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SOME SPACES RELATED TO TOPOLOGICAL INEQUALITIES
PROVEN BY THE ERDÖS-RADO THEOREM

WILLIAM G. FLEISSNER

Abstract. The Erdös-Rado theorem is very useful in proving cardinal

inequalities in topology. It has been suggested that certain of these inequa-

lities might be strengthened. We note that trees constructed by Jensen and

Gregory using various extra axioms of set theory yield several counter-

examples to these suggestions; for example, a space X, \X\ = u2, c(X) = ux,

X(X) — <d, answering a question of Hajnal and Juhász. We consider the

apparently similar relation between \X\, e(X), and d^i(X) of Ginsburg and

Woods. Using combinatorial consequences of V = L, we construct Gs tree

families, and establish that, assuming V = L. an infinite cardinal k is weakly

compact iff dV(X) < k, ea(X) c ic imply \X\ < k.

We consider products of countable chain condition spaces, and show that,

using Cohen forcing that (2" can be anything allowed by Konig's theorem

and there are spaces X, Y, c(X) = c(Y) = u, c(X x Y) = 2"). A variation

is a space W with the property c(W") = u>„_x.

The Erdös-Rado theorem, (2")+ ->(k+)2, a < k, is very useful in estab-

lishing inequalities of cardinal functions, as amply illustrated in I. Juhász

book. It has been suggested that certain of these inequalities might be

sharpened. For example, |A| < 2x(*)c(/,r) gives a bound for |A| in terms of the

single variable max(x(A), c(A)). Can a sharper bound be given as a function

of two variables, x(-^Q and c(A)? The product of k copies of the two point

discrete space demonstrates that x(^0 must be in the exponent, but no

example requiring c(A') to be in the exponent is known. The starting point of

this research was the conjecture that |A| < c(Xyx(^x\

In A-E below, we list five inequalities proven by the Erdös-Rado theorem.

A, B, and C appear in [Ju], D in [GW,] and E in [GW2]. We also list how

certain spaces, whose existence is known to be consistent with the usual

axioms of set theory, refute conjectured improvements. B is a first countable

co2-Souslin line, L is the order compactification of B, S is the disjoint union of

to copies of L, and A is the antichain in an u2, w Gs tree family.

A. |A| > 2xmc(X) for T2 spaces A: our space B refutes |A| < c(XYm.

B. \X\ < 2"WîOT for T2 spaces A: our space B refutes |A| < s(Xf(X).

C. cu(X) < 2c(X) for compact T2 spaces A; our space L refutes cu(X) <

c(AT.
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314 W. G. FLEISSNER

D. c(ßX — X) < 2K(X)c(XX for completely regular spaces X; our space S

refutes c(ßX - X) < c(X)K(X).

E.\X\ < 2*WW for Tx spaces A; our spaced refutes |A"| < e(X)^(X\

The plan of this paper is as follows. In §1 we introduce the notation and

terminology used throughout this paper. We define convenient trees and use

them to construct the spaces B, L and S. Next we define Gs tree families and

use them to define the space A. In §3, we construct convenient trees from

Souslin trees and construct G tree families assuming V = L. Then we discuss

a sup = max problem related to inequality E and contrast it with the

analogous problems A-D. In §5, we discuss the cellularity of the product of

two ccc spaces. The Erdös-Rado theorem gives an upper bound of c and we

show that this upper bound can be attained no matter what the value of c.

1. We denote the cardinality of X by \X\. We use [a]B to denote the set of

subsets of a of cardinality ß: [a]<w is the set of finite subsets of a. The

partition relation a —>(ß)"y means that whenever P: [a]n —> y there is S E y

and H E [a]ß with P"[H]n = {8).

For a topological space X, with topology o(X), we define

cellularity c(X) = to • sup{|%,|: % c o(X), % is disjoint};

Gs cellularity cu(X) = co • sup{|%|: U E % is Gs, % is disjoint};

character x(^) = sup {min {1%^: % is a nghd basis atp}:

PEA"};

pseudocharacter     ¡P(X) = sup {min (|%|: D% = {p}}'-P E x}\

spread s(X) = to • sup(|Z)|: D c X, D is discrete};

extent e(X) = u ■ sup{\D\: D c X, Dis closed, discrete};

Gs degree d^(X) = min{|%|: % Eo(X2), n% =diagA-};

K coweight K(X) = min{|5C|: K E % is cpt, V/7 c X,

HcptBK E%,H EK).

We define (the phrase) ca(X) < tc to mean that there is no set of cardinality tc

of disjoint open sets of X. We similarly define ea(X) < k and sa(X) < tc. For

a completely regular space X, ßX is the Stone-Cech compactification. A* is a

ccc space iff c(X) = to.

A tree is a partially ordered set T, such that for every x ET, the set

x = {y E T:y < x] is well ordered. Set x = {x) u x. The order o(x) of x is

the order type of x. The ath level of F is Ta = {x £ T: o(X) = a). The

restriction of T to height a is

T\a = {x £ T:o(x) < a).

A branch of F is a maximal linearly ordered subset of T; an a-branch is a

branch of order type a. We say an a-branch b of T\a continues if there is

x E T , x = b. An antichain of F is a set of incomparable elements of T; we
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SOME SPACES RELATED TO TOPOLOGICAL INEQUALITIES 315

abbreviate maximal antichain by mac. A A-Souslin tree is a tree with elements

of order a for a < X, but no branches or antichains of cardinality X.

2. Problem 77/A of [EH] is whether c(A) = to, implies |A| = to, for first

countable linearly ordered spaces A, assuming the Continuum Hypothesis.

This is a special case of the question of whether inequality A can be

sharpened. We begin this section by reviewing Jensen's solution to this

problem.

Let us call a tree TX, p convenient if

(i) every antichain of T has cardinality less than X;

(ii) every element of T has an infinite number of immediate successors;

(iii) there are at least À branches of T of cofinality p.

Let T be a c+, co convenient tree; let B = {ba: a < c + } be a family of

branches of cofinality to; let (xa": n < u) be <t increasing and cofinal in ba.

We obtain our spaces by "squashing" T to a line [Kp,], [Ru]. Let <o be a

linear order on T. Because of (ii) we may choose <o so that for all x E T, the

set of immediate successors of x has neither a <o greatest nor a <o least

element. We define a linear order < i on Br( T), the set of all branches of T, by

b <x b'iff 3a b\a = b'\a   and   b(a) <o b'(a).

We give Bx(T) the topology induced by the order <i. Let B (= {ba:

a < c+}) have the subspace topology. Let L be the order completion of

Br(T) with endpoints. By the Heine-Borel theorem, L is compact. Then

L X to, (i.e. countably many disjoint copies of L) is a-compact.

For x G T, define (x) = {¿? E Br(T): x G b). The point of (ii) and our

choice of <o is that (x) is open in Br(7"), and in L, (x) c Interior

(closure(x)). The point of (i) is that c(Br(7")) < c + . The point of (iii) is that

{(x£): n < to} is neighborhood base for ba.

Let us determine the relevant cardinal functions for B, L, and S. The

families {(xa"): n < u) demonstrate that x(A) = to = xp(X). A nonempty

subset of B contains some (x), so by (i) c(B) < c+. Because B is a linearly

ordered topological space, s(B) = c(B). Because B is dense in L, c(L) =

c(B), so c(L) < (o2- Each ba is a Gs in L, so cu(L) > c+. Let S = to X L.

Every compact subset of S is contained in some m X L, m < to, so K(S) =

co. Next c(S) = c(L)- to < c+. We define open subsets Ua, a < c + , of S:

ua " {{"} x (*«)= n < w}- Then {(intpschsUa) - S: a < c+) is a disjoint

family of nonempty open subsets of ßS - S.

The existence of a space such as A of E does not seem (at least to the

author) to follow from the existence of a c + , to convenient tree. The results of

§4 also tend to indicate that E is fundamentally different from A-D. So we

define Gs tree families. For À, p regular, p < X, a family 5" = [Ta: a < p) is

a X, p Gs tree family iff
(i) Va < p Ta G "X;

(ii) Va < p T" is a À Souslin tree, T* is not;

(iii) V/3 < a < p Va, t E Ta o <t° t implies a\ß <T> r\ ß;
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(i\) x,y E T11 X <r*y iff Va < p x\a <r«y|a.

We will construct the space A from a c+, w G6 tree family ST. Let A be an

antichain of Tu of cardinality c+. The nth basic open neighborhood of a is

Bn(a) = {a' E A: a'\n <„ a\n). We note e(A) < s(A) < c, because c+ is

regular and each T" is a c+ Souslin tree. A has a Gs diagonal because for all

aE A

(~)   {a' £ A: a'\n < a\n or a\n < ö'|ti} = {a).
n<u>

3. In the previous section we constructed spaces from convenient trees and

Gs tree families. In this section we construct convenient trees and Gs tree

families.

Jensen [J] and Gregory [G] constructed co2-Souslin trees from combinatorial

principles. These trees are co2, co convenient trees as well. Not every co2-Souslin

tree is an co2, co convenient tree; using CH and 0 , co2 one can construct an

co2-Souslin tree "pruning" only at levels of cofinality co,. However, we can

construct a convenient tree from a Souslin tree.

Theorem. If there is a X-Souslin tree S, then there is a X, co convenient tree

T.

Proof. As in the previous section, we may "squash" S to an order

complete line Ls. Because Ls is order complete and dense, whenever a < b

there is c, a < c < b, such that (a, c) has cofinality co.

Using this fact we will construct a new tree T from Ls. Elements of F will

be intervals (a, b); the order will be given by (a, b) < (a', b') iff (a, b) d

(a', b'). By induction on a < X, we construct Ta, the ath level of F to satisfy

the following conditions

0. F0 = Ls;
1. U Ta is dense in Ls;

2. every element of Ta+] is a proper subset of an element of Ta and has

cofinality co;

3. every element of Ta contains infinitely many elements of Ta+X;

4. if (a, c) £ Ta and has cofinality co, then for some a' (a', c) £ Ta+X;

5. for Ô a limit ordinal Ts is the set of intersections f~){tß' ß < S), where

tß e Tß.
We verify that F satisfies the three conditions to be a convenient tree.

Because S was a X-Souslin tree, F is, too, so F satisfies (i). Condition 3 insures

that T satisfies (ii). By 4 and 5, if (a, c) £ T and has cofinality co, then the set

of elements of T with c as endpoint determine a branch of cofinality co. By 2,

there are X such branches.

We now construct a X, p Gs tree family assuming V = L. There are two

cases: X is strongly inaccessible and À = k + . If X is strongly inaccessible, we

use ESX: There are F EX, S = {Sa: a E E) satisfying

(i) E is stationary in X, Va < À there is Ka closed unbounded in a,

Ka n E = 0, and ß E E implies cfß = p,
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(ii) VA c X, (a: Sa = A n a) is stationary.

If X = k+, we use fj*, which is ESk+ plus the existence of {Cß: ß < X, ß a

limit ordinal} satisfying

(iii) Cß is closed and unbounded in ß,

(iv) if y is a limit point of Cß then y E E and Cy = Cß n y. Further, if

p > to, we use « < X, v < p implies X > k".

We will construct T = T» by constructing T|a and A = [aß: ß G E), the

future large antichain, by induction on a < X. As we will use S to fix mac's in

each T", v < p, we assume, via a bijection between X and (J {"X: v < p), that

(ii) holds for A c U ("a: p < w}. Our induction hypothesis on a will be

(1)|rial < X,Vv < (il'c "X;
(2) Vß<y<a,ß,yGE, o(aß) = ß, o(ay) = y,aßi ay;

(3) Vß < aVv < p Sßisa mac in T"\ ß implies Sß is a mac in T"|a;

(4) Vß < y < a Vx E 7¿ 3y E Ty x < y;

(5) Vß < y < a Vv < p Va E Ty Vx E 7^ (x|p < a and x n ^ =0)

implies that (there are (at least) two distinct y, z G Ty x < y, x < z, (y U z)

n A =0, a = y\v = z\v);

(6) (i) (if X is inaccessible) Vß + 1 < a, ß £ E every /3-branch of T| ß

continues;

(ii) (if X = k+) Vß + 1 < a, ß a limit ordinal ß g £, if cf ß < p every ß

branch of T\ ß continues, if cf ß > p the ß branch ¿?(x, ß) continues, as

defined below.

We define b(x, ß) by defining a set of y's cofinal in it. Let < ' well order

^X. Let (y(o): o < 17) be the monotone enumeration of Cß (from □?)■ Let 0

be least such that x E Tyigy Inductively define ys, 5 < 0 < 17:

y¿ is the < ' leasty E 7^ such that x < y andy n A =0 if x n A =0.

ys+x is the < ' least y G Ty(y+X) such that x < y and y n A =0 if

x n A =0.

ys for limit 8 is the unique y E Ty(i) such that ô < 0' < S implies y's < ys.

(ys exists by (iv) and induction hypothesis.) This completes the definition of

Z?(x, ß) and the statement of the induction hypothesis.

We construct T|a by induction on a.

For a = 1 let Tx be the constant function 0. For a a limit ordinal we must

set T\a = Uß<aTß. For a = ß + \, ß = y + Í, give every element of Tß

two immediate successors and add more elements as required by (5).

If a = ß + 1, ß a limit ordinal ß £ E, continue the branches as required

by (6). If ß G E, continue only enough branches to satisfy (4) and (5). If Sß is

a mac in T"\ß, we require that these branches contain some x, x\v G Sß.

Then choose an element aß G Tß to satisfy (2).

We verify that in this last case the construction can be done to satisfy the

induction hypothesis, the other cases being simpler. By (i) let (y(o): ô < r¡)

be a monotone enumeration of a set Kß closed, cofinal in ß, Kß n E =0.

Since Sß is a mac in T"\ß for every x E T\ß there is a E Sß, o < x\v or

x\v < a. In the latter case by (5) there is x', x < x', x'\v = a and x' n A =0

if x n A =0. Call such an x correct. For x c T\ ß, x correct, let 0 be least
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such that x E Ty(¿y We may inductively choose ys, 8 < o < r¡, ys E Fy(5),

ys > x, using clause 4 of the induction hypothesis if 5 is a successor, clause 6

if 8 is a limit. Thus clause 4 of the induction hypothesis holds at a. Clause 5

at a may be verified with the same technique. Having verified clause 5 at a,

we may use it to choose aß to satisfy clause 2. Clause 5 continues to hold

because we required two distinct elements for each x, o.

By (2) T has an antichain A of cardinality X. By (3) and the usual 0

argument, each T", v < p, is a X Souslin tree. This completes the construction

of a X, p Gs tree family.

4. There are sup = max-like questions associated with the inequalities A-E.

For example, what is the class 6(x, c) of cardinal satisfying "x(A") < tc,

ca(X) < k implies \X\ < tc for Hausdorff XT

(Associated with inequality C is the class G(-, c) of cardinals tc such that

whenever A is a compact T2 space with ca(X) < k then every disjoint family

of intersections of v < k open subsets of X has cardinality less than k.)

Theorem: (a) k weakly compact implies k £ C(x, c) n C(a\(/, e);

(b) X < tc, 2x > tc implies tc £ Q(x, c) U Q(a\p, e);

(c) tc singular strong limit implies k E Q(x, c) — Q(dp, e);

(d) (V = L) k inaccessible, not weakly compact implies k £ 6(x, c) u

(?W, e);
(e) (a)-(d) «oW w/'/A C(t//, 5), G(-, c), or G(tc, c) in place of <2(x, c).

Proof, (a) ic —> (tc)2, a < tc.

(b) Consider 2X with the usual product topology.

(c) tc £ C(x, c) by [Ju, Chapter 3]. The space k + 1 where points a, a < k

are isolated and the point tc has the neighborhoods from the order topology

shows tc £ G(d\p, e).

(d) Consider convenient trees and Gs tree families.

(e) As above. To show (b) for ß(K, c), let X be least such that 2X > tc.

Consider U a<x "2 with the "tree" topology.

5. The question of whether the product of ccc spaces is ccc is an old

question, but most of the results are recent. Kurepa [Kp,] showed that the

product of two Souslin lines has cellularity co,, and that the cellularity of a

product of two (in fact, any family of) ccc spaces has cellularity at most c,

[Kp2]. This latter result can be proven by the Erdös-Rado theorem.

An interesting consequence of MA -I—1 CH is that the product of ccc

spaces is ccc. Galvin [Ga] showed that CH allows the construction of two ccc

spaces whose product is not ccc. Roitman [Ro] constructs a space similar to

Galvin's in models obtained by adding a Cohen or random real. In this

context Ketonen's question of whether c(A') = co = c(Y) implies c(X X Y)

< co, is natural.

In this section we show that adding k Cohen reals gives ccc spaces X and Y

with c(X X Y) > k. We relabel the forcing conditions so that Galvin-type

spaces are constructed directly from the generic filter.
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Let P: [K]2-»{0, 1). Let X(Y) be the set of all H c k maximal with

respect to P"[H]2 c {0} (P"[H]2 c {1}). For a G [k]<u, define Bxa = {//

E A: a G H) and BYa = {// E Y: a G H). Give X(Y) the topology

generated by {Bxa: a G [k]<u] ({BYa: a G [*]<"}). It is easy to see that

c(X X Y) > k, for % = {Bx{a} X BY{a}: a < k) is a family of disjoint

nonempty open sets. Bx(a) X BY{a) =£0 because [{a}]2 =0, hence

P"[{a}]2 =0c {0} n {1}. For a * ß, P(a, ß) = 0, say, and then BY{a) n

BY{ß) =0, so % is a disjoint family. The problem, thus, is to define P so

that A and Y axe ccc. We accomplish this by defining P generically.

Fix .k. Let ty = {/?: \p\ < to, p is a funciton, dom p c [k]2, range p c

{0, 1}}. For p G 9, define supp/? to be the smallest a g k such that

dom/? c [a]2. Because later we will use fancier conditions we note that the

proof below uses only that 9 is ccc and that supp/? is finite.

Let M be a countable transitive model of set theory, let G be an A/-generic

ultrafilter on <3>. Define P: [/cf -> {0, 1} by P = (J G. Then if A, Y axe

defined as above c(X x Y) > k. We show A is ccc; of course, a parallel

proof shows Y is ccc.

If A is not ccc then there is a family of to, disjoint nonempty open sets Bxa.

We may apply the A system lemma to the a's and, because of the definition

of A, throw away the common part. So assume that/?0 E ty, and

/?0IK4 = {a,: v < ax),   v < v' < wx -» a„ n ar. =0,

Bxa„ n Bxa„, =0. (*)

For n < to, let â„ c 9* be maximal with respect to

(a)/? E % ^3e(p, n) G M,p\Y-an = e(p, n),

(b) elements of S„ are incompatible.

Let F = U„<l0,g>e2„e(.P> n) U supp/?. Because ^P is ccc, |2J = to, hence

|F| = to. Note that F G M. By (*) there is/?, < p0, v < to,, ex G M

px\\-av = ex,       ay n F =0.

Now because |supp/?,| < to we can extend/?,, perhaps |supp/?,| + 1 times, to

get/>2 < /?,, n G co, e2 G M, so that dom/? c [F]2 u dom/?, and

p2\ha„ = e2,       fl„ n supp/?, =0.

Let dom/?3 = ((a, ß): a E e?„ ß G e2), range/?3 = (0). Then

p2Up3^Bx{a„] n ^{aB} ^0

which contradicts (*), and establishes that X is ccc.

This sort of generic construction is quite flexible. For example, we can

change 9 so that the range of IJ C is (m: w < «}. Set A, to be the set of

H g k maximal with respect to U G"[H]2 c [m: m < n) - {/'}. Then the

product of any n — 1 A,'s is ccc, proved as above, noting that the common

value they all can use gives us room to work in. On the other hand, the open

sets Wi<nB (a), a < k, show that c(n,<nA,) = k. By similar fiddling around

we can construct a space W such that c(W") = co„_,.
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