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WHEN IS JONES' SPACE NORMAL?

WILLIAM G. FLEISSNER

ABSTRACT. In the search for nonmetrizable normal Moore spaces,

Jones proposed the space discussed in this paper.   He was unable to de-

termine if it was normal.   We show that the normality of this space depends

on set theoretic principles more recent than  2        < 2      ,   which he used to

show that separable normal Moore spaces are metrizable.

In §1 we state the required set theory.  In §2 we describe a special

Aronszajn tree   T,  the set of points of type a>  in the Jones' road space.  In

§3 we show   T is not normal; in §4 we show   T is normal.

1.   Set theory.    The material here, except for 0>  can be found in I.

Juhász' book [2].  A subset of co.   is cub if it is unbounded and closed in

the order topology.  A subset of a>.   is stationary if it intersects every cub

set. A function / is pressing down on x   if for a £ x, ¡(a) < a.   An old

result of Alexandrov and Urysohn is that if / is pressing down on &>j - ¡0|,

then there is some  a  so that /"  jaj   is uncountable.   A strengthening of

this is the pressing down lemma (PDL):   If / is pressing down on a station-

ary set, it is constant on a stationary set.

Jensen's 0  asserts the existence of a function Y such that Y(a): a —> a

and for all  /:  co, —> a>.,  \a:  f fa - Y(a)\ is stationary.   Two ele-

ments  / and  g of a partially ordered set  (P, <)  are incompatible if there is

no  h £ P  such that  h < f and h < g.   A partial order is ccc if every set of

(pairwise) incompatible elements is countable; or equivalently, every un-

countable  W C P  contains two compatible elements.  Martin's axiom (MA)

states that for every ccc partial order   (P, <) and every collection   F =

|Da: a<w1l  of dense subsets of P there is F-generic G C P; that is G satisfies

(i) x > y,   y £ G  implies  x £ G;

(ii) x, y £ G implies there is  z £ G,   z < x,   z < y;

(iii)  G Ci Da4 0  for all  a<coy
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MA and 0   are (separately) consistent with the usual axioms of set theory;

they were originally used to show the consistency and independence of

Souslin's hypothesis.

a>l —> ico y cú)  is a theorem of Erdös which says that if  R  maps the un-

ordered pairs of distinct elements of an uncountable set W to ¡0, lj,  then

either there is an uncountable set  SQ which is homogeneous for 0,  i.e. such

that a, ß £ S0 implies R(\a, ß\) = 0, or there is an infinite set Sj  homo-

geneous for  1.

A family of sets j Aa: a < k\ is called quasidisjoint (or a A-system) if,

^ a ^ ^ R ~ ll (2^a: a < K! for distinct a, ß. A popular combinatorial lemma

states that if W is an uncountable set of finite sets, there is an uncountable

subset of W of quasidisjoint sets.

2. The space  T.  If a is a countable, increasing, continuous sequence

of rationals with a last element, let o* be the last element,  \o\   the order

type of o,  and o t ß+ 1   the sequence of the first ß + 1  elements of o.   A

special Aronszajn tree  T  is a collection of such sequences so that

(i) Ta= \o: \o\ = a -t- 1| is countable;

(ii) if oe Ta,  then a \ ß + 1 £ Tß;

(iii) if o£ Ta,  qy o*,  and ß > a,  then there is  r£ T„ so that r* = q

and r I a + 1 = o.

Such a  T can be constructed, level by level, by transfinite induction

using (iii) as induction hypothesis.  The     map order embeds   T  into the

rationals.

For a < |ff|,  set  V = jr: r = o f ß + 1  for some ß > a + 1|.  Let

ßa= Í Va    :  a < \o\\  be a base for o.  This defines a regular space, since

the base sets are closed.  A development can be defined, using the     map

and the countableness of Q. If we connect re Ta .   with r \ a + 1 e Ta by

an arc, we obtain Jones' road space [1],

Let A be a subset of  T so that  Ta n A = \aa\  and aa = 1. Then A

is closed and discrete. If / is pressing down, let / (a) = V,      ria))'

Placing an open set about each  a£ A   determines a pressing down  /,   so by

PDL, uncountably many open sets reach down to the same   T   ,  a countable

set.  We conclude that the open sets are not disjoint,  T  is not collection-

wise Hausdorff, and  T  is not metrizable.

3.0 implies T is not normal. Let Aa=|a/3: ß < a\. For x C A, let

W(f, x)= closure U<Aa): aa £ x\. If aa 4 Wif, Aa), define gia) > fia)

so that  g (a) O Wif, Aa) = 0.  Then  g~  \a\ is always countable, so by
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PDL,  dorn g is not stationary.  We conclude that  let:   aa £ W(f, Aa)\ contains

a cub set.

Let  r witness 0.  We define inductively subsets  Ha of  Aa so that

H=\J\Ha:  a<w1l  cannot be separated from   A - H.  Let  HQ = 0 and let

WA= U \Ha:   a<X\ for limit A.  If  aa £ WiY(a), Ha),  let  Ha+l = Ha; other-

wise let  Ha+1 = Ha\j\aa\.  If  T is normal there is an  / so that   W(f, //) n

W(/, A - //) = 0.  By 0 and the preceding paragraph, there is an  a so that

r(a) = /fa and  aae Wif, Aj.  If aaeWif,Ha), then  aaeA-/z; if not,

then   aa£ W(f, Aa- H a)  and   aa £ H.  So   aa £ Wif, H) O Wif, A - H).  Contra-

diction.

By a similar argument, the author has shown that Gödel's axiom of con-

structibility implies that every normal space of character X y  is collection-

wise Hausdorff L3L  Another application of 0 is to construct Aronszajn trees

order embeddable in the reals but not the rationals L5J.

4.  MA implies  T is normal.   Let   H, K be disjoint closed sets.  In what

follows   h is implicitly an element of  //,  and  k of   K.   Set   P = I/:   /is finite,

dorn /C H U K,  f(o) £ BŒ,  and  fih) O fik) = 0|,  and  f < g if dom g C dom /

and for all o £ dorn g,   gier) C fio).  Then  / and   g are incompatible (have no

common extension) iff for some   h, k,   fih) Cl gik) 4 0 or  /(ze) O gih) 4 0-

Da=\f: o £ dom f\  is dense.  If  G is a \D^ o e H u /(¡-generic subset of  P

then  Ui^:   V = fih) for some   /e G,   Ä £ H\,  and (J ¡ V:   V - /(K) for some

/e G,   zee K|  are disjoint open sets separating  // and   K.  We may conclude

from  MA that there is such a   G after we show  \P, <) has ccc.

Define  f*io) to be   r*  where   r is the first initial segment of o~ in  /(a).

Arbitrarily order the domain of each  /.  Let  h'. be the z'th element of dom fC\H,

and   k'. the jth element of dom / O K.  To simplify notation we suppress the

superscript in  fih).

Let  W be an uncountable subset of   P.   Because there are only countably

many pairs of integers, and countably many finite sequences of rationals,

there are integers   tz, m,  and an uncountable subset   W   of   W such that

dom/=t/z0... hn_v V ¿m-l!>  f*ih) = g*ih),  and  f*ik) = g*ik)  for

all  f, g£ W',   i < n,   j < 772.

It cannot happen that simultaneously   f^ih) n f2ik) 4 0,  fyih^n

fAk) 4 0,  and  /2(t7.)  O fAk) 4 0-  For then there would be a sequence

ending in the greater of  /  (h.) and  /  (k) in each of these intersections.

Since a sequence in   T has only one such initial segment, we conclude that

it is the same o in each intersection, so o £ /2'^p C\ f2(k),  and f2 4 P.
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Let  W' = í/a:  a<cüy\,  and define (for a < ß) R..(\a, ß\) = 1  if

fa^h? n //3(V 4 0 and  0 otherwise.  Define   R'fy({a, /3|) = 1   if  fß(h)n

fa(k) 4 0  and 0 otherwise.  Apply a>x —» ico y co) to the partition   Rj,.

By the preceding paragraph, there is no  set of 3 elements homogeneous for

1, so there is   W" homogeneous for 0. Apply «j—Aa> y cú) to the partition

R^2 restricted to   W .   Continue in this way through all 2t?2?2 partitions.

The result is an uncountable set of compatible elements.  We conclude

v i S' has ccc and that   T is normal.

A similar application of MA is to show that   "every Aronszajn tree is

embeddable in the rationals" [6],  Jensen [4] used iterated Souslin forcing

to construct a model of the continuum hypothesis + "every Aronszajn tree is

embeddable in the rationals."  It would be nice to extend this to include

"Jones' space is normal".
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