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Abstract

Integrated tectonic and quantitative thermochronometric investigation of the Xainza rift, Tibet

By
Christian Hager
Department of Geology, April 2014

The University of Kansas

The Himalayan Tibetan orogeny is a superlative in many respects and has drawn a lot of
attention because of its unrivaled landscape and geologic attractiveness. Many processes
including ocean-continent and continent-continent collision, mountain building, plateau uplift,
and E-W extension can be studied. This study utilizes a variety of different techniques to
improve understanding of the history of the Lhasa terrane from its collision with the Qiangtang
terrane to the north, subsequent amalgamation of the Indian subcontinent to the south, and late-
stage extensional tectonics.

The Xainza rift in the central Lhasa terrane, an about 200 km long N-S trending structure,
provides access to deeper crustal rocks enabling the study of magmatic evolution as well as
timing and magnitude of footwall uplift during E-W extension. Zircon U/Pb dating reveals three
distinct stages of magmatism at ~140-110 Ma, ~65-50 Ma, and ~15 Ma. The Cretaceous
magmatism is triggered by southward subduction of the Bangong ocean slab whereas early
Tertiary rocks are emplaced as a result of northward subduction of the Neo-Tethyan slab. The
Miocene magmatic rocks result from additional heat influx following delamination of an over-

thickened Lhasa lithosphere and show signs of significant assimilation of surrounding early

il



Tertiary plutons. Whole rock geochemistry reveals that the Lhasa terrane has ancient and thicker
crust in its interior and more juvenile crust going outward, which has a first order effect on the
observed isotopic ratios. Metamorphosed basaltic melts, under-plated during the early Tertiary,
play a major role in the observed elemental patterns (high La/Yb and St/Y ratios) in post-
collisional rocks.

Low-temperature thermochronology results from vertical transects as well as single samples,
reveal that E-W extension initiated in the middle Miocene. Rift morphology combined with
decreasing apatite (U-Th)/He ages from north to south support the proposed model of zipper-like
opening of the rift triggered by right-lateral slip on the Gyaring Co fault. Major phase of rift
shoulder uplift is constrained at ~12-10 Ma in the north and ~8 Ma in the southernmost segment.
These dates coincide with the waning stages of south-directed thrusting along major faults in the
Himalayas, suggesting a causal relationship between N-S shortening and E-W extension.

Thermal history modeling of (U-Th)/He data is a critical component of this study and the
results are based on improved analysis of these data utilizing a newly developed software
package. Modeling samples from vertical transects together provides superior control over the
time-temperature evolution of the sampled crustal sections allowing for better constraint

estimates of initiation and magnitude of rifting.
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INTRODUCTION

This project was initiated by Daniel Stockli (The University of Kansas) to investigate timing
and magnitude of Cenozoic E-W extension on the Lhasa terrane with focus on two major N-S
trending rifts in the central part of the terrane (Tangra Yum-Co and Xainza rift). Chapters 1 and
2 outline the results from the Xainza rift and present interpretations for the evolution of this
terrane from its early accretion history, collision with the Indian sub-continent, and E-W
extension during the late Tertiary. Chapters 3 and 4 are focused on advancements in numerical
modeling of (U-Th)/He thermochronology data that have been vital in addressing the timing of
extension in the Xainza rift.

Chapter 1 is dedicated to the magmatic history of the Lhasa terrane and aims at constraining
the architecture of the Lhasa terrane, subduction directions during closure, and timing of
transition from ocean-continent to continent-continent collision. Samples collected from
exhumed plutonic rocks as well as volcanic cover rocks from the Xainza rift and adjacent areas
are analyzed using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS)
to derive estimates about timing of magmatism. Subsequent whole rock analysis provides
quantitative measures of major element concentrations using X-ray fluorescence (XRF)
spectrometry and trace element concentrations obtained from standard solution ICPMS. Together
with isotopic analysis, possible source areas for magmatic rocks in the central Lhasa terrane are
discussed in a spatiotemporal framework. Comparison with a large number of literature data
suggests regional trends across the Lhasa terrane and allows for a conclusive but simplified
model of the evolution of the Lhasa terrane from Cretaceous through Miocene times.

Chapter 2 focuses on the late-stage extensional history of the Lhasa terrane and presents

results from structural mapping and (U-Th)/He thermochronology. Single samples and sample



arrays predominately from plutonic basement rocks are utilized to gain insight into the thermal
history of footwall as well as hanging wall units in the Xainza rift. Combined apatite and zircon
analysis provide thermal sensitivities in the range of 40-80°C and 150-190°C respectively,
allowing inferences on exhumation of shallow crustal rocks. Utilizing numerical modeling, uplift
along rift bounding normal faults during the Miocene is constrained and estimates of pre-
extensional geothermal gradients are given. The results are compared with estimates of inception
and magnitude of rifting from other Lhasa terrane rifts. Finally, existing models of E-W
extension are tested against the findings from this study.

Chapter 3 goes into great depths of analyzing uncertainties related to one of the most critical
steps in (U-Th)/He dating, the Fr-correction (Fr). Numerical modeling using a newly developed
He-Modeling Package (HeMP) illustrates the affects of inclusions and inhomogeneous parent
concentrations for a variety of crystal geometries and sizes. The results are compared to Fr
calculated using traditional parametric equations ignoring inhomogeneous parent concentrations
improving knowledge of the range of uncertainties. Special treatment of Fr as a consequence of
grain shape modifications is discussed in detail.

Chapter 4 illustrates how HeMP can be used to analyze a variety of (U-Th)/He datasets.
Examples of forward modeling provide insights into the thermal sensitivities of apatite and
zircon as a function of thermal history, grain size, and parent nuclide concentration. Inverse
models are used to demonstrate HeMP’s capabilities to extract meaningful thermal histories from
analysis of single samples (single and multiple phases). Special attention is paid to modeling of
sample arrays collected along vertical transects, either from boreholes or footwall transects in

extensional settings. The latter has been instrumental in constraining initiation and magnitude of



slip along normal fault bounded rift shoulders in the Xainza rift. Guidelines and workflows are

presented to improve quantitative analyses of (U-Th)/He datasets.



CHAPTER 1:
Evolution of the Lhasa terrane from accretion to collision based on geochronological

and geochemical investigations in the Xainza rift (south-central Tibet).

Abstract

The Indo-Asian collision zone is a natural laboratory to study processes involved in ocean-
continent subduction and transition to continent-continent collision. New geochronological and
geochemical data from the Xainza rift (central Lhasa terrane) add crucial insights into the
evolution of the Lhasa terrane. Well-defined magmatic episodes with extensive magmatic gaps
indicate that 1) more than one subducting slab was involved in the generation of the plutonic and
volcanic rocks, and ii) periods of slab roll-back and break-off are followed by magmatic
quiescence related to lithospheric thickening. Isotope geochemistry reveals a thick, ancient
basement in the center of the Lhasa terrane and more juvenile crust towards the Indus-Yarlung
suture zone to the south and Bangong-Nujiang suture zone in the north prior to continent-
continent collision. Extensive crustal contamination is reflected by highly negative eNd(t) values
in the center of the terrane and observed zircon inheritance in Miocene plutonic and volcanic
rocks of adakitic affinity indicates extensive assimilation of early Tertiary basement rocks.
Presence of an eclogitic mafic lower crust is required in the southern part of the terrane to

explain high La/Yb, Sr/Y adakitic rocks.



1.1 INTRODUCTION

The Himalayan-Tibetan orogen is a superlative with regard to the extent, peak heights, and
plateau elevation. Following several episodes of terrane accretion in Mesozoic times, the main
event of sculpting the Indo-Asian boundary and adjacent regions to how they appear today
started in the early Tertiary with the closure of the Neo-Tethyan ocean and the collision of the
Indian subcontinent with Asia. Drawn by the fascinating landscape and geology of this orogen,
researchers from all over the world pursued to understand the evolution of this magnificent
structure but as of today many pieces of the puzzle are either not found yet or their results are
highly debated within the science community. Part of the problem, which in turn represents the
attractiveness of working in this part of the world, is the remoteness and altitude of this area and
all challenges that come along with that. Therefore, the current dataset for some areas might only
resemble a rather coarse and punctual insight into the history of the entire Himalayan-Tibetan
system. The magmatic history of the Tibetan plateau records a series of events related to the
initial break-up of Gondwana, closing of oceans formed between micro-terranes, and the final
collision of the Indian subcontinent with Asia. This makes the Himalayan-Tibetan orogen one of
the prime studies areas to investigate tectonic and magmatic processes related to the transition
from ocean-continent to continent-continent collision. Understanding the evolution of the
Tibetan plateau is not only beneficial for investigations of other collision-related orogens around
the world but also essential to evaluate the different models of uplift as well as subsequent E-W
extension. Some of these models rely on gravitational collapse following uplift of the Tibetan
plateau (England and Houseman, 1988, 1989; Harrison et al., 1992; Molnar et al., 1993), while
others suggest that the present extensional processes are driven by lithospheric interactions (basal

drag; McCaffrey and Nabelek, 1998; Seeber and Pecher, 1998). Within that context, the timing,



distribution, and source of magmatism can provide valuable clues about the lithospheric portions
involved in the Himalayan-Tibetan orogen, which in turn allows improved evaluation of the
processes responsible for E-W extension. This study presents new insights into the crustal
evolution of the Lhasa terrane prior and during the Indo-Asian collision based on new

geochronological and geochemical analysis from the Xainza rift as well as adjacent areas.

1.2 GEOLOGIC BACKGROUND

1.2.1 Magmatism on the Lhasa terrane

The Lhasa terrane is one of several crustal blocks accreted to the Asian continent prior to the
final collision of India at ~65 Ma (Allegre et al., 1984; Searle et al., 1987; Hodges, 2000; Yin
and Harrison, 2000). It stretches along the present extent of the Himalayan arc and is bounded by
the Bangong-Nujiang suture (BNS) in the north, and the Indus-Yarlung suture zone (IYSZ) in
the south (see Fig. 1.1). The BNS formed as a result of collision of the Lhasa terrane with the
Qiangtang terrane to the north and subsequent closure of the Bangong ocean in the middle
Cretaceous (Dewey et al., 1988; Matte et al., 1996). The IYSZ represents the remnant of the
Neo-Tethyan ocean that started to subduct northwards under the Lhasa terrane in the middle
Cretaceous initiating arc magmatism within the Lhasa terrane (Durr 1996; Allegre et al., 1984;
Harrison et al., 1992). Timing of initial collision of India with the Lhasa terrane is still debated
and estimates predominately derived from the sedimentary record and changes in convergence
rates range from ~55-70 Ma (Patriat and Achache, 1984; Klootwijk et al., 1992; Gaetani and
Garzanti, 1991). Based on observed differences in sedimentary cover rocks, Zhu et al. (2009a)
further subdivide the Lhasa terrane in a northern, central, and southern subterrane separated by

the Shiquan River-Nam Tso Melange Zone (SNMZ) and Luobadui-Milashan Fault (LMF)



respectively. These divisions are further corroborated by most negative ¢Hf values in the central
subterrane compared to more positive values towards the edges of the Lhasa terrane. Together,
these observations led to the conclusion that the central Lhasa subterrane was a long-lived micro-
continent that experienced addition of juvenile crust during its collisional history with the
Qiangtang terrane and the Indian sub-continent (Zhu et al., 2011).

Guynn et al. (2006) report the oldest known age for exposed Tibetan basement from the
Amdo region at the northern edge of the Lhasa terrane based on an upper intercept age of ~850
Ma. Recently, it has been proposed that the Amdo gneiss is not part of the Lhasa terrane but a
small micro-terrane (Nyainrong terrane). Permian granitoids and proximal outcrops of eclogites
of similar age within the central Lhasa terrane are interpreted as remnants of a Permian orogeny
related to amalgamation of the Lhasa terrane to Australia (Gondwana) during the closure of the
Paleo-Tethys ocean (Yang et al., 2009; Zhu et al., 2009a). The Gangdese Batholith and
associated volcanic rocks represent the most extensive and voluminous remainders of magmatic
activities and based on their spatial distribution are commonly divided into a northern and
southern plutonic belt. The northern belt essentially consists of Cretaceous granitoids and
associated volcanic rocks whereas late Cretaceous to Eocene granitoids dominate the southern
belt. Extensive volcanism associated with the emplacement of the southern plutonic belt lasted
from ~65-45 Ma and formed the Linzizong formation. There is consensus that late Cretaceous to
Eocene rocks are the product of typical Andean-type magmatism related to the northward
subduction of the Neo-Tethyan oceanic slab. On the other hand, contrasting models exist about
the genesis of the northern Gangdese belt and it is still debated if the Cretaceous magmatism
resulted from southward subduction of the Bangong oceanic slab (Pan et al., 2006; Zhu et al.,

2006b, 2009a, 2011a, Chen et al., 2013; Sui et al., 2013) or represents the northernmost extent of



magmatism related to northward subducting Neo-Tethyan slab (Coulon et al., 1986; Yin and
Harrison, 2000; Kapp et al., 2003, 2007; Guynn et al., 2006).

Besides the widespread calc-alkaline and high-K calc-alkaline Cretaceous and early to
middle Tertiary magmatic rocks, much attention has been focused on post-collisional rocks on
the Lhasa terrane. Of special interest for the evolution of the Lhasa terrane within the last ~40
Myrs are ultrapotassic and adakitic rocks. Ultrapotassic rocks are generally defined by
K20/Na20>2 but in this study the definition for ultrapotassic rocks after Foley et al. (1987) is
adopted (K20>3 wt%, MgO>3 wt%, and K20/Na20>2) and denoted as “UPR” to be able to
compare differently treated literature data on an equal basis. Occurrences of these rocks are
widespread across the Lhasa terrane and predominately consist of basaltic-trachyandesitic to
trachyandesitic lava flows that unconformably overlay the Paleogene-Neogene volcano-
sedimentary strata and commonly contain mantle xenoliths and xenocrysts (e.g. Miller et al.,
1999; Gao et al., 2007b; Zhao et al., 2008a,b). They are primitive, clearly mantle-derived
magmas but exhibit isotopic and elemental signatures that indicate extensive contamination of
the source region. Miller et al. (1999) and Gao et al. (2007b) propose melting of a phlogopite-
bearing lithospheric mantle that was previously contaminated by oceanic sediments as a source
for UPR.

The second group is adakites, geochemically distinct magmas formed predominately
between ~40-10 Ma across the southern Tibetan plateau but ages as old as 137 Ma are reported.
After Defant and Drummond (1990), adakites are andesitic, dacitic to sodic rhyolitic rocks (as
well as their intrusive equivalents (tonalites, trondhemites) with SiO, >56 wt%, Al,O3;>=15
wt%, MgO normally <3 wt%, Sr>400 ppm, Y <18 ppm, Yb<1.9 ppm, and *’Sr/**Sr usually

<0.7045. They concluded that these rocks form predominately in arc settings where the



subducting lithosphere is younger than 25 Myrs and melts are generated from melting of the
down going, and consequently metamorphosed, basaltic slab leading to low concentrations of Y
and heavy rare-earth elements (HREE) because of residual garnet or amphibole. This model is
most consistent with the observed data but partial melting of the mantle wedge or interaction of
slab melts with the overlying mantle peridotite is proposed as an alternative to be able to explain
adakites with MgO exceeding 3 wt%. Based on the proposed geochemical as well as age
constraints, none of the reported Tibetan adakites in the literature (Hou et al., 2004; Guo et al.,
2007; Chung et al., 2009; Zhu et al., 2009a; Jiang et al., 2012; Guan et al., 2012) actually qualify
as such, mostly related to the low 87Sr/86Sr constraint. The average 87S1/86Sr values of the
remnants of the Neo-Tethyan ocean along the IYSZ (0.7039, corrected for their Cretaceous age)
are already close to the proposed maximum and the average value for the reported adakites on
the Lhasa terrane is 0.7055. Therefore, the constraint on the isotopic Sr ratio is not enforced and
going forward only samples that match the loosened constraints are presented, independent of the
designation of other authors. Pre-collisional Tibetan adakites are considered the result of partial
melting of (i) the Neo-Tethyan slab as a response to initiation of northward subduction (~137
Ma, Zhu et al., 2009a), ii) underplated mafic lower crust during low-angle subduction between
~100-80 Ma (Wen et al., 2008a, 2008b), and iii) the oceanic slab during mid-ocean ridge
subduction (Guan et al., 2010; Zhang et al., 2010c). Origin of post-collisional adakites (~26-10
Ma) is attributed to partial melting of 1) the basal portions of the over-thickened crust (Chung et
al., 2003, 2005, 2009; Hou et al., 2004), ii) lower crust as a consequence of extensional collapse
in S-Tibet (Guo et al., 2007), and iii) of mafic lower crust of the India (Xu et al., 2010; Jiang et

al., 2011).



1.2.2 Deformational History

E-W trending thrusts and fold axes recording episodes of compressional tectonics are
widespread on the Lhasa terrane and form a recognizable structural grain especially in the
northern part of the terrane. Kapp et al. (2003) estimate shortening of the western Lhasa terrane
(Shiquanhe area) exceeded 50% during predominately south-directed thrusting in late Cretaceous
to early Tertiary times. Murphy et al. (1997) document a series of thrusts in the Coqin area
(north-central Lhasa terrane) that accommodated ~60% of N-S shortening from the late Jurassic
to the early Cretaceous. Further east, Kapp et al. (2007) estimate ~50% of shortening in the
Cretaceous thrust belt in the Nima area just south of the BNS. Similar observations were made
by Pan (1993) in the eastern part of the Lhasa terrane (Maqu area) and Leier et al. (2007)
suggesting that the entire northern Lhasa terrane experienced significant N-S shortening during
Cretaceous times. One of the key observations on the Lhasa terrane is that the undeformed
volcanic rocks of the early Tertiary Linzizong formation (~65-45 Ma) unconformably overlay
deformed Cretaceous strata constraining the cessation of this tectonic event by at least early
Tertiary times.

Subsequent Tertiary N-S shortening is limited to the boundaries of the Lhasa terrane and
expressed by southward thrusting along the Gangdese thrust (GT, 30-23 Ma) and north directed
thrusting along the Great Counter thrust (GCT, 19-10 Ma) at its southern boundary (Yin et al.,
1994; Quidelleur et al., 1997; Yin et al., 1999a; Harrison et al., 2000), and reactivation of
Cretaceous structures in the Nima area in mid-Tertiary times (Kapp et al., 2007). Kapp et al.
(2003a) suggests that Oligocene shortening along the S-verging Shiquanhe thrust, the only
reported mid-Tertiary N-S contractional structure in the interior of the Lhasa terrane, is linked to

the contemporaneous shortening along the GT and strike-slip along the Karakorum fault.
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1.2.3 Geophysical Investigations

There has been a long history of geophysical investigations on the Tibetan plateau, some of
the datasets are still re-evaluated, and the results improved. Although these techniques only
provide a snapshot of the current configuration of the subsurface, they still deliver vital
information that can be compared to other techniques to improve the coherency of tectono-
magmatic models proposed based on geological investigations. One of the most ground-breaking
studies in terms of progress in geophysical characterization of the Tibetan plateau is studies
conducted during the International Deep Profiling of Tibet and the Himalaya (INDEPTH)
projects. INDEPTH-I and INDEPTH-II revealed a strong north-dipping reflector, named the
Main Himalayan Thrust (MHT), which serves as the main decollement on top of the under-
thrusting Indian plate (Zhao et al., 1993; Brown et al., 1996; Yuan et al., 1997). Kumar et al.
(2006) suggest that the base of the Indian Lithosphere dips northward to a depth of 220 km near
the BNS and highlights an ~50 km vertical gap between the leading edges of the Indian
lithosphere and lower crust which is filled by Asian lithosphere. Subduction angle of Indian plate
is not uniform but steeper in the central Tibet and shallower at the eastern and western areas.
Crustal thickness of the Tibetan plateau ranges from 70-75 km in the south to 60-65 km in the
north and that the leading edge of the under-thrusting Indian lithosphere has reached the Tarim
block in eastern Tibet while currently positioned at the BNS in central Tibet (e.g. Zhang et al.,
2011). Towards the east, most of Tibet is underlain by Asian lithosphere. While many studies
suggest that the Indian lithosphere is currently at the BNS in central Tibet where it steeply dives
into the asthenospheric mantle (Owens and Zant, 1997; Kosarev et al., 1999; Tilman et al., 2003;

Li et al., 2008), Zhou and Murphy (2005) suggest that it reaches as far as the Kunlun fault. He et
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al. (2010) positions the Indian lithosphere as far north as 34° (central Qiangtang terrane) based
on 3-D P-wave velocity modeling. Significant for evaluation of direction of subduction at the
BNS is south-directed subduction of Tibetan lithosphere beneath Lhasa terrane revealed by
teleseismic from INDEPTH-III (Shi et al., 2004). Several seismic traverses across the main
suture zones allow insights into the structure beneath Tibet based on analysis of P-wave
velocities. In the Himalayan and Lhasa block, crustal thickening is observable in the middle and
lower crust and overall crustal thickness remains constant along, as well as across the [YSZ.
Along the BNS, Moho depths decrease by 10-15 km from west to east and in at the central
traverse (~90°E) a high velocity anomaly in the lower portion of the crust indicates crust-mantle
mixing (Zhang et al., 2011). Similar findings are provided by Teng et al. (1980a,b) who
concluded from a N-S transect along ~90°E that the crust north of the ISYZ is 70-73 km thick
and comprises a low-velocity layer between 45-55 km underlain by high-velocity crustal material
(“crust-mantle mixture?”). Relatively low crustal densities (<3.2 g/cm’) derived from the
modeling do not support the existence of an eclogitic lower crust (3.15-3.6 g/cm’) as suggested
by Mengel and Kern (1990) beneath central-south Tibet. In contrast, Hetenyi et al. (2007)
showed, based on a combination of seismic, gravity, and petrological data, that eclogitic lower
crust is required beneath the Lhasa block. Compared to global averages (Christensen and
Mooney, 1995), Tibetan crust shows lower velocities at all depths and is characterized by a high-
velocity zone of changing thickness (10-20 km) throughout the plateau (Hirn et al., 1984a; Kind
et al., 2002; Zhao et al., 1996; Owens and Zandt 1997; Zhao et al., 2001; Vergne et al., 2002). A
low-velocity channel in the middle to lower crust of the Lhasa terrane is clearly inferred from
waveform-modeling Vp results (Rapine et al., 2003; Kind et al., 1996; Cotte et al., 1999). This

zone is not restricted to the N-S trending rifts in the Lhasa terrane but a regional phenomena
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suggesting widespread low-degree partial melts in the crust. Independent analysis using natural-
source magnetotelluric (MT) data reveal zones of high conductance, further strengthening the
concept of fluid-rich and/or partially molten crust (Wei et al., 2001; Li et al., 2003; Gokarn et al.,

2002; Lemonnier et al., 1999; Unsworth et al., 2005; Kong et al., 1996).

1.3 ANALYTICAL METHODS

In order to address the question of timing and source of magmatism on the Lhasa terrane a
subset of 27 samples was chosen for zircon U/Pb dating, whole rock geochemistry, and Pb/Nd/Sr
isotopic compositions. Fig. 1.2 shows sample locations and magmatic ages where determined
(see Fig. 1.3 for legend). In some cases either the sample quality was insufficient to allow for
geochemical analysis (e.g. significant weathering), or the rock did not contain sufficient amounts

of zircons for U/Pb dating. An overview of the analysed rock samples is given in Table 1.1.

1.3.1 Geochemical Background

The present chemical composition of magmatic rocks is the product of a sometimes simple,
but often more complicated history of melt generation and subsequent rock formation. In the
simplest case, melt is extracted from a uniform source rock and then emplaced at shallower
levels without any or very little contamination from the surrounding country rock. The chemical
composition of the newly formed rock is simply a function of the chemical composition of the
source and the degree of melting (which in turn is a function of temperature, pressure, water
saturation...). Unfortunately, this is only closely realized at mid-ocean ridges and areas of
special interest like magmatism related to orogenic events as in this study, may involve many

more processes before the final rock is emplaced. As an example, felsic plutons above a
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subduction zone can be the product of fluid extraction from the down going mafic oceanic crust
which then interacts with the marine sediment cover, the lithospheric mantle, and a
metamorphosed lower crust, all of which might contribute differently to the final chemical
composition. Fortunately, the consequences of these interactions are not random but follow
physical and chemical laws, which have been studied extensively and solved sufficiently well in
many cases to allow for conclusive models. As a result, geochemical analyses of magmatic rocks
can provide a characteristic fingerprint that can be used to extract information about the source
and the underlying process that formed the sampled rock. A fundamental concept in geochemical
studies is that the distribution of elements is closely related to their ionic radii and valence states,
which determine their position in the crystal lattice. Small ions with low charges are preferred
over larger ones or highly charged ions that lend to the nomenclature of compatible versus
incompatible elements. In a solid-liquidus system like partial melting, compatible elements tend
to remain in the solid mineral phase while incompatible elements preferentially go into the melt
phase. The ratio of element concentrations in the mineral versus the melt, called the partition
coefficient (Mclntyre, 1963), is a simple way to quantify the compatibility of any element in a
given mineral-melt system. Values > 1 indicate that the element preferentially remains in the
mineral, values < 1 that the element will fractionate into the liquid phase. It is important to note
that the partition coefficient is a function of the composition and elements can be incompatible in
respect to one rock composition but compatible with another one. Fig. 1.4 shows partition
coefficients for trace and rare-earth elements (REE) based on basaltic and rhyolitic melt
compositions (data from Rollinson, 1993 and references therein). Of special interest for this

study is the whole rock chemistry (major and trace elements) as well as isotopic ratios
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(87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) resulting from
radioactive decay of their respective parent isotope.

Abundance of major elements, pressure, and temperature are the major factors controlling
the mineral composition, which defines the type of rock formed during magmatic processes.
Because these factors can be linked to specific tectonic settings, analysis of the major element
composition can provide a first insight into the history of the samples of investigation.

Trace elements are defined as having concentrations less than 1000 ppm and occur as
substitutions for major elements in the crystal lattice. According to their geochemical behavior,
they are further classified into rare earth elements (REEs, atomic numbers 57-71), transition
metals (atomic numbers 21-30 including the major elements Fe and Mn), and platinum group
elements (PGEs, atomic numbers 44-46, 76-79). Other widely used trace elements include Rb,
Sr, Y, Zr, Nb, Cs, Ba, Hf, Ta, P, Pb, Th, and U. Based on the ionic potential, the ratio of ionic
radius and valence, trace elements (excluding transition metals and PGEs) are commonly
grouped into high field strength (HFS, ionic potential > 2) and low field strength (LFS, ionic
potential < 2; also known as large ion lithophile elements, LILE) elements.

The most important trace elements with respect to geochemical investigations are the REEs.
With the exception of Eu and Ce, which additionally occur as 2+, respectively 4+ oxidation
states, REE’s are stable 3+ ions with similar ionic radii. As a consequence of their equal valence,
differences in compatibility is a function of ionic radius and higher atomic number REEs are
generally less compatible relative to the lower atomic number REEs.

Isotope ratios have been widely used as a dating technique (Rb/Sr, Sm/Nd, Pb/Pb) but with
the advent or more accurate and precise methods like U/Pb dating have lost some of their appeal

for geochronological studies. Nevertheless, analysis of the isotopic composition of a bulk rock
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sample provides exceptional insights into the history of rock formation. The same basic
principles of compatibility/incompatibility apply as well but with the additional merit that
another dimension, time, is added as an investigative tool. For the elements of interest the order
of incompatibility is Rb > Th > U > Pb > Nd > (Sr, Sm).

The Rb/Sr system is based on the decay of 87Rb to 87Sr through single beta decay with a
half-life of 48.8 Byr (Steiger and Jaeger, 1977). 86Sr is the stable isotope and the 87Sr/86Sr ratio
is used to describe the radiogenic ingrowth over time. This system exhibits the most dramatic
difference in compatibilities between parent and daughter and as a result, Rb is preferentially
accumulated in the melt while Sr stays in the solid phase, which consequently leads to
accelerated 87Sr/86Sr evolution in the newly formed rock compared to the Rb-depleted restite.
With additional age information, the initial 87Sr/86Sr value (87Sr/86Sr(i)), which corresponds to
the isotopic composition of the source rock at the time of the magmatic event, can be calculated
and used to compare individual samples with each other. Analysis of basaltic achondrites led
Papanastassiou et al. (1969) to propose a “basaltic achondrite best initial” or BABI of 0.69899+5
at 4.39+0.26 Byr that represents the initial 87S1/86Sr value of the earliest earth. Based on the
geochemical behavior, the present isotopic ratio might be the result of a convoluted history of
magmatic events and the only information that can be gained is from the time of the last
disturbance of closed system behavior.

The Sm/Nd system is based on the decay of 147Sm to 143Nd through single alpha decay
with a half-life of 106 Byr (Lugmair and Marti, 1977). 144Nd is the stable isotope and the
143Nd/144Nd ratio is used to describe the radiogenic ingrowth over time. Contrary to the Rb/Sr
system, Sm and Nd are both immobile REEs and show very similar chemical behavior.

Consequently, there is very little fractionation of parent and daughter during crustal recycling
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and even high-grade metamorphic events. This circumstance elevated this technique to one of the
prime investigative tool for source rock analysis. Similar to the Rb/Sr system, meteorites
(chondritic) were used to establish a present-day 143Nd/144Nd value of 0.512638 and
147Sm/144Nd value of 0.1966 (Hamilton et al., 1983) for the so-called chondritic uniform
reservoir (CHUR, DePaolo and Wasserburg, 1976a).

Contrary to above systems, radiogenic Pb isotopes are the product of several decay chains.
206Pb is the product of decay of 238U with a half-life of 4.47 Byr, 207Pb from 235U with a
half-life of 0.704 Byr, and 208Pb from 232Th with a half-life of 14.01 Byr. The only non-
radiogenic Pb isotope is 204Pb. U, Th, and Pb are concentrated in the upper crust due to their
general incompatibility whereas U and Th are enriched compared to Pb. The geochemical
behavior as well as the unique case of three parent isotopes decaying at much different rates has

proven to be a viable tool to assess source regions.

1.3.2 Methodology

Samples for age determination underwent routinely applied mechanical and physical
separation techniques at the Isotope Geochemistry Laboratory (IGL) at the University of Kansas
to yield a purified zircon fraction. Laser ablation-multi-collector-inductively coupled plasma-
mass spectrometry (LA-MC-ICP-MS) was utilized to gain insights into the magmatic evolution
of the Lhasa terrane. Zircon populations from 25 samples were analyzed at the Arizona
Laserchron Center at the University of Arizona using a GV Instrument Isoprobe coupled with a
New Wave Instruments ArF excimer laser operating at a wavelength of 193 nm. Hand-picked
zircon grains were mounted in epoxy, polished to expose the interior of the grain, and

subsequently loaded in the laser chamber for in-situ U-Pb analysis. To ensure sufficient amounts

17



of ablated material, the spot size of the laser was initially set to 30 um but was changed to 20 pm
for more detailed age mapping for some samples that showed inheritance. According to
established lab procedures and based on sample size/quality, 20-30 analyzes per sample proved
to yield statistically robust U/Pb ages with uncertainties within the limits of this procedure (1-
3%). Where inheritance was detected, a greater number of analyses focusing on the center and
the rim of the grains were needed to catch the multi-stage magmatic history of the zircon
population. Isotope fractionation was corrected for by analyzing a well-known zircon standard
every 4-5 unknowns. Final age calculation including all necessary corrections was accomplished
with the in-house developed Microsoft Excel© macro.

After crushing the rocks to coarse cm sized chips, a representative split of visually unaltered
rock was sent to the GeoAnalytical Lab at Washington State University (WSU) for further
processing. Major elements were measured by X-ray fluorescence technique (XRF) on a
ThermoARL AdvantXP+ automated sequential wavelength spectrometer and trace elements by
conventional inductively coupled plasma—mass spectrometry (ICP-MS) on an Agilent4500+
quadrupole instrument. Nd/St/Pb isotope geochemistry was conducted at IGL on rock powder
received from WSU after whole rock major and trace element procedures. Approximately 300
mg of sample was weighted into a microwave acid digestion vessel and mixed with a measured
amount of Sr spike (~1 g) before adding 3 ml of HF and drying down on a hotplate. After adding
1 ml of 7N HNO3 and 5 ml of HF, this solution was heated in a microwave for 1.5 minutes and
subsequently dried down on the hotplate. To ensure complete sample digestion, this process was
repeated. Dissolution in 3 ml of 7N HNO3 and taking a 500 pl split for later Pb isotope analysis
completed this process and gave way to further chemical separation techniques. In the first step,

the solution was loaded on a cation exchange resin to separate the Sr isotopes from the rare earth
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elements (REE’s). Sr was eluted with 2.5 N HCI and subsequently the REE’s were extracted
with 6.0 N HCI. REE solution underwent an additional column procedure to separate Sm from
Nd isotopes. Several rinse steps with 0.18 N HCI were used to collect Nd and subsequent
application of 0.5 N HCI eluted the Sm isotopes. After dry-down on the hotplate, all solutions

were ready for thermal ionization mass spectrometry (TIMS).

1.4 RESULTS

Before going into the details of the analysis, it has to be pointed out that this study relies on
extensive efforts to compile available literature data to be able to compare the results of this
study with a larger dataset, which ultimately should allow for a conclusive regional picture of the
evolution of the Lhasa terrane. Although great care was taken while summarizing the data, there
is no guarantee for completeness or accuracy especially of sample locations. A large number of
publications do not include geographic coordinates and much time was devoted to extract this
valuable piece of information through georeferencing the available maps. For reference, Tables
A.2-A4 (Appendix A) provide sample names, lithologies, locations, magmatic ages, and

geochemical analysis for the Lhasa terrane and Himalayan rocks sorted by author.

1.4.1 Zircon U/Pb dating

The results of the age analysis are given in Table 1.1 and Fig. 1.5-1.8, individual spot
analysis for each sample is provided in Appendix A (Table A.1). Calculation of mean ages and
plotting of results was accomplished using Isoplot v.4.3 Excel by Ludwig (2008). The sample set

can be subdivided into four distinct age groups (206Pb/238U age) falling into the late
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Triassic/early Jurassic, early Cretaceous, early Tertiary, and middle Miocene times, constituting
the basis for subsequent discussion of geochemical results.

The oldest rocks exposed in the investigated areas are found in the central segment of the
Xainza rift (05X179; ~203 Myrs) and in the north of the Namling transect (05GB05; ~212 Myrs).
Both samples show a wide spread in individual spot ages and a limited number of coherent
analyses and the average age has to be used with caution. Additionally, the samples were heavily
weathered and therefore did not qualify for whole rock geochemical analysis.

One of the major age populations ranges from ~111 to 131 Ma and is, besides one exclusion
in the central segment (05XID68; ~129 Myrs), restricted to the northern segment and locations
closer to the Bangong Nujiang suture zone to the north of the Xainza rift. By far the most
prominent magmatic event happened in the early Tertiary when vast amounts of intrusives and
effusives formed the voluminous Gangdese Batholith and Linzizong volcanic suite respectively.
This period lasted from ~65-45 Ma and was predominant in the southern portion of the Xainza
rift as well as along the Namling transect.

The youngest group of analyzed samples are middle Miocene in age and restricted to a fault-
bounded granitoid in the southern segment, and an extensive tuff in the middle segment of the
Xainza rift. All samples of this group show extensive inheritance with maximum ages

overlapping with the major phase of magmatic activity in the early Tertiary.

1.4.2 Whole Rock Geochemistry
1.4.2.1 Major Elements
Results from XRF analysis are provided in Table 1.2. As presented in form of Harker

diagrams in Fig. 1.9 for calc-alkaline rocks, the analyzed samples are of intermediate to acidic
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composition based on the SiO2 content ranging from 60-85 weight percent (wt%). Al203
concentrations range from 9-18 wt%. Total iron expressed as FeO, CaO, Na20, as well as K20
contents do not exceed 6 wt% whereas MgO concentrations stay below 3 wt%. Al203, FeO,
MgO, and CaO show clear negative, K20 slight positive, and Na2O no correlation with Si02
content. None of these bivariate plots exhibits a clear relationship between oxide concentrations
and age of the rocks. Fig. 1.10 compares the calc-alkaline rocks with Lhasa terrane adakites and
UPR. While adakites show very similar major element concentrations as calc-alkaline rocks,
UPR exhibit much higher K20 values (a necessity based on their geochemical classification) and
significantly lower Al1203 and Na2O values compared to calc-alkaline rocks of similar Si02
content.

Using total alkali versus silica (TAS) diagrams (see Fig. 1.11 for plutonic rocks ; Fig. 1.12
for volcanic rocks) after Le Maitre et al. (1989) and Cox et al. (1978) the volcanic rocks are
exclusively classified as rhyolites and the plutonic rocks predominately as granites with a couple
of samples plotting in the granodiorite and diorite field. Based on the K20 vs. SiO2
classification of Le Maitre et al. (1989), the samples fall into the High-K (calc-alkaline) series.
The exceptions are the two mid-Miocene volcanic rocks (05XI75, 05X177) that show a more
shoshonitic  affinity. Based on the molar ratios of AI203/(Na20+K20) and
Al203/(Na20+CaO+K20) the samples range from metaluminous to peraluminous showing
some differentiation in that the early Cretaceous plutons are predominately peraluminous

whereas the early Tertiary plutons show a more metaluminous signature.
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1.4.2.2 Trace Elements

Results from LA-ICPMS analysis are provided in Table 1.3. A variety of trace element
concentration combinations is in use to classify granitoids into syn-collisional, volcanic-arc,
within-plate, and ocean-ridge granites. Using the Rb vs. Y+Nb diagram (Fig. 1.11) after Pearce
et al. (1984), all samples except the Miocene intrusive (05XIE82), which falls into the syn-
collisional field, are volcanic-arc granites.

Fig. 1.13 shows primitive mantle normalized plots of trace elements as well as chondrite
normalized REE patterns for the plutonic and volcanic rocks ordered by increasing compatibility
in a small fraction melt of the mantle. The trace element plots show distinct negative anomalies
in Ba, Nb, Ta, Sr, P, and Ti and overall the oldest age group exhibits the largest excursions. The
Miocene granite has a relatively flat section between La and Sm and the lowest values of all
samples for Tb and Y while showing one of the highest enrichments in Rb, Th, and U. The
volcanic rocks show a similar pattern but the Cretaceous rocks follow the early Tertiary ones
more closely. The most striking feature in this plot is the significant enrichment of Th and U in
the Miocene volcanic rocks. The REE patterns for plutonic rocks indicate enrichment in LREE
over HREE and with the exception of sample 04QTO1 a relatively flat geometry at the heavier
end. Two of the early Tertiary granites (05X192, 05X194) qualify as adakites showing the most
depleted HREE pattern. The Miocene granite (05XIE82) exhibits almost identical trace element
and REE patterns and upon further investigation the only threshold that is not met to be
considered as an adakite is a slightly too low Al203 content (14.37 wt% versus the required >=
15.0 wt%). Going forward, this sample is not plotted using the adakites symbol for consistency
reasons but it is noted that this sample shows highly adakitic affinities. A negative Eu anomaly is

pronounced in the older rocks but very subdued in the Miocene granite. The volcanic rocks show
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a similar pattern but less pronounced Eu anomalies and contrary to the plutonic rocks, a clear
separation between Cretaceous and Tertiary rocks is evident especially in the heavier end of the
pattern. The Miocene volcanic rocks resemble the trend of the Tertiary rocks.

In order to make comparisons across the Tibetan plateau, the samples from this study are
plotted together with other Lhasa terrane samples including adakites and ultrapotassic rocks as
well as Himalayan granitoids (see Fig. 1.14-1.17). The Himalayan granitoids older than 165 Ma
are a suite of ~500 Ma peraluminous granites and granodiorites derived from anatectic melting of
continental crust (Miller et al., 2001). Strong negative Ba, Nb, Sr, Hf, and Ti as well as positive
Ta and Nd anomalies are the most characteristic features in the trace element pattern. REE
patterns show a pronounced negative Eu anomaly.

The 110-165 Ma age group can be further subdivided into three distinct groups. The first
contains the plutonic and volcanic rocks from the Nidar ophiolitic complex (Ahmad et al., 2008),
a remnant of the Neo-Tethyan Ocean that closed during northward migration and final collision
of India with Asia. The gabbros show distinct positive Sr and Eu anomalies and overall relatively
flat patterns. The basic volcanic rocks lack these strong peaks but otherwise share the flat and
depleted character of the intrusive rocks. Including the Xainza samples already discussed above,
the second group belongs to the widespread occurrence of the Cretaceous calc-alkaline series
Gangdese Batholith. Sample 04QTO01 collected near Nam Tso north of Lhasa is much different in
its geochemical character than the rest of the analyzed samples in this age group. Negative
anomalies in Ba, Sr, P, and Ti are more pronounced and values for Tb and Y are higher than any
other samples from this study. The greatest difference is the strong positive anomaly in Ta paired
with much more enrichment in Rb and Nb. An increase in HREE together with lower

concentrations in LREE is opposite of the trend of other samples as well. Additionally, the by far
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strongest negative Eu anomaly is shown by this sample. These clearly different geochemical
characteristics compare very well with samples from eastern Tibet categorized as “A-type”
granites by Lin et al. (2012).

No magmatic rocks within 70-109 Ma are sampled during this study and this group
represents a less abundant magmatic event in the Lhasa terrane overall. The majority of this
population is adakitic plutonic rocks with no volcanic equivalents. Depletion in HREE and
enrichment in LREE together with negative anomalies in Nb and Ta are the most consistent traits
of the adakitic rocks. Additionally, some samples show a clear positive Sr peak.

The early Tertiary event is probably the most prominent magmatic phase within the Lhasa
terrane and predominately consists of the large volume calc-alkaline plutonic rocks of the
Gangdese belt and extensive intermediate-acidic volcanic rocks of the Linzizong formation.
Trace element as well as REE patterns are very similar to the Cretaceous calc-alkaline rocks.
Besides the familiar pattern, a number of volcanic samples show a very different trend in the
trace elements. These samples are ~40 Myr old mafic, high-MgO picrites, basalts, and basaltic
andesites characterized by positive anomalies in Sr and P and a very flat REE pattern less
enriched in LREE (Gao et al., 2008). Magmatism in the Himalayas during this time period is
localized in the Northern Himalayan Gneiss domes (NHG) and the trace element patterns show
similar characteristics as the calc-alkaline Lhasa terrane rocks but less enrichment overall. More
obvious is a separation in the REE pattern caused by a lesser enrichment in HREE that overlaps
with adakitic varieties.

Past 40 Ma, magmatism on the Lhasa terrane is dominated by adakitic plutonism and
adakitic and ultrapotassic volcanism. Adakitic varieties show the same characteristics discussed

earlier, most noteworthy the lowest concentrations of HREE of all Lhasa terrane samples shown
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here. The ultrapotassic lavas are the most enriched samples and parallel the adakitic volcanic
rocks for most part of the trace element pattern. The only difference is that adakitic dikes (0-19
Ma) show a positive Sr peak and less enrichment Rb, Ba, Th, U, and K which is more closely to
the pattern of the intrusive adakites of similar age. This is opposite of the ultrapotassic rocks that
display a clear negative Sr anomaly. In the Himalayas, magmatism within the NHG continues
and leucogranites are emplaced beneath the STDS in the HHC. They are characterized by
negative Sr and positive Ta and P anomalies. The REE patterns are less steep than adakitic

plutonic rocks and show a clear Eu anomaly.

1.4.2.3 Whole Rock Isotopic Data

In Fig. 1.18, whole-rock isotopic data from the literature are plotted on the right-hand side,
while samples analyzed during this study are plotted together with simplified outlines for
comparison. The Cretaceous magmatic rocks are characterized by 87Sr/86Sr(i) ranging from
0.7089-0.7212 and eNd(t) between -7 and -13 with generally higher 87Sr/86Sr(i) and lower
eNd(t) values for the volcanic compared to the plutonic rocks. Slightly higher 87Str/86Sr(i)
values between 0.7080-0.7128, similar to the lower ones of the early Cretaceous rocks,
characterize the earliest stages of volcanic activity in the early Tertiary (~60-65 Ma), whereas
lower values of 0.7047-0.7070 seem to represent the period between ~45-55 Ma dominated by
plutonic rocks. This subdivision is further constraint by significantly different eNd values of -6.8
to -7.7 for rocks older than 60 Ma and -2.4 to 1.8 for the suite younger than 55 Ma. Again, the
lowest values of the early Tertiary overlap with the highest values of the early Cretaceous rocks.
Sr and Nd isotopic compositions of the middle Miocene plutonic and volcanic rocks are very

similar to the older early Tertiary subgroup with 87Sr/86Sr(i) values of 0.7075 and 0.7087 and
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eNd(t) of -7.5 and -6.7. Similar to trace element and REE patterns, sample 04QTO01 also falls
slightly outside the trend showing a more radiogenic 87Sr/86Sr(i) value than other samples with
comparable eNd(t). The Pb isotopes align with the Sr and Nd system confirming the overall trend
of higher radiogenic values for the Cretaceous rocks compared to the early Tertiary ones and the
observation that the Miocene rocks resemble more closely the isotopic character of Cretaceous
and earliest Tertiary volcanic rocks.

In comparison with literature data from the Lhasa terrane, the Cretaceous rocks fall within
the range of the published data whereas the earliest Tertiary volcanic rocks do show slightly
lower eNd(t) values than time-equivalent Linzizong volcanic rocks. Furthermore, there is

significant overlap with the isotopic ranges of UPR and adakites.

1.5 DISCUSSION

1.5.1 Geochemical variations in time and space

Because the goal of this study is to reveal the magmatic evolution over time and gain insight
into the underlying processes, especially the transition from arc-magmatism to continent-
continent collision, the dataset at hand must be evaluated in a temporal-spatial context. As shown
in Fig.1.1, the Lhasa terrane and Himalayan samples are grouped into six areas (Q1-Q6) bounded
by approximately arc-normal outlines. The definition of these areas is not based on any
geological constraints but simply a function of data availability and an attempt to define areas of
comparable width. Going forward, parameters of interest from samples within these quadrants
are plotted against the normalized distances from the major terrane bounding structures (MFT,
IYSZ, BNS). The normalized distance is simply the shortest distance of each sample from the

terrane bounding structures expressed as fraction (e.g. a sample in the Lhasa terrane 100 km
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north of the ['YSZ and 200 km south of the BNS plots at 1.334 where MFT =0, [YSZ = 1, BNS
= 2). QI and Q6 are excluded from the figures because of the severe deformation of the I'YSZ
within the eastern and western syntaxes which precludes this kind of analysis.

Figs. 1.15-1.18 summarize the available literature data and compare sample ages,
87Sr/86Sr(1), eNd(t) values, and Pb/Pb isotopic ratios for calc-alkaline rocks, adakites, and UPR
separately based on their respective normalized distances from the sutures. Starting with the calc-
alkaline suites (Fig. 1.19), magmatic ages > 100 Ma are predominately clustered in the northern
portion of the Lhasa terrane whereas younger rocks are exposed in the southern half. This trend
is best seen in Q3 and Q4 and less obvious in Q5. In the Xainza rift, there are clear breaks
between the individual age groups and within the late Cretaceous/early Tertiary period the rocks
are getting younger towards the [YSZ. Limited data are available in Q2 and the cluster of ~120
Ma samples with unradiogenic 87Sr/86Sr(i) and eNd(t) corresponds to the Nidar-Ophiolite
complex within the IYSZ (Ahmad et al., 2008). One has to keep in mind that this display is
based on present-day sample locations and the Cretaceous rocks could be “shifted” further north
to account for N-S shortening at that time leading to a more linear decrease in ages from north to
south.

Isotopic data reveal compelling evidence for changes in the source of magmatism and
magma mixing processes across the Lhasa terrane. Most obvious in Q4 and QS, the 87Sr/86Sr
ratios increase from MORB-type values at the IYSZ to more radiogenic values in the interior of
terrane and then decrease again towards the BNS. The opposite is true for eNd values that exhibit
positive values close to the I'YSZ gradually decreasing to highly negative values in the center of
the terrane followed by an increase towards the BNS. It has to be noted that these trends are

independent of the age of the magmatic rocks indicating that the composition of the Lhasa
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lithosphere above the dehydrating slab has the strongest control on the isotopic signature of the
magmatic rocks. Harrison et al. (2010) investigated granitoids in the east-central portion of the
terrane around Lhasa and showed the same trends in eNd values for rocks older than ~48 Myrs.
They interpreted these results as evidence for decreasing magma flux in conjunction with
increasing crustal thickness from <=20 km just north of the IYSZ to >50 km in the center of the
terrane. The decreasing eNd values are therefore a result of increasing crustal assimilation to the
point where granitoids with eNd less than -10 represent pure intra-crustal melts as suggested by
Harrison et al. (2010). Further evidence for an ancient central Lhasa terrane flanked by more
juvenile crust to the north and south is given by Zhu et al. (2011a). They concluded based on eHf
isotopic studies that granitoids in the central Lhasa terrane are predominately the result of
anatexis of mature continental crust whereas increasing contribution from mafic sources can be
seen towards the edges of the terrane. Deviation from the overall eNd trend is most obvious in
Q4 represented by Cretaceous basalts (Chen et al., 2013) with more positive values compared to
contemporaneous intermediate and felsic magmatic rocks. This can be explained by faster ascend
of less viscous basaltic magmas through the crust causing less extensive mixing with older
continental material and therefore retaining much of their primary isotopic source character.
Another deviation from this general behavior is represented by ~38 Myr old granitoids with
gabbroic and dioritic enclaves from the Wolong area at the [YSZ (QS5, Guan et al., 2012). The
host granodiorites and granites are adakitic (plotted in Fig. 1.21) and the enclaves with identical
isotopic signatures are interpreted as restitic material. Based on these observations, Guan et al.
(2012) suggest that these intrusives were derived from magma mixing of a parental mafic
lithospheric magma with melts derived from a thickened (60-70 km) lower Lhasa crust. Limited

Pb isotope data are available for the calc-alkaline rocks on the Lhasa terrane but the Xainza area
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samples show trends consistent with increasing crustal contamination towards the center of the
terrane (Fig. 1.20). In comparison, the very low isotopic ratios at the [YSZ in Q4 correspond to
the Xigaze ophiolites with values typical for oceanic basalts from a depleted mantle source
(Zindler and Hart, 1986). On a final note, Fig. 1.19 highlights very distinct breaks in isotopic
characters across the IYSZ suggesting that calc-alkaline series rocks were not affected by
contamination with Himalayan crustal material.

Fig. 1.21 shows ages and isotopic ratios for adakites and UPR in comparison with the calc-
alkaline series rocks. Adakites were formed since the Cretaceous but most occurrences fall
within the 40-10 Ma timeframe and their geographic distribution is clearly restricted to the
southern Lhasa terrane. 87Sr/86Sr(i) values are identical to adjacent calc-alkaline rocks but
eNd(t) although within the same range as the Linzizong volcanic rocks (+5 through -5) are
generally lower than calc-alkaline in the same position. Following Chung et al. (2009) and Guan
et al. (2012), this shift towards lower values for similar distances from the IYSZ can be
interpreted as a result of progressive thickening of the southern Lhasa terrane crust after ~40 Ma.
Higher temperatures in the lower crust would allow for increased partial melting of older
continental material which would result in lower eNd(t) values. Outcrops of UPR are most
common in the eastern and central Lhasa terrane (Q3, Q4) and seem to be slighter older in the
central parts compared to occurrences closer to the IYSZ (23-10 Ma). Similar to the adakites, the
87Sr/86Sr(i) values follow the trend of the calc-alkaline rocks but are slightly elevated. Values
exceeding 0.73 are reported by Gao et al. (2007b) from the Chazi area as well as Williams et al.
(2001) from a dike near Pabbai Zong. Contrary to all other examined rock types, UPR exhibit

relatively uniform eNd(t) values overwhelmingly less than -10 lacking any correlation with
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distance. Pb isotopes for both, adakites and UPR are again in good agreement with the calc-
alkaline series rocks (Fig. 1.22).

Ratios of compatible versus incompatible elements are another useful tool to investigate the
geochemical characteristics of the magma source. Of special interest is the chondrite normalized
ratio of La and Yb which provides a good measure of enrichment of LREE or depletion of
HREE. The most efficient way to achieve depletion in HREE is melting of a source rock with
garnet as residual phase. Across the REE range, garnet has a very steep increase in partition
coefficients and the highest values for HREE compared to other common rock-forming minerals
(see Fig. 1.4), which elevates this mineral to one of the most important constituents in controlling
the whole-rock REE budget. Garnet as a rock-forming mineral is most commonly found in
metamorphic rocks like garnet-amphibolites, eclogites, and granulites. In the framework of
subduction zones, melting of 1) the eclogitized basaltic slab itself, ii) eclogitized under-plated
basalts that represent the restites of an earlier melt-extraction and fractionation process, or iii)
eclogitic or granulitic lower crust can produce parental magmas with high La/YDb ratios. Fig. 1.23
illustrates the chondrite normalized La/Yb ratios and Sr/Y ratios for calc-alkaline rocks. In the
Xainza rift (Q4) La/YD ratios increase steadily towards the center of the terrane followed by a
more or less sudden decrease and uniformly low values going further north with one exception
(04QT02). The Miocene granite (05XIE82) as well as other samples collected from the same
plutonic body (“Nanmugqie Granite”; Xu et al., 2010) display elevated values outside of the
observed trend. This different behavior is also expressed in the very high St/Y ratios, which are
otherwise uniformly low across. As in this study, Xu et al. (2010) reported inheritent U/Pb zircon
ages up to ~50 Myrs indicating that the 15 Ma magmatic rocks suffered extensive contamination

from surrounding early Tertiary granitoids. The trend in the La/YDb ratios seen in the Xainza
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samples is not clearly visible in Q5. Early Tertiary samples seem to increase towards the center
of the terrane but there is also some indication of higher ratios towards the IYSZ. Post-collisional
samples restricted to the southern half of the terrane show a wide range with the highest values at
the I'YSZ. Similar to Q4, ratios from Cretaceous rocks north of the terrane center are low. A
much different picture is drawn by the Sr/Y ratios in Q5 compared to Q4. All Tertiary rocks
show an increase towards the IYSZ, the 20-39 Ma plutonic rocks again represent the highest
values. Cretaceous samples in the north are comparable to equivalent rocks in Q4. Within Q5, a
group of ~84 Myr old plutonic rocks stands out because of elevated values especially in the Sr/Y
plot compared to samples at equivalent distances. Actually, these are gabbroic and dioritic
enclaves within host granodiorites of adakitic geochemistry (plotted in Fig. 1.24) from the
Mamba area (Meng et al., 2013). The authors interpret this rock assemblage as result of magma
mixing between melts of ancient thickened lower crust and enriched fluid-metasomatized mantle
in a back-arc extensional setting. As required by the geochemical definition of adakites (high Sr,
low YD), they show generally more elevated values in both displays compared to the calk-
alkaline series rocks (Fig. 1.24). UPR exhibit higher La/Yb and Sr/Y values in the center that
decrease towards the sutures.

The idea that more negative eNd(t) values correlate with crustal thickness has already been
discussed by means of supportive trends shown in Fig. 1.19. Based on studies in the Andes,
Chung et al. (2009, and references therein) suggest that the La/Yb ratio can serve as proxy for
crustal thickness and estimate that values around 20 correspond to 40 km thick crust and values
around 50 to 50-55 km thick crust . To further investigate this idea, Fig. 1.25 shows La/Yb, St/Y,
and eNd(t) plotted against the magmatic age. The color-coding in this case is not by age but by

distance from the IY'SZ bins to evaluate temporal trends at similar locations on the Lhasa terrane.
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UPR are excluded from these illustrations because of their unique geochemical character that is a
result of a metasomatized mantle source. Cretaceous samples from the central and northern
terrane have low La/Yb indicating thin crust, which disagrees with the >50 km estimate of
Harrison et al. (2010) based on highly negative eNd(t) values in the central Lhasa terrane. In Q4
an increase in La/Yb and Sr/Y ratios seems to correlate with younger ages but in Q5 a wide
spread of values is rather inconclusive. The eNd(t) values on the other hand show better
correlations than the REE ratios. In Q4 Cretaceous samples from the central and northern terrane
(1.4-1.8 norm. distance) have the most negative eNd(t) values, the array of volcanic rocks
ranging from ~0 to -5 are the already discussed basalts from the northern Xainza rift. Samples
closest to the I'YSZ (1.0-1.2 norm. distance) exhibit a well-defined trend from highly positive
values in the Cretaceous to a minimum of -11 for Miocene adakites. Similar trends can be seen in
Q5 with the exceptions that Cretaceous samples closest to the [YSZ do not have as positive, and
Miocene adakites not as negative eNd(t) values. Furthermore, a much wider spread in the
Miocene values is observed. Samples in the 1.2-1.4 normalized distance bin are offset towards
more negative eNd(t) values compared to the samples closer to the I'YSZ which aligns well with
the interpretation of a gradually thickened crust towards the interior of the terrane. As in Q4,
values from samples in the 1.6-1.8 normalized distance bin stay around -10 suggesting
unchanged crustal thickness from the Cretaceous through the Miocene although it ahs to be noted
that this is based on only a few samples. In summary, REE and trace element ratios are not
suitable to derive at a conclusive answer to the question of evolution of crustal thickness through
time and space. As pointed out earlier, crustal contamination plays an important role in the
generation of many of the magmatic rocks within the Lhasa terrane and the eNd(t) seem to be

less sensitive to this process. Nevertheless, elevated REE and trace element ratios predominately
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in the southern part of the terrane and more abundant in Tertiary rocks eludes to increasing

contribution of garnet-bearing lithologies in the source area.

1.5.2 Magmatic evolution of the Lhasa terrane

Following, an attempt is made to synthesize the findings from the spatio-temporal variations
in geochemical characteristics and an idealized model of the evolution of the Lhasa terrane is
provided (Fig. 1.26-1.27). The model heavily relies on results from the investigated area but
incorporates the data from other areas as well. From the above discussion, it is obvious that
lateral variations across the Lhasa terrane do exist and extrapolation from one area to another
might not be viable. Additionally, the dataset on hand has some limitations that are that not all
samples have a complete suite of geochemical and age analysis. Furthermore, sample density is
much higher towards the eastern part of the Lhasa terrane concentrated around Lhasa while it is
difficult to extract convincing trends in the eastern areas of the plateau (Q2, Q3).

One of the least constrained topics concerning the long-lasting magmatic activity on the
Lhasa terrane is the direction of subduction along the edges of the Lhasa terrane. The contrasting
models are 1) initial flat-slab subduction of the Neo-Tethyan slab that reached the northern edge
of the Lhasa terrane followed by slab roll-back, or ii) southward subduction of the Bangong
oceanic slab beneath the Lhasa terrane resulting in an early Cretaceous arc followed by slab roll-
back of the Neo-Tethyan slab causing arc-type magmatism beginning in the late Cretaceous until
the Eocene. The first model should result in a continuous trend of older ages in the north and
younger ages in the south with no distinct breaks in magmatism whereas the second model
should display two opposing trends of maximum ages in the interior getting younger towards the

northern and southern boundaries of the terrane. The first model also implies that the Bangong
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oceanic slab subducted northwards under the Qiangtang terrane, consequently, one would expect
a widespread Cretaceous arc along the southern boundary of the Qiangtang terrane. Such an
indicator for northward subduction of the Bangong slab is missing but it cannot be ruled out that
these rocks exist in the subsurface. As an additional cross-check, published conversion rates and
estimates of initiation of subduction can be used to test if the Neo-Tethyan slab could have
reached the northern extent of the Lhasa terrane to induce Cretaceous magmatism. Lee and
Lawver (1995) proposed 100-120 mm/yr convergence rates during flat-slab subduction between
~70-90 Ma, which would enable the slab to travel the current width of the Lhasa terrane (~300
km) within 2-3 Myrs assuming similar rates for the early Cretaceous period. Even if the entire
Lhasa terrane was shortened by 50-60%, the convergence rate was sufficiently high to position
the slab beneath the northern Lhasa terrane within a few million years after initiation of
subduction in the Cretaceous. The source of magmatism in subduction zones is primarily related
to partial melting of the mantle wedge induced by dehydration of the down going slab. As a
consequence, the isotopic ratios cannot be used as an argument for the direction of subduction
because the basic processes of melt generation are identical and there is no reason to believe that
the Neo-Tethyan and Bangong slab are significantly different in their geochemistry to be
responsible for the observed trends. Strong support for the southward subduction of the Bangong
slab is given by Chen et al. (2013) based on investigations at the northernmost edge of the
Xainza rift. They conclude that widespread bimodal plutonism and volcanism at ~113 Ma
indicates the final magmatic pulse as a result of slab break-off. This is not a localized event but
similar suites of rocks with identical ages have been reported ~400 km to the west in Q3 near
Yanhu (Sui et al., 2013). Evidence for slab roll-back of the Neo-Tethyan slab at ~85 Ma is given

by Meng et al. (2013) from the Mamba area in the east-central Lhasa terrane. Host granodiorites
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(some exhibit adakitic geochemistries) and dioritic as well as gabbroic enclaves are interpreted
as the result of magma mixing in a back-arc extensional setting. This observation implies that the
Neo-Tethyan slab must have been at least under the central Lhasa terrane prior ~85 Ma. Zircon
Hf isotopic studies as well as the eNd(t) data shown earlier are the best available indicators for
ancient thickened Lhasa terrane crust. Consistently, these data confirm that the Lhasa terrane
consists of ancient basement in the center flanked by more juvenile crust towards the suture
zones. It seems highly unlikely that a northward subducting Neo-Tethyan slab would not be
deflected downwards towards the asthenospheric mantle when encountering the thicker orogenic
root beneath the central Lhasa terrane. Together with the observed magmatic gap between ~110-
60 Ma as well as the indications for slab break-off at ~110 Ma below the present location of the
northern Xainza rift, a southward subducting Bangong slab model is preferred over the single
Neo-Tethyan flat-slab subduction model. Supporting evidence for this model is provided by
teleseismic from the INDEPTH-III array that imaged a southward dipping mantle converter
suggesting subduction of Asian lithosphere under the northern Lhasa terrane (Shi et al., 2004).
During the Cretaceous, the northern Gangdese plutonic and volcanic belt is formed because
of southward subduction of the Bangong slab. Depending on the crustal thickness above the
origin of parental melts, varying degrees of crustal contamination results in a spread of eNd(t)
values. Closure of the Bangong ocean triggers crustal thickening of the northern Lhasa terrane
expressed by fold and thrust belts along the northern edge of the terrane that accommodated up
to 50% of horizontal shortening. At ~110 Ma, the Bangong slab detaches and upwelling hot
asthenospheric material induces a last pulse of bimodal magmatism. Less viscous basaltic melts
show less crustal contamination than contemporaneous felsic melts as indicated by more positive

eNd(t) values. In the south, the Neo-Tethyan slab is subducting towards the north via flat-slab
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subduction until it arrives at the thicker continental root of the central Lhasa terrane where it is
deflected downwards. The timing of arrival is questionable. Chung et al. (2005) propose
transition from flat-slab subduction to slab roll-back at ~70 Ma based on accelerated
convergence rates determined by Lee and Lawyer (1995). Meng et al. (2013) suggest that the
occurrence of ~85 Ma adakitic granodiorites with mafic and gabbroic enclaves marks the onset
of back-arc extension due to slab-rollback. While slab roll-back at ~70 Ma would fit quite well
the Xainza data that show commencement of calc-alkaline magmatism at ~65 Ma, this event has
to happen at least 15 Myrs earlier in eastern Tibet. This might be one of the mentioned cases
where the model is either too simple, crucial data from the Xainza area are missing, or tectono-
magmatic processes are just different along strike (in that case 200 km away). Emplacement of
the voluminous southern Gangdese belt and equivalent volcanic rocks of the Linzizong
formation characterize the early Tertiary. Between 45-55 Ma hard collision with the Indian
subcontinent inferred from sudden decrease in convergence rates and initiation of shortening in
the Tethyan Himalaya marks the cessation of Gangdese magmatism. Slow down of the slab
ultimately leads to slab break-off triggering a last volcanic flare-up in the Linzizong volcanic
rocks. The early Tertiary magmatic event is crucial for the following period of post-collisional
magmatism because it provides the ingredients that ultimately define their geochemical
characteristics. As shown above, especially the post-collisional adakitic rocks in the southern
part of the terrane require a garnet-bearing source to end up with the observed high La/Yb and
St/Y ratios and overall HREE depleted patterns. Underplated basaltic crust formed from restitic
melts during emplacement of the southern Gangdese batholith represents a viable mechanism to
explain the geochemistry of subsequent magmatism. After slab break-off, the Indian lithosphere

starts pushing further north actively thickening the thermally weakened Tibetan lithosphere
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causing metamorphosis of the lower basaltic portion of the crust ultimately forming garnet. After
thickening has reached a critical stage, a large portion of the lithospheric mantle detaches and
upwelling asthenosphere delivers the necessary heat input to melt the lower mafic crust
providing parental melts for adakites during Oligocene-Miocene times. UPR on the other hand
are formed from melting of the metasomatised mantle itself. The removal of the lithospheric root
also causes regional uplift of the southern Tibetan plateau and allows the Indian lithosphere to
move under the Lhasa terrane and travel northwards to its present location at the BNS.

Underplating of Indian lithosphere marks the cessation of magmatism in the Lhasa terrane.

1.6 CONCLUSION

Synthesis of geochemical and age data and their analysis within a tempo-spatial framework
allows for a simplified yet coherent model of the magmatic history of the Lhasa terrane. It has
been shown that isotopic ratios especially eNd(t) are the most sensitive data available to study
source areas and crustal thickness and allow estimates of crustal contamination. The Lhasa
terrane consists of a central ancient crustal block bounded by more juvenile crust prior to the
Indo-Asian collision ultimately controlling trends of geochemical characteristics as well as
subduction geometry. From the analysis of Xainza samples and auxiliary literature data,
southward subduction of the Bangong slab seems the better model to explain an extensive
magmatic gap and the overall distribution of Cretaceous rocks predominately in the north and
Tertiary rocks clustered in the southern regions of the terrane. REE and trace element ratios are
powerful tools in distinguishing petrological characteristics of melt sources and confirm
underplated mafic crust that is metamorphosed during thickening of the lithospheric root during

hard collision of India with the Lhasa terrane. Uplift of the Tibetan plateau is closely linked to
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deep processes and occurred prior to Oligocene times. Sample density and breath of analyses is
limited especially in the eastern part of the Lhasa terrane limiting the ability to draw more

regional conclusions or be able to improve the understanding of lateral variations.
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Figure 1.1: Overview of the Tibetan plateau and Himalayas showing the main terranes and
terrane bounding structures. Sample locations are plotted according to rock type and age.
Study area is highlighted in red and quadrants (Q1-Q6) used to subdivide the dataset are
outlined by dashed white lines. Inset shows age histogram for samples from the Lhasa
terrane which was ultimately used to subdivide age populations according to the legend on
the right. MFT — Main Frontal Thrust, IYSZ — Indus Yarlung Suture Zone, LMF -
Luobadui-Milashan Fault, SNMZ - Shiquan River-Nam Tso Melange Zone, BNS —
Bangong-Nujiang Suture, JS — Jinsha Suture, AT — Altyn Tagh fault, KF — Karakorum
Fault.
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Figure 1.2: Geologic map of the Xainza rift showing zircon U/Pb sample ages analyzed during
this study. Basemap is a shaded relief map created from 90m Shuttle Radar Topography
Mission (SRTM) dataset.
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Figure 1.3: Geologic map - Legend.
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Figure 1.4: Partition coefficients for trace element and REE in rock forming minerals based on
melt composition (data from Rollinson, 1993 and references therein).
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Figure 1.5: Results from zircon LA-MC-ICP-MS spot analysis plotted as vertical bars with size
equivalent to uncertainty around the calculated spot age. Mean age calculated from group of
coherent analysis (black bars). Grey bars indicate results not included in mean calculation
and white bars are results with uncertainties exceeding the maximum allowed value (5%).

55



Age (Myrs)

Age (Myrs)

Age (Myrs)

Age (Myrs)

124 71

- 04X103 . PX05
120 "H ””””””””””””””””””””””””” g A
116-——@{}[]— e I

L ] 0] H: I N I I I I
- — S 111 (e AR TTTTITY Y
108 - H— -

o 63 ,,,,,,,,,,,,,,,,,,, | N BN B B
- - | H
100~ | e ] BLEEE N
96 : TuffZirc Age = 1114 +22-20 | U] 59|/ TuffZirc Age =639 +1.5-1.1

L\ (96.1% conf, from coherent group of 12) L\ (96.9% conf, from coherent group of 18)

74 74

i 04X119 L 04X121
70 ff[]—H —————————————————————————————————————————— 7ODH 77777777777777777777777777777777777777777777777

= B o
e TTY P TT— Vel Mg faggg oo

| e 1
e2f [ " { L RR R REE R R Bl 2 [ 11 fi ———————
8 - S8
4 o4 R
50 -1 S0F----mmm e -
46 : TuffZirc Age =639 +14-13 . U1 46 : TuffZirc Age =62.5 +14-1.0  \____________ i

|\ (97.9% conf, from coherent group of 16) |\ (96.1% conf, from coherent group of 12)
alo —— 0SXIB48| _ | 05X152
eof

o - 68 B -
7+ trepg——

11— ST A —
ana LR ATTTRE Il Il
614 (EEEEE BN B llllllﬂ

| - 56 [, - .~ 1
59 - TuffZirc Age =62.1 +13-10 } TuffZirc Age =61.8 +1.5-1.5Ma

L\ (97.9% conf, from coherent group of 16) (93.6% conf, from coherent group of 19)

72 66

. 05X1IB41 05X194
es-n-iiit-——p - """ 62 |- H 77777777777777777777777777777777777777777777777
it H|H *********************** “|| I TTER T
===t l I|I|| i |'lI|||||| "
f —ou sor Ay

TuffZirc Age =61.5 +1.0-1.2 TuffZirc Age =553 +1.2-1.5
|\ (95.1% conf, from coherent group of 17) |\ (94.8% conf, from coherent group of 22)

56



Figure 1.6: Results from zircon LA-MC-ICP-MS spot analysis; continued
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Figure 1.7: Results from zircon LA-MC-ICP-MS spot analysis; continued
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Figure 1.8: Results from zircon LA-MC-ICP-MS spot analysis; continued
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Figure 1.9: Harker diagrams plotting major element oxides against SiO2 content for calc-alkaline
rocks. Samples analyzed during this study are highlighted with red outlines.

63



Y& Adakites

(%) €0TIV

Si02 (Wt%)

Si02 (Wt%)

“““ .
S T N &
IR
S
| S
“““ PR RS S Mg o
B T
- : : m
e e e
(%) OSIN

Si02 (Wt%)

Si02 (Wt%)

(%) OTEN

Si02 (wt%)

Si02 (wt%)

64



Figure 1.10: Harker diagrams plotting major element oxides against SiO2 content for adakites
and ultrapotassic rocks (UPR). Light grey symbols represent values for calc-alkaline rocks
for comparison purposes.
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Figure 1.11: TAS, granitoid discrimination, A/NK vs. A/CNK, and K20 vs. SiO2 diagrams for
plutonic rocks of the Lhasa terrane. Samples analyzed during this study are highlighted with
red outlines.
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Figure 1.12: TAS, A/NK vs. A/CNK, and K20 vs. SiO2 diagrams for volcanic rocks of the
Lhasa terrane. Samples analyzed during this study are highlighted with red outlines.
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Figure 1.13: Trace element and REE pattern for samples analyzed during this study grouped by
plutonic and volcanic rocks
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Figure 1.14: Trace element patterns for Lhasa terrane and Himalayan plutonic rocks subdivided
into age groups. Samples analyzed during this study are highlighted (black lines with
symbols). Besides the coloring indicating rock type or region, noteworthy trends are
highlighted in blue or otherwise indicated.
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Figure 1.15: REE patterns for Lhasa terrane and Himalayan plutonic rocks subdivided into age
groups. Samples analyzed during this study are highlighted (black lines with symbols).
Besides the coloring indicating rock type or region, noteworthy trends are highlighted in
blue or otherwise indicated.

75



Primitive Mantle normalized Primitive Mantle normalized

Primitive Mantle normalized

10"

10

10°

10"

10°

10°

10

10

10°

ol 7 \ 777777777777777777777 :/

Lhasa Terrane

—O— this study

Literature
—— UPR
——— Adakite (def.)

—— Himalayas

a , U Nb La S P  Zr Ti 3
Ta Ce Nd Hf Sm Tb
Trace Pattern

high-MgO rocks
Dazi Basin (Gao et al., 2008)

U Nb La S P Zr Ti

K Ta Ce Nd Hf Sm Tb
Trace Pattern

110 - 165 Ma

Opbhiolites

U Nb, La,
K Ta Ce
Trace Pattern

Sr P Zr

P Ti
Nd Hf Sm Tb

76

Primitive Mantle normalized Primitive Mantle normalized

Primitive Mantle normalized

10"

10

10°

10"

10°

10°

10

10°

10°

20 -39 Ma

Ba U Nb La St P Zr

i
Rb Th K Ta Ce Nd Hf Sm Tb
Trace Pattern

70 - 109 Ma

U Nb La Sr

K Ta Ce Nd Hf Sm Tb
Trace Pattern

> 165 Ma

Ba

U Nb La Sr P

K Ta Ce Nd Hf Sm Tb

Rb Th K
Trace Pattern



Figure 1.16: Trace element patterns for Lhasa terrane and Himalayan volcanic rocks subdivided
into age groups. Samples analyzed during this study are highlighted (black lines with
symbols). Besides the coloring indicating rock type or region, noteworthy trends are
highlighted in blue or otherwise indicated.
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Figure 1.17: REE patterns for Lhasa terrane and Himalayan volcanic rocks subdivided into age
groups. Samples analyzed during this study are highlighted (black lines with symbols).
Besides the coloring indicating rock type or region, noteworthy trends are highlighted in
blue or otherwise indicated.
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Figure 1.18: 87Sr/86Sr(i) vs. eNd(t), 207Pb/204Pb vs. 206Pb/204Pb, and 208Pb/204Pb vs.
206Pb/204Pb diagrams. Right-hand side shows all available literature data. Left-hand side
compares samples from this study with the fields/outlines of literature data. BSE (Bulk
Silicate Earth) and NHRL (Northern Hemisphere Reference Line) fields/lines are from
Rollinson (1993) and references therein.
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Figure 1.19: Magmatic age, 87Sr/86Sr(i), and eNd(t) for calc-alkaline rocks plotted against
normalized distance from the sutures, which are highlighted as thick grey lines. Samples
analyzed during this study are highlighted with red outlines.
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Figure 1.20: Pb isotopes for calc-alkaline rocks plotted against normalized distance from the
sutures, which are highlighted as thick grey lines. Samples analyzed during this study are
highlighted with red outlines.
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Figure 1.21: Magmatic age, 87Sr/86Sr(i), and eNd(t) for adakites and ultrapotassic rocks (UPR)
plotted against normalized distance from the sutures, which are highlighted as thick grey
lines. Samples analyzed during this study are highlighted with red outlines and calc-alkaline
rocks are plotted with grey outlines for comparison.
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Figure 1.22: Pb isotopes for adakites and ultrapotassic rocks (UPR) plotted against normalized
distance from the sutures, which are highlighted as thick grey lines. Samples analyzed
during this study are highlighted with red outlines.
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Figure 1.23: Chondrite normalized La/Yb and measured St/Y ratios for calc-alkaline rocks
plotted against the normalized distance from the sutures from the sutures, which are
highlighted as thick grey lines. Samples analyzed during this study are highlighted with red
outlines.
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Figure 1.24: Chondrite normalized La/Yb and measured Sr/Y ratios for adakites and
ultrapotassic rocks (UPR) plotted against the normalized distance from the sutures from the
sutures, which are highlighted as thick grey lines. Samples analyzed during this study are
highlighted with red outlines and calc-alkaline rocks are plotted with grey outlines for
comparison.
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Figure 1.25: La/Yb, St/Y, and eNd(t) plotted against the magmatic age. The color-coding in this
case is not by age but by distance from the sutures based.
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Figure 1.26: Conceptual model of the evolution of the Lhasa terrane from Cretaceous through
present times.
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Figure 1.27: Conceptual model of the evolution of the Lhasa terrane from Cretaceous through
present times - continued
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CHAPTER 2:
Evolution of the Xainza rift revealed by structural investigations and (U-Th)/He

thermochronology

Abstract

E-W extension on the Tibetan plateau is expressed by prominent N-S trending rifts in the
Lhasa terrane documenting extensional tectonics in an overall compressional regime related to
the ongoing Indo-Asian collision. A variety of conceptual models have been proposed to explain
these somewhat counter-intuitive structures invoking deep processes like basal drag of the
underthrusting Indian lithosphere, or gravitational collapse of the elevated Tibetan plateau to
name a few. To be able to evaluate these models, timing as well as magnitude of rifting are key
parameters. Low-temperature thermochronology is a powerful tool to assess thermal histories of
normal fault bounded rift shoulder like the ones encountered in the area of interest (Xainza rift).
The results from thermal modeling demonstrate that opening of the Xainza rift initiated in the
middle Miocene (15-17 Ma) triggered by right-lateral strike-slip faulting along the northern
boundary of the rift (Gyaring Co fault) was followed by intensified normal faulting from ~10-7
Ma. In agreement with geomorphological observations like highest relief and widest basin in the
north, the (U-Th)/He data confirm progressive rift opening from north to south. This finding
disagrees with proposed models of extension related to arc-parallel stretching as well as basal
drag that would trigger a northward propagating mode but is most consistent with a distributed,

constrictional shear model.
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2.1 INTRODUCTION

Despite being our textbook example of a contractional orogenic zone, the salient features
observed on satellite images of the Tibetan Plateau are N-S trending rift valleys. Since the
recognition of active N-S trending rift systems in Tibet (Tapponnier and Molnar, 1977; Molnar
and Tapponnier, 1978; Ni and York, 1978), numerous workers have investigated their
development in an attempt to elucidate the uplift and elevation history of the Tibetan plateau and
its potential influence on global climate dynamics. Our knowledge of the kinematics and spatial
distribution of N-S rifting in Tibet is to a large extent based on interpretation of satellite imagery
and earthquake focal-mechanisms (Molnar and Tapponnier, 1978; Ni and York, 1978; Rothery
and Drury, 1984; Armijo et al., 1986; Molnar and Lyon-Caen, 1989). Active dextral strike-slip
faults and associated N-S trending rifts at the terminations of strike-slip faults in the Lhasa
terrane have been studied during the past two decades (Tapponnier et al., 1981; Armijo et al.,
1986, 1989; Mercier et al., 1987; Burchfiel et al., 1991; Ratschbacher et al., 1994; Harrison et al.,
1995; Cogan et al., 1998). However, these field-based investigations are predominately restricted
to southern Tibet with an emphasis on neotectonics (Tapponnier et al., 1981; Armijo et al., 1986;
Dewey et al., 1988; Pan and Kidd, 1992; Ratschbacher et al., 1994; Harrison et al., 1995).

Although stratigraphic and geomorphologic relationships indicate that the rift-bounding
normal faults have been active in southern and central Tibet throughout the Pleistocene (Armijo
et al., 1986), these relationships do not constrain the timing of the onset or any temporal
variations or episodicity of rifting. This pertinent information is more readily obtained from

thermochronological data from exhumed mid-upper crustal rocks.
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2.2 E-W EXTENSION IN TIBET

2.2.1 Overview of the Indo-Asian collision

The current expression of the Tibetan plateau and the Himalayas to the south (Fig. 2.1) is the
result of long-lived history of terrane accretion related to the closure of the Tethys ocean starting
in Paleozoic times and subsequent collision of the Indian sub-continent with Eurasia (Yin and
Harrison, 2000). The major tectonic units from north to south are the 1) Songpan-Ganzi terrane
(northern Tibet), 2) Qiangtang terrane (central Tibet), 3) Lhasa terrane (southern Tibet), 4)
Tethyan Himalaya, 5) Higher (Greater) Himalaya, 6) Lesser (Lower) Himalaya, and 7) Sub-
Himalaya. Starting in the Paleozoic, the Songpan-Ganzi terrane was accreted to the Kunlun Shan
along the Anyimagen-Kunlun-Muztagh suture zone, followed by suturing of the Qiangtang
terrane along the Jinsha suture (JNS) during the Jurassic to early Cretaceous, and subsequent
accretion of the Lhasa terrane in the early Cretaceous along the Bangong-Nujiang suture zone
(BNS). A best estimate for the timing of initial collision of India along the Indus-Yarlung suture
zone (IYSZ) with the Lhasa terrane to the north is at ~65 Ma. Progressive and still ongoing
underthrusting of India beneath Tibet led to a series of contractional structures accommodating at
least 1400 km of shortening forming the current expression of the Himalayan orogenic arc. In the
Indian part of the orogen, intense folding of the Tethyan Himalaya commenced by at least 50 Ma
and lasted until ~17 Ma (Ratschbacher et al. 1994), followed by the development of one of the
most important structures in the orogen, the Main Central Thrust (MCT) — Southern Tibetan
Detachment System (STDS). Active between the early and middle Miocene, the MCT-STDS
accommodated at least 140 km (maybe up to 500 km) of N-S shortening. Prograding southwards,
the Main Boundary Thrust (MBT) places the Lesser Himalayan Units above Tertiary sediments

starting at <5 Ma in the central Himalaya (DeCelles et al., 1998b). The southernmost active
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thrust fault, the Main Frontal Thrust (MFT) marks the boundary between the Himalayan orogen
and the Indian foreland and juxtaposes the Neogene Siwalik group (Sub-Himalaya) on top of
Quaternary sediments.

On the Tibetan plateau, separated from the Himalayas by the IYS, shortening related to
several episodes of terrane accretion and final collision with the Indian sub-continent is
predominantly accommodated by fold and thrust belts and large-scale strike slip systems. Total
shortening within the Qiangtang and Lhasa terranes exceeded 470 km and took place mainly
before the Indo-Asian collision (Kapp et al., 2005). During the Tertiary, shortening proceeded in
the northern parts of the plateau but no tectonic expression of accommodation of N-S shortening
related to the collision with India is reported from within Lhasa terrane. The northern termination
of the Tibetan Plateau is marked by the Altyn Tagh strike-slip fault system which initiated
between 60-45 Ma (Bally et al., 1986; Yin et al., 2002, 2008a) and accommodated from its
eastern to western segments at total of ~470 km (Cowgill et al., 2003), ~360 km (Ritts and Biffi,
2000; Yang et al., 2001; Gehrels et al., 2003a,b), and ~230 km (Yin and Harrison, 2000) of left-
lateral strike slip motion. At the western margin of the plateau, the conjugate right-lateral
Karakorum fault extends over ~1000 km and links the Muji-Kongar Shan extensional system to
the Gurla Mandhata metamorphic core complex within the Tethyan Himalaya (Ratschbacher et
al., 1994; Murphy et al., 2002; Murphy and Copeland, 2005; Robinson et al., 2004, 2007). Slip
estimates range from ~ 160 km (Robinson et al., 2009) in the north, ~120 km (Searle, 1996;
Searle et al., 1998) at its central segment to ~65 km (Murphy et al., 2000, 2002) at its southern
end. Fault initiation is believed to have started at 10-9 Ma (Murphy et al., 2002; Robinson et al.,
2005, 2007), 16-14 Ma (Phillips et al., 2004; Phillips and Searle, 2007), and as early as 25-22 Ma

(Lacassin et al., 2004, Valli et al., 2007, 2008). These two mega structures are one of the most
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recognizable features on the Tibetan plateau but not the only large-scale strike slip systems. A
series of conjugate strike-slip faults (Karakorum—Jiali fault zone, KJFZ) emerge from the BNS
and connect to rift systems in the Qiangtang as well as Lhasa terranes. The main phase of
shearing along the right-lateral Jiali fault is constrained at 18-12 Ma (Lee et al., 2003). The left-
lateral Kunlun fault in northern Tibet is an additional important structure that accommodates
eastward extrusion of Tibet since the late Eocene (Jolivet et al., 2003). Trending along the entire
northern edge of the Himalayan orogen, the south dipping Great Counter Thrust juxtaposes meta-
sediments of the Tethyan Himalaya on top of I'YS mélange rocks and in places on top of the
Tibetan Gangdese batholith. Initiation age is unconstrained but this structure was active between

~25-9 Ma synchronously with the MCT-STD system to the south.

2.2.2 Initiation and Timing of rifting

A growing number of studies provide constraints on the timing of extensional faulting in
central and southern Tibet and the northern flanks of the Himalayas but at this point it is still
highly debated if rifting occurred synchronously across the entire Tibetan plateau or if the data
suggests spatial and temporal variations in the evolution of these structures.

The maximum age for the initiation of E-W extension within the Lhasa terrane is proposed
by Yin et al. (1994) and Williams et al. (2001) who used “’Ar/*’Ar dating of N-S trending dyke
swarms to constrain the earliest stages of extension to 18-13 Ma.

In the Nyaingentanglha range, the central portion of the prominent Yadong-Gulu rift,
thermochronological data appear to constrain the initiation of normal faulting to be ~8 Ma
(Harrison et al.,, 1995; D’Andrea Kapp et al., 2005). A maximum age of initiation of E-

W extension in the northern Yadong graben at 11-12 Ma is provided by Ratschbacher et al.
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(2011) based on the age of the Kari La granite which is cut by N-S tending normal faults.
Investigating the northern portion of this rift system, the Gulu rift, Stockli et al. (2002) infer
initiation of rifting at ~5 Ma based on apatite (U-Th)/He ages. Reproducible ages as young as 1.7
Ma from the structurally deepest samples also illustrate the substantial magnitude of Pliocene
and younger exhumation and the continued rapid rift flank exhumation. This timing appears
consistent with the field observation that the Yadong-Gulu rift cross-cuts a normal fault
associated with the South Tibetan Detachment System (>11 Ma) and Northern Himalayan Gneiss
domes (e.g., Edwards et al., 1996; Edwards and Harrison, 1997; Lee et al., 2000).

North of the Gulu rift, close to the BNS, the Pung Co rift exhibits sinistral-oblique low-angle
brittle-ductile normal faulting overprinted by high-angle brittle normal faulting. These events are
geochronologically not well resolved but occurred sometime between 18-7 Ma (Ratschbacher et
al. 2011).

Detailed apatite and zircon (U-Th)/He data (from here on referred to as AHe and ZHe) from
exhumed footwall rocks in central and northern Tangra Yum Co are generally characterized by
either elevation-invariant ages clustering around ~6-5 Ma or marked inflection points in age-
elevation plots at ~6-5 Ma, both indicative of rapid late Miocene/early Pliocene exhumation
(Dewane et al., 2006). The structurally lowest samples from Xuro Co (central Tangra Yum Co)
yield AHe ages as young as ~1 Ma illustrating continued rapid exhumation. Most strikingly
though, combined AHe and ZHe data exhibit both middle Miocene and Pliocene inflection points
suggesting two distinct episodes of rifting at ~15-13 Ma and ~6-5 Ma, with the latter being the
more dominant pulse responsible for the modern rift topography. In the Kung Co rift (Fig. 2.1),
which represents the continuation of the Tangra Yum Co rift across the IYSZ, no Pliocene

cooling ages were observed. Lee et al. (2011) suggest rift initiation at ~13-12 Ma with
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accelerated exhumation starting ~10 Ma based on AHe and ZHe ages from a vertical transect.
More recently, Mitsuishi et al. (2012) proposed an age of ~19 Ma as earliest initiation of ductile
E-W extension in the Kung Co area.

Further west, the Lopukangri rift, part of a series of six left-stepping en-echelon basins, is
thought to have initiated between 15-14 Ma based on U/Pb, AL Ar thermochronology, and
structural modeling by Murphy et al. (2010). Additionally, Sanchez et al. (2010) suggested a
subsequent extensional event beginning of the Pliocene.

The westernmost expression of prominent rifting in the Lhasa terrane is represented by the
Lunggar rift system. In the southern part, ZHe ages indicate rift inception between 12-8 Ma
followed by rapid extension between 7-5 Ma (Styron et al., 2010). A slightly earlier rift initiation
of 14-7 Ma and rapid exhumation at 4-3 Ma has been reported by Sundell et al. (2012) based on
AHe and ZHe results from the northern Lunggar rift.

Within the Tethyan Himalaya, the age of the Thakkhola graben has been dated by means of
“Ar/’Ar  analysis of fracture mineralization (Coleman and Hodges, 1995) and
magnetostratigraphic analysis of syn-rift deposits (Garzione et al., 2000, 2003) yielding initiation
ages of ~14 Ma and 11-8 Ma respectively.

The Ama Drime massif is thought to be part of the southward extension of the Xainza rift
(referred to as Pum-Qu Xainza rift) within the Tethyan Himalaya. Bounded on either side by
large-scale normal faults that cut the STDS, this rift segment exposes high-grade metamorphic
rocks in its core. Using U-Th/Pb, **Ar/*’Arand (U-Th)/He dating in combination with pressure-
temperature estimates, Kali et al. (2010) constrained the initiation of E-W extension between 13-
12 Ma. Similar to other rift systems, a second phase of exhumation was suggested to have started

between 6-4 Ma.
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Quite different from its southern counterparts, rift geometries within the Quiangtang terrane
north of the BNS are not as distinctly developed. They trend in a more northeasterly direction
and, as the rifts in the Lhasa terrane, seem to be linked to strike-slip faults of the KIFZ. Overall
relief is less and extension appears to be more diffusively distributed north of the very discrete
Lhasa terrane rifts. Two structures (Muga Purou rift, Gangma Co area) were investigated so far
by Yin et al. (1999), Blisniuk et al. (2001) and Ratschbacher et al. (2011) with no age constraints
available for the Gangma Co area. Yin et al. (1999) concluded, based on morphological analysis
of fault scarps, that normal faults in the Shuang Hu graben were activated <4 Ma and
accumulated less than 10 km of fault offset. Controversially, reported mineral cooling ages in
Blisniuk et al. (2001) point towards ~13.5 Ma as a minimum estimate of graben formation in the

Shuang Hu area.

2.2.3 Models explaining E-W extension

The pieces of the puzzle leading to a coherent picture of the evolution of rifts in Tibet are 1)
driving forces, i1) boundary conditions, iii) the state of the Tibetan crust, and iv) kinematics.
Although this information seems to be increasingly accessible, their interplay in terms of timing
and individual contributions is still highly debated. A multitude of different models have been
proposed attempting to explain the mechanisms leading to the formation of N-S trending rifts
within the Himalayan-Tibetan orogenic system. The various models are grouped into five “end
member” categories that are illustrated in Fig. 2.2A-E. From each model, specific predictions
about the timing of faulting, the spatial distribution and propagation of rifting, as well as the
kinematic interplay of major Neogene structural elements of the Himalayan-Tibetan orogen can

be extracted.
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Traditionally, the onset of extension has been thought to represent the presence of a
thickened crustal root (Molnar and Tapponnier, 1978; Dalmayrac and Molnar, 1981; Coney and
Harms, 1984; Burchfiel and Royden, 1985; Dewey et al., 1988). Since elevation is a reflection of
crustal thickness, the onset of late Cenozoic E-W extension in Tibet has been interpreted to
represent the time when the plateau achieved its present elevation and started to undergo
gravitational collapse or spreading (England and Houseman, 1988, 1989; Harrison et al., 1992;
Molnar et al., 1993) (Fig. 2.2A). Dewey et al. (1988) proposed that the initial India-Eurasia
convergence was taken up by S-directed thrusting in the Himalayas and northward propagating
crustal shortening and thickening of Tibetan lithosphere during the time interval from 45-30 Ma.
At the end of this period when crustal thickness was doubled, conjugate strike-slip faults started
to accommodate shortening. Ongoing shortening further developed the Himalayan thrust belt and
extended northwards into the Altyn Tagh and Tien Shan. Their model commenced with uplift of
the Tibetan Plateau by about 2 km’s at 5 Ma related to delamination of the over-thickened
lithospheric root which marked the initiation of widespread E-W extension along N-S trending
rifts due to gravitational collapse. Based on this model, the development of N-S trending
extensional structures should be contemporaneous in Pliocene times and distributed across the
entire plateau.

Armijo et al. (1989) proposed a lateral extrusion model for central Tibet in which active
right-slip along the KJFZ decoupled deformation in northern and southern Tibet. Their
hypothesis predicts little or no extension in northern Tibet (Fig. 2.2E), but suggests that left-
lateral strike-slip faults are kinematically linked to and terminate in N-S trending rifts within the
Lhasa terrane. Rifts evolving based on this process would be expected to propagate southward

with increasing displacement on the strike-slip faults.
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In light of recent results of geologic, geophysical, and geodetic investigations in Tibet,
Taylor and others (2003) proposed a model in which significant N-S contraction occurs
contemporaneously with N-S rifting in central Tibet and is accommodated by numerous
interacting strike-slip and normal fault systems diffusely distributed over a wide region (Fig.
2.2D). This hypothesis appears to be an interesting alternative to the end-member models of
lateral extrusion and distributed crustal thickening and implies that the conjugate set of the Altyn
Tagh and Karakorum faults may only be one of many conjugate fault systems that have assisted
in the distributed, syn-contractional eastward spreading of the Tibetan plateau (e.g., Searle, 1996,
1998, 1999; Murphy et al., 2000; Bendick et al., 2000). This distributed, constrictional shear
model for central Tibet elegantly explains the kinematic interplay of strike-slip faults and N-S
trending rifts at the terminations or extensional step-overs of these transcurrent faults in central
Tibet. Both models, lateral extrusion as well as eastward spreading, are well suited to explain the
evolution of rifts linked to the KJFZ. The eastward spreading model, however, does not yield any
explanations or mechanisms for E-W extension within the Tethyan realm in southern Tibet and
along the northern flank of the high Himalaya (e.g., Thakkola-Mustang, Kung Co, Pum-Qu, and
Yadong rifts).

Several workers have suggested that extension in southern Tibet and the Himalayas may
have resulted from southward expansion and stretching of the Himalayan arc during progressive
shortening (Fig. 2.2C) (Klootwijk et al., 1985; Molnar and Lyon-Caen, 1989; Ratschbacher et al.,
1994) or strain partitioning during oblique India-Asia convergence (McCaffrey and Nabelek,
1998; Seeber and Pecher, 1998) (Fig. 2.2B). In these models, E-W extension should be restricted
to southern Tibet or at least decrease in magnitude from south to north (if unrelated to

gravitational spreading of the entire plateau) and must coincide with times of tectonic activity
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along major S-verging thrust systems in the Himalayas. Assuming that the Ama Drime massif to
the south is in fact part of a greater Xainza — Pum-Qu rift system, this model could infer that the
southern segment in the Xainza rift constitutes the northernmost extent of an arc spreading
related structure interlinking with the northern part that progressively opened from N-S.
Recently, Li and Yin (2008) documented a broad zone of distributed left-slip systems (Dinggye-
Chigu fault zone) that initiated at ~4-3 Ma and suggested that this zone transfers slip between the
N-S trending rifts. Although the timing does not match the observed low-T constraints from the
Xainza rift and Ama Drime massif, it demonstrates the effect of arc-spreading within the

Tethyan Himalayas.

2.3 GEOLOGICAL SETTING OF THE XAINZA RIFT

2.3.1 Lithologic units and Rift Morphology

The NNE-SSW striking Xainza rift, located in the central part of the Lhasa terrane, stretches
for ~180 km from the Gyaring Co strike-slip fault in the north to the IYSZ in the south (Fig. 2.3
and 2.4). It comprises predominantly Paleozoic and Mesozoic metasedimentary and
metavolcanic rocks and syn-contractional Tertiary redbeds as well as Mesozoic granitoids and
arc-related plutonic and volcanic rocks of the Gangdese batholith in the south. A clear WNW-
ESE structural grain related to the pre-Tertiary contractional history of the Lhasa terrane is
preserved by the Paleozoic metasediments throughout the rift. At the northern termination of the
rift, E-dipping normal faults are kinematically linked to the NW-SE trending Gyaring Co strike-
slip fault. The inception of strike-slip faulting along the Gyaring Co fault is inferred to be
entirely late Cenozoic in age as it truncates a thrust system, which in turn cuts Tertiary strata

(Taylor et al., 2003). The rift itself consists of several segments characterized by high- and low-
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angle normal faults with variable fault polarity and complex accommodation zones. For the
ongoing discussion they will be referred to as northern, central, and southern segment (see Fig.
2.5). Location of cross sections (Fig. 2.6) as well as longitudinal profiles along the rift axes (Fig.
2.7) is provided in Fig. 2.5.

Terminated by the Gyaring Co strike-slip fault in the north, the northern segment (Fig. 2.8)
shows an overall decrease in width and relief towards the south. The along-strike geometry can
be further subdivided into three arc-shaped sub-segments. The two northern ones share the same
characteristics exposing granitic basement in their central portions and volcanic and/or meta-
sedimentary cover units at their terminations. Triangular facets and fault scarps situated right at
the range front clearly define the trace of the ~NNE-trending normal faults. No granitic basement
is visible in the southern sub-segment and contrary to above, abundant fault scarps are not
located right at the footwall/basin interface but offset alluvial fan deposits distal from the range
front in an impressive fashion. Both, the range front geometry as well as the trend of the fault
scarps indicate a slight change from NNE to NNW trending normal faults. This area also marks
the transition from fault slip along the so far dominating E-dipping normal faults to
accommodation of E-W extension along a W-dipping fault on the eastern rift shoulder. After
turning twice by almost 90°, the eastern fault strand loses its morphological expression within
the realm of the Gangdese batholith, terminating the northern segment. Except for a small
exposure of Cretaceous granite at the northernmost edge of this segment, the hanging wall
exclusively consists of Paleozoic meta-sediments, Cretaceous volcanic rocks, and early Tertiary
volcanic rocks of the Linzizong formation.

A pass, which constitutes the drainage divide between the northern segment that is drained

towards Gyaring Co and the central and southern segments that drain southward towards the
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Indus-Yarlung river, marks the transition zone between the northern and central segment of the
rift. Bounded by an N-S trending, E-dipping normal fault on the eastern rift flank, this segment
shares familiar features, like decreasing peak heights from north to south and fault scarps right at
the range front, with its northern counterpart (Fig. 2.9). Granitic basement is exclusively exposed
in the northern footwall and towards the south limestones, meta-sedimentary rocks, and volcanic
cover rocks of the Linzizong formation are juxtaposed next to Quaternary basin fill. The hanging
wall consists of the westward continuation of the Paleozoic sedimentary units partly covered by
an extensive middle Miocene tuff, the youngest unit observed in the entire rift.

Separated from the central segment by another topographical high, the southern segment is
structurally dominated by an E-dipping normal fault bounded exhumed block of middle Miocene
granite. An almost 30 km straight array of triangular facets impressively marks the trace of this
major NNE trending structure (Fig. 2.10). In contrast to the other segments, vast volumes of
glacial sediments obliterate an otherwise maybe clearly delimited western boundary of the basin.
Nevertheless, it has to be noted that this basin seems to be much narrower than the other ones to
the north. The fault zone appears to be truncated at its northern termination by W-dipping normal
faults of the central segment, exhibiting a clear overprinting relationship. The restriction of
volcanic cover rocks to this transition zone implies that fault throw was not sufficient to expose
underlying granitic basement suggesting that normal fault offsets are at a minimum in this
particular area and increase towards the north, respectively the south in the adjacent segments.
Approaching the southern termination of the Xainza rift near the IYSZ, displacement is
transferred westward from the major E-dipping normal fault zone by a left-lateral
accommodation zone and partitioned into a series of smaller E-dipping normal faults. The

southern extent of normal faulting is not well defined, definitely extends south of the I'YSZ but
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soon loses its clear morphological expression within the Flysch zone. It has been argued that the
normal fault bounded Ama Drime massif, part of the Pum-Qu rift, marks the southern
continuation of the Xainza rift, an observation in agreement with other rifts in central Tibet that
connect southward with exhumed northern Himalayan gneiss domes (e.g. Kung Co half graben,
Yadong rift).

Besides the main rift axes, there is another structure to the west of the northern segment that
seems to be related to the evolution of the Xainza rift. Solely based on analysis of satellite
imagery, this geomorphological low is interpreted as a pull-apart basin bounded by ~ENE
trending strike-slip faults. The northern as well as southern ridges are predominantly covered by
a ~15 Myr old tuff potentially constraining a maximum age for initiation of this structure
although it has to be noted that no information about the age of the basin fill is available. There is
no obvious geomorphic expression of the northern strand connecting through the rift flank but its
extrapolated trace following a present river bed cuts the western rift flank right at the position
where the geometry changes from NNE to NNW trending rift boundaries. The northern slope of
the drainage paralleling the suggested fault trace is composed of an estimated 200 m thick
sequence of inter-bedded conglomerates, sandstones, and mudstones (Fig. 2.11). The age of
these fluvial sediments is unconstrained but their position well above the modern rift basin
indicates that they significantly pre-date the modern alluvium. No other valley along this section
of the northern segment exhibits a similar unit which could imply that these sediments were
deposited by a paleo-river unrelated to the current drainage pattern. Further west, the fault strand
defines a triangular area of low elevation as part of a conjugate strike-slip system together with

the Gyaring Co fault.
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2.3.2 Structural Geology

The structural evolution of the Lhasa terrane in the studied area is dominated by two
generations of deformational events with very distinct characteristics. Paleozoic mudstones were
slightly metamorphosed during development of a S-verging fold and thrust belt as a consequence
of northward drift of the Lhasa terrane towards the Quiangtang terrane and the subsequent
closure of the Bangong Ocean during the Jurassic. A penetrative ESE/SE trending crenulation
cleavage as well as large and small scale folding is observable in the now phyllites and slates
throughout the rift. Orientations of foliation planes vary dependant on the folding but show a
general E-W trend. Crinoids-bearing limestones within the phyllites macroscopically lack
deformational structures which might be attributed to strain partitioning into the weaker meta-
mudstones. A minimum age of cessation of this early shortening event is given by the
unconformable overlaying Linzizong volcanic sequence (~60-50 Ma) that does not exhibit any
contractional structures. Sub horizontal flow layering and Fiammi’s indicate little to no
disturbance following their deposition during the early Tertiary.

The second, and of particular interest with respect to this study, deformational event is
related to the opening of the rift along a ~N-S axes, crosscutting the older structural grain almost
perpendicular. Slickensides, slickenlines, and joint orientations are consistent with normal
faulting along the major rift bounding fault strands discussed above. In the central segment, dip-
slip on ~N-S trending slickensides is well preserved in the carbonates but somewhat surprisingly,
the majority of measured fault planes dip towards the E. This set either constitutes conjugate
faults to the rift bounding, W-dipping master fault, or represents the northward extension of the

E-dipping normal fault in the southern segment.
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Within the southern segment, brittle style of deformation is manifested by a high density of
steeply dipping normal faults that in most cases can be traced from the bottom to the top of the
exposed range front. Slickenlines generally plunging at about 45° indicate that a considerable
amount of strike-slip movement occurred along these faults.

Throughout the rift, no ductile structures related to E-W extension were observed, a crucial
fact that has important implications for the later discussion of (U-Th)/He results, subsequent

modeling as well as comparison to other rifts on the Tibetan plateau.

2.4 (U-Th)/He THERMOCHRONOLOGY

(U-Th)/He dating of a range of mineral phases is now a well-established
thermochronological technique widely applied in geological, tectonic, and geomorphologic
studies (e.g., Zeitler et al., 1987; Lippolt et al., 1994; Wolf et al., 1996, 1998; House et al., 1997,
1999; Farley, 2000; Reiners et al., 2000; Stockli et al., 2000; Reiners, 2002; Farley and Stockli,
2002; Ehlers and Farley, 2003; Carter et al., 2004). The method is based on the decay of 235U,
¥y, and **Th by alpha (*He nucleus) emission. According to experimentally derived diffusion
kinetics, different mineral phases will show a characteristic response, that is total, partial, or no
loss of *He, during a given t-T history. “He is completely expelled from apatite at temperatures
above ~80°C and almost totally retained below ~40°C (termed the He partial retention zone,
HePRZ) (Wolf et al., 1996, 1998; House et al., 1999; Stockli et al., 2000). The thermal
sensitivity of this system 1is lower than that of any other widely used isotopic
thermochronometer. Assuming a mean annual surface temperature of 10+5°C and a geothermal
gradient of 25°C/km, the relevant temperature range is equivalent to depths of ~1 to 3 km. Thus,

the apatite (U-Th)/He system can be applied to investigate a variety of geologic processes in the
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uppermost part of the crust, such as rifting, mountain building, erosional exhumation, and
landscape evolution. Besides apatite, zircon is the most commonly used (U-Th)/He
thermochronometer with a HePRZ ranging from ~190 to ~140°C (e.g., Reiners, 2005). Using the
same geothermal gradient from above, zircon He dating allows insight into the time span when
the samples resided at ~7-5 km crustal depths. Each mineral phase on its own can provide
substantial information about the thermal history of the sample collected in the field but the true
power of He-dating lies in the combination of samples from geologically meaningful sample
arrays, each of the samples providing several mineral ages. Because of the characteristic
temperature sensitivity of each mineral phase, (U-Th)/He ages are expected to vary
systematically with depth in the stable crust (Wolf et al., 1996, 1998; House et al., 1999; Stockli
et al., 2000). The increase in depth, and thus temperature, results in a measurable reduction of
apparent ages by diffusive loss of He. In N-S trending rifts in central and southern Tibet, high-
and low-angle normal faults have accommodated major crustal extension. The associated
mountain ranges correspond to uplifted rift flanks that have been exhumed during normal
faulting, exposing rocks brought from substantial depths. If fault slip has been rapid and of
sufficient magnitude to exhume samples from the zero retention zones, (U-Th)/He will directly
date the timing of faulting and footwall exhumation (e.g., Stockli et al., 2000; Stockli, 2005). At
increasingly shallow paleo-depths, apparent ages will become older, because He at least partially
accumulates within the mineral grains before exhumation commences. The observed (U-Th)/He
ages in these exhumed partial retention zones may be used to estimate the pre-extension paleo-
temperatures of samples from various depths and may also be used to estimate the pre-

extensional geothermal gradient. Furthermore, these results constitute the basis for subsequent
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modeling to derive quantitative measures of exhumation rates and fault slip from compatible
time-temperature evolutions.

This investigation relies on samples collected along vertical transects in rapidly exhumed
footwall units as well as additional single samples from hanging wall and footwall outcrops. The
extraction of valuable information regarding the evolution of the studied area and its implications

for E-W extension on the Tibetan plateau is the ultimate goal of this study.

2.4.1 Analytical Methods

After mineral separation using various mechanical and physical techniques, 1-3 Inclusion-
free, euhedral apatite grains with a minimum diameter of 60 um were loaded into platinum
packets and subsequently degassed for 5 minutes at ~1080°C with a Nd-YAG laser. For each
sample, 3-6 packages (= aliquots) were analyzed. After adding 3He spike and gas purification,
4He/3He ratios were measured on a quadrupole mass spectrometer. A second heating cycle
assured that all (>99%) of He was extracted from the mineral. Re-extracts higher than 1%
usually indicate the presence of micro-inclusions not recognized during the selection process. In
that case, these aliquot ages were not included in the final age calculation but still listed in the
data tables and marked accordingly (*). Apatites were then dissolved in 100 pl ~25% HNO; U-
Th-Sm Spike solution, cooked for 90 min at ~80°C, and diluted to a final 600 pl solution.

For zircon and titanite, only single grains were loaded into platinum jackets and heated for
10 minutes at ~1280°C. This routine was repeated until >99% of He was extracted. Dissolving
these silicates is not as straightforward as for apatite and involves dissolution in special pressure
digestion vessels at high temperatures, first in a 7N HNOs-HF-Spike mix for 4 days at ~220°C,

and subsequently (after dry-down) in 6N HCI for 12 hrs at ~180°C. Following dry-down, adding

123



100pl concentrated HNOs and heating for 45 minutes at ~90°C assured dissolution of any formed
compounds (e.g. Th salts). Diluting with 1 ml of H,O finalized the procedure.

In the final step, parent isotopes were measured on a VG-PQ2 Inductively Coupled Plasma
Mass Spectrometer (ICP-MS) and the He age was calculated from parent and daughter
concentrations.

In the case of insufficient apatite quality (common because of inclusions), 6 grains were
loaded in one platinum packet, completely degassed, and dissolved following the silicate
dissolution procedure assuring recovery of parent nuclides that might reside in a non-apatite
inclusion. This approach was used as a final resort but has the potential to give reproducible
aliquot ages as shown by Vermeesch (2007) and analysis at the Isotope Geochemistry

Laboratory at the University of Kansas (Stockli, pers. comm.).

2.4.2 (U-Th)/He Results

Fig. 2.12 presents the sample locations with their corresponding age information (average
ages from multiple aliquot analyses) which consist of a combination of U/Pb, ZHe, AHe, and for
one sample Ar/Ar data. The inset, a cross plot of all analyzed He ages versus sample elevations,
shows a cluster of elevation invariant AHe ages centered around ~10 Ma whereas ZHe ages are
more widely distributed over the entire age range. The individual aliquot analyses for apatite and
zircon are given in Appendix B (Table B.1 and B.2).

The northern segment is characterized by early/middle Miocene zircon and middle/late
Miocene AHe ages in the granitic footwall. An apparent increase in ZHe ages up to ~100 Ma
towards the southern tip of the central sub-segment and the change in lithology from granitic

basement to porphyritic rhyolite, clearly reflects the gradual decrease in magnitude of normal
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faulting along this fault strand. This is further supported by the aforementioned decrease in
normal fault angles and occurrence of strike-slip faulting approaching the southern tip. The
maximum ages at this location correspond well with analyzed samples from the volcanic
footwall unit and although no U/Pb age is available, the proximity to the Cretaceous granite and
Cretaceous ZHe ages points towards post-magmatic cooling above the zircon HePRZ. Samples
collected along a vertical transect (VT-A) at the northern edge of the Cretaceous granite reveal
an overall decrease of early Miocene zircon He ages at the top towards middle Miocene He ages
at lower elevations. Within error elevation invariant apatite He ages suggest rapid cooling at ~10
Ma. Additional samples collected further to the south (04X104, 04XI105) show comparable ages.
Although vertical transects along normal fault bounded footwall units provide most insights into
the initiation and magnitude of fault slip, hanging wall samples can add substantial information
about the thermal state of the tectonically undisturbed crust prior to E-W extension. As expected,
the samples collected from granitic as well as volcanic hanging wall units exhibit late Cretaceous
to early Tertiary ZHe and AHe ages consistent with post-magmatic cooling and/or slow
exhumation. Two samples, 04XI120 and 04GB04 are of special interest not only for E-W
extension but also for the pre-extensional history of the Lhasa terrane. These meta-sandstones
show abundant detrital zircon dated between ~500-3,300 Ma by Laser Ablation Inductively
Coupled Plasma Mass Spectrometry (LA-ICPMS). Both samples yielded early Tertiary ZHe ages
indicating complete thermal re-setting (= reheating above ~200°C) during emplacement of the
Gangdese batholith and Linzizong volcanic sequence between ~65-45 Ma. The proximity of
04X120 to a 60 Myr old rhyolitic ash flow tuff (Sample 05XI52) with an identical ZHe age gives
great confidence in that hypothesis. One might argue that He ages pre-dating this period of

extensive plutonism and volcanism do not support this explanation but the range of zircon He
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ages from Cretaceous volcanics to the north as well as the fairly close AHe ages can be
explained by only partial re-setting. Otherwise, ZHe and AHe ages should be relatively close to
the magmatic age of the volcanic rocks but this theory will be further tested in the modeling
section. ZHe ages from a vertical transect (VT-B) collected in the southern sub-segment of the
northern rift segment are within error identical to the U-Pb crystallization age, thus revealing
emplacement at a shallow crustal position well above the zircon HePRZ. No apatite data are
available for this sample array to further constrain this by (U-Th)/He thermochronology but re-
mineralized, flattened pumice clasts harden the evidence for rapid cooling at ~62 Ma related to
sub-aerial emplacement.

Consistent with the observation from the north, elevation invariant late Miocene AHe ages
results reveal rapid footwall exhumation in the central segment at ~10 Ma. In contrast, ZHe ages
are generally older and span, clearly elevation dependant, from the early Oligocene to the early
Miocene indicating that the exposed basement resided at shallower crustal levels earlier than the
crustal section in the north.

Contrary to all other studied areas within the Xainza rift, elevation invariant late Miocene
AHe and ZHe ages from a vertical transect in the southern segment (VT-D) allude to very rapid
movement along a major N-S striking normal fault. Samples collected within the Gangdese
batholith further south show similar AHe ages as footwall samples from throughout the rift. One
exception is sample 05X192 which is located right at the intersection of the Xainza rift with the
Indus-Yarlung river gorge with unusually young apatite (2.4 Ma) together with a late Miocene
ZHe age.

Not being able to define clear age-elevation inflection points in the analyzed vertical

transects only allows a qualitative determination of times of rapid cooling, but the initiation of
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these events remains speculative at this point. In order to access this key piece of information, a
more quantitative approach needs to be applied to get more insight in the evolution of these fault

blocks.

2.4.3 Modeling Approach and Results

Over the last decade, increasing efforts to model the t-T evolution of fault blocks for
quantifying exhumation rates and fault slips from (U-Th)/He data, led to a number of very
powerful software packages. In general, they allow to forward model cooling ages calculated
from user defined thermal histories and/or evaluation of randomly created t-T paths based on
their goodness of fit for given ages (inverse modeling). Some of the drawbacks of these software
packages are the restriction to single samples or even mineral phases, limitation to forward
modeling only, accessibility as well as computational intensity. To accommodate the need to
inverse model a suite of samples collected along a vertical transect for apatite and zircon (U-
Th)/He dating, a new code called Helium Modeling Package (HeMP) was developed with the
technical programming language MATLABO. Utilizing the algorithms used by HeFTy©
(Ketcham, 2005), the inverse modeling approach was modified in the following way. Instead of
generating a random thermal history and compare the resulting model age with all sample ages, a
temperature offset based on vertical sample spacing and user-defined geothermal gradient(s) is
applied and subsequently these modified thermal histories are evaluated only against their
corresponding samples. This approach results in better constraint thermal histories because of the
linkage between samples of the entire transect utilizing a wider range of temperatures.

An important underlying assumption is that the geothermal gradient remains constant

throughout the thermal history, which does not hold true in nature because of changes in erosion
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rates as a response to uplift along a normal fault and the effects on isotherms by an evolving
topography. Given the lack of insight into the sedimentary record and geometry of the rift basins
for the study area, as well as the increasing complexity of a model dealing with these additional
parameters, the simplification of a fixed geothermal gradient is used in HeMP. During the
discussion, the effects on the model results will be assessed in a qualitative fashion.

For all model runs, kinetic parameters of He diffusion in minerals listed in Ehlers et al.
(2005, Table 3) were used. To incorporate the sample reproducibility, the 1c standard deviation
around the mean of all aliquots was utilized and the model results were classified into acceptable
and good fit solutions based on the Kolmogorov-Smirnoff statistical test routine applied by
Ketcham (2005). The lack of higher temperature sensitive thermochonologic data (e.g. Y Ar/ P Ar)
for the majority of the samples but especially for the vertical transects renders the evaluation of
the thermal history below the zircon HePRZ temperature interval almost impossible. To
somehow be able to compare the vertical transects to each other, 50 Ma and 350°C was chosen
as starting condition for the model runs based on the well documented volcanic flare-up between
~60-50 Ma and its likely perturbation of the thermal state of the crust at this time. Exempt from
this setup is the southernmost vertical transect because of an additional constrain, a ~15 Ma U/Pb
zircon crystallization age. All vertical transects were modeled with geothermal gradients ranging
from 20-100°C in 2°C increments.

Fig. 2.13 summarizes the modeling results for all vertical transects. Left graph shows the t-T
paths that lead to acceptable fits and a histogram of number of fits for each individual geothermal
gradient. Fits for geothermal gradients of 24 and 26°C/km are highlighted in blue and represent
assumed pre-extensional values for stable crust. In red, t-T paths for the highest acceptable

geothermal gradients are shown. Right graphs show the age versus elevation relationship of the
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analyzed samples and the colored lines represent the connections between the model ages for
each t-T path using the same color scheme as above. Although each vertical transect model
shows changes from slow to rapid cooling, the large number of overlying lines makes it difficult
to define the earliest time of possible rift initiation. Fig. 2.14 shows the average thermal histories
and cooling rates for each geothermal gradient as well as the derived exhumation rates and total
accumulated exhumation. Higher geothermal gradients yield better defined inflection points in
the model results and are pushed towards younger ages but peak values for cooling and
exhumation rates overlap with the corresponding peaks of cooler geothermal gradients. Based on
the average model results, initiation of E-W extension is chosen to be represented by increasing
cooling rates for the pre-extensional geothermal gradient (24-26°C/km) and is highlighted as
thick dashed line in all the plots. As expected, the geothermal gradient does not have a major
impact on the overall shape of the matching thermal histories in cases of fast cooling, but the
resulting exhumation rates and accumulated exhumation calculated from the t-T paths and
applied geothermal gradients vary drastically. Lacking control over emplacement depth and
cooling path of the granitoids, the discussion of these derived values will focus on the time since
rift inception. As a first order estimate, elevation invariant He ages can be used to determine a
minimum amount of exhumation because i) all samples had to be at depths below their
corresponding HePRZ, and ii) the entire sampled crustal section had to be moved/cooled through
the HePRZ quickly enough so that the lowermost sample cooled to temperatures below the lower
bound of the HePRZ at the same time or shortly after the samples above. As a consequence, the
minimum amount of exhumation required equals the thickness of the HePRZ plus the elevation
difference between the top and bottom sample of sampled section. With the modeled range of

geothermal gradients the values for exhumation through the apatite HePRZ are 1.8-4.6 km’s
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(VT-A), 1.7-4.5 km’s (VT-D), and 1.9-4.7 km’s (VT-E). Because VT-E also exhibits elevation
invariant ZHe ages equal to the AHe ages, this value increases to 3.7-10.7 km’s.

Modeling results for VT-A show a change from slow to faster cooling between 17-16 Ma.
Low exhumation rates of less than 0.2 km/Myrs increase towards peak values of 1-2 km/Myrs at
~10 Ma yielding 2-8 km of exhumation since rift initiation.

In the central segment (VT-D), a clear shift towards accelerated exhumation is less obvious
but seems to happen around 15-14 Ma. As above, peak cooling rates are established ~10 Ma and
accumulated exhumation ranges from less than 1 to 4 km’s.

A combination of zircon U/Pb, biotite *°Ar/*’Ar, zircon (U/Th)/He, and apatite (U/Th)/He
data for VT-E gives superb control over the thermal evolution of this footwall block. Starting
with granite emplacement at 14-13 Ma, the granite cools down to 250-350°C at ~12.5 Ma as
constraint by *’Ar/*’Ar data. After a period of slow cooling, rapid cooling commences at ~9 Ma
moving the entire ~850 m thick crustal section quickly through the ~220-40°C isotherms
followed by slow cooling to an estimated average annual surface temperature of 5°C. Peak
cooling rates are obtained at ~7 Ma and exhumation is in the order of 3.5-11 km’s.

For simple scenarios like exhumation along rift bounding faults as in the Xainza rift, the
geothermal gradient has to increase over the period of accelerated exhumation due to advective
heat transfer and compression of isotherms close to the surface. Estimates of pre-extensional
geothermal gradients are sparse but based on the present a-f transition of quartz Mechie et al.
(2004) suggested average values of 39°C/km and 25°C/km for the Quiangtang and Lhasa terrane.
Styron et al. (2013) proposed 40°C/km as pre-extensional thermal gradient based on their
preferred thermal modeling results from the Lunggar rift. As a result of these observations and

the transient nature of the geothermal gradient during accelerated cooling, exhumation calculated
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from the lowest geothermal gradients must be the best estimate for maximum exhumation. Given
the skew of number of fits towards lower geothermal gradients and a pronounced drop of fits at
~40°C/km (VT-D, VT-E) the pre-extensional geothermal gradients should fall within the range
of 25-40°C/km with higher confidence in the lower values.

Besides vertical transects, a number of single samples with ZHe and AHe age pairs from
footwall and hanging wall units are modeled using individual aliquot ages instead of aliquot
means. Footwall sample model runs utilize the same setup as VT-A and VT-D, hanging wall
samples are run with an initial constraint at 110 Ma and 350°C and two additional constraint
boxes that allow either monotonic cooling or re-heating past 85 Ma to account for the possibility
of He age re-setting related to elevated temperatures during the extensive early Tertiary
magmatism and volcanism. A total of 100,000 randomly created t-T paths are tested and Fig.
2.15-17 show the resulting acceptable fits color-coded by aliquot combinations. Sample names
denoted with ‘*’ indicate that the initial run yielded incomprehensive results based on too few
aliquots that fit the same t-T path. In these cases, it was required to increase the lc age
uncertainty from 3% to 4% to yield better defined thermal histories. Starting in the north with the
only granitic hanging wall outcrop encountered in the northern and central segment, sample
04XI03 serves as the best estimate for cooling rates of crust that underwent no or little thermal
disturbance related to rifting processes. Fitting t-T paths indicate that that the sample resided at
temperatures at ~200°C at ~60 Ma. Before that, it either cooled to temperatures as low as 40°C
and underwent reheating or just monotonically cooled. Past ~60 Ma, a well defined cluster of t-T
paths show cooling rates of ~7°C/Myr followed by less than 1.5°C/Myr starting at ~40 Ma.
Assuming a geothermal gradient of 25°C/km, this equates to exhumation rates of ~0.3 km/Myr

and 0.06 km/Myr respectively which is within the range of pre-extensional exhumation rates
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determined from the vertical transects for equivalent geothermal gradients. 04XI20 is a meta-
sandstone collected close to the southeastern end of the northern segment. Similar to 04XI103, the
sample resided at temperatures between 200-150°C at ~50 Ma and follows the same trend with
initial higher cooling rates followed by slow cooling after ~40 Ma. These t-T histories are in
excellent agreement with the results from the Bangoin gneiss NE of the Xainze rift (Hetzel et al.,
2011) confirming the very low erosion rates in the interior of the plateau away from tectonically
active regions since at least 40 Ma. Another meta-sandstone collected outside the rift (04GB04)
provides another data point for the similar background cooling history of samples undisturbed by
extensional processes within the rift. Close to the intersection of the main rift bounding normal
fault and the Gyaring Co strike-slip fault, PX05 constitutes the northernmost analyzed footwall
sample during this study. Very similar to the results obtained from VT-A, initiation of rifting
seems to have occurred ~15 Ma. 04X104 and 04XI05 are footwall samples collected along the
granitic range front south of VT-A in the northern segment. Both yield acceptable solutions
similar to VT-A indicating accelerated cooling ~15 Ma. 04X104 demonstrates well the issues
with single sample modeling that is that the solutions converge within the HePRZ temperature
ranges of the analyzed phases (~140-190°C for zircon, ~40-80°C for apatite) but quickly diverge
outside of them. In this example, initiation of rapid cooling could have started as early as 20 Ma
or as late as 10 Ma. At the southern end of the range front, sample 04XI08 stems from an
extensive hyperbyssal granitoid that exhibits ZHe ages that progressively increase in age towards
the south. A wide range of acceptable thermal histories solutions makes it difficult to get insight
into the thermal evolution of this sample. AHe ages are in agreement with the northern samples
but the ZHe ages are well above the ones collected from the Cretaceous granite. Combining the

available lithologic, structural, and thermochronological data, this part of the rift seems to
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represent a transition from larger magnitude uplift in the north exposing plutonic basement rocks
to less exhumation on the southern tip of this fault strand.

In the southern segment, 05XI80 shows identical thermal evolution as VT-E. This sample
was collected further up the valley and not along the triangular facet and therefore excluded from
the VT-E model. Thermal history models for samples collected southward towards the 1YSZ
again show similar patterns as already discussed. 05XI91 and 05XI192 indicate rapid cooling
from temperatures within the zircon HePRZ past 10 Ma similar to VT-E whereas 05XI90 and
05X194 show a less clear trend but converge at ~20 Ma and ~170°C and ~10 Ma and ~60°C. Fig.

2.18 summarizes the modeling results showing their spatial distribution across the Xainza rift.

2.5 DISCUSSION

2.5.1 Evolution of the Xainza rift

Combining the morphologic expression of the Xainza rift with the results from thermal
modeling gives an intriguing picture of the evolution of this structure. Based on the selection of
initiation of E-W extension, a temporal trend from an early inception in the north to a later but
more rapid episode of accelerated exhumation in the south is obvious. This finding is supported
by the shape of the rift that suggests progressive, zipper-like opening from north to south
triggered by the right-lateral Gyaring Co strike-slip fault. The extent of the ~ENE trending strike
slip fault that created the pull-apart basin to the west is unconstrained but if it indeed represents a
regional conjugate set to the Gyaring Co fault then it could have played an important role in the
early history of the rift. On the basis of field observations integrated with the thermal history
modeling results, a proposed model of the evolution of the Xainza rift is shown in Fig. 2.19.

Starting as a early as 17-15 Ma, the primordial Xainza rift opened within a triangular zone
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bounded by the Gyaring Co fault in the north and a conjugate strand in the south. Extension most
likely was diffuse across this zone but more localized along a series of small offset, arcuate
normal faults at the western extent. The southern strike-slip fault represented a morphological
low (similar to the modern trace of the Gyaring Co fault) and a paleo-river system drained into
the early rift basin. Ongoing extension led to the abandonment of the southern strike-slip fault
and the rift propagated further south along a SSE-trending axis to the present extent of the
northern segment. Around 12-10 Ma, a left-lateral transfer fault initiated the central segment. At
this point in time, the voluminous Miocene granitic body presently forming the backbone of the
southern segment was already emplaced at depth. It is highly speculative if rifting would have
proceeded in a similar fashion connecting separate basins through step-over transfer zones or if
the rift would have terminated before reaching the IYSZ. The sudden change from W-directed
faulting in the central segment to E-directed extension along a major normal fault at the eastern
side of the southern segment suggests that the rift geometry is strongly influenced by the thermal
anisotropy created by granite emplacement. This could be responsible for the mismatch between
the proposed evolution which requires a gradual decrease towards zero fault throw in a, in map
view, (ideally) V-shaped rift valley and the observed increase of fault throw towards the center
of the southern segment. As this crustal anomaly disappears towards the south, the main fault
strands splits into several fault splays whose surface expression disappears south of the [YSZ.
Both, the northern and central segment show peak cooling rates at ~10 Ma which is interpreted
as the main stage of rapid uplift and subsequent re-equilibration of the compressed isotherms.
Prior to this event, strike-slip faulting was the dominant process and relief most probably was
little. Normal faulting and rift shoulder uplift in the northern segment masked a possibly more

pronounced geomorphic expression of the southern conjugate fault strand although this area is
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still the least elevated footwall portion in the entire rift. A newly developing drainage divide cut
the paleo-river and the modern stream cut back into the fluvial deposits which are now exposed
several hundred meters above the recent basin floor. In the southern segment it is very difficult to
determine initiation of fault throw and surface uplift because it is unclear if a change of cooling
rates is function of tectonics or simply post-magmatic cooling. Nevertheless, peak cooling rates
related to normal faulting are established slightly later than in the north at ~7 Ma. Throughout
the entire rift, abundant fault scarps directly along or parallel to the rift bounding normal faults
indicate ongoing footwall uplift. This is not clearly reflected in the modeling results of the
vertical transects which could be related to the fact that the lowest available outcrops are usually
well above the current basin floor and the rocks exhibiting potentially younger He ages are
buried under widespread glacial sediments. Sample 05XI92 collected just north of the I'YSZ at
the lowest elevations of the rift indicates how young the AHe ages can get and the single sample
modeling results yield a more or less constant rate of fast cooling from ~8 Ma to present time.
Observations from other rifts throughout Tibet (e.g. Armijo et al., 1986) and recent GPS studies
(e.g. Zhang et al., 2004) confirm that rifts throughout the Lhasa terrane are actively extending.

If the estimated maximum cumulative exhumation in the Xainza rift (~11 km) is solely a
result of movement along normal faults then ~5-8 km of horizontal extension must have been
accommodated assuming fault angles of 45-60°. These values are less than the suggested slip on
the Gyaring Co fault of 12.5 £ 4 km (Taylor et al., 2003) and do not compare either with the
modern basin widths of 8-12 km. As a consequence, the high-angle normal faults need to flatten
at depth to increase E-W extension. The arcuate nature of the normal faults in the northern
segment as well as observations from other areas suggests that the high-angle normal faults are

not crustal-scale structures but sole into a sub-horizontal detachment at mid-crustal levels.
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2.5.2 Rifting in Southern Tibet

In comparison, the Xainza rift reveals similarities but also important differences with other
prominent rifts within the Lhasa terrain. As other rifts, the Xainza rift is a composite structure
with sub-basins connected through strike-slip transfer faults. This investigation confirms the
proposed causal relationship between strike-slip faulting along strands of the KJFZ and rifting in
southern Tibet and that extension indeed propagated from north to south. Comparing magnitudes
of E-W extension, thermokinematic modeling revealed a total displacement of 21-26 km along
the low-angle Nyaingentanglha fault that soles into a subhorizontal detachment at ~12 km depth
(D’ Andrea-Kapp, 2005). Sundell et al. (2013) and Styron et al. (2013) report net extension of 17-
26 km in the northern, and 10-21 km in the southern Lunggar rift along low-angle detachment
faults. Both observations exceed the estimated amount of E-W extension in the Xainza rift. The
most striking difference is the absence of an exposed ductile detachment fault which has been
observed in other areas like the Lunggar, Lopukangri, and Yadong Gulu rifts. Fault angles seem
to be higher in the Xainza rift although there is some evidence for decreasing dips along strike
from the northern segment. No such structure is reported from the southern Tangra Yum Co rift
as well (pers. comm. Terrence J. Dewane) which raises the question if the rifts in the central
portion of the Lhasa terrane underwent a different kinematic history than the structures to the
east and west and magnitude of exhumation was insufficient to bring mid-crustal rocks up to the
surface. Kapp et al. (2008) suggested that the Lunggar rift and Nyaingentanglha range are
metamorphic core complexes (MCC’s) in different stages of their evolution. The MCC model
requires a thickened, hot crust in order to develop a low-angle detachment fault. In the

Nyaingentanglha range as well as the Lunggar rift, Miocene granites are exposed along the
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detachment fault. Their emplacement might have pre-conditioned the thermal state of the upper
crust to allow for low-angle detachment faulting. Neither the Tangra Yum Co nor the northern
and central segments of the Xainza rift have Miocene granites exposed in their footwall units.
Miocene volcanism is present in the Tangra Yum Co rift (unpublished data, pers. comm.
Terrence J. Dewane) and only the footwall of the southern segment of the Xainza rift consists of
a Miocene granitoid which lends itself to the conclusion that Miocene magmatism is a pre-
requisite for development of MCC’s but it’s existence does not necessarily trigger their
occurrence. As a consequence, the differences between the central and outboard rifts must be

related to other factors.

2.5.3 Evaluation of kinematic models

With the information at hand, the previously presented end-member model for E-W
extension on the Tibetan plateau can be further evaluated. The preferred model is the distributed,
constrictional shear model of Tibet that initiates E-W extension linked to conjugate strike-slip
faults along the KJFZ (Taylor et al., 2003). This model is consistent with the observed initiation
in the northern part of the rift and progressive opening towards the south. It furthermore explains
coeval rifting in northern Tibet. Arc-parallel stretching seems to play a subordinate role but
represents a viable mechanism for E-W extension south of the I'YSZ. The Pum-Qu rift for
example consists of a central horst structure bounded by normal faults on either side that diverge
from a common point in the northern part. Contrary to the proposed evolution of the Xainza rift,
this morphology suggests opening from south to north. Another observation that does not fit this
model is the trend of the individual rifts. If arc-parallel stretching is the dominant mechanism,

then the rift axes should align with the radial traces perpendicular to the arc segment. Quite the
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opposite is true and rift axes actually trend ~\NW-SE in the west (e.g. Lunggar rift) and ~NE-SW
in the eastern part of the Lhasa terrane (e.g. Nyaingentanglha range). There is no indication that
the crustal structure changes significantly going away from the central portion of the Lhasa
terrane leading to kinematic variations as the root cause for the present day geometry. Kapp and
Guynn (2004) proposed that the fanning pattern was a result of localized collisional stresses
along a southern segment of the Himalayan arc. Arc normal pressures along the central part of
the Himalayan arc produced principal stress trajectories (62) consistent with the trend of major
rifts in southern Tibet. They used emplacement ages of dyke swarms (~18-13 Ma) reported by
Williams et al. (2001) as a proxy for rotation of 61 from horizontal to vertical but noted that
vertical stresses were not sufficient to initiate E-W extension along large-scale rift systems at this
point in time. This model relies on pressure relief outside the central part by slip on the
Karakorum fault and thrusting within the Shillong plateau during rift activation. Biswas et al.
(2007) determined that exhumation of the Shillong plateau started 15-7 Ma and the Karakorum
fault has been active since at least ~15 Ma, both meeting this requirement. As suggested by Kapp
and Guynn (2004) changes in deviatoric stress between 8-4 Ma finally allowed increasing rates
of normal faulting leading to the initiation of ~N-S trending rifts in the Lhasa terrane. Similar to
the arc-spreading model, the oblique convergence model would require the rifts to propagate
from south to north following the northward propagating Indian lithosphere which exerts basal
shear on the overlying Tibetan crust. Finally, wholesale collapse of the Tibetan plateau as a
consequence of unsustainable plateau elevations needs to be evaluated. This model would
require that all rifts initiated at the time when the plateau achieved its maximum elevation and
concentrated at areas of maximum elevation. Initial paleoaltimetry studies from several regions

using different techniques all suggested that the southern Tibetan plateau was at similar to

138



modern elevations since ~15-11 Ma (e.g., Garzione et al., 2000; Rowley et al., 2001; Spicer et
al., 2003; Currie et al., 2005). Rowley and Curry (2006) pushed this estimate further back in time
and propose that much of Tibet was at or near its present elevation by Eocene times,
undermining the causal relationship between the elevation evolution of the Tibetan Plateau and
E-W extension. Although the gravitational potential of the Tibetan plateau undoubtedly
influences rifting in Tibet, it acts in conjunction with other tectonic processes and cannot be
solely responsible for the modern day observed morphologies.

At this point the different kinematic models have been discussed but why normal faulting
occurred when it did is still in question. The Xainze rift seems to be characterized by an early
strike-slip dominated phase that transitions to normal fault related accelerated cooling at ~10 Ma.
Other studies report an early rift inception in the mid-Miocene followed by a second pulse in the
late-Miocene (e.g. Kali et al., 2010, Styron et al., 2013; Sundell et al., 2013). Fig. 2.20 shows a
compilation of age constraints on major structures within the Himalayan-Tibetan orogen. A first
order observation is that major E-W trending contractional structures south of the Tibetan
plateau like the MCT, STDS, and GCT are active during the early/mid-Miocene and estimates
for rift initiation either post-date or overlap the latter half of their activity. Murphy et al. (2009)
investigated E-W extension in the western part of the Tethyan Himalayas and suggested that the
Zada basin was formed by topographic inversion from high mountains to a depression in less
than 4 m.y. They concluded that this was triggered by inactivation of arc-normal shortening
structures (MCT, STDS, and GCT) and establishment of arc-parallel stretching. Although arc-
parallel stretching does not seem to be a significant contributor to E-W extension on the Tibetan

plateau, the foreland propagating thrust system in the Himalayas and cessation of N-S shortening
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structures close to the southern fringes of the plateau could arguably have changed the boundary

conditions enough to initiate accelerated E-W extension within the rifts post ~10 Ma.

2.6 CONCLUSIONS

Geological and thermochronological investigations suggest that the Xainza rift initiated at its
northern boundary triggered by right-lateral movement along the Gyaring Co strike-slip fault.
Timing of rift inception and main phases of rift shoulder uplift is constrained by modeling at
~15-17 Ma and ~12-8 Ma respectively. Furthermore, the results from three vertical transects
indicate that the rift opened progressively from north to south, which is in excellent agreement
with observations of increasing relief and noticeable wider basin geometries towards the Gyaring
Co fault. Based on these findings, models of E-W extension like arc-parallel stretching and basal
drag of the lithosphere as main drivers, which predict a south to north directed progression of
rifting, cannot be solely responsible for extension on the Tibetan plateau. The constrictional

shear model best fits the observations from the Xainza rift.
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Figure 2.1: Neotectonic map of the Himalayan-Tibetan orogen. Red box outlines the study area.
Modified after Taylor et al. (2003).
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Figure 2.2: Different models for E-W extension on the Tibetan plateau. A) Distributed extension
related to gravitational collapse. B) Westward movement of S-Tibet relative to N-Tibet
because of oblique convergence C) Rifting in S-Tibet due to southward propagation of the
Himalayas and arc parallel extension. D) Eastward stretching of Tibet along conjugate
strike-slip faults and linked rifts. E) Extrusion of N-Tibet and rifting in S-Tibet. See text for
detailed description.
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Figure 2.3: Geologic map of the Xainza rift with lower hemisphere plots of structural
measurements. Basemap is a shaded relief map created from 90 m Shuttle Radar
Tomography Mission (SRTM) dataset.
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Figure 2.4: Geologic map - Legend.
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Figure 2.5: Location of cross sections (A-F) and along-strike section (LA-LE) as well as outlines
for the northern, central, and southern segments for reference. Basemap is a digital elevation
model created from 90 m Shuttle Radar Tomography Mission (SRTM) dataset.
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Figure 2.6: Cross sections through the Xainze rift at locations outlined in Fig.5. Vertical
exaggeration is 5x.
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Figure 2.7: Along-strike sections through the Xainze rift at locations outlined in Fig.5. Highest
and lowest elevations (equivalent to dashed lines in Fig. 5) are projected perpendicular on
profile lines LA-LE. Note that view is towards ~W for all sections for consistency. Vertical
exaggeration is 5x.
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Figure 2.8: Overview of the northern rift segment. Capital letters indicate approximate viewpoint
and color-coded dots are shown for orientation purposes. Red lines mark approximate
position of vertical sample transects. Basemap is false-color Landsat 7 dataset displaying
bands 6-4-2 (RGB).
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Figure 2.9: Overview of the central rift segment. Capital letters indicate approximate viewpoint
and color-coded dots are shown for orientation purposes. Red lines mark approximate
position of vertical sample transects. Bottom pictures (Z) show location of volcanic plug
with columnar joints and a mid-Miocene rhyolitic tuff. Dashed black line follows a bedding
plane. Basemap is false-color Landsat 7 dataset displaying bands 6-4-2 (RGB).
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Figure 2.10: Overview of the southern rift segment. Capital letters indicate approximate
viewpoint and color-coded dots are shown for orientation purposes. Red lines mark
approximate position of vertical sample transects. Lower right: Lower hemisphere plot
showing trend of major slickensides. Pseudotachylite indicating earthquake related melt
generation. Basemap is false-color Landsat 7 dataset displaying bands 6-4-2 (RGB).
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Figure 2.11: Location of thick fluvial sequence in the northern segment. Basemap is false-color
Landsat 7 dataset displaying bands 6-4-2 (RGB).
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Figure 2.12: Sample locations and corresponding mean ages based on several aliquot analyses.
See Table B.1 and B.2 for details of (U/Th)/He analyses. Inset in the upper right corner
shows He ages versus elevation relationship. Basemap is a shaded relief map created from
90 m Shuttle Radar Tomography Mission (SRTM) dataset.
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Figure 2.13: Results from thermal modeling for three vertical transects. Left-hand side shows the
fitting thermal histories, on the right-hand side sample ages with their standard deviations
are plotted against elevation. Black boxes represent model constraints. Lines represent the
connections between the model ages calculated from the fitting thermal paths. Blue lines are
fitting thermal histories based on geothermal gradients of 24 and 26°C/km, red lines for the
maximum geothermal gradients. Bar graphs show the number of acceptable solutions color-
coded by geothermal gradient.
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Figure 2.14: Average t-T paths and cooling rates for each geothermal gradient based on the
results shown in Fig. 2.13. Derived values of exhumation rates and total accumulated
exhumation are shown on the right. Dashed lines indicate the suggested initiation of E-W
extension.
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Figure 2.15: Compatible thermal histories for single sample modeling runs. Black boxes
represent model constraints. Shades of grey correspond to fits for different aliquot
combinations.
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Figure 2.16: Compatible thermal histories for single sample modeling runs continued.
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Figure 2.17: Compatible thermal histories for single sample modeling runs continued.
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Figure 2.18: Summary of modeling results in a spatial context. All graphs range from 50-0 Ma
and 0-250°C. Dashed lines mark 10 Ma and 200°C (the uppermost temperature limit for
ZHe sensitivity) for reference.
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Figure 2.19: Evolution of E-W extension in the Xainza rift based on thermal history modeling
and field observations.
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Figure 2.20: Timing of major structures in the Himalayan-Tibetan orogen. See text for details.
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CHAPTER 3:
Improvement of (U-Th)/He data analysis.

Part 1: Model-based determination of uncertainty in the F+ correction factor

Abstract

The (U-Th)/He technique is a widely used tool for investigating tectonic processes in a
multitude of geological settings. Although very powerful, one of the drawbacks of this technique
is the generally low precision compared to other geochronological and thermochronological
methods. As a unique complication in (U-Th)/He dating, the small size of the daughter product
(*He) causes considerable amounts to be ejected out of the host crystal as a consequence of the
high energy decay processes. To compensate for this loss, the Fr correction factor (Fr) is applied
to the raw age determined by measured parent/daughter concentrations resulting in a final,
corrected He age. Insufficient knowledge of the parent isotope distributions within the analyzed
grain, inclusions, deviations from perfect idiomorphic crystal shapes, “He implantation from
surrounding mineral phases as well as neglecting the generally minimally contributing parent Sm
are the key factors inducing errors in the Fr, and consequently age calculation. Advances in
parent isotope mapping and inclusion detection now allow for rigorous modeling of Fr instead of
using parametric equations that assume homogenous parent isotope distributions. As an
additional merit of this methodology, the effect of grain shape modifications (e.g. polishing,
abrasion) can be assessed easily this allows for parent isotope mapping and subsequent (U-
Th/He) analysis on the same mineral grain. Ultimately, uncertainties in (U-Th)/He ages could be

addressed on a single grain basis with properly propagated errors from parent isotope
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measurements and Fr instead of the common practice of assigning a more or less fixed

uncertainty derived from analysis of standards.
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3.1 INTRODUCTION

(U-Th)/He thermochronometry is a widely used technique to assess the low-temperature
evolution of accessory minerals like apatite and zircon. Compared to other dating methods, the
comparably small size of the daughter product 4He (called He thereafter) constitutes an
additional complication for age determination. As a function of the decay energy and the crystal
lattice of the host mineral, He can travel distances exceeding 20 um before coming to a rest.
Consequently, each parent isotope located less than the stopping distance away from a grain
boundary potentially expels He out of the crystal. As a result, a certain percentage of daughter
products are not measured during standard noble gas extraction and the calculated raw age based
on parent/daughter concentrations needs to be corrected. This is routinely accomplished using
the Fr correction factor (Fr) introduced by Farley et al. (1996). Utilizing Monte-Carlo
simulation, they derived equations for simple geometries like spheres and cylinders that were
later extended to tetragonal and hexagonal prisms to better represent the crystal shapes for the
two most common used minerals zircon and apatite (Farley, 2002). Ketcham et al. (2011)
provide the most recent update on Fr adding more grain geometries and using refined stopping
distances (Ziegler, 2008; Ziegler et al., 2008). Besides the dependency on the grain geometry, Fr
is a function of the parent isotope distribution that can be homogenous or inhomogeneous
because of magmatic and/or metamorphic zonation. Special cases of heterogeneous parent
distribution are represented by inclusions and He-implantation from nearby high-U/Th minerals
that require a more sophisticated approach to derive a correct Fr. Once obtained, Fr can be used
to calculate the corrected age of the analyzed sample by simply dividing the measured age by Fr
(Farley et al., 1996). To account for the non-linearity of the decay equation and its effect on very

old samples, Min et al. (2003) suggested dividing the measured amount of He instead. An even
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more accurate implementation of Fr is given by Ketcham et al. (2011) who calculate Fr for each
individual parent isotope and use it directly in the age equation.

Although the analytical procedures measuring parent and daughter concentrations are able to
produce results with a precision of ~2% (2c), final (Fr-corrected) He ages from a single sample
are usually much more dispersed. For the two most used laboratory standards, Durango apatite
and Fish Canyon Tuff (FCT) zircon, the uncertainties are reported as 6% and 9% (2c) based on
reproducibility of a large number of single grain analysis (House et al., 2000; Farley and Stockli,
2002; Reiners, 2005). Durango apatite analysis is done on shards from cm-sized crystals whose
rims are removed prior to crushing which eliminates a Fr correction because all shards are from
within the mega-crystal at least one stopping distance away from any edges. Consequently, age
reproducibility should fall within the analytical uncertainty. Given that this is not the case,
inhomogeneous parent distribution must contribute to the deviation from the theoretical Fr value
of 1 leading to much more dispersed He ages. Boyce et al. (2005) conducted an in-depth study
on zonation of Durango apatite and could show that U-Th concentrations were indeed not
homogenous. Contrary to Durango apatite, FCT zircon analysis relies on idiomorphic single
crystals, which, as typical for zircon, show varying degrees of zonation. The observations on
parent nuclide distributions imply that a significant amount of uncertainty is introduced during
calculation of a standard, geometry based Fr ignoring zonation. It has to be noted that the
nominal uncertainties of the standards are derived from quickly cooled volcanic samples where
the measured He concentration is simply a function of time since rapid cooling and He loss due
to ejection only. For other samples that resided a significant amount of time in the He partial
retention zone (HePRZ) the combined effects of ejection and diffusive loss of He will amplify

grain-to-grain differences in geometries and parent nuclide distributions potentially leading to
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much higher intra-sample dispersion of He ages. Fitzgerald et al. (2006) provide a summary of
contributing factors for over-dispersed He ages.

Given the direct influence of the Fr on the He age, an accurate determination of this
correction is critical to (U-Th)/He dating. Here, a new tool the FT-Calculator is presented which
allows the calculation of Fr for the most commonly encountered grain shapes including
versatile parent isotope distribution and grain shape modification modeling. Although the most
recent stopping distances are included in the software, if not otherwise noted, the values provided

by Farley et al. (1996) are used for comparison purposes throughout this study.

3.2 SOFTWARE OVERVIEW AND MODELING APPROACH

The FT-Calculator is one of a series of tools combined into a newly developed graphical
user interface (GUI) based stand-alone He modeling package (HeMP). HeMP was created to
provide an advanced platform for (U-Th)/He modeling and is available by request. In order to
calculate Fr for a variety of grain geometries and parent isotope distributions the following
approach was chosen (see Fig. 3.1 for a graphical representation of the workflow). Based on
preset crystal shapes for the most commonly used minerals in (U-Th)/He dating (sphere,
ellipsoid, cylinder, tetragonal prism with pyramidal terminations, hexagonal prism), a three-
dimensional (3D) grid with node spacing of 1 um (2 pm for grains where the smallest dimension
exceeds 200 um) is created. A rim equal to the longest stopping distance is attached at each side
of the 3D grid to be able to add the ejection sphere matrix to each node within the grain (see
below). Variation in parent distribution is simply accommodated by nodes of certain parent

238y 7 23577 232
U, ~°U,

nuclide ( Th, '¥’Sm) concentration from which an individual He-production rate

(*HeP)) can be calculated using following equation.
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*HeP, =n; xCr A, (1)

where n equals the number of He produced along the decay chain of each isotope (n =8, 7,
6, 1), C the concentration in ppm, and A the decay constant of each isotope (I).

In the next step, the ejection sphere around a point source (node) for each parent isotope is
established by calculating the distance of each cell from the center. Each cell within the ejection
sphere grid is assigned either a ‘1’ (filled), or a ‘0’ (empty) dependant on if a He nucleus stops
within that cell or not. This approach is different from others in that it does not rely on a pre-
defined number of ejection events (e.g. Hourigan et al., 2005; ~2,500 randomly created ejection
vectors) but accounts for all possible resting places. Summing over the entire grid gives the
number of filled cells (Nj). It is apparent that this number varies as a function of the stopping
distance. Using the average stopping distances for zircon provided by Farley et al. (1996) and a 1
um cell size, Ny equals 5234, 7298, 6962, 410 for U238, U235, Th232, and Sm147. In order to
distribute the total He-production equally throughout all filled cells one must scale the He-

production as follows

_ “*Hep
Np

)

Repeating this for all parent isotopes (I) gives four ejection spheres with a homogenous
distribution of daughter products on their surface. Combining all four into a single ejection
sphere grid (S) yields the overall He-distribution around a node with given parent concentrations.

If the crystal is zoned (or has inclusions), each zone is represented by its unique ejection sphere
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grid (Sz). The sum of the corresponding Sz is assigned to each node and stored as the first
required output, a He-production matrix (Mpep). Moving Sz through the crystal grid and adding
all cells to the corresponding cells around each node provides the second output, the He-
distribution matrix (Mpgep). The He-budget matrix (Mpeg), which represents the local Fr at each

node, is calculated as

MHeD(x,y,z) (3)
MHeP(x,y,z)

MHeB(x,y,z) =
where x, y, z denote the node positions within the grid. The results can be plotted in the GUI
and illustrate the redistribution of He within the grain. More importantly, Fr is calculated by

summing over all grid nodes:

FT = YD Myep
- Z(x'y'Z)M
HeP

4

Upfront, it has to be noted that this approach is computationally intense and should not be
used to obtain Fr for standard analysis. On the other hand, the tool allows for great versatility in
creating different zonation patterns as well as inclusion distributions, the main application of this
tool. Additionally, the availability of the entire production (Mpyep) and distribution (Myep)
matrices is a pre-requisite for subsequent analysis of the effect of grain shape modifications on
Fr.

Although this approach allows tracking of all the He produced in the grain which is critical

to calculate Fy’s for modified grain shapes (see “Applications” section), it is not necessary to go
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through this analysis to derive a Fr value for standard grain geometries. To avoid the long run
times and provide a basis for quick modeling of inclusions or symmetrical parent zonation
patterns, HeMP allows the generation of so-called “Library” files (Fig. 3.1). Because all grain
shapes of interest are symmetrical around their long axis, only 1/8"™ (one sector) of the grain
needs to be considered for Fr determination (see Hourigan et al., 2005). Contrary to the above
workflow, the local Fr value (% He retained) for each isotope instead of the amount of
accumulated He at each node is stored. These numbers are a function of the grain shape and the
individual stopping distances only and independent of the parent concentrations. Additional
improvement of computational efficiency is obtained by limiting the analysis to the rim equal to
the maximum stopping distance because all nodes within the grain interior have Fr = 1. For
prismatic shapes (cylinder, tetragonal/hexagonal prisms) the number of iterations can be further
reduced because each cross section perpendicular to the longest axis (c-axis) and more than the
maximum stopping distance away from any tip or corner has equal local Fr values. Any desired
grain length can then be quickly constructed by just adding the required number of cross-
sectional slabs. Final Fr values are simply calculated with user-defined concentrations that can
vary from node to node based on desired zonation patterns or position of inclusions. A large
number of these “Library” files for different grain geometries and dimensions modeled with the

most current stopping distances (see Ketcham et al., 2011) are provided with the software.

3.3 FT DEPENDENCIES

3.3.1 Grain Shape
The geometry and size of the analyzed mineral grain has a direct effect on the final

correction of He not measured due to ejection out of the grain. In general, the more edges or low-
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angle terminations (e.g. pyramidal tips) a crystal has, the lower the Fr (higher correction) will be.
Considering the very simple case of a tetragonal prism with 90° angles between all sides, a
parent isotope located on a surface at least one stopping distance away from any corners, will
eject exactly 50% of the He out of the crystal. At a position along any edge, 75% of the He
produced will come to rest outside the grain. The worst-case scenario, a parent isotope at the
corner of the grain will eject 87.5% of the daughter. For any other locations, this percentage will
vary as a function of the distance to the respective grain edges and the stopping distance. The
majority of minerals analyzed during standard (U/Th)/He dating can be approximated by simple
geometric shapes allowing derivation of analytical solution for Fr as a function of shape, size,
and stopping distances. As stated above, the following calculations of Fr do not necessitate the
use of the FT-Calculator but were needed to benchmark HeMP against the equations provided
by Ketcham et al. (2011). Fy for apatite and zircon using common geometries of representative
dimensions were modeled to assess the differences between this and the most commonly used
approach, calculating Fr with analytically derived polynomial equations. The comparative plot
against Fr obtained from Ketcham et al. (2011) is provided in Fig. 3.2.

The uncertainty in Fr for the simplest case of homogenous parent distribution is a function
of grain selection and accurate measurements of their dimensions. The polynomial equations
used to calculate Fr are based on idiomorphic crystal shapes and the user needs to make sure that
the analyzed grain closely resembles the ideal case and all critical dimensions are measured. Fig.
3.3A illustrates the effects of measurement uncertainty for apatite and zircons assuming an
absolute measurement error of £2 um. Only for very small grains, this uncertainty exceeds the
analytical precision of 2% (20) as indicated by the grey shaded area. Insufficient capture of the

three-dimensional geometry including pyramidal tips as in the case of zircon has much severe
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consequences on the other hand. Fig. 3.3B shows the results for zircons with height/width ratios
ranging from 0.8-1.0 and pyramidal terminations included/ignored. It is clearly demonstrated that
using a simple two-dimensional approach with just one width and length measurement will
potentially result in highly inaccurate Fr values for a wide range of grain sizes. Even if the tips
are included, ignoring a deviation from the ideal square cross section can yield values exceeding

the analytical precision of the (U-Th)/He technique.

3.3.2 Parent Isotope Distribution

The examples shown so far represent Fr calculated based on He-distributions that are simply
a function of shape and grain dimensions. Using the analytically derived equations is only valid
for minerals with homogenous parent distribution, a condition that is violated more often than
desired. Most naturally occurring zircon grains exhibit varying degrees of zoning ranging from
simple symmetric growth zonation to sector zoning, or complicated combinations of both. Old
cores overgrown by younger rims further increase the variety seen in parent isotope distribution
in zircons. To fully appreciate this variability, see the examples provided by Corfu et al. (2003).
Apatite, probably the most widely used mineral in (U-Th)/He thermochronology, is commonly
treated as unzoned but mounting evidence from analysis of fission track distributions and LA-
ICPMS measurements (e.g. Jolivet et al., 2003; Boyce and Hodges, 2005, Emmel et al., 2007,
Emmel et al., 2008, Fitzgerald et al., 2009, Farley et al., 2011) clearly violates this assumption.
Remedying the shortcomings of a simple calculation for zircon, Hourigan et al. (2005) developed
a LabVIEWO code that calculates Fr for tetragonal prisms with pyramidal terminations
(geometric model for idiomorphic zircon) and self-similar growth zonation. They demonstrated

the impact on the He-distribution within the host grain and the resulting age biases if a traditional
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Fr was applied. Their analysis of depleted/enriched rims for zircons with constant geometry (see
Hourigan et al. 2005, Fig. 8C, p.3360) is used as a benchmark for HeMP’s algorithm. Fig. 3.4
shows the results superimposed onto modeling results of Hourigan et al. (2005). Although some
of the concentration gradients used for zircon zoning are unlikely for apatite, an identical model
setup is applied to the hexagonal grain geometry and longer stopping distances of apatite for
comparison. Results are shown in Fig. 3.4, which illustrates the expected shift of maximum
values towards the grain interior because of longer stopping distances.

Besides the distribution of parent isotopes, the type of decaying isotope is important as well
because of the differences in decay energies that lead to unique stopping distances. Neglected by
Farley et al. (1999) and Farley (2002), Sm is included into the revised and extended Fr equations
by Ketcham et al. (2011). Usually, this will have very minor effects on the correction because of
the commonly low Sm concentrations, the by comparison very short stopping distance (~4-6
um), and the longer half-live of Sm. As shown later in the application section, this is not true for
some cases where the full suite of parent isotopes needs to be included to arrive at a correct Fr

value.

3.3.3 Inclusions

Often addressed as the main cause for large scatter in apatite He ages, inclusions represent a
major complication in (U-Th)/He dating of mineral phases with commonly low parent
concentrations. As a special case of inhomogeneous parent concentration, inclusions constitute
point sources whose location within the host mineral does not follow a pre-defined pattern like
self-similar growth zonation, consequently not allowing for an analytical solution to Fr. For host

grains with high-U/Th concentrations like zircons, the effect of inclusions will be negligible but
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for apatites, which can have zircon or monazite inclusions this, might have some effect on Fr. In
the later case, the problem with inclusions is two-fold as they re-distribute He as halos of higher
concentration compared to the host grain rendering the classic Fr calculation inaccurate, and
secondly they are often not dissolved during standard HNOs treatment of apatites leading to
“parentless” He and ages that are too old. Similarly, fluid inclusions with excess He will have the

same effect.

3.3.4 He-Implantation

Also referred to as the “bad neighborhood” problem (Spencer et al., 2004), He implantation
into the mineral of interest from surrounding high U/Th phases is another special case of
inhomogeneous parent distribution. Similar to the inclusion case, a portion of the measured He is
going to be “parentless” because only the host grain is analyzed. As a result, the measured He
concentration is always going to be too high resulting in ages that are too old. The predicted He
distribution for an unzoned host grain will be disturbed by a He implantation front that does not
necessarily have to be spherical as in the case of micro-inclusions. If this process is responsible
for large spreads in (U/Th) /He ages, it is usually not assessed because zonation and/or inclusions
are brought forth as the usual suspects. If this cannot be verified by measuring the parent
distribution by e.g. depth profiling, then more in-depth investigations like secondary electron
microscopy (SEM) on thin sections need to be undertaken to assess if low-concentration phases

of interest are proximal to high U/Th phases.
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3.4 APPLICATIONS

3.4.1 Sm as major contributor to Fr

Before going into some more advanced analysis, the basic question of the influence of Sm
on Fr needs to be addressed. The decay constant of Sm is comparatively small, it only
contributes 1 out of 22 He particles, and it has a lower decay energy that translates to a relatively
short stopping distance of ~4-6 um (Ziegler, 2008). As a result, the contribution of Sm has been
considered negligible in many publications but Belton et al. (2004b) showed that Sm can be
responsible for >25% of the total measured He. Here the effect of very high Sm concentrations
on Fr is determined using an adequate dataset from the Shillong Plateau (India). Some of the
samples analyzed by Biswas et al. (2007) include apatites with surprisingly high Sm
concentrations up to ~5,000 ppm, which might yield a significant deviation from a calculated Fr
ignoring the contribution from Sm. Furthermore, neglecting the He contribution from Sm in the
age equation must result in uncorrected ages that are already erroneous before Fr is applied. In
general, including Sm into Fr calculations should always give higher values (smaller correction)
because of the much shorter stopping distance consequently resulting in younger corrected He-
ages. Ignoring Sm in the age calculation would have a similar effect because part of the He
quantity measured in the lab will not be linked to Sm but attributed to the faster decaying U and
Th isotopes leading to raw ages that are too old. The combined result of an already too old raw
age divided by a too small Fr might lead to corrected ages that are significantly older than the
“true” age of the sample. To quantify this, Fr for a total of 82 apatite aliquots from 12 samples is
calculated using the equations provided by Ketcham et al. (2011) including and ignoring the
measured Sm concentrations. In this dataset, the He contribution from Sm, calculated as the He

production rate of Sm divided by the sum of all He production rates, ranges from ~0.3-28%
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(mean at 3.4%, standard deviation of 5.6). In order to improve the comparison between
individual aliquot analyses, the Sm contribution is normalized by the surface-to-volume ratio of
the grain resulting in a grain dimension independent value. This quantity is plotted against the
ratio of Fr including Sm (FT) versus Fr neglecting Sm (FT*) in Fig. 3.5 showing the increasing
spread as a function of increasing Sm contribution. The vast majority of Fr’s calculated
incorporating Sm is within ~2% of the value ignoring Sm but deviations of up to ~9% for the
highest Sm contributions are realized. Similarly, Fig. 3.5 shows the ratios of raw and corrected
He ages calculated incorporating Sm (Age) and ignoring Sm (Age*). Somewhat surprising, the
effect of Sm is much more critical in the age calculation. About 25% of raw ages are outside the
accepted uncertainty range of apatite (U/Th)/He dating (26 of 6%) reaching maximum deviations
from the raw He age ignoring Sm of more than 35%. Combining this with the additional effect of

the larger Fr values, the corrected He ages are further pushed towards lower values.

3.4.2 Grain Shape Modifications

Naturally, mineral shapes are altered during sedimentary transport and the original
idiomorphic crystal shape is transformed to a more elliptical or even spherical geometry.
Consequently, applying a standard Fr correction based on the measured grain dimensions has to
lead to incorrect results because part of the grain edges where most of the ejection occurs has
been removed. Assuming homogenous parent isotope distribution and ignoring ongoing decay
during transport and deposition, an initially idiomorphic crystal with a certain Fr can be reduced
to an elliptical grain with Fr of 1 if more than ~20 pum of the outer shell was removed by natural
abrasion. In their study of He-Pb double-dating of Navajo Sandstone zircons, Rahl et al. (2003)

used this assumption and considered only the post-depositional part of the grains history to
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calculate corrected He ages. This approach seems reasonably for highly abraded eolian zircons
assuming homogenous parent concentration but cannot be applied to grains that did not undergo
as extensive abrasion or violate the homogenous parent distribution requirement. To assess the
effect of abrasion during sedimentary transport, the FT-Calculator incorporates a function that
calculates Fr for each abrasion step. To simulate progressive rounding of grain tips, edges, and
crystal faces, the grain is inscribed into an ellipsoid with an initially equal length to width ratio.
During subsequent abrasion steps, this ratio is progressively minimized to 1 resulting in a
spherical geometry. Fig. 3.6 and Fig. 3.7 illustrate this workflow by means of four examples
from the zoned zircon and apatite model runs from above. Fr for each step is simply calculated
using equation (4) but summing over the portion of the grid that is within the abrasion ellipsoid
only. The evolution of Fr during progressive rounding is illustrated in Fig. 3.7 and Fig. 3.8. Both
figures demonstrate that abrasion affects the Fr in a non-linear fashion as a function of
concentration gradient and rim width. The He distribution can be quite complicated and grains
abraded by more than the stopping distance show residual spherical volumes that do not have an
Fr of 1. These examples confirm the violation of the assumption that abrasion leads to grain
shapes that do not require an Fr correction.

Besides natural processes, grain shapes are often modified during standard lab procedures
like preparation of grain mounts for U/Pb LA-ICPMS analysis where grains are polished to
expose their cores. As a result of this destructive technique, it is not possible to calculate Fr for
grains that underwent polishing with the standard equations. Recently, He-Pb double dating of
detrital zircons has become increasingly popular for provenance studies (e.g. Rahl et al., 2003).
The combination of crystallization age determined by U/Pb analysis with the low-T cooling age

given by (U-Th)/He thermochronology of the same grain aids in the interpretation of possible
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source terranes for the investigated sediments. Avoiding the effect on Fr, in He-Pb double dating
the grain is mounted on tape and the U/Pb age calculated from the concentrations ablated from
the outer portion of the grain before (U/Th)/He analysis. Although this approach bypasses the
need for a more rigorous determination of Fr, the material removal during ablation itself might
affect Fr significantly. Given the re-distribution of He as much as ~20 um away of its point of
origin, parent and daughter products are not removed in the same quantities therefore, their
resulting bulk ratios could yield erroneous Fr and age calculations. Using the well known Fish
Canyon Tuff zircons, Rahl et al. (2003) could show that the ablation pit (~30 um in diameter and
~20 pum deep) did not disturb the isotope distribution enough to cause significant age differences.
The question on hand is if this finding holds true for other mineral phases and especially
different zoning patterns. Utilizing the grids obtained from the modeling of apatite and zircon
zonation in addition to the homogenous parent distribution model results, a more rigorous
investigation of the influence of laser ablation is provided below. Using the same pit dimensions
and placing the pit in the center of the grains outer surface, two values for Fr can be calculated.
First, Fr is determined based on the standard lab protocol that the grain has not been degassed
prior to LA-ICPMS analysis, and second based on the hypothetical case that the He
concentration was measured prior to LA-ICPMS analysis in which case only the parent isotopes
would be removed from the grain. Fig. 3.10A shows Fr after laser ablation (FT*) plotted against
the original Fr (FT) for homogenous parent distribution and a variety of grain shapes and sizes.
On the right, Fig. 3.10B compares these values for the zoned apatite and zircon grains with fixed
size and varying rim width and concentration gradients. These results confirm that laser ablation
prior to degassing does not affect the Fr correction significantly for commonly analyzed grain

sizes.
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Another grain shape modification is represented by mechanical abrasion in the laboratory
removing the outer ~20um of the grain prior analysis to completely circumvent the use of an Fr
correction. As pointed out by Farley (2002), this technique should only be used for grains of
known homogenous parent distribution and quickly cooled samples where the He concentration
profile is a function of He ejection only. Violation of these requirements will certainly result in
erroneous corrected ages. Spiegel et al. (2009), who conducted in-depth analysis not only on the
analyzed grains itself but also on the surrounding matrix, provide a successful application of this
technique. They show that depending on the severity of the “bad neighborhood” problem,
mechanical abrasion is necessary to remove the effects of He-implantation. The majority of their
dataset shows improved reproducibility as well as better alignment with AFT and
biostratigraphic ages.

To show the effect of polishing on Fr, zoned apatite and zircon grains used previously are
polished virtually along their shortest dimension (grain height) in 1 pm increments down to 25%
of the original dimension and the resulting Fr (FT*) is plotted against the unpolished value (Fig.
3.11 for zircon, Fig. 3.12 for apatite). As anticipated, grains with an enriched rim show an initial
increase (FT/FT* decreases), followed by a decrease in Fr towards the grain center where the
same value as the unpolished grain is obtained. Further polishing decreases the values
significantly since the depleted rim now constitutes the majority of the grain volume left. Grains
with depleted rims show a more complicated Fr response to polishing. Very thin rims do not
have a mentionable effect until a large portion of the grain is polished away. With increasing rim
widths, the deviation from Fr towards lower FT* becomes more pronounced and outpaces the
effects of enriched rims. A rather wide range of values indicates that any attempt to use a

standard Fr-correction for modified grain shapes would only be valid if one can be certain that
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the grain was polished very closely to its half-width and the parent concentrations are in fact
symmetrical. In the case of wide and depleted rims, these model results show that most of the
variation is in fact around the center of the grain. Although not explicitly shown in these plots,
even grains with homogenous parent concentrations could require a correction exceeding ~5% if

not polished close to their half-width.

3.4.3 Fy calculated from depth profiles

Ongoing improvement of detection limits and hardware in LA-ICPMS has made accurate
measurement of parent nuclide concentrations increasingly reachable. A very common and
effective way to determine zonation patterns is depth profiling where concentrations are
continuously measured while “drilling” through the grain. Assuming symmetric growth zonation,
the measurement of concentration over time (= depth) can simply be converted to a three-
dimensional grid and Fr calculated subsequently. This approach does not require any
modification to the grain before laser ablation but only provides a one-dimensional
representation of the zonation pattern. The FT-Calculator includes an option to import the results
from depth profiling and based on user-defined concentration bins and grain shape, automatically
generates the zoned grain matrix. This was used by Bargnesi et al. (2013, submitted) to correct
for high-U rims in zircons. Fig. 3.13 illustrates how the measurements are processed and shows

the final zoned grain for.

3.4.4 Inclusions
Inclusions are the single most important reason why apatite (U-Th)/He thermochronology

can be very time-consuming. Contrary to zircon, where inclusions are the norm rather than the
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exception but do not constitute a severe problem because of the high parent concentrations in the
host grain, a significant amount of time is spent to select inclusion free apatites. Vermeesch
(2007) conducted a theoretical analysis on the effect of inclusions on Fr using cumulative
distribution functions (CDF’s) to simulate varying numbers of inclusions with changing
host/inclusion concentration ratios. One of the outcomes of this investigation was that a larger
number of inclusions can effectively re-distribute He within the host grain resulting in a pseudo-
homogenous daughter distribution yielding similar Fr compared to the same grain with no
inclusions. Furthermore, he could show that apatites with small randomly distributed inclusions
yielded reproducible ages when completely dissolved in HF avoiding “parentless” He.

Using similar input parameters as Vermeesch (2007), the FT-Calculator is used to test the
influence of inclusions on actual grain geometries. For a single grain dimension (80 x 120 pum),
which represents the lower end of the recommended apatite size, a number of inclusions (n = 1,
2,4, 10, 20, 50, and 100) with varying sizes (w = 1, 3, and 6 um) and concentration gradients
(Cy/Cy=10, 20, 30, 40, 50, 60, 70, 80, 90, 100) are randomly created and Fr calculated. Fig. 3.14
shows the normalized He distribution for a subset (C;/Cy= 100) of the individual model runs.
The results for all 210 model runs are shown in Fig. 3.15 where the inclusion activity, the ratio of
He production from inclusions divided by the total He production, is plotted against the
inclusion-free (FT) divided by inclusion-bearing (FT*) values. Even for the highest
concentration gradient, Fr values for grains with very small inclusions are within 1% of the value
for the homogenous grain. In instances where apatites have larger inclusions, their position is

critical and Fr values tend to show a more significant deviation from the base case.
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3.4.5 He-Implantation (*“Bad Neighborhood”)

Significant contribution of He caused by implantation from nearby high-U/Th phases has the
potential to produce over-dispersed and inaccurate He-ages (e.g. Spencer et al., 2004). In an
attempt to explain the high variability in rutile He ages from samples collected from cores of the
Continental Deep Drilling project (KTB), Wolfe (unpublished M.S. thesis, 2009) conducted in-
depth analysis on polished thin sections using secondary electron microscopy (SEM). Besides
the large scatter in the dataset, rutile He ages younger than zircon and titanite He ages from the
same samples are in disagreement with the proposed closure temperature of ~210-235°C derived
from laboratory diffusion experiments. These values are higher than the closure temperatures for
the other two phases, therefore rutile He ages should be older than zircon and titanite He ages
assuming similar grain sizes and homogenous parent distribution. SEM analysis revealed that
many of the rutile grains were either surrounded or adjacent to titanite formed as a result of rutile
breakdown during retrograde metamorphosis. Based on this analysis, Wolfe determined a
representative titanite rim width of 0-5 um for the rutile population. As an additional
complication, the titanite rims are not or only partially preserved after standard mechanical grain
separation, which adds the problem of measuring “parentless” He during (U-Th)/He analysis.
Using isotope concentrations from published titanite analysis (Stockli and Farley, 2004) as a
proxy for the parent concentration of the titanite rims, a 5-75 fold increase in the effective
uranium concentration (eU=[U]+0.2299*[Th]+0.0051*[Sm]) from rutile core to titanite rim is
suggested. As a function of rim width, concentration gradient, and rim preservation, three
possible scenarios are identified by Wolfe. (1) rutile grains that never had a titanite rim will give
a correct age, (2) rutile grains with preserved rims will give ages that are too young because of

increased He ejection out of the rim, and (3) rutile grains that lost their rims during mechanical
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separation will yield ages that are too old because of He implantation and “parentless” He
measurement. In an attempt to correct the raw ages, Wolfe first converted the grain
measurements to spheres with equivalent spherical radius (ESR). Following, different rim widths
and concentrations were modeled with the forward modeling tool within HeMP using published
thermal histories for the KTB drill hole. Actual Fr values were calculated from the He diffusion
profile summing over parts of the profile only.

Here, a similar exercise is undertaken using a tetragonal prism instead of converting the
grain dimensions to spheres with equivalent spherical radius. Based on the average U/Th ratios
and eU (rutile, pers. comm., Wolfe; titanite, Stockli and Farley, 2004) the rim concentrations are
adjusted accordingly to give the proposed range of eU (5-75 times the core concentration).
Proportionate distribution of U and Th based on the U/Th ratios of rutile and titanite is important
because of the significantly different stopping distances of these two isotopes. 40 models with
rim widths of 1-5 pum and varying concentration ratios are run. A subset of the model results
illustrating the severe redistribution of He is shown in Fig. 3.16. For all different concentration
gradients and rim widths, the grains show elevated He concentrations within ~10-20 pm of the
grain edge and a maximum relative accumulation of He at the corners of the grain. Fr is
calculated for all possible scenarios of rim removal during mineral separation and the results are

shown in Fig. 3.17 for each concentration gradient.

3.5 DISCUSSION

Although the chosen approach to calculate Fr based on a three-dimensional grid might not
be as elegant or efficient as others (Farley, 1999; Farley and Stockli, 2002; Hourigan et al., 2005;

Ketcham et al., 2011), the gridding has been proven advantageous for following reasons. First,
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there is no requirement for symmetrical zoning but the user can define zones of different
geometries that can be shifted in all three dimensions within the grain or can model grains with
micro-inclusions dispersed in a host grain. Second, having these matrices on hand, one can
calculate the Fr for grains that have been modified by polishing or mechanical abrasion by
simply summing over portions of the output grids (Mpep, Muep) prior to dividing them. The
additional option to create “Library” files for any grain shape and size of interest can
dramatically decrease computational time if the user is only interested in bulk Fr and the final He
distribution is not a requirement. Additionally, it has to be noted that the creation of the ejection
spheres is not based on a random Monte-Carlo simulation, which has the advantage that repeated
modeling runs will give the exact same result.

Results from modeling a variety of unzoned grain geometries show that HeMP can
accurately recreate the results obtained from calculations using parametric equations (Farley et
al., 1996; Farley and Stockli, 2002; Ketcham et al., 2011) with the limitation that smaller grains
will yield higher deviations from the parametrically calculated Fr as a function of the decreasing
number of cells. Furthermore, comparison with the work done by Hourigan et al. (2005) proves
that the approach used in this study yields reliable results for zoned crystals as well.

From the analysis of the Shillong apatite dataset, it becomes apparent that Sm cannot be
neglected in the calculation of Fr and the raw He age. Besides the very high Sm concentrations
in some of the samples, the other interesting fact about this dataset is that some of the published
mean He ages (Biswas et al., 2007) are similar or even older than the corresponding apatite
fission track (AFT) ages. At the time of this publication, Sm was included in the He age
calculation but Fr was calculated using Farley (2002). Such a mismatch between AHe and AFT

has been documented from other sources (e.g. Belton et al., 2004; Hendriks and Redfield, 2005;
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Hansen and Reiners, 2006; Green et al., 2006; Danisik et al., 2008; Glotzbach et al., 2008;
Persano et al., 2009; Kohn et al., 2009) and has caused discussions about the reliability of the (U-
Th)/He technique. Although independent modeling using the recently developed radiation
damage accumulation and annealing model (RDAAM, Flowers et al., 2009) confirms that He
ages can be similar or older than AFT ages, this study shows that proper incorporation of Sm into
the age and Fr equations can result in significantly younger ages by itself. So far, the results
presented the impact of Sm on individual aliquots but in (U/Th)/He dating it is common practice
to combine aliquots and report the mean age and standard deviations as the result. Table 3.1 lists
the mean He ages and standard deviations calculated with and without Sm as well as the
published AFT ages. All mean ages show some degree of improvement towards younger ages
although not as dramatic as some of the aliquot analysis would suggest. A decrease in the
standard deviation for all but two samples might suggest that in fact the insufficient
incorporation of Sm in the Fr calculation contributed to the relative large scatter of aliquot ages.
Given that the spread is still much larger than the 26 uncertainty of 6% determined from analysis
of lab standards, one could argue that the parent distribution is not homogenous and zonation is
responsible for the high variability in the data. Overall, this analysis proves that Sm should not
be neglected and needs to be measured and incorporated into the age and Fr calculation to avoid
results that are shifted towards incorrect, older ages.

Grain shape modifications during sedimentary transport can be one of the most critical
factors influenced the final He age in sedimentary studies. Contrary to analysis of magmatic
samples, the outer parts of the grain are lost and therefore not accessible to further analysis. As
shown above, assuming that the remaining grain has an Fr value equal to 1 is only valid for

homogenous parent distributions and abrasion exceeding the maximum stopping distance.
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Although this assumption might be the best available, the FT-Calculator offers the tools to
investigate the range of possible Fr values for estimated initial grain dimensions and parent
concentration patterns. A very important outcome of the abrasion modeling is that manual
abrasion of grains prior to (U-Th)/He analysis to remove the outer ~20 um and artificially set the
Fr to 1 can, depending on the zonation pattern, potentially introduce larger errors compared to
calculation of Fr based on the full grain

As suggested by Vermeesch (2007), inclusions do not represent as a dramatic problem in
apatite (U/Th)/He analysis as often put forward to explain large scatter in He ages. From the
limited number of model runs done in this study it has to be concluded that even a very large
number of small inclusions do not significantly affect Fr. Although values can exceed 6%, it is
more than unlikely that grains with that many inclusions of considerable size are used for
analysis. The vast majority of model runs yield results within 1% of the Fr value obtained from
the same apatite grain with no inclusions. For practical purposes, the analyst has several options
to avoid introducing large uncertainties in the age calculation based on erroneous Fr values. First
and foremost, only inclusion free grains should be analyzed but if the sample quality is
insufficient then grains with small inclusions should be selected preferentially. Inclusions as big
as 6 um are visible on standard binoculars and the analyst should not have any problems to
discard grains that do not meet that criterion. Secondly, instead of using single grain aliquots,
several grains should be combined into a single aliquot to achieve a better statistical distribution
of inclusions and yield Fr values close to the homogenous parent concentration case. If
inclusions are not randomly distributed but aligned with self-similar growth zonation then He
will be re-distributed similarly to the zonation cases already discussed in detail and such grains

should be avoided as well. In agreement with Vermeesch (2007), personal experience has shown
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that apatite dissolution following the zircon procedure (HF dissolution step) led to better inter-
aliquot reproducibility. Advances in computer-generated tomography (CT) scanning (Herman et
al., 2007) have added the opportunity to calculate Fr based on the actual grain geometry, which
might show some deviation from the perfect, idiomorphic shape. Furthermore, the density
contrast measured by the X-ray allows detection of inclusions within the resolution limits of this
technique (2-3 um, Stockli pers. comm.). Still, the parent distribution cannot be assessed with
this technique and must be determined with other techniques or estimated by back-calculating
from bulk parent concentrations using the known volume fraction of the inclusions. In this case,
the FT-Calculator can greatly improve knowledge of the uncertainty attached to the Fr value.
Based on the CT scan output, a “Library” file can be created and subsequently a large number of
Fr values quickly calculated using ranges of host and inclusion parent concentrations.

As a unique case of inhomogeneous parent concentration, the rutile KTB sample analysis
proved that in some instances a more elaborate study of the entire rock framework has to be
undertaken. Fr values of > 10 for grains with the highest rim/core concentration gradient (X =
75), rim width (5 pwm), and which have lost their titanite rim during mineral separation,
demonstrate that the standard approach to correct for He ejection is insufficient.

Depth-profiling can be a very efficient technique to obtain knowledge of the zonation
patterns in grains and the FT-Calculator accommodates the analysis of the effect on FT with an
easy-to-use graphical user interface. The downside is that the concentration profile only allows a
one-dimensional assessment of parent distribution. Farley et al. (2011) employed two-
dimensional concentration mapping on polished sections of apatites to improve the
characterization of the parent distribution. Concentration maps obtained from transverses parallel

and perpendicular to the c-axis were transformed to a cylindrical geometry and Fr calculated.
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Ratios of resulting Fr versus values calculated assuming homogeneous parent distribution ranged
from 0.91 to 1.06 illustrating the variability that can be encountered within a single sample. An
advantage of polishing grains over depth-profiling is that cathodoluminescence (CL) analysis
prior to laser ablation can give an additional qualitative measure of element distributions (e.g.
Jolivet et al., 2003). With the FT-Calculator on hand, both techniques can be exploited. Initial
depth profiling can be followed up with polishing and CL imaging and/or two-dimensional laser-
ablation mapping. Afterwards the grain can be re-measured and analyzed while an accurate Fr
can be modeled using the imposed zonation pattern and parent concentrations. If desired, one
even has the opportunity to take samples already analyzed by standard LA-ICPMS and conduct
(U-Th)/He thermochronology using this new software package to calculate Fp. Because
polishing is of no concern and can be corrected for with the presented workflow, sedimentary
samples should be subjected to the more conventional dating approach (LA-ICPMS on polished
thin sections instead on whole grains mounted on tape) where additional information about the
grain interior can be gathered. Finally, as clearly demonstrated by the results in Fig. 3.10, laser
ablation does not affect Fr sufficiently to justify additional correction. Nevertheless, the FT-
Calculator has the capability to do so and might be utilized for other cases not studied here.
Parent isotope zonation and inclusions have varying effects on the Fr correction factor but
even more importantly, they could significantly influence the degree of diffusive loss of He out
of the grain. Zonation patterns that effectively re-distribute He towards the grain edge will cause
over-proportionate He loss leading to apparent ages that are too young. Using geometric
conversion functions (e.g. Ketcham et al., 2011), the grain geometry and zonation pattern can be
transformed to an equivalent sphere. Forward modeling utilizing the other modules within HeMP

can then be used to address the affect of zonation on the closure temperature and the diffusion
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profile. Investigating this topic, Gautheron et al. (2010) presented a Monte-Carlo based
algorithm that used actual grain geometries and Brownian motion theory to track He from

production to final resting place after diffusion.

3.6 CONCLUSION

The Fr correction is a simple but very critical step in (U-Th)/He thermochronology and a
necessity to calculate accurate He ages. Current practice is using a single value derived from
parametric equations directly as a correction for the raw age (Farley et al., 1996) or within the
age equation (Ketcham et al., 2011). The final uncertainty on a single aliquot He age is
determined by the reproducibility of standards, which in all cases exceeds the analytical
precision of parent/daughter concentration measurements. The underlying assumption is that the
dispersion in standard ages is capturing the natural variability within the standard population and
serves as a best estimate for analysis of other samples. Unfortunately, this comparison only holds
true for samples that are cooled quickly, in other cases the uncertainties might be significantly
higher because of combined effects of ejection and diffusion of He. Therefore, an independent
estimation of age uncertainties for each sample set is favorable.

The best-case scenario would be a complete decoupling of uncertainties related to analytical
errors from uncertainties in the Fr calculation. As a result, both errors could be rigorously
propagated throughout the age equation leading to an improved representation of the
uncertainties around the calculated ages. In routine (U-Th)/He analysis this is difficult to
accomplish because each analyzed grain would have to undergo additional analysis to
characterize its exact geometry, zonation pattern, and inclusion distribution. Nevertheless, the

FT-Calculator provides all the necessary tools to be able to calculate an accurate Fr using
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auxiliary data. Although the current version includes a wide variety of tools to model Fr, future
versions could provide methods that are even more accurate. Especially the CT-scanning
technique could bolster analysis because measurement uncertainties would be eliminated and the
effects of inclusions could be modeled with greater confidence. Sedimentary samples are
particularly problematic because the geometry of the grain changes while He is ejected
continuously throughout the post-cooling history of the sample. As of now, the FT-Calculator

ignores this circumstance but could be adapted to incorporate multi-stage modeling.
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Figure 3.1: Illustration of the two model approaches and outputs available in the FT-Calculator.
On top, the individual ejection spheres for each isotope which are combined and moved
through the entire 3D grain grid (dark-grey shaded area) during the full analysis. Each node
(X, y, z) in the He distribution matrix (My.p) contains the sum of all He particles ejected
from surrounding nodes. Contrary, during creation of the “Library” file, each individual
ejection sphere is moved through a reduced 3D grain grid (dark-grey shaded area) and each
node has the value of the local Fr for each isotope (I). Light-grey shaded area (not to scale!)
marks the portion of the grid that does not need to be analyzed because FT in the interior of
the grain equals 1.
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Figure 3.2: Comparative plots of Fr obtained from the FT-Calculator (FT) versus Fr calculated
with the equations provided by Ketcham et al. (2011, FT*) for a variety of grain geometries.
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Figure 3.3: A) True Fr value (FT) divided by Fr correction factor (FT*) based on inaccurate
measurement of grain dimensions plotted against grain widths. B) Effect on FT from
insufficient capture of full three-dimensional grain shape for a range of zircon widths.
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Figure 3.4: Fr dependence on rim width and concentration gradient for a zircon grain of given
dimension shown on the left. Circles represent the results from the FT-Calculator
superimposed on Hourigan et al. (2005) analysis (lines). On the right, results for hexagonal
prism geometry using the same input parameters.
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Figure 3.5: Effect of Sm contribution on Fr for Shillong apatites shown on the left. Ratio of He
ages (raw and corrected) ignoring Sm and incorporating Sm plotted against Sm contribution
on the right. Grey-shaded area marks the accepted uncertainty range (26 <= 6%) of apatite
(U/Th)/He dating.
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Figure 3.6: Examples of abrasion using an ellipsoidal mask that progressively decreases to a
spherical geometry. Normalized He distribution is shown for maximum and minimum rim
width and concentration gradients of zircon grains with tetragonal geometry and pyramidal
tips.
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Figure 3.7: Examples of abrasion using an ellipsoidal mask that progressively decreases to a
spherical geometry. Normalized He distribution is shown for maximum and minimum rim
width and concentration gradients of apatite grains with hexagonal prism shape.
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Figure 3.8: Original Fr (FT) divided by Fr after abrasion (FT*) plotted against the volume
fraction remaining after abrasion for zircon with different rim widths. Blue and red lines
highlight model runs with depleted and enriched rims respectively.

234



FT/FT*

1.6 T ‘ ‘ T

Rim Width=2 | Rim Width =5 |
14F e B i R T -
1.2

1.1

0.8

0.6

041 -

02t 207 S —— !

1.0 0.75 0.50 0.25 0
Volume Fraction

T T T
|

Rim Width =30 | Rim Width =40 |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [ |

235



Figure 3.9: Original Fr (FT) divided by Fr after abrasion (FT*) plotted against the volume
fraction remaining after abrasion for apatite grains with different rim widths. Blue and red
lines highlight model runs with depleted and enriched rims respectively.
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Figure 3.10: Fr ratios (FT/FT*) for grains with A) homogenous parent concentrations and
various geometries and dimensions and B) zoned apatite and zircon with fixed size but
changing rim width and concentrations plotted against Fr of unmodified grains (FT). Grey
circles indicate the ratio based on laser ablation after He degassing, black circles the
common practice of laser ablation before He analysis.
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Figure 3.11: Original Fr divided by Fr after polishing (FT/FT*) plotted against the width fraction
of abrasion for zircon grains with different rim widths. Blue and red lines highlight model
runs with depleted and enriched rims respectively.
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Figure 3.12: Original Fr divided by Fr after polishing (FT/FT*) plotted against the width fraction
of abrasion for apatite grains with different rim widths. Blue and red lines highlight model
runs with depleted and enriched rims respectively.
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Figure 3.13: Analysis of parent concentrations using data from LA-ICPMS depth profiling. Left-
hand side shows the raw data of uranium and thorium measurements plotted against ablation
depth. Black stair-step lines and white circles indicate the binning of the data into discrete
zones using user-defined limits (100 ppm in this example). On the right the final zonation
pattern contoured by the normalized production.
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Figure 3.14: Contour plots of normalized He distribution for a subset of the inclusion model
runs. Top to bottom: size of inclusions increase, left to right: increasing number of
inclusions. Shown results are based on inclusion concentrations (Cy) 100 times greater than
the concentration at each node in the host grain (C).
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Figure 3.15: Ratio of Fr for homogenous parent distribution (FT) and Fr for inclusion case (FT*)
plotted against inclusion activity for all model runs grouped by inclusion size. Note
logarithmic scale on x-axis.
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Figure 3.16: Normalized He distribution contour plots for a subset of the rutile model runs.
FT/FT* equals the Fy value for homogenous parent concentration divided by Fr for the
shown rim widths and concentration gradients.
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Figure 3.17: Results for all rutile model runs for each rim/core concentration gradient. In this
case FT/FT* equals the Fr value for the zoned, full-size grain divided by Fr for grains that
partially or fully lost the titanite rim during mineral separation.
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Table 3.1: Comparison of Shillong apatite He ages with apatite fission track results

| Sm excluded | Sm included |

Sample HeAge +6% StDev HeAge +6% StDev dHeAge dStDev AFT +lo

(Ma) (Ma) (Ma) (Ma) (Ma) (Ma)
GP15S11 11.4 0.7 2.7 10.3 0.6 2.6 0.90 0.99 12.8 1.1
GP13S9 13.0 0.8 35 10.2 0.6 2.4 0.78 0.70 10.6 0.9
GP13/14S10 14.1 0.8 3.9 13.8 0.8 3.9 0.98 1.01 8.6 0.6
GP11S8 14.2 0.9 3.3 12.7 0.8 3.2 0.89 0.96 9.7 1.0
GP15/16 16.5 1.0 4.7 15.9 1.0 4.7 0.97 0.98 11.6 0.8
GP9S6 24.6 15 9.9 20.0 1.2 9.2 0.81 0.92 26.9 1.7
GP7S10 34.6 2.1 11.8 325 2.0 11.4 0.94 0.97
GP6GN3.2 84.3 5.1 34.9 82.6 5.0 34.2 0.98 0.98 76.6 25
GP6GN3.3 99.2 6.0 30.6 97.0 5.8 29.8 0.98 0.97 101.1 5.5
GP6GN3.1  102.1 6.1 9.3 99.8 6.0 9.6 0.98 1.03 75.0 2.7
GP6GN3 113.1 6.8 6.5 110.9 6.7 6.2 0.98 0.95 98.6 34
GP5GN2 149.3 9.0 20.3 1459 8.8 19.7 0.98 0.97

He ages are mean ages from aliquot analysis. Reported uncertainties are 6% (2c) errors based on reproducibility
of apatite standards as well as the standard deviation from aliquot analysis. dHeAge and dStDev are the
differences between results including/excluding Sm expressed as fractions. AFT is the apatite fission track age
with 1o error.
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CHAPTER 4:
Improvement of (U-Th)/He data analysis.
Part 2: Thermal history recovery from single and multi-thermochronometer (U-Th)/He

data and data arrays

Abstract

The (U-Th)/He methodology offers the lowest closure temperatures in standard
thermochronological investigations and is therefore best suited to gain insights into the latest
phases of tectonic processes. Although it has to potential as a true geochronometer, its main
application is in deciphering the thermal evolution of upper crustal rocks. Since the early
beginnings of (U-Th)/He technique, much attention has been directed to quantitative analysis of
the diffusion characteristics of a variety of mineral phases which subsequently allowed for
recovery of thermal histories through modeling. Refinements of, and additions to these efforts
led to growing number of algorithms and modeling packages that enabled the scientific
community to improve their knowledge of areas of interest. As the technique evolved so did the
sampling strategy and sample arrays instead of single samples have proven to be most effective
to determine thermal histories of crustal sections. Single sample modeling is still a valuable tool
that should precede other modeling attempts because it provides vital clues about the quality of
the obtained He ages and can direct towards more advanced analysis if the results are
inconclusive. Furthermore, it provides initial constraints for subsequent sample array modeling.
The advantage of sample arrays is the extended thermal sensitivity of the combined samples

which can result in well constrained thermal histories even from a dataset with only a single
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phase available. Multi-phase analyses from sample arrays have the potential to directly constrain

the paleo-geothermal gradient prior to the event of interest.
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4.1 INTRODUCTION

With the proliferation of thermochronometric techniques, increasing effort has been invested
into the development of modeling tools that support quantitative analysis of the data. The scope
of these efforts grew with the range of applications. What started as “simple” programs to test
the sensitivity of the (U-Th)/He system, forward model (U-Th)/He ages based on a given thermal
path, or compare laboratory derived diffusion kinetics with real-world datasets, quickly evolved
into more complex tools that aim to explain the time-temperature (t-T) history of single samples
or sample arrays. To date, this progression culminates in the effort to understand and recreate the
evolution of a three-dimensional landscape, spatially as well as temporally, and test these models
against low-T thermochronology datasets. An overview of available software packages is given
by Ehlers et al. (2005) and a brief description of critical issues, modeling approaches and tools
dealing with the (U-Th)/He dating technique is provided in subsequent sections.

(U-Th)/He thermochronology is based on the production of a-particles (‘*He nucleus, called
He hereafter) through the decay of U, Th, and Sm parent isotopes. The high energy involved in
this process causes the He to travel a certain distance (~20 um) through the crystal lattice before
it reaches its resting point. In the worst-case scenario, He is actually expelled out of the host
grain if the decaying parent is close to the grain boundary. To account for this loss, Farley et al.
(1996) introduced a correction factor based on the size and shape of apatite and zircon grains (Fr
correction factor). Thermally activated He diffusion counteracts the accumulation of He within
the mineral grain until a temperature is reached where He is retained quantitatively. At this point
the geologic clock starts and analysis of parent/daughter concentrations will yield a He age that
corresponds to the time of cooling through a specific temperature (or temperature range) called

the closure temperature (T¢). The temperature sensitivity of the (U-Th)/He system was first

257



explored in the laboratory using step-wise heating experiments to determine diffusivities (Dy)
and activation energies (E,) for different mineral phases (Zeitler et al., 1987; Lippolt et al., 1994;
Wolf et al., 1996b; Warnock et al., 1997; Reiners and Farley, 1999). Based on the results,
nominal closure temperatures (T¢) and partial retention zones (HePRZ), the temperature range at
which the crystal retains only a certain percentage of the produced He (10-90%) during
isothermal holding, were derived using equations provided by Dodson (1973, 1979). For apatite
and zircon, the two most commonly used minerals in (U-Th)/He dating, the HePRZ’s are 55-
80°C (Farley, 2000) and 145-190°C (Reiners et al., 2004) respectively. A useful graphical user
interface (GUI) called CLOSURE that calculates closure temperatures and HePRZ’s for a variety
of thermochronometers was developed by Brandon et al. (1998). Besides providing kinematic
parameters for He diffusion, the stepwise heating experiments also indicated that the diffusion
domain was the grain itself and diffusivities scale with the physical grain size. As demonstrated
by Farley (2000) and Reiners and Farley (2001), He ages from individual mineral grains from a
single sample who experienced the same thermal history will be older for larger grains (higher
Tc¢) and younger for smaller grains (lower T¢).

An increasing number of apatite He ages (AHe) from samples that have been analyzed by
apatite fission-track (AFT) dating revealed unexpected results, similar or even older ages of AHe
compared to AFT. At first, this seemed discouraging but investigations by Shuster et al. (2006,
2009) and subsequently Flowers et al. (2009) culminated in what is known now as the radiation
damage accumulation and annealing model (RDAAM). Based on natural samples and irradiation
experiments, they could show that grain lattice defects caused by radiation damage increased the
diffusivity in apatite significantly. The effective uranium concentration (eU=

[U]+0.2299*[Th]+0.0051*[Sm]) was used as a proxy for radiation damage and similar to the
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grain size effect, analysis of grains of comparable size resulted in older AHe ages for minerals
with higher eU and vice versa. Additionally, closure temperatures in the vicinity of the AFT
annealing temperature (>100°C; Laslett et al., 1987; Green, 1988; Ketcham et al., 1999) were
reported, proving the possibility of equal or older AHe ages compared to AFT. One advantage of
fission track dating is that it offers direct insight in the thermal history of the analyzed grain by
means of its track length distribution besides the FT age derived from the number of tracks. The
He diffusion profile across a mineral grain would give similar insight into the t-T path but this
information is not captured in traditional (U-Th)/He analysis which represents a total gas age.
More advanced *He/*He analysis would be necessary to access this valuable information (e.g.
Shuster and Farley, 2003).

The majority of currently available He modeling tools convert the geometric shape of the
mineral grain (e.g. hexagonal prism for apatite) into a sphere with equivalent surface-to-volume
ratio (e.g. Ketcham, 2005) or equivalent Fr correction factor (Ketcham et al.,, 2011).
Furthermore, diffusion of He out of the grain is assumed to be homogenous in all directions
reducing the mathematics to a one-dimensional problem of He diffusion along the spherical
radius. Recent studies show that diffusion is in fact not isotropic along the crystallographic axes
(Cherniak et al., 2009; Bengston et al., 2012) but for faster computation, the above simplification
is used within HeMP.

Relative low T¢ and the concept that an exhumed HePRZ reveals insight into the thermal
evolution of a fault block, initiated the use of the (U-Th)/He technique as a powerful
investigative tool of slip along normal faults. Traditional age versus elevation plots allow
limited, qualitative description of the t-T history and do not provide sufficient information about

the statistical uncertainties. Solving the production-diffusion equation for He as a function of
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time and temperature was the critical task to accomplish in order to be able to successfully model
He ages with robust and computationally efficient programs. Wolf et al. (1998) as well as
Ketcham (2005) utilized a finite-difference method (Crank-Nicolson algorithm) that allowed
computation of diffusion along a single dimension, an efficient method to model spheres. HeFTy
(Ketcham, 2005) is a widely used stand-alone application that allows forward and inverse
modeling of single/multi-phase samples/thermochronometers including options for parent
zonation. Meesters and Dunai (2002a, b) solved the problem of diffusion along a spherical radius
as well as simple geometric shapes (finite/infinite cylinders, rectangular blocks) with
decomposition into eigenmodes. Parent zonation for a binary case (core-rim of different
concentrations) is included. A standalone tool for forward modeling of He ages called DECOMP
(Dunai et al., 2003) is available. The latest development in this category is provided by
Gautheron and Tassan-Got (2010) who used a Monte-Carlo approach to simulate diffusion
represented by Brownian motion. Their algorithm is applicable to any crystal shape and parent
zonation and provides fast and robust results.

Depending on the geologic question, sample arrays from boreholes or vertical transect rather
than single samples might be better suited to recover the thermal history. Because the software
packages discussed so far were not capable of modeling several samples connected through their
spatial location at once, other solutions had to be found. Gallagher et al. (2005) jointly modeled a
synthetic apatite fission track dataset by simply applying a geothermal gradient to the vertical
sample suite. Their results showed that this approach yielded a much better defined thermal
history than the solutions from the single sample modeling. Additionally, they were able to better

constrain paleo-temperature gradients directly from the model runs.
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The described software tools produce one-dimensional solutions, meaning that samples are
treated independent of their locations on/in the earth’s surface/interior, or simply depending on
one variable (z) in the case of vertical transects. Changes in temperature are accomplished by
linear segments along a t-T path and transient geothermal gradients based on exhumation/burial
are not accounted for. For many applications, these simplifications are justified, the models run
with a few well known input parameter, and yield geologic meaningful results within reasonable
time. In order to understand the effect of erosion, exhumation rates, and fault localization on an
evolving landscape more complex algorithms and an increasing number of variables must be
applied. PECUBE, a finite-element code that solves the transient three-dimensional heat
transport equation in a crustal block undergoing uplift and erosion was developed by Braun et al.
(2003) to test predicted He ages against sample ages. To-date, this algorithm is the most
sophisticated but also requires substantial computational power.

Availability, shortfalls in flexibility and capabilities, as well as computational intensity of
some applications initiated the need for a customized He-Modeling package. Using MATLAB®
(Mathworks, the, 1996), a powerful technical programming language, the goal was to 1) create a
versatile, flexible and extendable code to investigate many challenging problems in (U-Th)/He
thermochronology like alpha-ejection correction and thermal modeling, 2) improve quantitative
analysis of (U-Th)/He data produced in the laboratory, 3) distribute an easy-to-use Graphical
User Interface (GUI) to the broader scientific community, and 4) be able to quickly demonstrate
concepts of He diffusion in minerals in introductory and advanced thermochronology lectures

and labs.
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4.2 SOFTWARE OVERVIEW, ALGORITHMS, AND VALIDATION

Starting HeMP opens the Main Menu GUI, which lists all available modules and provides a
preview and short description of the capabilities of each of them. In summary, this software
package enables the user to (i) calculate the Fr-correction factor for mineral grains (not discussed
here), (ii) forward model He ages based on pre-defined t-T paths, and (iii) inverse model He ages
calculated from randomly created t-T paths. Fig. 4.1 provides an overview of the different
modules including their input requirements as well as some of the available graphical
representations of the model results. To allow for quick setup or changes of parameter sets,
Excel® spreadsheets utilized by each module proved to be exceptionally versatile import media.
All modules utilize the same mineral data import table, which organizes individual samples in
different sheets and their corresponding mineral phases in columns, ensuring flexible cross-
module compatibility. Results are saved as *.mat files that can be loaded either within the
modules or in separate graphing GUI’s. To keep track of the input files and chosen run
parameters, a log-file is created at the end of each model run. All modules contain an option to
export graphs in a variety of file formats for subsequent processing in standard software
packages.

In order to calculate model ages from these t-T paths and extract solutions that fit the
observed data, HeMP follows the same approach described in detail by Ketcham (2005) and used
in HeFTy". A short overview of the underlying calculations is provided in this section.

First, the grain measurements and its geometry (e.g. zircon = tetragonal prism + pyramidal
terminations) are used to calculate the surface-to-volume ratio (S/V) of the geometric body and

transform it into a sphere of equivalent radius (a):
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This approximation, which is supported by Farley et al. (1996) and Meesters and Dunai
(2002) who showed that the effects of He-ejection due to long alpha stopping distances are
proportional to the S/V of a variety of mineral geometries encountered in (U-Th)/He dating, has
the advantage of simplifying the He-diffusion to an easily manageable one-dimensional problem.
The grain radius is subdivided into a closely spaced grid (512 nodes) where each node (i)
represents the position of parent nuclides and their concentrations. Following these initial
geometric conversions and gridding operations, the t-T path is subdivided into discrete intervals
(n) following the rules that the individual interval cannot exceed a temperature range greater than
3.5°C and has to be shorter than 1% of the overall thermal history. This ensures accurate results
while keeping computational time within reasonable limits.

It is crucial to keep track of how much He is produced as well as how much He is diffusing
out of the grain during each interval (n) to be able to calculate a final model age for a given
thermal history. Because of the long stopping distances of He particles traveling through the
grain, an effective He production (Aefi) for each node has to be calculated to account for loss of
*He due to ejection beyond the sphere radius. This is accomplished with following equation (see

Ketcham, 2005):

S, AG)dX

XSt
in_SI dX

Actrin =
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where X; is the radial position of the node, X’ is the radial position of the shell edge relative
to the spherical grain, S; is the average stopping distance for parent isotope I (given in Farley et
al., 1996), and A is the uncorrected He production. Using this in the general He generation

equation:

4 - M238t2 _wh23st M235t2 _aho3st
He, = 8Aeff,i,238(e 23812 _ah238 1)+7Aeff,i,235(e 235t _aha3s 1)

M3oty_aha3ot Mazty_ahiagt
+ 6Aeff,i,232(e 23202 _aM232 1)+1Aeff,i,147(e 14702 _eMa7 1)

the amount of He produced at each node (i) in the sphere during each interval (n) bounded
by t; and t; can be calculated. For each of these intervals the He production at each radial node is
calculated assuming that all He is produced instantaneously at t;. Optional modeling of parent
isotope zonation can be easily incorporated by assigning different values to the radial nodes
through a separate user-defined zoning input table. Now that the He in-growth at each t-T
interval is established, the task on hand is to solve the He diffusion/accumulation equation that
provides the amount of He retained in the mineral grain at the end of each t-T interval. This is
accomplished using the Crank-Nicolson finite difference solution for diffusion in a sphere (e.g.,

Press et al., 1988):

ntl n n+l n+l n+l n n n
u-ul D (el - 20! e+l - 2u] + )

At 2 Ao offi’a

where u is the substitution of the He concentration multiplied by the radius, i subscript refers
to the nodes along the radius, and n superscript to the interval number along the t-T path. D

denotes the diffusivity which is treated differently based on the chosen model run setup. HeMP
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includes the option to use the Radiation Damage Accumulation and Annealing Model (RDAAM)

for apatite (Flowers et al., 2009) and if the user checks this option then D is calculated as:

Do . -E(/RT
—OL L

D a2 °
—2 pr—

a (ko*vrd *eEtrap/RT)+l

where Eqp, 1s the activation energy associated with the radiation damage traps; subscript ‘L’
for diffusivity and activation energy is used to differentiate these quantities that were obtained
from diffusion in undamaged crystals from the values used in the conventional Arrhenius
equation; k, 1s the radiation damage density scaled by v.q. Given that the values for Eiyp, Dor, and
other factors were derived empirically, these inputs must be hard-coded. For all other mineral
phases and the case that the RDAAM option is not checked, diffusivities are calculated using the
standard equation:

D D,
a2 a?

+ e—E/RT

o

If not stated otherwise, all following model run results are based on the RDAAM model.

Summation along the diffusion profile at present time, given by the final He concentration
along the nodes, and multiplying by the volume of the sphere gives the final amount of He
retained within the spherical geometry. Simply dividing this quantity by the effective He

production rate (4HePeff) yields the He model age:



where

4Hepeff,i =8Acfrri238d238 + TAesri23sAazs + 6Acrri2324232 + 1Aesrinartiar

Another important value, the Fr correction factor, can be calculated directly from the

ejection corrected He production rate as follows:

Fo— Z 4H€Peff,i
"7 % *Hep,

where “HeP; is the uncorrected He production rate. Testing the fit of model ages against the
sample ages obtained in the laboratory is accomplished with a “Goodness of Fit (GOF)” criteria

used by Ketcham et al. (2000):

Tmeas T TmeasTmod| 1

GOF =1 - e'(X'Tmeas)z/zcrzneas dx

Tmeas~|Tmeas=Tmod| G\/Q’Tc
where 7 refers to the modeled and measured He ages, and ¢ to the uncertainty around the
measured age. Based on the merit function of Ketcham et al. (2000), a calculated model age is

defined as an acceptable solution if GOF > 0.05, and as a good solution if GOF > 0.5.

4.2.1 Forward modeling
In the Single Sample(s) module a single thermal history serves as the basis for subsequent

creation of additional t-T paths constraint by three parameters, the (i) number of desired t-T
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paths, (ii) T-offset, and (iii) t-offset for individual t-T paths. The offsets can be adjusted
individually for each initial node, which enables the user to simulate converging/diverging
isotherms as expected during rapid exhumation/slow burial. Graphical outputs include the He
age evolution, final He concentration profiles, final He ages, and the representation of t-T paths
that match GOF criteria. These results can be plotted for any given number of t-T paths and
samples. Proving its versatility and user-friendliness, the Single Sample(s) module was utilized
extensively to validate HeMP against the HeFTy software to ensure correct and reproducible
results before applying it to the datasets discussed in later sections. A variety of synthetic apatite
and zircon samples were forward modeled on the basis of four generic t-T histories (see Fig. 4.2)
that simulated 1) linear cooling, 2) very rapid cooling, 3) slow cooling through the He partial
retention zone (HePRZ), and 4) linear reheating followed by linear cooling. Each of these t-T
histories was modeled starting at t = 100, 50, and 10 Ma to evaluate if the choice of interval
lengths (n) scales properly. The models were run using kinetic parameters from Farley (2000;
Durango model, apatite), Flowers et al. (2009; RDAAM model, apatite), and Reiners et al.
(2004; zircon). As shown in Fig. 4.2, the majority of the model ages are well within 5% of the
results obtained from HeFTy, providing confidence that the model results are sufficiently
accurate (within the uncertainty of the (U-Th)/He technique). Table C.1 in Appendix C lists the
results for each t-T history and analyzed sample. To demonstrate the sensitivity of AHe ages as a
function of varying kinetic parameters, 10 apatite grains ranging in size from 30-120 pm
equivalent spherical radii with constant parent concentrations and 10 apatites of equal size (a =
50 um) with eU ranging from 30-120 ppm were modeled using the Single Samples(s) module.
Fig. 4.3 shows the AHe age evolution from 100 Ma to present for both synthetic samples based

on the thermal histories shown in Fig. 4.2. Fast and moderate cooling (Fig. 4.3 t-T history 1, 2)
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show much less dispersion in final AHe ages than t-T paths that spend considerable time within
the apatite HePRZ (Fig. 4.3 t-T history 3) or pass through the apatite HePRZ during reheating
and again during subsequent exhumation (Fig. 4.3 t-T history 4). Additionally, the forward
modeling approach was used to demonstrate the utilization of vertical sample spacing as shown
in Fig. 4.4. This model run illustrates cooling of a 2 km thick crustal section represented by
eleven samples spaced by 200 meters. Based on the assumption of a constant geothermal
gradient of 25°C/km, the temperature difference between the top and bottom sample equals
50°C. The resulting age versus depth (temperature) plot shows predicted AHe ages for each
sample as a function of eU (dashed, grey lines) as well as a hypothetical result (black, solid line).
The drastic increase in the apparent AHe age along the hypothetical sample array between 0.8-
1.0 km could easily be misinterpreted as e.g. a fault zone although changes in e.g. lithology
accompanied with different parent isotope concentrations could explain the complexity in the
AHe versus depth relationship.

In the Sample Array module, offset t-T paths are generated based on a range of user-defined
thermal gradients and sample elevation data, simulating the thermal conditions for each sample
at depth. T-offsets are simply calculated using the elevation difference between samples and a
single (or a range of) geothermal gradient(s), an approach already applied by Gallagher et al.
(2005). Fig. 4.5 illustrates this concept with geothermal gradients of 23°C (solid black lines) and
39°C (dashed grey lines) applied to a synthetic dataset consisting of apatite and zircon He ages.
The resulting model ages from this family of t-T paths are then compared to the corresponding
samples and good/acceptable solutions are obtained if a user-defined number of model ages
match the sample ages. In this example, a geothermal gradient somewhere between 23-39°C is

most likely to fit the majority of the data. Once created, the user can interactively change the t-T
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paths and model ages and GOF’s are calculated on the fly. This module has been proven to be of
great value to quickly test thermal histories for a sample suite from a vertical transect and

provided guidance for the choice of initial constraints for subsequent inverse modeling.

4.2.2 Inverse modeling

The Single Sample(s) module is a more or less exact replica of HeFTy®. It randomly
generates single t-T paths based on initial user constraints and model ages are compared to
sample ages by GOF algorithm. The model run can be set to stop after a total number of t-T
paths are analyzed, or a number of acceptable/good solutions for each sample are reached.
Currently, the software does not allow more than 100,000 iterations, which in general should be
more than sufficient especially for the Single Sample(s) modeling. An advantage of HeMP is that
the algorithm does not require all aliquots to fit a certain t-T history but continuously tracks
results based on the maximum number of fitting aliquots. The additional merit of this approach
lies in the capability to see which aliquots do not fit any thermal histories, which is helpful in
identifying outliers. It is common practice to discard results from apatite with high re-extracts
during degassing and/or atypical U/Th ratios, both cases indicative of possible inclusions.
Additionally, there is always the temptation to ignore ages that are significantly older or younger
than other results. Prior to the introduction of RDAAM, it was easier to make this decision
because theoretically smaller grains should always yield younger ages than larger grains based
on the finding that the diffusion domain is the grain itself. With the introduced dependency of the
diffusion coefficient on eU, this straightforward relationship is no longer valid and it has become
much more difficult to determine if an unusually high or low age is in fact an outlier or just the

result of the combination of size, eU, and the thermal history of the sample.
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Using the same approach as the Sample Array forward model to create offset thermal
histories for each sample from a vertical transect, the Sample Array inverse model conversely
relies on the random generation of initial t-T paths that pass through user-defined areas in t-T
space. Calculation of model ages and their fit with regards to the obtained sample ages follows
the same procedures as described for the equivalent forward model. HeMP saves each t-T path
that produces acceptable/good fits for each individual geothermal gradient, which can be
subsequently displayed in a separate graphing GUI. Furthermore, this GUI includes the option to

plot time vs. exhumation rate, time vs. cumulative exhumation, and age distribution graphs.

4.3 THERMAL HISTORY RECOVERY

In this section, the range of approaches to derive continuous thermal histories is
demonstrated by means of a variety of datasets collected from outcrops or sampled from
boreholes. As discussed and graphically shown earlier, 1) variations in grain size and eU (apatite
only), 2) differences in kinetic parameters (Do, Ea) between mineral phases, and 3) vertical
sample spacing can be used to extract geologic meaningful thermal histories. Any range in size,
eU, or kinetic parameters results in a change of the closure temperature of the (U-Th)/He system
potentially extending the thermal sensitivity of the sample set at hand. Collecting samples from
different elevations and conjoint modeling offers the benefit of analyzing samples that are at any
point in time at different temperatures. Even if all the samples share the exact kinetic parameters,
this approach will give increased control over the thermal history. As shown in Fig. 4.3, the
spread in He ages is also highly dependent on the cooling rate and time spent within the HePRZ.
Even large intra-sample heterogeneity will yield very similar aliquot ages if the sample cooled

quickly. The opposite is true for samples that spent a significant time within the HePRZ where
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slight differences in the diffusion kinetics will affect the individual aliquot ages dramatically. All
presented results are from the available modules in HeMP, demonstrating its great versatility and

give proof of HeMP’s capabilities to gain insight into the thermal history of a given dataset.

4.3.1 Single Sample / Single Phase
4.3.1.1 Cajon Pass (CA, U.S.A) — Borehole Samples

The first dataset discussed is from a borehole on the Cajon Pass (California) that penetrated
sandstones and underlying granitic basement rocks. Four samples were collected from present
borehole temperatures of 48°C (CJ-12), 62°C (CJ-16), 70°C (CJ-18), and 84°C (CJ-23). From
each sample, up to twelve single apatite grains with a wide range of grain sizes (equivalent
spherical radii of ~20-100 um) were handpicked and analyzed. An overview of the data is given
Fig. 4.7 showing a series of key cross-plots. Sample CJ-12, and to a lesser degree CJ-16, shows a
wide spread of AHe ages and a positive correlation with grain size indicating slow monotonic
cooling through the apatite HePRZ or a re-heating event as demonstrated earlier (compare with
Fig. 4.3). Because samples CJ-16, CJ-18 and CJ-23 are currently at temperatures well within the
apatite HePRZ, a correlation with grain size is either overprinted by ongoing diffusive loss of
He, or these samples have been rapidly exhumed from temperatures above the apatite HePRZ
and have not had the chance to establish such a relationship. Except for CJ-18, none of the
samples show a clear positive correlation of AHe age with eU which makes this dataset well
suited to investigate the grain size-dependant sensitivity of the (U-Th)/He system. Based on the
emplacement age of ~80 Ma for the latest plutonic event, the model run was set to start at 80 Ma
at an elevated temperature of 500°C. Additional t-T constraints allowed for cooling to

temperatures below the apatite HePRZ (<40°C) and subsequent re-heating to a maximum
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temperature of 150°C. The final temperature constraint was given by the current borehole
temperature at the sample location with an additional uncertainty of +5°C. This setup ensured
that all scenarios including monotonic cooling and cooling followed by re-heating followed by
cooling, were accounted for. Results from the model runs are displayed in Fig. 4.8. Within the
maximum number of fitting aliquots, HeMP differentiates the combinations that are represented
by shades of grey in the individual plots.

7 out of 11 aliquots from CJ-12 yield common acceptable solutions that indicate cooling
below ~50°C shortly after 60 Ma followed by an extensive period of isothermal holding and/or
very slow cooling past 20 Ma. Both aliquot combinations require re-heating to current borehole
temperatures but the timing of this event is not well constrained. For CJ-16, only 4 of the total 12
aliquots match a common t-T path and numerous aliquot combinations result in non-unique
solutions. CJ-18 yields acceptable fits for 3 out of 4 aliquots and the early thermal history of this
sample is clearly unconstrained. After ~30 Ma, re-heating from > 50°C to present borehole
temperatures is the most likely scenario for this sample. The bottom-most (CJ-23) shows a
comparable thermal evolution as the top-most sample (CJ-12) with a similar timing of re-heating
although it has to be noted that only 3 out of 12 aliquots are matched. In general, samples CJ-12
and CJ-18 yield the more reliable results from these model runs but at this point it is rather
unclear how exactly the crustal section sampled from the borehole thermally evolved through

time.

4.3.1.2 Shillong Plateau (India) — Surface Samples
The second dataset is from the Shillong Plateau, a pop-up structure located in the foreland of

the Indian Himalayas. Biswas et al. (2007) analyzed surface samples from the exposed granitic
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basement using apatite/zircon (U-Th)/He and apatite fission track (AFT) dating techniques. Age
information from AFT together with auxiliary geological evidence from the sedimentary record
was used to model the evolution of this crustal block with HeFTy. Sensitive within ~60-100°C
(apatite partial annealing zone PAZ, e.g. Green et al., 1989), this technique complements the
apatite (U-Th)/He system towards higher temperatures. For an in-depth review of analytical
techniques, model setup, and results see Biswas et al. (2007).

Several aspects of this dataset are quite interesting. First, apatites exhibit a wide range of Sm
concentrations, some of them exceeding 1000 ppm, which is rather unusual. In combination with
low U concentrations of generally less than 50 ppm, this would result in AHe ages that are more
than 40% too young if the He contribution from '*’Sm would not be included (see Chapter 3).
Furthermore, the calculation of the effective spontaneous track density (eps), a critical parameter
in the RDAAM equations, would consequently lead to erroneous results as well. Fig. 4.9 shows
plots of eU versus AHe ages for Group 1, collected in the northern part, and Group 2, collected
in the central and southern part of the Shillong plateau. Group 1 apatites show a Cretaceous
cooling signal based on AHe, AFT, and a positive correlation between eU and He age. Although
there is a much wider range and generally higher values of eU for Group 2 apatites, the ages
appear to be unaffected and cluster around 10 Ma. This fundamental difference, and the fact that
all samples originate from Paleo-Proterozoic granitic rocks unconformably overlain by Late
Cretaceous continental sediments, already implies that the rocks of Group 2 must have re-entered
temperatures that partially reset the apatite ages and allowed for annealing of accumulated He
radiation damage prior 10 Ma. This event is clearly captured in the Tertiary rock record that
shows shallow marine on top of Cretaceous continental sediments. On the other hand,

Proterozoic ZHe cooling ages throughout the entire plateau indicate that re-heating during this
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tertiary burial event was not extensive enough to reset the geologic clock in zircon, therefore
putting an upper limit of ~150°C (lower bound of zircon HePRZ) on the peak temperature. Based
on their modeling of the AFT data, Biswas et al. (2007) suggested that exhumation of the
northern part of the plateau (Group 1 samples) started between 25-3 Ma from temperatures of
20-70°C. In contrast, the southern part of the plateau (Group 2 samples) experienced greater
burial to temperatures ranging from 100-160°C followed by a more pronounced exhumation
event at ~15-9 Ma. At the time of Biswas et al.’s (2007) work, the RDAAM model was not
available and given the striking relationship between eU and apatite He ages it seems
straightforward to re-model this dataset and evaluate if the (U-Th)/He results alone can be used
to arrive at equal or similar results.

Group 1 and Group 2 apatites were analyzed with the Single Sample(s) inverse modeling
module using identical t-T constraints. An initial constraint at 190-200 Ma and 140-160°C was
followed by a constraint at 60-80 Ma and 10-40°C to honor the Cretaceous exhumation
manifested in the sedimentary record. A large box spanning 5-55 Ma and 10-160°C ensured that
the model run was not limited to re-heating but could yield t-T paths that represented slow
cooling or even isothermal holding throughout the Tertiary.

Fig. 4.10 and Fig. 4.11 show the resulting t-T paths for Group 1 and 2 apatites collected in
the northern part of the plateau. All samples, except GP13/14S10, were analyzed using 6 aliquots
and the individual plots show the results for the maximum number of aliquots that yielded
acceptable solutions after 100,000 trials. Where available, the black dashed lines mark the
boundaries of the acceptable solutions modeled by Biswas et al. (2006) with HeFTy on basis of
their AFT dating. For Group 1 apatites, 2-5 out of 6 aliquots resulted in matching thermal

histories. Sample GP6GN3.1 only has 2 aliquots that yield acceptable fits and the four
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combinations exhibit a wide range of possible thermal histories for this sample. Surprisingly, the
maximum number of fitting aliquots (5) for sample GPSGN2 does not result in the \best-
constrained thermal history. Overall, the results indicate that, after exhumation to the near-
surface during the Cretaceous either very slow cooling or re-heating to temperatures of ~80°C
could explain the AHe ages. Although these initial results were valuable and provided answers to
very high-level questions about the evolution of the Shillong plateau, the somewhat poor
performance of the number of aliquots that fit the same thermal history was in need of
improvement. In a second model run, the errors of the AHe ages were increased for selected
samples from 6% to 10% (20) to allow more aliquots to fit. Fig. 4.11 shows the results for Group
1 apatites. Sample GP6GN3.1 shows the most improved definition of the thermal history
although only one more aliquot is added, followed by Sample GP6GN3 where now all 6 instead
of 4 aliquots could be matched. Sample GP6GN3.3 now shows a slightly wider range of possible
thermal histories as a consequence of the greater errors. Compared to the AFT results, the
maximum temperature reached after exhumation in the Cretaceous is lower and rapid cooling
starts consistently earlier.

Results from Group 2 apatites are telling a different story as shown in Fig. 4.15. As
anticipated, the re-heating event is much more pronounced and exceeds ~100°C in most cases.
Indicated by the randomness of the t-T segments prior 80 Ma, any record of this part of the
thermal history is completely erased by the Tertiary re-heating event. Most samples show t-T
paths that reach the limit of the constraint at 160°C followed by rapid exhumation to current
surface temperatures. GP9S6 shows a somewhat similar evolution but re-heating does not exceed
80°C. Comparable t-T evolutions are shown by aliquot combination 1-2-3-6 in sample GP11S8

and to a lesser degree in sample GP13/14S10.
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4.3.2 Single Sample / Multi Phase
4.3.2.1 Xainze Rift (Tibet) — Vertical Transect Samples

Sampled along a normal fault bounded triangular facet in the center of the N-S trending
Xainze rift (S-Tibet), this transect spans a vertical relief of ~450 m covered by seven samples.
ZHe ages show an overall trend from older ages at the top (~32 Ma) to younger ages at the
bottom of the transect (~22 Ma), whereas apatite analysis yielded almost elevation invariant AHe
ages around 10 Ma. From the He age versus elevation plot (see Fig. 4.11), a first order thermal
history starting with slow cooling through the zircon HePRZ during Oligocene time followed by
rapid exhumation through the apatite HePRZ in the middle/late Miocene can be inferred. In the
best case scenario, a clear inflection point in the apatite data would directly mark the onset of
rapid uplift along the normal fault but probably a consequence of the limited vertical sample
spacing, this information is not readily available.

The Single Sample(s) inverse modeling module was used to gain insight into the t-T
evolution of each individual sample. Not able to utilize the vertical sample spacing, this module
as well as HeFTy, only considered the apatite/zircon pair for each sample to find t-T paths that
matched the corresponding He ages. In order to show as unbiased results as possible, only one
initial constraint spanning 80-60 Ma and 300-350°C was given as starting point. Otherwise, the
model was able to explore the entire t-T space with the limitation of monotonic cooling. It is
common practice in (U-Th)/He dating to report the mean age and standard deviation in addition
to the individual aliquot ages to assess the reproducibility of the sample analysis. For
comparison, this dataset was modeled using the mean ages as well as the individual aliquot ages

for each mineral phase. The run with mean ages was terminated after 500 acceptable solutions
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have been found for each sample. Fig. 4.13 shows the good (dark grey) and acceptable (light
grey) t-T paths for each individual sample. At a first glance, the results look relatively
indistinguishable from each other except for somewhat steeper gradients in the 25-10 Ma interval
for the two lowermost samples (05XID73, 05XID74). All samples exhibit an obvious
convergence of good/acceptable solutions at ~170°C and ~60°C, which is not surprising given
that these temperatures lie within the corresponding HePRZ’s near the nominal closure
temperature of the zircon and apatite system. Outside this area, t-T paths quickly diverge
resulting in a “braid-like” geometry. To improve on these initial results, another model run using
the individual aliquot ages (up to 13 apatite and zircon analysis) was performed. Fig. 4.14 shows
the acceptable fits for the given aliquot combinations after 100,000 iterations. Compared to the
results for the mean ages, much less and better defined thermal histories emerge. Still, the
divergence between the temperatures sensitive to the apatite and zircon thermochronometers is
prominent and results in very dissimilar thermal histories. In summary, the Single Sample(s)
module provides a wide range of possible cooling scenarios for each sample and a common

thermal history for the entire fault block is still out of reach.

4.3.3 Sample Array / Single Phase

Conquering the shortcomings of the Single Sample(s) module led to the development of one
of the cornerstones of the HeMP software, the Sample Array inverse modeling module. The
Tibet dataset demonstrates that looking at a single sample only provides a snapshot at a single
point in space and especially without utilizing intra-sample variability in diffusion kinetics
(aliquot versus mean age model runs) the result is ambiguous. Being able to combine spatially

distributed samples should improve the understanding of the t-T evolution significantly. As a
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reminder, this module randomly generates initial t-T paths, which subsequently are offset to
higher temperatures using sample elevations and user-defined geothermal gradients. In order to
achieve a sufficient number of solutions it is recommended to add additional constraints to better
steer the random t-T path generator. In the following examples, this is either done using the

results from the single sample modeling or additional constraints from other sources.

4.3.3.1 KTB (Germany) — Borehole Samples

The Continental Deep Drilling Project (KTB) sample suite originated from a 9 km deep
cored section through the earth’s crust below Germany. Still one of the best available datasets in
(U-Th)/He dating, ZHe analysis by Wolfe and Stockli (2010) proved the postulated zircon
HePRZ (145-190°C, Reiners et al., 2004). Based on other thermochronometers, Wagner et al.
(1997) and later Stockli and Farley (2004) derived thermal histories for the four fault blocks
encountered in that section. Given the well studied nature of this dataset it is well suited to test if
HeMP can derive the same or similar t-T histories as suggested previously.

Wolfe and Stockli (2010) revisited the rock record of the KTB project in Germany and
analyzed X samples (XX aliquots) from 0-9 km depth encompassing down-hole temperatures of
7-265°C at an average geothermal gradient of ~27.5°C/km (Clauser et al., 1997). The goal of this
study was to gain insight into the diffusion kinetics of zircons by 1) evaluating the ZHe ages as a
function of depth and thermal history, and ii) conducting laboratory based diffusion experiments
to determine activation energy (E,) and diffusivity (D,) of selected samples. Details about the
dataset, lab procedures, model setup, and other pertinent information not addressed here are
available through the above reference. Mean ages (28) and standard deviations of single grain

zircon analysis were used to model the t-T evolution of this crustal section with the Sample
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Array module. The t-T evolution for Block A shown in Wolfe and Stockli (2010) served as
guidance for one of the initial model constraints set at 50-120 Ma and 50-300°C and the model
run allowed for six outliers. Fig. 4.15 presents the result for geothermal gradients ranging from
20-40°C/km in 1°C intervals where darker lines represent lower geothermal gradients. The black
dashed line indicates the thermal history for fault block “A” derived by Wagner et al. (1997) and

later Stockli and Farley (2004).

4.3.3.2 Cajon Pass (CA, U.S.A) — Borehole Samples

As a result of the analysis strategy using many aliquots with a wide range of grain sizes, the
thermal history for sample CJ-12 from the Cajon Pass could be constrained to some extent
already. Adding the other samples and model the entire dataset including the vertical sample
spacing could potentially improve the result. Basically, the Sample Array module should filter
the acceptable solutions from the Single Sample model run of sample CJ-12 and arrive at a subset
of t-T paths whose parallel offsets also fit the sample ages collected at greater depths. To keep
computational time to a minimum and ensure a number of fitting thermal histories, the first
model run (Fig. 4.19A) utilized the mean ages from the subset of aliquots that yielded acceptable
fits in the previous Single Sample models. Instead of the nominal 6% error, two standard
deviations around the mean served as input for the uncertainty to cover the entire age range. In
excess of 1,400 solutions for the best fitting geothermal gradients (28-30°C, highlighted in blue)
proof that this approach did not improve on the previous results. Besides the already established
re-heating, a cooling event ~5 Ma seems to be necessary to fit the entire sample set. In order to
get a better definition of the t-T paths, more control on the temperature sensitivity needs to be

added from the samples. The top-most sample (CJ-12) shows the best behaved age versus size

279



relationship and the widest range of ages, therefore this sample should affect the results the most.
Subsequently, a hybrid run using the youngest and oldest aliquots from sample CJ-12 that fit
both combinations (Aliquot 4 and 10) together with the mean ages from the remaining samples
was run. The much tighter constraints used in this run are based on an intermediate run (not
shown) with the initial, larger constraints that led to only a few acceptable solutions. This
approach of course takes some of the resolution gained by the single aliquot analysis away but
many modeling tries, with this and other datasets, showed that it seems to be impossible to yield
fits during multi-aliquot/multi-sample analysis. The final result is shown in Fig. 4.19B clearly
illustrating the improved definition of the thermal history of this crustal section. After cooling to
temperatures below 50°C, slow re-heating to a maximum temperature of ~65°C between 10-5

Ma is followed by cooling to the present down hole temperature.

4.3.4 Sample Array / Multi Phase
4.3.4.1 Xainze Rift (Tibet) — Vertical Transect Samples

Unlike the Cajon Pass samples, this dataset comprises apatite and zircons grains of similar
size, which limits the temperature sensitivity within each system. The t-T paths obtained from
earlier modeling are simply based on the spread in closure temperature ranges between apatite
and zircon. Using the mean AHe and ZHe ages and standard deviations of the single aliquot
analysis, the vertical transect from Tibet was subsequently modeled with the Sample Array
module. Based on the findings from the Single Sample model runs, two additional constraints at
40-20 Ma (220-130°C) and 15-5 Ma (100-20°C) were added to provide more guidance for the
random t-T path generator without jeopardizing the integrity of the results. A range of

geothermal gradients from 15-50°C in 2°C increments and a total number of 100,000 iterations
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complete the model setup and the resulting solutions are shown in Fig. 4.17. As obvious from
this figure, the model allowed for one sample outlier (mean apatite ages of 05XID73 did not fit
the resulting thermal histories). Based on this approach, a transition from moderate to fast

cooling at ~10 Ma becomes apparent.

4.4 DISCUSSION

4.4.1 Case Studies

The Cajon Pass sample modeling demonstrates how variations in grain size can be utilized
to increase the thermal sensitivity of the dataset without analyzing other mineral phases or using
a completely different low-T thermochronological technique. The Single Sample modeling yields
a set of thermal histories that seems consistent throughout independent sample analysis (except
CJ-16). Within the context of the vertical sample spacing, which has not been considered during
this initial analysis, an important inter-sample mismatch becomes apparent. Sample CJ-23
exhibits thermal histories that suggest cooling to or even below the temperatures seen by the top-
most sample CJ-12. Following the logic that any sample below another one must reside at higher
temperatures at all times, this result has to be incorrect assuming that there is no localized heat
source (e.g. dyke emplacement or fluid percolation around fault zones). Utilizing the vertical
sample spacing in the Sample Array module, HeMP is able to improve on the previous results
and yield thermal histories that are consistent with all samples. After initial cooling, slow re-
heating to peak temperatures of ~65°C at 10-5 Ma and subsequent cooling to present-day
conditions is considered the final, best estimate of the t-T evolution of this dataset. Potential
improvements of the results could be accomplished by analyzing samples in between CJ-12 and

CJ-16 and/or using AFT to constrain the higher temperature thermal sensitivity of samples CJ-
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16, CJ-18, and CJ-23. On the other hand, ZHe analyses would not add much of additional value
because the majority of the t-T history evolves below the sensitivity of this system (~190-
150°C).

The Shillong samples probably represent the least constraint dataset in terms of temperature
sensitivity control. The samples were collected over great distances, no vertical transect was
available, and only a single mineral phase (apatite) was subjected to modeling. On an aliquot
basis, none of the samples showed positive correlations of He age with neither grain size nor eU.
Group 1 apatites, seen as one population, exhibit some positive correlation of He age with eU for
aliquots with eU exceeding ~50 ppm (Fig. 4.8). The comparison of acceptable fits from HeMP
with the AFT modeling in HeFTy (Fig. 4.9-4.13) reveals some agreement as well as differences
in the obtained results. For Group 1 apatites, the Cretaceous cooling signal is generally better
constraint but slightly older than what has been modeled with AFT data. As a result and contrary
to the AFT model runs, some of the acceptable t-T paths require very little or no re-heating to fit
the aliquot ages. The maximum temperatures reached during burial are in good agreement with
the AFT results. Group 2 apatites yield virtually identical results from both techniques. Although
HeMP produces less acceptable solutions, the rapid cooling event past 20 Ma as well as re-
heating to temperatures in excess of 100°C is clearly captured. Going back to the earlier
discussion, thermal histories characterized by high cooling rates are less sensitive to differences
in diffusion kinetics, which explains why the results from two very different techniques converge
at the same solution. On the other hand, prolonged residence in the low-T portion of the HePRZ
as suggested by the AFT modeling will affect the apatite He system much more than the AFT
system. Which solution is more favorable is up for discussion because on one hand the AFT

technique offers age together with track length information, on the other hand its low-T
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sensitivity is limited to ~60°C. Modeling these systems together would most certainly narrow the
range of possible thermal histories. The zircon He ages are much too old to add any additional
insight to the Tertiary evolution of the Shillong plateau, nevertheless they provided the important
constraint that peak temperatures during re-heating were not sufficiently high enough to re-set
the ZHe system.

The KTB model result shows a very similar t-T evolution than what was proposed by
Wagner et al. (1997) and later Stockli and Farley (2004) although the initiation of rapid cooling
happens slightly earlier ranging from ~100-80 Ma. Based on the quite large standard deviation of
the aliquot analysis, this result is not surprising. A potential increase in resolution could be
obtained by adding more zircon aliquots, which hopefully would decrease the standard deviation,
or adding another higher temperature system like the titanite (U-Th)/He thermochronometer.
Including AHe analysis would not be useful to refine this tectonic event but most certainly
improve the later stages of the thermal evolution after the main pulse of exhumation. As a
common factor of uncertainty, zircon analysis is challenged by the usually unknown and most
likely heterogeneous parent nuclide distribution, which greatly affects diffusion and Fr-
correction factor.

Comparing the results from the modeling of the Xainze transect, it again becomes apparent
that linking individual samples enhances the model results. A variety of approaches ranging from
Single Sample modeling based on mean ages, Single Sample modeling based on individual
aliquot ages, and using mean ages in the Sample Array module were presented and progressively
led to a narrower range of possible thermal histories. While numerous good and acceptable fits
for individual samples cover a larger, not well-constrained area in t-T space as demonstrated in

Fig. 2.15, the Sample Array module yields a much tighter area of realizable t-T evolutions. The
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rapid cooling event indicated by elevation invariant apatite ages is now clearly constrained at
~10 Ma. Because of the thermal history generation algorithm, which offsets an initial t-T
according to sample elevation and geothermal gradient, the result of the Sample Array module
resembles the thermal evolution for the top-most sample obtained through the Single Sample
modeling run. The practical consequence of this is that only the top-most, not all samples, can be

modeled initially to refine the model constraints for subsequent Sample Array runs.

4.4.2 HeMP — Capabilities, Lessons Learned, Best Practices

Intensive testing on different datasets, synthetic and real world, proved that HeMP is capable
of delivering reliable results while being a very versatile tool to analyze them in various ways.
An unprecedented wealth of options to present the raw data, model them and graphically display
the results in different ways empowers the user to investigate the dataset in detail. Deviations in
model ages between HeMP and HeFTy (see Fig. 4.2) are primarily attributed to differences in
the t-T interval setup and unknown precision of hard-coded constant values and their
conversions. Although HeMP applies the same rule as outlined by Ketcham (2000) and
subdivides the t-T path into smaller intervals not exceeding 3.5°C, it is not clear how the
duration of each interval in the case of very slow cooling is defined. As designed, the entire He
production for each individual t-T interval is added instantaneously at the beginning of the
interval and as a result, different setups will certainly produce slightly different model ages.
Based on internal testing, HeMP uses the rule that each interval should be no longer than 1% of
the overall t-T path, which ensures accurate results while keeping computational time within

acceptable limits.
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Forward modeling is a powerful tool to gain insight into the sensitivity of input parameters.
They run relatively quickly and can be used to assess the effects of grain size, parent nuclide
concentrations (eU), and diffusion parameters (D,, E;) on model ages. This adds great value not
only to scientists who strive to explore their data, but also to teachers who would like to
demonstrate simple concepts of He-diffusion in a classroom setting. Able to create a number of
thermal histories offset from each other by user-defined inputs greatly aids in analysis of
vertically spaced samples.

HeMP’s inverse modeling options, can be used to recover thermal histories from a given
dataset while also providing the range of uncertainties. The Single Sample modeling should be
the starting point of each analysis for several reasons. First, it has been shown that only modeling
the data will provide additional confidence if age dispersion is caused by much different
diffusion kinetics (size, eU) or other factors like zonation or inclusions need to be considered.
This is impressively documented by sample GP9S6 (Fig. 4.10B) where three aliquots separated
by ~50 Myrs yield thermal histories consistent with other samples of this group. Second, the
initial modeling provides additional constraints for subsequent Sample Array analysis increasing
the chance to find matching t-T paths.

Although very powerful, the user has to be aware that the t-T path offsets during modeling
of sample arrays are based on a range of fixed geothermal gradients. Given the impact of
exhumation/burial rates together with the related transient shape of the earth surface on the
thermal field around the collected samples, this approach is an oversimplification. In nature,
isotherms will be compressed during periods of rapid exhumation, conversely extended during
times of fast burial. Furthermore, topographic effects can have significant influence on the

geometry as well as the geothermal gradient especially for very low-T thermochronometers like
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apatite (Mantelow,...). These effects are obviously not accounted for in the current version of the
algorithm and their impact on the model results has to be evaluated on a case by case basis. As
mentioned earlier, the forward modeling tool in HeMP can help to understand the effects of
diverging/converging t-T paths on the model ages. Offsetting this additional complication to
some extent is the fact that model ages become more insensitive to the geothermal gradient with
increasing exhumation rates because the samples move quickly through the HePRZ. For slow
cooling/heating rates on the other hand, in can be assumed that the geothermal gradient is in
steady-state equilibrium and the simplification of a fixed T-offset is valid again. In this case, the
model results also allow direct inferences of the geothermal gradient.

Ongoing improvements of laboratory equipment (e.g. noble gas extraction lines, ICPMS) led
to increased detection limits and nowadays the analysis of low concentration single apatite grains
is no longer a problem. As a consequence, the use of multi-grain aliquots to obtain sufficient
amounts of parent and daughter products is not required and should be avoided. In (U-Th)/He
thermochronology, common lab procedure is to hand-select several grains of equal size and
combine them into one aliquot and only reproducible analysis of three or more aliquots from the
same sample are considered a reliable He age. Keeping in mind the effect of kinetic variability
(e.g. grain size, eU) on the final He age as a function of the thermal history (see Fig. 4.3), the
dogma of striving towards reproducibility might have to be reconsidered. Instead, selecting
single grains from different populations to obtain as much irreproducibility as possible could
narrow the range of acceptable thermal histories significantly. This is especially important if no
other mineral phase, no offset sample (vertical spacing) or other thermochronometer is available
and/or the sample spent considerable time in the HePRZ. In this context, the Cajon Pass borehole

with its heterogeneous lithologies presents an interesting case for a thought experiment related to
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sampling strategy. Assuming that apatites from two adjacent lithologies might have very
different parent concentrations, one could sample above and below the contact and combine the
samples into a single “pseudo” sample. Given the short distance, the thermal evolution has to be
the same but the temperature sensitivity of the sample has potentially been extended because of a
wider range in eU. As discussed earlier, it has been impossible during this study to yield fitting
thermal histories for the vertical transect and borehole datasets utilizing all aliquot ages within
the Sample Array module. Using the mean ages or a hybrid approach has been successful but the
drawback is clearly the loss of the intra-sample thermal sensitivity. In summary, modeling has
been proven a very iterative process supported by HeMP’s exceptional user-friendly layout and
cross-functionality.

Finally, the rationale behind using larger errors on some repeat runs needs further
explanation. The error assigned to an individual aliquot analysis (26 of 6% for apatite and 8% for
zircon) is based on the reproducibility of standards. Analyzing chards of big, gem-quality
Durango apatite crystals and idiomorph zircon crystals from the Fish Canyon tuff is a widely
accepted way of monitoring the reliability of the measurements and general lab procedures.
Unfortunately, both are not representative for the majority of natural samples because Durango
apatite does not require a Fr-correction, is basically free of inclusions and as well as Fish Canyon
tuff zircons was cooled almost instantaneously. Parent nuclide zonation is the rule rather than the
exception in zircons and occurs in apatites probably more often than desired as suggested by LA-
ICPMS measurements and observed track density distributions during AFT dating. As special
case of inhomogeneous distribution of parent isotopes are inclusions, which add the additional
complication that they might not dissolve during standard apatite procedures resulting in a

“parentless” He contribution. Both of these cases have significant impact on the Fr correction
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factor, which directly affects the final He age. Fitzgerald et al. (2006) provides a comprehensive
compilation of factors that contribute to variations in intra-sample AHe ages. Given the merit of
additional control points, it seems tempting to increase aliquot errors to yield better constraint t-T
paths. If the uncertainties become unreasonable, the user should consult other techniques (e.g.
depth profiling, SEM analysis, CT scanning) to either back up the inclusion problem, or
determine the severity of zoning which then could be incorporated in subsequent model runs.
The Shillong dataset has been challenging because of poor quality apatite, mostly related to
inclusions. Although, great care was taken to pick inclusion-free mineral grains, the possibility of
analysis of grains with undetected micro-inclusion could not be excluded. Relaxing the errors on
the individual analysis in order to increase the number of fitting aliquots seems to be a valid
approach and in this case justified by the observations.

Experience shows that modeling of (U-Th)/He data is usually done after all the samples
have been collected and analyzed and probably more often than desired, one would like to go
back to the field to collect another sample because of inconclusive results. Using remote sensing
techniques as an analogy, HeMP offers a variety of tools to improve sampling and analysis
strategies before going to the field, which might save time and money for unnecessary analysis.
Taking the vertical relief of a transect of interest together with a number of hypothesized thermal
histories, one could forward model the age versus elevation relationships and specifically target
elevations where the results show characteristic patterns (e.g. inflection points). During sample
analysis, iterative modeling of the growing number of available He ages could be used to limit
the effort to samples that characterize the thermal history sufficiently therefore, avoiding over-
analysis that would not add any improvements. Keeping in mind the dependency of a He ages on

grain size and eU (unfortunately this cannot be verified before the analysis) the grain selection
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and number of aliquots strategy could be optimized on the go. As the thermochronometer with
the lowest T-sensitivity used routinely, the apatite (U-Th/He) technique is capable of answering a
variety of geologic questions as presented in the case studies. Deployed at the beginning of the
analysis process, spending time and money on other techniques might be avoided if the dataset is
capable of recovering the sought after information. On the other hand, the results from AHe
analysis can help to address which other low-T system is capable of filling the gaps in a weakly
constrained thermal history and pin-point existing samples or other sample locations for
additional thermochronological analysis.

On a final note, the user has to be aware at all times that the models are based on
simplifications (e.g. diffusion in a sphere) and that a naturally occurring process that evolves
over millions of years is modeled in minutes or hours using discrete time intervals that compress
a considerable amount of time into a single mathematical operation. Furthermore, and most
importantly, the results can only be as good as the input and modeling will yield a range of
possible outcomes. In the end and it is up to the user’s responsibility to carefully evaluate the

results and the assumptions that went into the model before drawing final conclusions.

4.5 CONCLUSIONS

(U-Th)/He thermochronology has been applied to answer critical questions in many tectonic
settings and has proven itself as a valuable technique to access the late-stage history of an
evolving landscape. Quantitative analysis of the data to derive meaningful thermal histories has
become a standard approach and a variety of software packages is available to extract this
information. The new tool presented here combines many different modules ranging from

calculation of Fr to several forward and inverse modeling modules. The Sample Array module
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has proven to be of great value to derive thermal histories from vertical transects or boreholes
samples where independent sample analysis fails to sufficiently constrain the thermal history.
HeMP’s capability to graphically present input as well as output data in many different ways
enables the user to dissect the results in detail and examine their viability. A single input table
that can be quickly adjusted to test different input parameters (e.g. diffusion coefficients,
activation energies, stopping distances,...) paired with an exceptional user-friendly surface
makes HeMP a very versatile and easy to use platform for advanced analysis of (U-Th)/He data.
Based on a wealth of experience with multiple datasets from different tectonic settings, is
has become apparent that sample selection is key to successfully gain insight into the thermal
history. Quickly cooled samples are less sensitive to intra-sample kinetic variations and as a
result might require other thermochronometers (e.g. zircon additional to apatite analysis) or even
another technique (e.g. AFT) to broaden the thermal sensitivity of the sample. Slowly cooled
samples on the other hand might be already sufficiently constrained by single-

thermochronometer analysis with favorable spreads in kinetic parameters.
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Figure 4.1: Overview of model setup, input requirements, and some examples of available
outputs for the various He-modeling modules
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Figure 4.2: Test scenarios to compare HeFTy model ages with results obtained from the Single
Sample(s) forward modeling module. Left-hand graph shows thermals histories used for
testing. Right-hand graph shows the normalized model ages plotted against the normalized
model ages obtained from HeFTy. Shades of grey indicate the t-T path, and type of symbols
the kinetic model used for generating model ages. Dashed lines mark 5 and 10% deviations
from the HeFTy age.
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Figure 4.3: He age evolution plots for 10 apatite grains with varying a) grain size (solid black
lines) and b) eU (dashed grey lines) based on the four generic t-T paths used earlier. Note
that an age difference of almost 40 myrs is realizable if the sample underwent burial and
subsequent exhumation (t-T history 4) and eU ranges from 30-120 ppm.
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Figure 4.4: t-T History 3 used to illustrate the prediction of He ages based on vertical sample
spacing and eU. Left-hand graph: Suite of thermal histories based on a geothermal gradient
of 25°C/km representing t-T histories for 11 samples spaced by 200 m. Right-hand graph:
Dashed grey lines connect AHe ages based on equal eU and show the predicted decrease in
ages towards greater depths (higher T). Black solid line represents the AHe ages from a
hypothetical sample suite collected from e.g. a cored borehole section. Even a very simple
thermal history can produce complicated age vs. depth relationships if the diffusion kinetics
are dissimilar.
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Figure 4.5: Example of the Sample Array forward modeling module. Left-hand graph: An initial
thermal history (bold black line) is offset with a geothermal gradient of 23°C/km (solid
black lines) and 39°C/km (dashed grey lines). Right-hand graph: He age versus depth plot
for a synthetic dataset of 11 samples with apatite and zircon analysis. Predicted model ages
for a geothermal gradient of 39°C/km are too young (dashed grey lines) and too old for
23°C/km (solid black lines). Based on this user-defined thermal history, a geothermal
gradient in between might fit the data.
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Figure 4.6: Cross plots for Cajon Pass samples showing the relationships between He age, grain
size, and eU.
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Figure 4.7: Results from inverse modeling of individual Cajon Pass samples. Left column shows
resulting acceptable t-T paths, right column the model (lines) and sample (circles) ages.
Error bars, where visible, indicate 6% (20) uncertainty. Aliquot combinations that resulted
in fitting thermal histories are highlighted by different shades of grey.

308



i
b rl;
115@ .
EEEEREE L
FERREREES
P
B S A
SRR VR R
SEERTRY BN
L
NEEEEEN D

20

10
He Age (Myrs)

309

200

He Age (Myrs)



Figure 4.8: Effective Uranium concentration (eU) plotted against He ages for the two populations
of Shillong Plateau samples. Note the positive correlation for Group 1 above 50 ppm.

310



| | | |
I I I I
| | | | ]
I I I I I
i i i i i
| | | | |
I I I I I
| i i i i |
| | | |
I I I I I
i i i i i
| | | | |
I I I I I
i i i i i
| | | | —O0—
| | | | | |
I I I I I  E—
i i i i i
| | | | | S
| | | | <t e
| | | | | o
I I I I I I
| | | | | =]
i i i i i .
| | | | | N}
: N S
i | | | | n
. [ N R
| | | | | | —
I I I I I I
i i i i ]
T T | | | |
I I I I I I
i i i i i i
| | | | | |
I I I I I I
i i | | i i
| | | | p
I I I I I I |
| | | | | | 7
=) o S o = o o = =)
o = > @ ¥ A Q = S
st —_ et — - - = ot =
(SIAN) 98y oH
i i i
| | |
i i i
| | |
i i i
| | |
o 1 [ N
. 1 1 .
; ; ; ;
i i i i
| | | |
i i i i
| | | |
| | | |
| | | |
e - T R ——
i i i i
| | | |
i i i i
| | | |
i i i i
| | | |
i i i i
“““ , S e
3
|
G
v |
Al I I
O | |
(=) (=3 (=) f=J (=) (=3 (=] (=) (=3
Q + ° o S Q ¥ >
- — = -

50

200

Aliquot

Time (Ma)

79,n=1838
45, n=259%4
7

89, n=49
26

n=

>

m
Q
D
=
)

(D39p) L

100
Time (Ma)

150

Aliquot

456,n=955

=190

146,n

140

N
z
@)
N
~
©)

(D39p) L

00

1
Time (Ma)

150

200

Aliquot

311



Figure 4.9: Results of Single Sample inverse modeling of Shillong apatites for Group 1. Left
column shows resulting acceptable t-T paths, right column the model (lines) and sample
(circles) ages. Error bars, where visible, indicate 6% (2c) uncertainty. Aliquot combinations
that resulted in fitting thermal histories are highlighted by different shades of grey. Dashed
black lines outline the acceptable solutions from independent AFT analysis (Biswas et al.,

2006).

312



1278,n=355
1257,n=199

2356,n=13

300

Aliquot

Time (Ma)

23450292 |

50

100
Time (Ma)

150

Aliquot

313



Figure 4.10: Results of Single Sample inverse modeling of Shillong apatites for Group I;
continued.
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Figure 4.11: Results of Single Sample inverse modeling of Shillong apatites for Group 1 using
larger uncertainties (10%).
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Figure 4.12: Results of Single Sample inverse modeling of Shillong apatites for Group 2. Left
column shows resulting acceptable t-T paths, right column the model (lines) and sample
(circles) ages. Error bars, where visible, indicate 6% (2c) uncertainty. Aliquot combinations
that resulted in fitting thermal histories are highlighted by different shades of grey. Dashed
black lines outline the acceptable solutions from independent AFT analysis (Biswas et al.,

2006).
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Figure 4.13: Results of Single Sample inverse modeling of Shillong apatites for Group 2;
continued.
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Figure 4.14: Mean He ages for apatite (white circles) / zircon (black circles) pairs of a vertical
transect collected in Tibet plotted against sample elevations. Error bars indicate the 2o
uncertainty based on the standard deviation of the aliquot analysis.
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Figure 4.15: Results of Single Sample inverse modeling of the Tibet samples based on the mean
ages. Acceptable fits are shown in light grey, good fit solutions in dark grey.
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Figure 4.16: Acceptable solutions after inverse modeling of the Tibet samples based on
individual aliquot ages. Left column shows resulting acceptable t-T paths, right column the
model (lines) and sample (circles) ages. Error bars, where visible, indicate 6% (20)
uncertainty. Aliquot combinations that resulted in fitting thermal histories are highlighted by
different shades of grey. White circles correspond to apatite, black circles to zircon aliquots.
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Figure 4.17: Acceptable solutions after inverse modeling of the Tibet samples based on
individual aliquot ages; continued.
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Figure 4.18: KTB samples samples modeled with the Sample Array module. Left side shows t-T
paths yielding acceptable solutions. Black dashed line corresponds to the proposed thermal
history from Wagner et al. (1997) and later Stockli and Farley (2004). Right side shows the
model ages (lines) and mean of zircon aliquot analysis (black circles). Error bars indicate the
2c uncertainty based on the standard deviation of the aliquot analysis. Shades of grey depict
individual geothermal gradients used as input. Inset shows distribution of number of fits per
geothermal gradient.
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Figure 4.19: Cajon Pass samples modeled with the Sample Array module. A) Acceptable
solutions based on initial model run using mean aliquot ages for the entire transect. Best
fitting geothermal gradient (30°C/km) is highlighted in blue. B) Final results from modeling
oldest and youngest fitting aliquot from sample CJ-12 together with mean ages from the
other samples. Inset shows distribution of number of fits per geothermal gradient.
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Figure 4.20: Vertical transect (VT-D) from Tibet modeled with the Sample Array module.
Additional to standard plots, the exhumation rate and cumulative exhumation over time are
displayed. Blue lines correspond to the lowest geothermal gradient (15°C/km), red lines to
the highest geothermal gradient (50°C/km). Inset shows distribution of number of fits per
geothermal gradient.
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