAFs, is 

negatively regulated by TGF-β signaling. The antagonistic relationship between TGF-β
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Figure 3.10. Proposed model for TGF-β mediated suppression of CXCL1 in 

mammary CAFs.  

(A) TGF-β signaling leads to phosphorylation of Smad2 and Smad3 proteins, and 

formation of complexes with Smad4. (B) Smad2/3/4 complexes translocate to the 

nucleus, bind to SBEs located at -249 to -246 and -144 to -141 on the CXCL1 promoter, 

and repress CXCL1 transcription, partly through suppression of C/EBP-β activity (C). 

Smad2/3 proteins also suppress CXCL1 expression by inhibiting expression of HGF. (D) 

HGF signals through c-Met receptors to activate NF-κB and up-regulate CXCL1 gene 

expression. 
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and HGF has been observed during mammary gland development, in which TGF- β 

serves to regulate ductal branching and morphogenesis and HGF regulates ductal 

epithelial cell proliferation. TGF-β expression becomes down regulated when HGF 

becomes up-regulated in normal mammary stroma, strictly controlling mammary gland 

development (124, 173). In our studies, we show that this antagonistic relationship 

between TGF-β and HGF may regulate CXCL1 expression in CAFs, through temporal 

mechanisms. We observed that mammary CAFs treated with TGF-β show a reduction in 

CXCL1 expression within 24 hours, corresponding to the time period of Smad2/3 

activation and binding to the CXCL1 promoter. TGF-β did not suppress HGF expression 

during this time period. Suppression of CXCL1 levels continued after 24 hours of TGF-β 

treatment, corresponding to decreased HGF expression levels. These data indicate that 

the reduction in CXCL1 levels within 24 hours would be due to Smad2 and Smad3 

binding to CXCL1 gene promoter, and that TGF-β mediated suppression of HGF 

signaling contributed to long-term suppression of CXCL1 gene expression in fibroblasts.       

Taken together, these data indicate that down-regulation of TGF-β and increased HGF 

signaling in CAFs elevate and sustain CXCL1 expression during cancer progression. 

Our studies demonstrate important roles for Smad2 and Smad3 in regulating CXCL1 

expression in mammary CAFs. Smad2 and Smad3 may function together or in separate 

complexes with Smad4 to regulate gene expression (145-147). In our studies, we found 

that Smad2 and Smad3 knockdown enhances CXCL1 mRNA expression in TGF- β 

treated cells to similar levels. Dual Smad2/3 knockdown did not further affect CXCL1 

mRNA levels. Furthermore, ChIP studies showed similar patterns of Smad2 and Smad3 

binding to the CXCL1 promoter. These data suggest that Smad2 and Smad3 function in 

a complex to modulate CXCL1 expression. On the other hand, we noted that Smad3, but 

not Smad2 was required for repression of C/EBP- β, a transactivator of CXCL1 

expression. These data indicate that Smad2 inhibits CXCL1 promoter activity through an 
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additional mechanism, possibly inhibiting CXCL1 promoter activity through other 

cooperating factors, independent of Smad3. Interestingly, Smad2 may be expressed as 

two different splice variants. One splice variant of Smad2 is more prevalent in 

mammalian cells (174) and contains an insert in the MH1 domain, which is encoded by 

exon 3 and prevents DNA binding (152, 175). The other variant, commonly referred to as 

Smad2∆exon3, lacks the insert, and is able to bind DNA to activate gene transcription 

(175). Both variants are capable of forming complexes with Smad3 and Smad4 (175). It 

is possible that both Smad2 variants are involved in regulating CXCL1 expression, as 

the siRNA targeting sequences were not specific to one variant. Smad2/4 complexes 

interact with a variety of transcription factors, including Sp-1,Fast-1, Mixer and Milk (176, 

177). As dual knockdown of Smad2 and Smad3 did not result in an additive or 

synergistic increase in CXCL1 mRNA levels, compared to Smad2 or Smad3 single 

knockdown, it is possible that this additional mechanism would indirectly affect Smad2/3 

transcriptional repression of the CXCL1 promoter. Investigation of this mechanism would 

involve characterization of the Smad2 gene variant in mammary CAFs, and pull-down 

experiments to identify interacting transcription factors, experiments beyond the scope of 

this report.  

    In contrast to CXCL1 mRNA levels, we observed that dual knockdown of Smad2 and 

Smad3 enhanced CXCL1 protein levels compared to individual knockdown of Smad2 or 

Smad3. These data indicate a mechanism for Smad proteins for inhibiting protein 

expression, independent of CXCL1 gene transcription. One possible mechanism would 

involve intracellular CXCL1 protein degradation. Previous studies have shown that TGF-

β regulates Smad2-Smurf2 ubiquitin ligase complex to target proteins for degradation by 

the proteasome (178). Another possibility involves Smad2/3 regulation of proteases that 

target CXCL1 as a substrate. The metalloproteinase MMP12 cleaves and inactivate C-X-
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C chemokines and has been shown to be regulated by TGF-β signaling (179). Combined 

with CXCL1 transcriptional repression, Smad2/3 proteins could modulate post-

translational mechanisms to suppress CXCL1 protein expression in mammary CAFs. In 

addition to repressing the CXCL1 promoter, we show that Smad2 and Smad3 inhibit 

CXCL1 expression by down-regulating HGF expression. HGF is known to regulate 

signaling in epithelial cells during cancer progression. HGF derived from fibroblasts 

signal to c-Met expressing cancer cells to promote cell growth, survival and invasion (80, 

159). These studies are the first to report an important role for HGF/c-Met autocrine 

signaling in mammary CAFs in regulating gene expression. c-Met expression is lower in 

fibroblasts compared to 4T1 mammary carcinoma cells, and may be overlooked in 

immunohistochemistry studies of breast tumor tissues. However, c-Met is expressed in 

the majority of mammary fibroblasts. While c-Met is expressed at similar levels between 

NAFs and CAFs, HGF expression is increased in mammary CAFs, and would most likely 

contribute to CXCL1 overexpression in CAFs. It would be other interest to further explore 

the role of HGF/c-Met signaling in mammary fibroblasts.  

    In summary, CAFs are indistinguishable in appearance from normal fibroblasts, but 

overexpress CXCL1, a chemokine involved in the development of drug resistant tumors. 

We illustrate important molecular mechanisms modulating CXCL1 expression in 

mammary CAFs. By understanding how expression of tumor promoting factors is 

regulated in CAFs, we may better predict how the cancer stroma will influence tumor 

progression. 
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Chapter IV: Paracrine versus autocrine CXCL1 signaling in 
regulating breast cancer cell survival and invasion 
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Abstract 

    Stromal cells regulate growth, survival and invasion of different types of cancer, 

including melanoma, breast cancer and prostate cancer, and mainly through paracrine 

signaling interactions with epithelial cells. CXCL1 chemokine signals through CXCR2 

cell surface receptor to normally regulate recruitment of neutrophils during wound 

healing and inflammation. In melanoma, ovarian and gastric cancer, autocrine 

CXCL1/CXCR2 signaling has been shown to promote tumor cell survival, proliferation or 

invasion depending on tissue of origin. Recently, it has been reported that breast cancer 

cell-derived CXCL1 recruits myeloid cells, which in turn enhance tumor cell survival and 

chemo-resistance. However, the role for fibroblast-derived CXCL1 signaling in mammary 

tumor progression remains poorly understood. Our previous studies indicate that CXCL1 

is up-regulated in breast tumor stroma, especially in carcinoma-associated fibroblasts 

(CAFs). Here we further characterize the expression patterns of CXCL1 and CXCR2 in 

different subtypes of mouse and human breast cancer cells, as well as in fibroblasts 

isolated from normal mammary tissues and carcinoma tissues. CXCL1/CXCR2 

expression was elevated in basal-like breast cancer cells and CAFs compared to luminal 

breast cancer cells and normal mammary associated-fibroblasts (NAFs). In addition, we 

have found that CAF-derived CXCL1 promotes breast cancer cell survival and invasion 

in a CXCR2-dependent manner. Additionally, knockdown of CXCL1 expression in 

fibroblasts by siRNA or shRNA, or inhibition of CXCR2 by shRNA or pharmacologic 

inhibitors significantly block fibroblasts-induced mammary carcinoma cell invasion. By 

further understanding the functional contribution and molecular mechanisms of paracrine 

CXCL1/CXCR2 signaling to mammary tumor progression, we may be able to 

therapeutically target CXCL1 and CXCR2 in invasive breast cancer. 
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Introduction 

    Tumor  microenvironment is composed of surrounding blood vessels, signaling 

molecules, extracellular matrix, and multiple cell types including immune cells, 

fibroblasts. Tumors recruit these components to facilitate their progression and 

metastasis through bidirectional talk between tumor cells and the microenvironment (20, 

21). In contrast to the well-organized homeostasis of the normal cells, tumor 

microenvironment is deregulated at molecular and cellular levels. 

    As one of the major components in breast stroma, fibroblasts normally play an 

important role in maintaining the structural integrity of connective tissues through 

secretion of extracellular matrix precursors including type I, type III and type V collagen, 

and fibronectin (23), and get activated during mammary gland development to regulate 

ductal branching and morphogenesis (25, 26). Fibroblasts are also a major cellular 

component of the breast tumor microenvironment; yet, the molecular signals that identify 

cancer associated fibroblasts (CAFs) still remain poorly understood. De-regulated 

growth and activity of fibroblast is associated with progression and poor patient 

prognosis of invasive breast cancer, which is characterized by the presence of dense 

collagenous tumor stroma and accumulation of activated fibroblasts (3,4). Activated 

fibroblasts exhibit enhanced secretion of extracellular matrix proteins, proteases and 

growth factors, mediating tissue remodeling in tumor microenvironment. In animal 

studies, co-grafting of mammary CAFs with mammary carcinoma cells results in 

increased tumor growth, survival and metastasis (5-7). Conversely, breast tumor 

outgrowth and cellular invasiveness is inhibited by co-transplantation of normal tissues 

associated fibroblasts (NAFs) (8,9). While NAFs and CAFs exhibit a uniform cell 

morphology, molecular profiling studies reveal that CAFs show increased expression of 
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extracellular matrix proteins, growth factors and cytokines, which may contribute to 

tumor progression (10-12). 

    CXCL1 is a member of CXC chemokine family. The biological effects of CXCL1 can 

be mediated through two class A, rhodopsin-like guanine-protein-coupled receptors 

(GPCRs): CXCR1 and CXCR2 (53). CXCR1 and CXCR2 has 78% identical amino acid 

sequences (54, 55), however, due to the differences in the receptor N-terminal 

sequences, CXCL1 predominantly bind to CXCR2 instead of CXCR1 under physical 

conditions (56). Accordingly, CXCR2 bind to multiple chemokine ligand including CXCL1, 

CXCL2, CXCL3, CXCL5, CXCL6, CXCL7 and CXCL8. In breast cancer, increased 

CXCL1 protein expression has been reported in HER2 positive metastatic breast cancer 

(66) and was associated with increased tumor growth and pulmonary metastasis of 

MDA-MB231 breast cancer cells grafted in the mammary fat pads of nude mice (67). 

Moreover, increased plasma levels of CXCL1 protein are associated with decreased 

survival of breast cancer patients with metastatic disease (68). Similarly, increased 

tumoral expression of CXCL1 RNA is associated with metastatic disease, correlating 

with tumor grade and decreased survival of patients with ER positive breast cancer (10). 

Recently, it has been reported that tumor cell-derived CXCL1 recruits myeloid cells, 

which in turn enhance tumor cell survival and chemo-resistance. However, the role for 

fibroblast-derived CXCL1 signaling in mammary tumor progression has not been fully 

characterized. Our previous studies indicate that CXCL1 is up-regulated in breast tumor 

stroma, especially in carcinoma-associated fibroblasts (CAFs), corresponding with poor 

prognosis of breast cancer patients. Here we further characterize the expression pattern 

of CXCL1 and CXCR2 in breast cancer cell lines of different subtypes in mouse and 

human, as well as in normal mammary-associated fibroblasts (NAFs) and CAFs, and 
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systematically examined the role and molecular mechanisms of paracrine and autocrine 

CXCL1/CXCR2 signaling in breast cancer progression in vitro and in vivo.  

Materials and Methods 

Cell culture 

    Primary CAFs (41CAF, 83CAF) and 144Epi carcinoma cells were isolated from 

transgenic mice (FVB) expressing the PyVmT oncogene under the control of Mouse 

Mammary Tumor Virus Promoter (MMTV) at 12-16 weeks of age. Primary NAFs 

(311NAF, 4f NAF) were isolated from wild-type C57BL/6 mice at 12-16 weeks of age. 

Tgfbr2FspKO fibroblasts were isolated from Tgfbr2FspKO mice as described (17). 

Human CAFs (hCAF 008727, hCAF 02300) were isolated from human breast ductal 

carcinoma tissues. Human NAFs (hNAF 03280, hNAF 08727) were isolated from normal 

human breast tissues. All human breast tissues were obtained from Biospecimen 

Repository Core Facility (BRCF), an IRB approved facility at the University of Kansas 

Medical Center.  Fibroblasts cell lines were generated by spontaneous immortalization of 

primary mammary fibroblasts and clonal populations of fibroblasts were obtained as 

described (17). MCF-10A cells were cultured in Dulbecco’s modified Eagle medium 

(DMEM) /F12 containing 5% horse serum/ 100 mg/ml EGF/ 1 mg/ml hydrocortisone/ 1 

mg/ml choleratoxin/ 10 mg/ml insulin/ 100 I.U/ml penicillin/ 100 μg/ml streptomycin/ 0.5 

μg/ml amphotericin B. All other cells were cultured in complete media, which is DMEM 

containing 10% fetal bovine serum (FBS)/ MEM nonessential amino acids/ 2 mM L-

glutamine/ 100 I.U/ml penicillin/ 100 μg/ml streptomycin/ 0.5 μg/ml amphotericin B. 

ELISA 

    Cells were seeded in 24-well plate at a density of 20,000 cells. To generate 

conditioned medium, cells were incubated in 500 μl DMEM for indicated time periods, 
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followed by centrifugation to eliminate cell debris. For CXCL1 ELISA, 20 μl conditioned 

media were diluted in 80 μl DMEM, and analyzed by CXCL1 ELISA kit following 

manufacturer’s instructions (Peprotech, cat. no. 900-K27 for mouse CXCL1; cat. no. 

900-K38 for human CXCL1). Reactions were catalyzed using tetramethylbenzidine 

substrate (Thermo Scientific, cat. no. 34028). Reaction was stopped using 50 μl/well of 

2N HCl, read at A450nm using a 1420 multi-label counter (VICTOR3 TM V, PerkinElmer). 

All samples were analyzed in triplicate. Experiments were repeated at a minimum of 

triplicate. 

Flow cytometry analysis 

    Cells were cultured in complete medium in 10 cm dishes to 80% of sub-confluence. 

To detach cells from the plastic, cells were rinsed with PBS twice followed by incubation 

with 3 mM EDTA at 37Ԩ for 10-15 min. Cells were washed with 10 ml of complete 

medium twice, and fixed by neutral formalin buffer (VWR) for 10 min. To remove traces 

of formalin, cells were washed with PBS twice. For CXCR2 cell surface staining, 500,000 

cells were incubated with anti-CXCR2 antibody (cat. no. MAB331-100, R&D Systems) at 

1: 100 dilution in PBS on ice for 30 min, washed with PBS twice, and incubated with 

Alexa Fluor 488 Goat Anti-Mouse IgG secondary antibody (cat. no. A-11029, Life 

technologies) at 1:1000 dilution in PBS on ice for 30 min. Cells were washed with PBS 

three times and filtered in PBS prior to analysis. For combined cell surface and 

intracellular CXCR2 staining, 500,000 cells permeabilized with 0.2% of Tween 20 / PBS 

at 37Ԩ for 15 min (180), followed by wash with 0.1% Tween/PBS three times. cells were 

incubated with anti-CXCR2 antibody (cat. no. MAB331-100, R&D Systems) at 1: 100 

dilution in PBS on ice for 30 min, washed with 0.1% Tween / PBS three times, and 

incubated with Alexa Fluor 488 Goat Anti-Mouse IgG secondary antibody (cat. no. A-

11029, Life technologies) at 1:1000 dilution in PBS on ice for 30 min. Cells were washed 
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with 0.1% Tween/PBS three times and filtered in PBS prior to analysis. Cells were 

compared with unstained control and secondary antibody-only controls. CXCR2 

expression was analyzed on an LSRII flow cytometer (BD Biosciences).      

Immunohistochemistry staining 

    Mouse mammary tumor tissues from in vivo studies were fixed in 10% neutral formalin 

buffer and embedded in paraffin using the University of Kansas Medical Center 

Histology Core facilities. Tissue sections (5 μm) were de-waxed and rehydrated in PBS. 

Sections were subjected to antigen retrieval in 10 mM sodium citrate buffer (pH 6.0) at 

100oC for 10 min and washed in PBS. Endogenous peroxidases were quenched in PBS 

containing 3% H202 and 10% methanol for 30 min. After rinsing in PBS, samples were 

blocked in PBS containing 5% rabbit serum and incubated with antibodies (1:100) to 

Ki67 or antibodies (1:100) to cleaved caspase 3 at 4oC overnight.  Samples were 

washed in PBS and incubated with secondary goat biotinylated antibodies (1:500), 

conjugated with streptavidin peroxidase (cat. no. PK-4000, Vector Labs) and incubated 

with 3,3'-Diaminobenzidine (DAB) substrate (cat no. K346711, Dako). Sections were 

counterstained with Harris’s hematoxylin for 5 minute, dehydrated and mounted with 

Cytoseal. The density of Ki67, cleaved caspase 3 positive staining were measured in at 

least 5 fields at 10x magnification by NIH Image J software. Proliferative (Ki67 positive) 

and apoptotic indices (cleaved caspase 3) were calculated by determining the relative 

area of positive stained cells to total number of cells in at least five fields at 10× 

magnification using Image J software.  

siRNA transfection 

    Negative control siRNAs (cat. no. AM4613, Ambion) and siRNAs targeting two 

different regions of CXCL1 (cat. no. AM16708, Ambion) were obtained from Santa Cruz 



113 
 

Biotechnology. Transfection of siRNA into the cells was performed according to 

manufacturer’s protocols. Briefly, cells were seeded in a 24-well plate at a density of 

20,000 cells and cultured for 24 hours. Cells were rinsed with PBS and Opti-MEM (cat. 

no. 11058-021, Gibco), and incubated in Opti-MEM with complexes of 12 pmol siRNA 

and 2.4 μl Lipofectamine 2000 reagent (cat. no. 11668019, Life technologies) for 24 

hours. Medium was replaced with Opti-MEM/10%FBS for 24 hours prior to stimulation or 

starvation. 

Retroviral transduction 

    Phenix cells were transfected with 10 μg of pBabe retroviral construct or pRetrosuper 

retroviral construct carrying a puromycin selection marker and shRNAs targeting two 

different regions of CXCR2 (CXCR2/F-6 and CXCR2/G-1), shRNA targeting CXCL1, or 

GFP gene (Ctrl shRNA) as a specificity control (87). The full hairpin sequence and gene 

targeting sequences for each shRNA construct are as follows:  

CXCR2/F-6 shRNA full hairpin sequence, 

TGCTGTTGACAGTGAGCGCGCAGTGTACTTACATATAATATAGTGAAGCCACAGAT

GTATATTATATGTAAGTACACTGCATGCCTACTGCCTCGGA;  

CXCR2/F-6 shRNA targeting sequence, 5’-CAGTGTACTTACATATAAT-3’;  

CXCR2/G-1 shRNA full hairpin sequence, 

TGCTGTTGACAGTGAGCGAGGATAACATTTGAAATGTAAATAGTGAAGCCACAGAT

GTATTTACATTTCAAATGTTATCCCTGCCTACTGCCTCGGA;  

CXCR2/G-1 shRNA targeting sequence, 5’-GATAACATTTGAAATGTAA-3’;  

GFP shRNA targeting sequence, 5’-GCTGACGGAGAACAACATC-3’.  
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Medium containing retrovirus was collected after 48 hours of transfection and used to 

transduce 144Epi carcinoma cells or 41CAF seeded at 60% subconfluence in 10 cm 

dishes in the presence of 5 μg/ml Polybrene (cat. no. AL-118, Sigma). 48 hours post 

infection, cells were placed under puromycin selection (2 μg/ml) (cat. no. P9620, Sigma) 

in DMEM containing 10% FBS/ MEM nonessential amino acids/ 2 mM L-glutamine/ 100 

I.U/ml penicillin/ 100 μg/ml streptomycin/ 0.5 μg/ml amphotericin B. Non-infected 144Epi 

cells or 41CAF were treated with puromycin as a control. 

Invasion assay 

    8 μm-pore transwell filters (cat. no. 3422, Costar) were pre-coated with DMEM 

containing 0.5 mg/ml of growth factor reduced matrigel matrix (cat. no. 356230, BD 

Biosciences) at 37Ԩ	for 1 hour. Carcinoma cells were serum starved and then seeded 

on transwell upper chambers at a density of 75,000 cells per well with or without 

recombinant CXCL1 at 37Ԩ	for indicated time periods. For carcinoma cells/fibroblast co-

culture invasion assay, fibroblasts were seeded on the underside of matrigel coated 

transwell filters at a density of 100,000 cells per well for 1 hour, followed by seeding 

carcinoma cells into transwell upside chambers at a density of 75,000 cells per well 37Ԩ	

for indicated time periods. Cells were fixed with 10% neutral formalin buffer (VWR) for 10 

minutes and stained with 0.1% crystal violet (cat. no. AC21212-0250, Fisher) for 10 

minutes followed by twice of PBS rinse. For the carcinoma cell/fibroblast co-culture 

invasion assays, carcinoma cells were pre-labeled with fluorochrome dye (cat. no. 

C2925, Life Technologies). Tumor cells on the upside of the filter were removed by 

cotton swabs. Carcinoma cells that invaded to the underside of the filter were 

micrographed under Nikon SMZ-800 stereo microscope with charge coupled device 

camera; a minimum of four fields per sample were captured at 20 X magnification. Cell 
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invasion was quantified by measuring the pixel area of crystal violet-stained or 

fluorochrome dye labeled cells using NIH Image J software (arbitrary units).   

Immunofluorescence staining 

    144Epi PyVmT mammary carcinoma cells were seeded onto sterile cover slips in 24-

well plate at a density of 20,000 cells per well for 24 hours. Cells were fixed with 10% 

neutral formalin buffer (VWR) for 10 min to overnight, followed by wash in methanol at -

20Ԩ for 7 min. After blocking with blocking buffer (PBS containing 3% of FBS) for 1 hour, 

cells were probed with antibodies (1:100 in blocking buffer) to CXCR2 (cat. no. SC-683, 

Santa Cruz) at 4Ԩ overnight. Anti-rabbit Alexa 568 second antibody (1:1000 in blocking 

buffer) was used to detect specific immunoreaction at room temperature for 2 hours. 

Antibody specificity was controlled by secondary antibody only and CXCR2 peptide 

competition (Peptide Control). Cells were counter stained with DAPI (1:500 in PBS) at 

room temperature for 10 min, and mounted to microscope slides with PBS/glycerol (1:1). 

Pictures were taken at 10x magnification at multiple fields. CXCR2 expression was 

quantified by Image J (NIH Software) and compared to Parental control (Par).  

Western blot 

    Cells were rinsed with PBS twice, lysed in RIPA buffer containing 10 mM Tris-HCl, pH 

8.0, 0.1 mM EDTA, 0.1% sodium deoxycholate, 0.1% SDS, and 140 mM NaCl, 

supplemented with a Sigma cocktail of protease and phosphatase inhibitors (cat. no. 

P8340) and 10 mM of sodium orthovanadate (cat. no. S6508). 80 μg of protein were 

resolved by 10% SDS-PAGE. The proteins were transferred to nitrocellulose 

membranes and then probed with antibodies (1:1000) to: phospho-Akt (S-473, cat. no. 

4060, Cell Signaling Technology), phospho-ERK1/2 (T-202/Y-204, cat. no. 9101, Cell 

Signaling Technology), phospho-IKKα/β (S-176/180, cat. no. 2697, Cell Signaling 
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Technology), Akt (cat. no. 4691S, Cell Signaling Technology), ERK1/2 (cat. no. 9102, 

Cell Signaling Technology), IKKβ (cat. no. 2678, Cell Signaling Technology). Specific 

immunoreaction was detected with rabbit secondary antibodies conjugated to 

horseradish peroxidase and West Pico ECL Western blotting substrate (cat. no. 34080, 

Thermo SCIENTIFIC).  

Statistical analysis 

    Data are expressed as mean ± S.E. Statistical analysis was performed using two-

tailed t test or analysis of variance with Bonferroni's post-test of comparisons using 

GraphPad software. Statistical significance was determined by: not significant (ns); *, 

p<0.05; **, p<0.01; ***, p<0.001. 

Results 

Expression patterns of CXCL1 and CXCR2 in breast cancer cells are associated 

with cell subtypes and tumorigenicity 

    CXCL1 was up-regulated in various cancer types including melanoma, ovarian, 

gastric and bladder cancer, associated with invasion and angiogenesis. Overexpression 

of CXCL1 in breast cancer cells enhance myeloid cell recruitment and facilitate 

metastatic cancer cell survival and chemo-resistance. However, little is known about 

CXCL1 expression patterns in breast cancer epithelial cells and surrounding stroma cells. 

We analyzed CXCL1 protein expression in cultured normal-like MCF-10A human breast 

epithelial cells, breast cancer cell lines including luminal type MCF-7 cells and basal-like 

MDA-MB231 cells, and fibroblasts isolated from normal breast tissues (huNAFs) and 

breast ductal carcinoma tissues (huCAFs). We found that CXCL1 show higher 

expression in highly invasive basal-like MDA-MB231 cells compared to non-tumorigenic 
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MCF-10A cells and non-invasive MCF-7 cells (Figure 4.1A). We also observed that 

huNAFs and huCAFs express equivalent or higher levels of CXCL1 than breast cancer 

cells, and one of the huCAFs we assayed for exhibited the highest CXCL1 expression 

level among all cells examined (Figure 4.1A). Accordingly, basal-like 4T1 cells secrete 

higher levels of CXCL1 than luminal 144Epi cells and other normal-like mammary 

epithelial cells (Figure 4.1B). Additionally, we found that mammary CAFs show 

significantly higher expression of CXCL1 than NAFs (Figure 4.1B). Since CXCL1 signals 

to cell surface receptor CXCR2 to exert its biological effects, we also examined the 

expression patterns of CXCR2 among human breast epithelial / cancer cells, as well as 

mouse mammary carcinoma cells, and found that increased extracellular and 

intracellular expression of CXCR2 is associated with invasiveness of human breast 

cancer cells but not with mouse mammary carcinoma cells (Figure 4.2). Taken together, 

the results suggest that, while mouse mammary carcinoma cells exhibited increasing 

CXCL1 expression corresponding to cell tumorigenicity, human breast cancer cells show 

increasing CXCR2 expression as well as high CXCL1 expression in invasive basal-like 

MDA-MB231 cells.    

CXCL1 promotes breast cancer cell invasion in CXCR2-dependent manner 

    CXCL1 has been shown to stimulate tumor cell proliferation and invasion in 

melanoma, gastric and ovarian cancers(64, 181, 182). MCF-7 is less invasive than 

MDA-MB231 cells. Hypothesizing that enhanced CXCL1 secretion in breast cancer cells 

contributes to cell invasion, we examined the effect of added recombinant CXCL1 on 

MCF-7 cell invasion by transwell invasion assay (Figure 4.3). Compared to untreated 

cells, CXCL1 significantly enhanced MCF-7 cell invasion by 33% percent at 20 ng/ml, 

and up to 2.2 fold at 40 ng/ml. At 80 ng/ml, CXCL1 induction of cell invasion was lower 

than that at 40 ng/ml, but the difference was not significant. Similarly, we compared the  
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Figure 4.1. CXCL1 expression profiling in breast cancer cells and fibroblasts.  

(A) Human breast epithelial cells MCF-10A, breast cancer cells MCF-7 and MDA-MB 

231, human normal breast tissue associated fibroblasts (huNAF), human breast ductal 

carcinoma-associated fibroblasts (huCAF) were cultured to sub-confluent state followed 

by incubation in DMEM for 24 hours. Conditioned media were analyzed for CXCL1 

secretion levels by ELISA. (B) Mouse mammary carcinoma cells NMuMG, 67NR, 144Epi 

PyVmT, 4T1, mouse normal mammary tissues associated fibroblasts (NAF), mouse 

mammary carcinoma associated fibroblasts (CAF), and mammary tumor promoting 

Tgfbr2 FspKO (2SKO) fibroblasts were cultured to sub-confluent state followed by 

incubation in DMEM for 24 hours. Conditioned media were analyzed for CXCL1 

secretion levels by ELISA. Values are expressed as Mean ± SEM.  
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Figure 4.2. CXCR2 expression in breast cancer cells.  

(A) Human breast epithelial cells MCF-10A, breast cancer cells MCF-7 and MDA-MB 

231 were fixed and stained for CXCR2 expression by flow cytometry analysis. (B) Mouse 

mammary carcinoma cells NMuMG, 67NR, 144Epi PyVmT, 4T1 were fixed and stained 

for CXCR2 expression by flow cytometry analysis.  
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Figure 4.3. CXCL1 promotes human breast cancer cell invasion in a dose-

dependent manner.  

MCF-7 cells were cultured in the upper chambers of the matrigel coated transwell inserts 

in the absence or presence of indicated dosages of CXCL1 in both upper and lower 

chambers for 24hours. After formalin fixation, cells in the upper chambers were swabbed 

off, and the cells invaded to the lower surfaces  of the inserts were stained with crystal 

violet. Pictures were taken under microscope at multiple fields. Cell invasion was 

quantified using Image J, and normalized to untreated cells. Statistical significance was 

determined by p<0.05. not significant (ns), p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001. 

Values are expressed as Mean ± SEM.  
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cell invasion ability of two mouse mammary carcinoma cell lines 144Epi and 4T1, and 

investigated the effect of adding recombinant CXCL1 on cell invasion (Figure 4.4). 

Consistent with published in vivo studies that 4T1 cell is more metastatic than 144Epi-

PyVmT cells when grafted in mice, we observed significantly higher levels of cell 

invasion of 4T1 than 144Epi-PyVmT cells in vitro  as determined by transwell invasion 

assays. CXCL1 promoted 144Epi-PyVmT cell invasion in a dose dependent manner on 

all dosages used. On the other hand, although increased cell invasion was observed in 

CXCL1 treated 4T1 cells, extra CXCL1 at dosages higher than 20 ng/ml did not further 

enhance cell invasion. These data indicate that CXCL1 plays an important role in 

inducing cell invasion in both human and mouse breast cancer cells in dose-dependent 

manner.          

Autocrine CXCL1 signaling is required for invasion capability in highly invasive 
breast cancer cells 

    Studies have shown direct correlation of ectopic CXCL1 expression and invasive 

potential of gastric and bladder cancer cells. Our studies indicate that expression of 

CXCL1 is positively correlated with tumorigenicity of mouse mammary carcinomas cells 

(Figure 4.1B). To further examine the role of autocrine CXCL1 signaling on tumor cell 

invasion, we transiently knocked down expression of CXCL1 by siRNA and measured 

cell invasion ability in 4T1 cells, which have relatively high constitutive CXCL1 

expression. CXCL1 secretion was significantly inhibited by 50-70% with siRNA 

compared with control cells (Figure 4.5).  We found that 4T1 cells show increasing cell 

invasion from 24 hours to 48 hours, which was markedly reduced upon deletion of 

CXCL1, and the reduction of cell invasion was proportional to that of CXCL1 secretion 

levels (Figure 4.5). Similar experiments were performed in 144Epi PyVmT cells, which 

secrete lower levels of CXCL1 than 4T1 cells. However, cell invasion of 144Epi PyVmT 
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Figure 4.4. CXCL1 promotes mouse mammary carcinoma cell invasion in a dose-

dependent manner.  

144Epi or 4T1 mouse mammary carcinoma cells were cultured in the upper chambers of 

the matrigel coated transwell inserts in the absence or presence of indicated dosages of 

CXCL1 in both upper and lower chambers for 24hours. After formalin fixation, cells in the 

upper chambers were swabbed off, and the cells invaded to the lower surfaces  of the 

inserts were stained with crystal violet. Pictures were taken under microscope at multiple 

fields. Cell invasion was quantified using Image J, and normalized to untreated cells. 

Statistical significance was determined by p<0.05. not significant (ns), p>0.05; *, p<0.05; 

**, p<0.01; ***, p<0.001. Values are expressed as Mean ± SD from a representative 

experiment.  
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Figure 4.5. Autocrine CXCL1 signaling is required formouse 4T1 mammary 

carcinoma cell invasion.  

(A) mouse mammary carcinoma cells were transfected with control siRNA (Ctrl) or 

siRNA to CXCL1 (CXCL1 siRNA), and cultured in the upper chambers of the matrigel 

coated transwell for 24 and 48 hours. Conditioned media were analyzed for CXCL1 

secretion by ELISA. (B) After formalin fixation, cells in the upper chambers were 

swabbed off, and the cells invaded to the lower surfaces  of the inserts were stained with 

crystal violet. Pictures were taken under microscope at multiple fields. Cell invasion was 

quantified using Image J, and normalized to control siRNA transfected cell invasion at 24 

hours. Statistical significance was determined by p<0.05. *, p<0.05; **, p<0.01; ***, 

p<0.001. Values are expressed as Mean ± SEM.  
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cells is much lower than that of 4T1 cells at 24 hours and 48 hours, and no significant 

reduction was observed upon CXCL1 depletion (data not shown). Taken together, these 

data indicate that autocrine CXCL1 plays an essential role in cell invasion in 4T1 

mammary carcinoma cells with relatively high CXCL1 expression, but does not have 

significant effect in 144Epi PyVmT cells with relatively low CXCL1 expression.     

Paracrine CXCL1 from carcinoma-associated fibroblasts promotes breast cancer 

cell invasion 

    Our studies indicate that carcinoma-associated fibroblasts (CAFs) ectopically secrete 

higher levels of CXCL1 than normal fibroblasts, and thus are another main source of 

CXCL1 in the tumor microenvironment. We next assessed the potential role for CAFs 

and CAF-derived CXCL1 in inducing mammary carcinoma cell invasion using a transwell 

cell invasion model, in which carcinoma cells were co-cultured with fibroblasts with a 

border of matrigel layer in between mimicking the basement membrane in tumor 

microenvironment. In order to specifically identify invaded carcinoma cells, they were 

pre-labeled with fluorochrome dye (CMFDA), which can sustain its fluorescent signal for 

at least 7 to 10 days. We found that 41CAF with high CXCL1 secretion significantly 

promote 144Epi PyVmT and 4T1 mammary carcinoma cell at 12 and 24 hours (Figure 

4.6). Interestingly, in serum free condition, cell invasion capability of 144Epi PyVmT and 

4T1 cells were remarkably diminished compared with that in low serum condition (Figure 

4.6 and Figure 4.4). CXCL1 is expressed in both tumor cells and fibroblasts. In order to 

determine and compare the functional contribution of fibroblast- and tumor cell-derived 

CXCL1 to tumor cell invasion, we transiently inhibited CXCL1 expression by siRNA in 

each cell types or both, and co-cultured them in the transwell for 24 hours. CXCL1 

secretion levels of siRNA transfected cells were determined by ELISA (Figure 4.7). 70% 

to 75% knockdown of CXCL1 was achieved in 41CAF, 144Epi PyVmT and 4T1 cells. In 
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Figure 4.6. Mammary CAFs promote 144Epi and 4T1 carcinoma cell invasion.  

144Epi or 4T1 mouse mammary carcinoma cells were pre-labeled by fluorochrome dye 

(CMFDA), and cultured in the upper chambers of the matrigel coated transwell inserts in 

the absence or presence of mammary carcinoma-associated fibroblasts (41CAF) 

cultured on the lower surface of transwell inserts for 12 and 24 hours. After formalin 

fixation, cells in the upper chambers were swabbed off, and the cells invaded to the 

lower surfaces  of the inserts were visualized under fluorescence microscope. Pictures 

were taken at multiple fields. Cell invasion was quantified using Image J, and normalized 

to control siRNA transfected cell invasion at 24 hours. Statistical significance was 

determined by p<0.05. *, p<0.05; **, p<0.01; ***, p<0.001. Values are expressed as 

Mean ± SEM.  

  



132 
 

 

 

     

  



133 
 

 

 

 

 

 

 

 

Figure 4.7. Confirmation of CXCL1 siRNA knockdown in individually cultured  

41CAF, 144Epi and 4T1 cells.  

Mammary carcinoma-associated fibroblasts (41CAF) and fluorochrome dye pre-labeled 

144Epi, 4T1 mouse mammary carcinoma cells  were transfected with control siRNA (Ctrl) 

or siRNA to CXCL1 (CXCL1 siRNA). Cells were seeded in matrigel coated 24 well plates 

for 24 hours. Condition media was collected and analyzed for CXCL1 secretion levels by 

ELISA. Statistical significance was determined by p<0.05. **, p<0.01; ***, p<0.001. 

Values are expressed as Mean ± SEM.   
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addition, we determined CXCL1 secretion levels in tumor cells cultured with 41CAFs in 

transwells using the same method. Interestingly, inhibition of CXCL1 expression in 

144Epi or 4T1 cells alone had no significant effect on the overall CXCL1 expression 

levels in the co-culture microenvironment (Figure 4.8). In addition, CXCL1 knockdown in 

41CAFs significantly reduced overall amount of CXCL1 with 144Epi cells but not with 

4T1 cells. Also, we noticed that with CXCL1 knockdown in 41CAFs, additive effects of 

CXCL1 inhibition were achieved in 41CAFs co-cultured with CXCL1 siRNA transfected 

4T1 cells but not with 144Epi cells (Figure 4.8).  

    As for cell invasion, blockade of autocrine CXCL1 signaling in 144Epi PyVmT cell or 

4T1 cells had no significant effect on tumor cell invasion, correlating with unaffected 

overall CXCL1 expression levels in the co-culture microenvironments (Figure 4.9). 

Nevertheless, blockade of paracrine CXCL1 signaling by siRNA transfection of 41CAFs 

significantly reduced tumor cell invasion in both 144Epi: 41CAF and 4T1: 41CAF cells. 

siRNA inhibition of  both autocrine and paracrine CXCL1 signaling further suppressed 

144Epi cell invasion, yet has no further inhibitory effect on 4T1 cell invasion (Figure 4.9).    

Paracrine CXCL1 signaling induced breast cancer cell invasion was dependent on 

CXCR2 expression in tumor cells 

    CXCL1 signals to its cell surface receptor CXCR2 to regulate cell invasion in gastric 

and bladder cancer. Here we examined the role for CXCR2 in paracrine CXCL1 

signaling induced breast cancer cell invasion. We generated two 144Epi PyVmT mouse 

mammary carcinoma cell lines with decreased expression of CXCR2 by infecting the 

parental 144Epi cells (Par) with retroviruses expressing shRNAs targeting CXCR2 gene 

at different exon regions (named as F-6, G-1 respectively). CXCR2 expression levels 

was determined by immunofluorescence staining and flowcytometry analysis (Figure  
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Figure 4.8. siRNA knockdown of CXCL1 expression in co-cultured 41CAFs and 

144Epi or 4T1 carcinoma cells.  

Fluorochrome dye (CMFDA) pre-labeled 144Epi, 4T1 mouse mammary carcinoma cells 

and mammary carcinoma-associated fibroblasts (41CAF) were transfected with control 

siRNA (Ctrl) or siRNA to CXCL1 (CXCL1 siRNA). 144Epi (A) or 4T1 (B) cells were 

cultured in the upper chambers of the matrigel coated transwell inserts in the presence 

of mammary CAFs cultured on the lower surface of transwell inserts for 24 hours. Mixed 

conditioned media from both upper and lower chambers were collected and analyzed for 

CXCL1 secretion levels by ELISA. CXCL1 secretion levels were normalized to control 

siRNA transfected tumor cells co-cultured with control siRNA transfected CAFs as 

shown on the left. Un-normalized CXCL1 secretion levels from three independent 

experiments were shown on the right. Statistical significance was determined by p<0.05. 

not significant (ns), p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001. Values are expressed as 

Mean ± SEM.  
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Figure 4.9. Fibroblast-derived paracrine CXCL1signling promotes 144Epi and 4T1 

carcinoma cell invasion.  

Fluorochrome dye (CMFDA) pre-labeled 144Epi, 4T1 mouse mammary carcinoma cells 

and mammary carcinoma-associated fibroblasts (41CAF) were transfected with control 

siRNA (Ctrl) or siRNA to CXCL1 (CXCL1 siRNA). 144Epi (A) or 4T1 (B) cells were 

cultured in the upper chambers of the matrigel coated transwell inserts in the presence 

of mammary CAFs cultured on the lower surface of transwell inserts for 24 hours. After 

formalin fixation, cells in the upper chambers were swabbed off, and the cells invaded to 

the lower surfaces  of the inserts were visualized under fluorescence microscope. 

Pictures were taken at multiple fields. Cell invasion was quantified using Image J, and 

normalized to control siRNA transfected tumor cells co-cultured with control siRNA 

transfected CAFs.  Statistical significance was determined by p<0.05. not significant (ns), 

p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001. Values are expressed as Mean ± SEM.  
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4.10A and data not shown). The results indicate that we have achieved 60% to 85% 

knockdown of CXCR2 expression in the two generated cell lines: 144Epi CXCR2/F-6 

and 144Epi CXCR2/G-1 compared with parental 144Epi cells or control shRNA 

expressing cells. Similarly, we have generated 41CAF cell line with decreased 

expression of CXCL1 (CXCL1-shRNA CAF), which was confirmed by ELISA (Figure 

4.10B). To examine the effect of CXCR2 inhibition on tumor cell invasion induced by 

autocrine and fibroblast-derived paracrine CXCL1 signaling, tumor cell invasion was 

determined on 144Epi carcinoma cells (Par, CXCR2/F-6, CXCR2/G-1) cultured alone, 

with control parental CAF or CXCL1-shRNA CAF at 24 hours (Figure 4.11). We found 

that tumor cell invasion is quite low when 144Epi tumor cells were cultured alone, and no 

significant differences were observed among parental cells (Par) and the two CXCR2 

knockdown cells (CXCR2/F-6, CXCR2/G-1). Parental 41CAF with high CXCL1 secretion 

levels remarkably induced 144Epi cell invasion. Although only partially, knockdown of 

CXCR2 by shRNAs significantly reduced 144Epi cell invasion. Consistent with siRNA 

knockdown studies (Figure 4.9A), knockdown of CXCL1 expression in 41CAF show 

significantly lower capability of inducing 144Epi cell invasion compared to parental 

41CAF, and tumor cell CXCR2 knockdown did not lead to any significant difference in 

cell invasion from parental cells (Figure 4.11).  

CXCL1 stimulates breast cancer cell invasion via activation of Akt and NF-KB 

signaling pathways  

    Previous studies indicate that CXCL1 induce cancer cell invasion, through binding to 

its cell surface receptor CXCR2, which is a G protein coupled receptor (GPCR) favoring  

coupling to Gαi protein subunit (183). In addition, studies in other types of cancers 

including prostate, ovarian and stomach cancer have shown that through activating 

ERK1/2 MAPK, PI3K/Akt, NF-κB signaling pathways, CXCL1/CXCR2 signaling regulates 
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Figure 4.10. Stable knockdown of CXCR2 in 144EPI mammary carcinoma cells and 

CXCL1 in mouse mammary CAFs.  

(A) CXCR2 shRNAs (F-6, G-1) or control shRNAs (Ctrl shRNA) were stably expressed in 

144Epi mammary carcinoma cells, and analyzed for expression of CXCR2 by 

immunofluorescence staining. Cells were visualized by rabbit secondary antibodies to 

Alexa-568. Antibody specificity was controlled by secondary antibody only and CXCR2 

peptide competition (Peptide Control). CXCR2 expression was quantified by Image J. 

Cells were compared to Parental control (Par). (B) Mouse mammary carcinoma-

associated fibroblasts (41CAF) were infected with retroviruses expressing CXCL1 

shRNA followed by neomycin selection. Conditioned media from parental and CXCL1 

shRNA expressing CAFs were collected and assayed for CXCL1 secretion by ELISA. 

Statistical significance was determined by p<0.05. **, p<0.01. Values are expressed as 

Mean ± SEM.  
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Figure 4.11. Paracrine CXCL1 signaling from carcinoma-associated fibroblasts 

induce carcinoma cell invasion in a CXCR2-dependent manner.   

Parental 144Epi mouse mammary carcinoma cells (144Epi Par), CXCR2-shRNA 

expressing 144Epi cells (144Epi CXCR2/F-6, G-1) were pre-labeled by fluorochrome 

dye (CMFDA), and cultured in the upper chambers of the matrigel coated transwell 

inserts in the absence or presence of parental mammary carcinoma-associated 

fibroblasts  (41CAF Par) or CXCL1-shRNA expressing 41CAFs (CXCL1-shRNA CAF) 

cultured on the lower surface of transwell inserts for 24 hours. After formalin fixation, 

cells in the upper chambers were swabbed off, and the cells invaded to the lower 

surfaces  of the inserts were visualized under fluorescence microscope. Pictures were 

taken at multiple fields. Cell invasion was quantified using Image J, and normalized to 

144Epi Par alone cell invasion.  Statistical significance was determined by p<0.05. not 

significant (ns), p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001. Values are expressed as 

Mean ± SEM.  
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cell proliferation, survival, invasion and angiogenesis (184-188). However, the molecular 

mechanisms through which CXCL1 regulate breast cancer cell survival and invasion 

remains to be fully clarified. 

    To clarify the molecular mechanism, we treated MCF-7 breast cancer cells with 

recombinant CXCL1 at a dosage which powerfully induce cell invasion and examined 

changes of candidate signaling pathways (ERK1/2, Akt, NF-κB) by western blots. NF-κB 

is sequestered in the cytosol by its inhibitor IκB (inhibitor of NF-κB) proteins, and 

activation of Iκκ by phosphorylation is required for phosphorylation of IκB, which leads to 

IκB degradation and release of NF-κB for nuclear translocation and activation of gene 

transcription. The results indicate that CXCL1 continuously stimulates phosphorylation of 

Akt and Iκκas early as 20 seconds post treatment, but has no significant effect on 

levels of phosphorylated ERK1/2 (Figure 4.12A). We did similar profiling for these 

signaling pathways in 144Epi mouse mammary carcinoma cells, and so far we have 

observed that CXCL1 stimulates phosphorylation of Iκκin 144Epi cells, but the 

response is much slower than that in MCF-7 cells (Figure 4.12B). It was shown that Akt 

promotes HT1080 fibrosarcoma cell invasion through activating NF-κB transcriptional 

activity thus enhancing expression of metalloproteinase-9 (MMP-9) (189). Other studies 

also indicate that Akt is activated by phosphatidylinositol 3-kinases (PI3K) and may 

interact with NF-κB to promote breast cancer cell survival and invasion, and that Akt 

activates NF-κB via regulating Iκκ (Inhibitor of NF-κB kinase) activity, resulting in 

transcription of pro-survival genes (190). On the other hand, Akt can  regulate cell 

survival independently through phosphorylating BAD (which is a pro-apoptotic protein of 

the Bcl-2 family) on Ser136, which makes BAD dissociate from the Bcl-2/Bcl-X complex 

to promote cell survival (191). We speculate that Akt and NF-κB either work 

independently or coordinate with each other in these biological processes, which will be  
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Figure 4.12. CXCL1 activates NF-κB signaling pathways in MCF-7  and 144Epi cells 

and activate Akt signaling pathway in MCF-7 cells.   

Cultured MCF-7 human breast cancer cells (A) or 144Epi mouse mammary carcinoma 

cells (B) were starved in serum free media overnight, then treated with recombinant 

CXCL1 (40ng/ml) for indicated time periods (s, second; m, minute; h, hour). Whole cell 

lysates were collected and analyzed for phosphorylation status of Akt (S473), ERK1/2 

(T202/Y204) and/or Iκκα/β (S176/180) by western blots. The whole amount of Akt, Iκκα/β 

and ERK1/2 were immunoblotted as loading control. Presented are representative blots 

from three independent experiments.      
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determined in future studies using pharmacologic inhibitors to PI3K/Akt signaling and or  

Iκκ/IκB /NF-κB signaling. 

Carcinoma-associated fibroblasts promote tumor growth, local invasion and 

tumor cell survival corresponding to enhanced secretion of CXCL1 

    Previous studies indicate that stable knockdown of TGF- type II receptor by cre-loxP 

blocked TGF- signaling in mammary fibroblasts (2SKO fibroblasts) and enhanced 

expression of CXCL1 and HGF at both transcriptional and translational levels compared 

with control floxed fibroblasts and (Figure 2.9A-B) and (160). In addition, we have shown 

that 41CAF isolated from PyVmT transgenic mammary tumor bearing mice show 

elevated CXCL1 and HGF secretion alone with decreased TGF- signaling compared to 

normal fibroblast (311NAF). Furthermore, both 2SKO and 41CAF promotes 4T1 

mammary tumor cell invasion in vitro (Figure 4.8B) and (160). These data indicate that 

2SKO fibroblasts share many of the characteristics with 41CAFs, thus a great model to 

study the role of paracrine CXCL1 signaling in mammary tumor progression in the 

context of TGF-beta signaling. To determine the effect of fibroblast-derived CXCL1 on 

tumor growth, we grafted 144Epi mouse mammary carcinoma cells alone, with 2SKO or 

311NAF fibroblasts into C57/BL6 mice (Figure 4.13). Specifically, we isolated collagen 

from C57/BL6 mice, which allows us to use the more physiological relevant C57/BL6 

mouse mode instead of nude mice model. The results indicate that 2SKO fibroblasts 

enhanced tumor growth by 2.2 fold at 60 days compared to 144Epi cell grafted alone or 

with 311NAFs (Table 4.1). Additionally, tumor tissues were immunostained with Ki67 

and cleaved caspase 3 markers to analyze for changes of tumor cell proliferation and 

cell apoptosis. The results indicate that when co-grafted with 2SKO fibroblasts, 

knockdown of CXCR2 in 144Epi tumor cells resulted in decreased cell proliferation and 

increased cell apoptosis compared to parental 144Epi tumor cells (Figure 4.14).  
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Figure 4.13. Orthotopic transplantation mouse model.  

144Epi mammary carcinoma cells were isolated from C57/BL6 PyVmT transgenic mice 

and spontaneously immortalized. 311NAF were isolated from mammary gland of wild 

type C57/BL6 mice. Collagen was isolated from C57/BL6 mouse tail tenders. 144Epi 

carcinoma cells (Par, parental cell; Ctrl, control shRNA expressing cell; CXCR2/F-6 or 

CXCR2/G-1, CXCR2 shRNA expressing cell) were cultured alone or with indicated 

mammary fibroblasts in mouse tail collagen overnight (see table for experimental design) 

to allow cell-cell contact, and grafted into the inguinal mammary gland of C57/BL6 mice. 

Tumor growth and in vivo cell proliferation and survival were measured at day 60. 
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Table 4.1. 2SKO fibroblasts promote 144Epi tumor growth in C57/BL6 mice. 
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Figure 4.14. CXCR2 knockdown in mammary carcinoma cells reduces in vivo 

tumor cell proliferation and survival enhanced by Tgfbr2FspKO fibroblasts.  

CXCR2 shRNAs (F-6, G-1) were stably expressed in 144Epi mammary carcinoma cells, 

co-grafted with Tgfbr2FspKO (2SKO) fibroblasts and analyzed for changes in tumor cell 

proliferation and survival by immunostaining for Ki67 and cleaved caspase 3 on tumor 

tissues at 60 days (N=8/group). 
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Discussion 

    Fibroblasts are one of the most important components in tumor microenvironment, 

and carcinoma-associated fibroblasts have been shown to promote tumor progression in 

a variety of cancers. Our previous studies demonstrated that TGF- signaling deficient 

mammary fibroblasts (2SKO) promote tumor progression with enhanced expression of 

CXCL1 at mRNA levels, and that TGF- signaling negatively regulates expression of 

CXCL1 at transcription and protein levels in mammary fibroblasts. To understand the 

mechanisms through which carcinoma-associated fibroblasts promote mammary tumor 

progression in the context of TGF- signaling, we characterized the role of autocrine and 

fibroblast-derived paracrine CXCL1 signaling in breast cancer progression in vitro and in 

vivo.  

    In these studies, we demonstrate that CXCL1 exhibits higher expression in cytokeratin 

14 (CK14) positive basal-like  4T1 mammary carcinoma cells than the cytokeratin 18 

(CK18) positive luminal 144Epi mammary carcinoma cells. In addition, we found that 

CXCR2 show higher expression both on cell surface and intracellular on basal-like MDA-

MB231 human breast cancer cells than luminal MCF-7 cells and normal-like MCF-10A 

breast epithelial cells. These observations suggest that the expression of 

CXCL1/CXCR2 signaling components were significantly up-regulated in both human and 

mouse basal-like breast cancer cells in different manners, associated with enhanced 

invasiveness and tumorgenicity. Furthermore, we show that CXCL1 stimulate breast 

cancer cell invasion corresponding to activation of similar signaling pathways such as 

NF-κB pathways in both human and mouse breast cancer cells. These studies suggest 

that understanding the role of aberrant CXCL1/CXCR2 signaling in mammary carcinoma 

may help develop novel therapeutic strategies targeting CXCL1/CXCR2 signaling.  
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    Treatment with different amounts (up to 80 ng/ml ) of recombinant CXCL1 had no 

significant effect on MCF-7 breast cancer cell proliferation but remarkably promoted cell 

survival in a dose-dependent manner under serum free conditions (Figure 4.15). Similar 

results on cell survival were achieved in 144Epi PyVmT mouse mammary carcinoma cell 

(Figure 4.16). These results are consistent with published studies, in which CL66 and 

4T1 mouse mammary carcinoma cells treated with CXCR2 inhibitors showed no 

significant differences in cell proliferation in vitro (192). It was shown that shRNA 

knockdown of CXCR2 expression in 4T1 mouse mammary carcinoma cells significantly 

lowered number of cells invading through Matrigel (192). In our studies, inhibition of 

CXCL1 secretion by siRNA transfection significantly reduced 4T1 cell invasion. 

Interestingly, we did not observe significant changes of cell invasion in luminal 144Epi 

PyVmT cells when either CXCL1 or CXCR2 was knocked down (data not shown).  

These data indicate that autocrine CXCL1/CXCR2 signaling is restrictedly essential for 

basal-like mammary carcinoma cell invasion.  

    CXCL1 expression was significantly elevated in invasive ductal carcinoma stroma and 

in mammary carcinoma associated fibroblasts. Using multiple approaches, we analyzed 

the functional contribution of enhanced CXCL1 expression in 41CAF cell line on 

mammary carcinoma cell invasion. Blockade of paracrine CXCL1 signaling in 41CAFs 

significantly reduced cell invasion in both 144Epi and 4T1 cells. However, while inhibition 

of both autocrine and paracrine CXCL1 signaling further suppressed 144Epi luminal 

mammary carcinoma cell invasion, further inhibitory effect on cell invasion was not 

observed in 4T1 basal-like mammary carcinoma cells (Figure 4.9). Considering the 

relative expression levels of CXCL1 in these carcinoma cells and CAFs, we may 

conclude that luminal carcinoma cells secrete lower levels of CXCL1 than basal-like 

carcinoma cells thus are more responsive to paracrine CXCL1 signaling from CAFs.   
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Figure 4.15. CXCL1 promotes MCF-7 breast cancer cell survival but has no 

significant effect on cell proliferation.   

(A) MCF-7 cells were seeded in 24 well plate in cell growth media (DMEM+10%FBS) for 

indicated time periods and manually counted. (B) MCF-7 cells were assayed for changes 

in cell proliferation by BrdU incorporation assay for 24 hours. (C) MCF-7 cells were 

seeded in 24 well plate in DMEM for 48 hours and stained with trypan blue. Pictures 

were taken at multiple fields. Viable and dead cells were manually counted. Statistical 

significance was determined by p<0.05. not significant (ns), p>0.05; *, p<0.05. Values 

are expressed as Mean ± SEM.  
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Figure 4.16. CAF derived CXCL1 promotes mammary carcinoma cell survival in a 

dose-dependent manner.   

144Epi PyVmT cells were seeded in 6-well plate in DMEM with or without CAF 

conditioned media or recombinant CXCL1 as indicated. At 48 hours, cells were stained 

with trypan blue. Pictures were taken at multiple fields. Viable and dead cells were 

manually counted. Values are expressed as Mean ± SD from a representative 

experiment.  
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    Tumor metastasis is a complex multi-step process involving invasion, intravasation, 

extravasation, distant growth and neo-vasculature development. Recent published 

studies indicated that inhibition of CXCR2 expression significantly inhibited lung 

metastasis in BALB/c mice orthotopically injected with Cl66 mouse mammary carcinoma 

cells at 12 weeks (192). In our studies, we have not identified any changes of lung 

metastasis upon blocking CXCL1 secretion from 2SKO fibroblast or diminishing CXCR2 

expression in 144Epi mammary carcinoma cells. A trivial explanation for this could be 

that fibroblast-derived CXCL1/CXCR2 signaling plays different role in vivo compared to 

in vitro, in which it significantly promotes tumor cell invasion. However, this is improbable 

for two reasons. Firstly, formation of metastatic foci was quantified in lung tissues from 

grafted mice at day 60, however, the number of metastatic nodules were so low (0 to 3 

for most of the groups) that we were not able to obtain conclusive results from it. Since 

144Epi PyVmT cells does not have high metastatic potential compared with other 

metastatic mammary carcinoma cell lines such as 4T1, and that nude mouse model 

develop tumor and metastasis quicker than C57/BL6 mouse model, it is conceivable that 

better understanding of the role for paracrine CXCL1 signaling on mammary tumor 

metastasis could be gained using nude mice model, in which 4T1 cells are co-grafted 

with high CXCL1 expressing Tgfbr2 FspKO (2SKO) fibroblasts with appropriate controls. 

Secondly, even though there are no significant changes of lung metastasis in vivo as the 

current data indicate, it is possible that CXCL1/CXCR2 signaling plays a more important 

role in local cell invasion, therefore, we are not likely to observe significant changes of 

distant (lung) metastasis within the period of time (60 days). To address this hypothesis, 

future studies may involve examining the effect of blocking paracrine CXCL1/CXCR2 

signaling between mammary fibroblast and carcinoma cells on tumor cell local invasion, 

which can be determined by H/E staining on primary tumors and marginal mammary 

gland tissues.        
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Chapter V: Future Directions and Concluding Remarks 
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    It has been shown that patients who are diagnosed with localized breast cancers have 

more than 94% chance of survival, underlining the importance of early detection. Two of 

the most commonly used screening methods for breast cancer is physical examination 

of the breasts by healthcare provider and mammography, which offers an approximate 

likelihood whether a lump is cancer or not. Other options include microscopic analysis of 

tissue sample (or biopsy), special imaging by ultrasound or MRI. After accurate 

diagnosis of breast cancer, it is important to clarify the histopathology, grade, stage and 

receptor status of breast cancer. This will be based on immunohistochemistry staining 

for specific prognostic markers, and possibly PET or CT scans. In addition, various types 

of high-throughput DNA, RNA or protein testing including DNA microarrays, next 

generation sequencing (NGS) are occasionally used to further classify breast cancer 

subtypes. Although the accuracy of these methods have been largely improved in the 

last few decades, there are still some weaknesses. For instance, PET or CT scans have 

procedures exposing patient to substantial amount of potentially dangerous ionizing 

radiation, and thus may outweigh the possible benefits especially in breast cancer cases 

with low risk for metastasis (193). DNA microarrays, NGS take longer time to get the 

results and are still costly compared with other traditional prognostic approaches, and 

the different biological significance of gene expression between DNA/RNA levels and  

protein levels further weakens the clinical application for accurate prognosis. The 

present dissertation reveal that elevated CXCL1 expression in breast tumor stroma is 

associated with invasive ductal carcinoma, correlates with high recurrence and poor 

survival outcome, and is independent of currently applied prognostic markers. Therefore, 

breast cancer stroma CXCL1 expression determined by immunohistochemistry staining 

may have great potential to be adopted in breast cancer prognosis.        
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    Previous studies focused on the role of autocrine CXCL1 signaling in tumor epithelial 

cells. CXCL1/CXCR2 signaling have been well studied in melanoma tumorigenesis, and 

more studies have revealed its important role in the progression of other invasive 

cancers such as gastric cancer, prostate cancer and ovarian cancer. In addition, 

CXCL1/CXCR2 signaling in breast cancer has recently been revealed to link metastasis 

and chemo-resistance, in which cancer cells overexpressing CXCL1 and 2 are primed 

for survival in metastatic sites, where CXCL1/2 attract myeloid cells into tumor and 

produce chemokines such as S100A8/9 to enhance cancer cell survival (71). Although 

chemotherapeutic reagents kill rapid proliferating cancer cells, they triggers TNF- 

expression from stromal cells, which act on tumor cells via NF-B to enhance CXCL1/2 

secretion and amplify the cell survival loop. Blockade of CXCR2 potently breaks this 

cycle as a chemotherapy against chemo-resistance (71). In this dissertation, we 

demonstrated that in breast cancer microenvironment, fibroblast is a large source of 

secreted CXCL1, especially in poorly differentiated high grade breast cancer stroma, 

and that carcinoma-associated mammary fibroblasts exhibited enhanced CXCL1 

expression compared with normal mammary fibroblasts, which is necessary and 

sufficient to induce breast tumor cell invasion. Our studies provide new insights into 

current understanding of breast cancer microenvironment and demonstrate a novel 

mechanism of breast epithelial cell: fibroblast interactions.   

    Targeted therapy in combination with other therapies for breast cancer has been 

studied for decades, and has been proved to be effective in certain cancer subtypes. For 

example, Tamoxifen, an antagonist of estrogen receptor, has been commonly used for 

treatment for women who have been diagnosed with advanced positive estrogen 

receptor (ER+) breast cancer for a few decades. Although Tamoxifen may lead to some 

general side effects such as hot flashes, weight gain,  vaginal dryness, depression,  and 
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some rarely occurrence of increased risk of blood clots in leg and lungs, overgrowth of 

lining of the uterus, it has been approved to be highly effective in lowering the risk of 

breast cancer recurrence and prevention of breast cancer. Tamoxifen binds to estrogen 

receptor on the surface of breast cancer cells to block the proliferative effects of 

estrogen has on breast cancer cells. Additionally, for HER2 positive breast tumors, 

treatment of Trastuzumab (Herceptin) have been proved to be clinically effective.  

    Although some combination of surgery, radiation therapy and chemotherapy have 

been widely applied to basal-like / triple negative breast cancer (TNBC), targeted 

therapies for basal–like tumors has not been approved so far, partially due to the limited 

understanding of molecular mechanisms and targeted genes related to basal-like breast 

tumor pathologenesis. However, a few promising strategies targeting EGF receptor 

(EGFR), B-crystallin and cyclin E have been identified (194). For example, EGFR and 

its downstream signaling pathways have been shown to regulate epithelial-

mesenchymal transition (EMT), cell migration and invasion. In addition, half of cases of 

triple-negative (TNBC) breast cancer and inflammatory breast cancer (IBC) overexpress 

EGFR, making EGFR-targeted therapy a promising strategy to pursue (195). Another 

example is the use of cisplatin in breast cancer treatment. In particular forms of TNBC, 

p63 and p73 were overexpressed. Studies have shown that cisplatin, a plantinum-

containing anti-cancer drug, can break up the binding of p63 and p73 to induce DNA 

crosslinking, which leads to failure of DNA repair and ultimately triggers apoptosis of 

cancer cells. Although cisplatin is effective in many types of cancer, especially in 

testicular cancer (cure rate improved from 10% to 85%), it has some serious deficiencies 

for breast cancer treatment. The majority of breast cancer patients treated with cisplatin 

eventually relapse with cisplatin-resistant disease. Some mechanisms including changes 

in drug uptake and efflux have been proposed, yet more specifically studies found that 
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expression patterns of p63 and p73 in breast cancer patients may dictate the 

effectiveness of cisplatin treatment.    

    In this dissertation, we have characterized a correlation between CXCR2 expression 

patterns and breast cancer cell subtypes. We found that higher CXCR2 expression is 

associated with basal-like / TNBC breast cancer cells other than luminal or normal 

breast epithelial cells. In addition, we have found that while no significant difference in 

CXCR2 expression patterns among mouse mammary carcinoma cell lines were 

observed, enhanced CXCL1 expression is correlated with highly invasive basal-like 4T1 

cells other than luminal and normal like epithelial cells, and that CXCL1 is also up-

regulated in mouse mammary CAFs compared with NAFs. Moreover, our studies have 

indicated that while autocrine CXCL1 signaling is required for tumor cell invasion in high 

CXCL1 expressing mammary carcinoma cells, paracrine CXCL1 signaling from CAFs 

more potently induce mammary carcinoma cell invasion in a CXCR2-dependent manner. 

Taken together, our studies provide sufficient evidences that autocrine and paracrine 

CXCL1 signaling was enhanced in basal-like breast cancer cells, and promotes breast 

cancer cell invasion and tumor growth. Therefore, targeting breast cancer epithelial cells: 

fibroblasts interactions by blocking CXCL1/CXCR2 signaling may be of great therapeutic 

potential.  

    The success of Her2/neu antibody Trastuzumab for treatment of HER2+ metastatic 

breast cancer and of the ABL inhibitor imatinib for the treatment of BCR-ABL 

translocation bearing chronic myelogenous leukemia has validated the essential role and 

great potential as “druggable” target of protein kinase family (196). In 1998, the first 

CXCR2 non-peptide inhibitor SB22502 was identified to inhibit CXCL1/CXCL8 

dependent neutrophil chemotaxis in vivo (197). Till now, many CXCR2 inhibitors are 

tested in animal models and clinical trials and promising results were obtained in lung 
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diseases such as asthma and COPD (72). Additionally, a team at Memorial Sloan-

Kettering Cancer Center has shown that CXCR2 antagonists sensitized tumors to 

chemotherapy in mice with metastatic breast cancer, and additional preclinical studies 

are underway with the intention of moving the antagonists into clinical trials for breast 

cancer. 

    HGF is a well-known mesenchymal cell-derived paracrine cellular growth factor that 

targets and acts primarily on epithelial cells and endothelial cells through c-Met to 

regulate cell survival, growth and motility (48,49). The prevalence of HGF/c-Met pathway 

activation in human malignancies has driven a rapid growth in drug discovery programs 

targeting HGF/c-Met signaling. Till 2014, more than twenty different therapeutic agents 

have entered human clinical trials, including HGF monoclonal antibodies, c-Met 

monoclonal antibodies, and small molecule c-Met kinase inhibitors (196). A few studies 

have shown c-Met expression in skin and osteoarthritis (OA) synovial fibroblasts (50,51), 

yet HGF signaling in mammary fibroblasts has not been clearly investigated. In this 

dissertation, we have examined the expression of c-Met in mammary fibroblasts, and 

characterized the functional role of autocrine HGF signaling in regulating CXCL1 

expression in fibroblast. Although studies have shown promising results of HGF/c-Met 

inhibition in combination with other targeted therapies, challenges still exists in 

developing c-Met inhibitors into useful drugs. For example, more studies are needed to 

determine the clinical efficacy of c-Met targeting as a single agent. And more importantly, 

lack of responsiveness to these therapeutic reagents have been observed in subsets of 

patients, which indicates the necessity for further understanding the pathologic 

mechanisms of HGF/c-Met signaling in cancers. In this dissertation, we have 

demonstrated a novel potential mechanism that enhanced HGF/c-Met signaling in 

mammary carcinoma-associated fibroblasts help maintain high levels of CXCL1 
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expression, which promotes breast cancer cell invasion and tumor progression, and that 

c-Met/HGF signaling is negatively regulated by TGF-signaling in a Smad2/3-dependent 

manner. Taken together, these results suggest that HGF/c-Met signaling is a potential 

therapeutic target to control CXCL1 expression in fibroblast and thus to block CXCL1-

mediated fibroblast: tumor cell interactions.  

    Constitutive NF-κB activation is an emerging hallmark in a variety types of cancers 

including melanoma, colon, pancreatic, ovarian and breast cancers. Studies in 

melanoma and other inflammatory diseases such as arthritis suggested that activated 

NF-κB contributes to enhanced expression of chemokines including CXCL1 in 

melanoma cells, neutrophils and cancer epithelial cells. And here we identified that 

CXCL1 can in turn signals to breast tumor cells to activate NF-κB activity. Taken 

together, these studies may suggest another interesting tumor-promoting signaling loop 

in terms of promoting tumor cell survival and invasion, and that examining the effect of 

NF-κB signaling inhibition by pharmacologic inhibitors in breast cancer progression in 

the context of fibroblast: tumor cell interactions will be beneficial to the development of 

novel target therapies for breast cancer.   

    In all, using multiple in vitro and in vivo models, we have summarized results 

demonstrating the capacity of CXCL1, which is overexpressed in breast cancer stroma 

especially in fibroblasts, to induce breast cancer epithelial cell survival and invasion, and 

modulate tumor progression. More generally, we provide insights into the field that TGF-

/Smad2,3 signaling pathways may play an anti-tumorigenic role in breast cancer 

through inhibition of CXCL1 secretion in mammary fibroblasts, and discussed the 

potential of blocking paracrine CXCL1/CXCR2 signaling pathways as a targeted therapy 

for treatment of basal-like breast cancer. Although blockade of the paracrine 

CXCL1/CXCR2 has shown promising tumor retarding effects in C57/BL6 transplantation 
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mouse model, more effective and feasible models with which to evaluate the potential 

therapeutic effect on tumor local invasion and metastasis remain to be tested.  
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