A T_{B} SPACE WHICH IS NOT KATETOV T_{B}

WILLIAM G. FLEISSNER

In 1943, E. Hewitt [1] proved the beautiful theorem that a compact Hausdorff space is minimal Hausdorff and maximal compact. Restating this result in more detail, if (X, τ) is a compact Hausdorff space and $\left(X, \tau^{\prime}\right)$ and $\left(X, \tau^{\prime \prime}\right)$ are spaces $\tau^{\prime} \subsetneq \tau \subsetneq \tau^{\prime \prime}$, then $\left(X, \tau^{\prime}\right)$ is not Hausdorff, and $\left(X, \tau^{\prime \prime}\right)$ is not compact. The converses to this theorem are appealing but false. There are noncompact minmal Hausdorff spaces [2] and non Hausdorff maximal compact spaces [2].

A compact space is maximal compact if every compact set is closed [3]. Let us call spaces in which all compact sets are closed T_{B} spaces, as this notion can be thought of as a separation axiom between T_{1} and T_{2}. They are also called $K C$ spaces. R. Larson [4] asked whether a space is maximal compact iff it is minimal T_{B}. A related question is whether every T_{B} topology is Katetov T_{B}, that is whether every T_{B} topology contains a minimal T_{B} topology. The author wishes to thank Douglas Cameron for bringing these questions to his attention. In this paper we construct a T_{B} not Katetov T_{B} tpace.

The point set of all spaces in this paper will be the countable ordinals. To avoid ambiguity, we will refer to the first uncountable ordinal (and cardinal) as ω_{1}, and to the point set of the spaces as Ω. A typical point of Ω will be x_{α}, where $\alpha<\omega_{1}$. The point set $\left\{x_{\beta}: \beta<\alpha\right\}$ will be called $P(\alpha)$, the predecessors of α; and the point set $\left\{x_{\beta}: \beta>\alpha\right\}$ will be called $S(\alpha)$, the successors of α. The usual topology on Ω, generated by $\left\{P(\alpha): \alpha<\omega_{1}\right\}$ $\bigcup\left\{S(\alpha): \alpha<\omega_{1}\right\}$ will be called \ldots. The cardinality of a set S will be denoted $|S|$.

Lemma I. If $\tau^{\prime} \subset \tau$ and K is τ compact, K is τ^{\prime} compact.
Lemma 2. A compact T_{B} space is a minimal T_{B} space.
If $S \subset \Omega$, we denote the subspace of (Ω, τ) with point set S by $(S, \tau \mid S)$. Equivalently, $\tau \mid S=\{U \cap S: U \in \tau\}$. We say that τ, τ^{\prime} agree on countable sets if for all $S \subset \Omega$ with $|S| \leqq \omega$,

$$
(S, \tau \mid S)=\left(S, \tau^{\prime} \mid S\right)
$$

Lemma 3. Suppose $\tau \subset$ "and (Ω, τ) is T_{B}. Then τ, "agree on countable sets.

Received by the editors on July 29, 1977.

Lemma 4. If τ, "agree on countable sets, then for all $\alpha, S(\alpha) \in \tau$.
Lemma 5. Suppose (Ω, τ) and G satisfy
i) $G \in \tau \subset «$,
ii) τ, "agree on countable sets,
iii) $|\Omega-G|=\omega_{1}$,
iv) $\forall x_{\alpha} \in(\Omega-G) \exists G_{\alpha} \in \tau\left(x_{\alpha} \in G_{\alpha} \subset P(\alpha+1) \cup G\right)$.

Then (Ω, τ) is T_{B}.
Proof. Suppose K is τ compact. By ii) it is sufficient to show that K is countable.

First, by considering the τ open cover $\{G\} \cup\left\{G_{\alpha}: x_{\alpha} \in \Omega-G\right\}$, we may conclude that $|K-G|<\omega_{1}$. Aiming for a contradiction, we assume $|K|=\omega_{1}$. With this assumption we can find $\{\alpha(i): i \in \omega\}, \alpha=\sup \{\alpha(i)$: $i \in \omega\}$ so that $\left\{x_{\alpha(i)}: i \in \omega\right\} \subset K \cap G, x_{\alpha} \notin K \cup G$. Now $P(\alpha+1)$ is " closed, hence τ closed. Then $P(\alpha+1) \cap K$ is τ compact. But $P(\alpha+1) \cap$ K is not \approx compact, and τ and \approx agree on countable sets.

Let I be the set of isolated points of $(\Omega, «)$. We define (Ω, \star), the space referred to in the title, by defining

$$
\iota=\left\{U \in \mu:\left(x_{0} \notin U \text { and } x_{1} \notin U\right) \text { or }|I-U|<\omega_{1}\right\}
$$

Clearly ϵ is a topology and $\not \subset \propto$. And $\not \epsilon \neq \pi$ as $\left\{x_{0}\right\} \in \approx-\not$. By Lemma $5,(\Omega, t)$ is T_{B}.

Henceforth let τ be a topology with $\tau \subset \ell$.
Lemma 6. If (Ω, τ) is T_{B} then for all $\alpha<\omega_{1}$ there is $V_{\alpha} \in \tau$ satisfying $x_{\alpha} \in V_{\alpha}$ and $\left|\Omega-V_{\alpha}\right|=\omega_{1}$.

Proof. Suppose not, that for some $\alpha, x_{\alpha} \in V \in \tau$ implies $|\Omega-V|<\omega_{1}$. Let $y \in\left\{x_{0}, x_{1}\right\}-\left\{x_{\alpha}\right\}$. We aim for the contradiction that $\Omega-\{y\}$ is τ compact but not τ closed. From $\tau \subset \neq$ and the definition of ℓ, $\Omega-\{y\}$ is not τ closed.

Let \mathscr{U} be a τ open cover of $\Omega-\{y\}$. Then there is $V \in \mathscr{U}, x_{\alpha} \in V \in \tau$. By hypothesis, $|\Omega-V|<\omega_{1}$, so there is a β with $\Omega-V \subset P(\beta+1)$. Now $P(\beta+1)-\{y\}$ is "compact, so by Lemma 1 , there is $\mathscr{U}^{\prime} \subset \mathscr{U}, \mathscr{U}^{\prime}$ a finite subcover of $P(\beta+1)-\{y\}$. Then $\mathscr{U}^{\prime} \cup\{V\}$ is a finite subcover of $\Omega-\{y\}$, establishing the contradiction that $\Omega-\{y\}$ is τ compact.

We assume (Ω, τ) is T_{B}; we aim towards constructing a coarser T_{B} topology.

For all $\alpha<\omega_{1}$, let V_{α} be as asserted in Lemma 6. We define

$$
\Delta=\left\{x_{\alpha}: x_{\alpha} \notin \bigcup_{\beta<\alpha} V_{\beta}\right\}
$$

Note that $x_{0} \in \Delta$. (By definition, if you like.)
Lemma 7. $\Omega-\Delta \in \tau$.

Proof. If $x_{\alpha} \in \Omega-\Delta$, then there is $\beta<\alpha$ such that $x_{\alpha} \in V_{\beta}$. Since $\tau \subset w$ and τ is T_{B}, by Lemmas 3 and $4, S(\beta) \in \tau$. Thus $x_{\alpha} \in V_{\beta} \cap S(\beta) \subset$ $\Omega-\Delta, V_{\beta} \cap S(\beta) \in \tau$.

Lemma 8. $|\Delta|=\omega_{1}$.
Proof. By definition $\alpha<\omega_{1}$ means that there is a map f_{α} from ω onto $\{\beta: \beta<\alpha\}$. Let g and h be maps from $\omega-\{0\}$ to ω such that $g(i)<i$, and for all $(m, n) \in \omega \times \omega$ there are infinitely many $i \in \omega$ such that $(g(i), h(i))=(m, n)$.

Let $\alpha(0)<\omega_{1}$ be arbitrary. We will establish Lemma 8 by finding $\alpha>\alpha(0)$ with $x_{\alpha} \in \Delta$.

For $i>0$, we may choose, by our assumption on $V_{\alpha}, \alpha(i)>\alpha(i-1)$ such that $x_{\alpha(i)} \in \Omega-V_{f_{\alpha(g(i))}(h(i))}$. Let $\alpha=\sup \{\alpha(i): i \in \omega\}$; we claim $x_{\alpha} \in \Delta$. For let $\beta<\alpha$. Then $\beta<\alpha(j)$ for some $j \in \omega$, and so $\beta=$ $f_{\alpha(j)}(k)$ for some $k<\omega$. Now $g(i)=j, h(i)=k$ implies $x_{\alpha(i)} \in \Omega-V_{\beta}$, a closed set. By our choice of g and $h, \alpha=\sup \{\alpha(i): g(i)=j, h(i)=k\}$, so $x_{\alpha} \in \Omega-V_{\beta}$, establishing our cliam.

Now we define I^{\prime} to be the set of isolated points of $(\Delta, \tau \mid \Delta)$. That is, $I^{\prime}=\left\{x_{\alpha}: U \in \tau, U \cap J=\left\{x_{\alpha}\right\}\right\}$.

Lemma 9. $\left|I^{\prime}\right|=\omega_{1}$.
Proof. Let $\alpha<\omega_{1}$. Let $\beta=\inf \left\{\gamma: x_{r} \in \Delta, \gamma>\alpha\right\}$. Then $\Delta \cap V_{\beta} \cap$ $S(\alpha)=\left\{x_{\beta}\right\}$.

Finally, we define a T_{B} topology coarser than τ. Set $\tau^{\prime}=\{U \in \tau$: $\left(x_{0} \notin U\right)$ or $\left.\left|I^{\prime}-U\right|<\omega_{1}\right\}$.

Clearly τ^{\prime} is a topology and $\tau^{\prime} \subset \tau$. By Lemma 3τ, " agree on countable sets, and by definition τ^{\prime}, τ agree on countable sets. Also, $\tau^{\prime} \neq \tau$ because $V_{0} \in \tau-\tau^{\prime} .\left(\Omega, \tau^{\prime}\right)$ is T_{B} by Lemma 5 , setting $G=(\Omega-\Delta) \cup I^{\prime}$, and $G_{\alpha}=V_{\alpha}-\left\{x_{0}\right\}$.

Bibliography

1. E. Hewitt, A problem of set theoretic topology, Duke Math. J. 10 (1943), 309-333.
2. Smythe N. and C.A. Wilkens, Minimal Hausdorff and maximal compact spaces, J. Austral. Math. Soc. 3 (1963), 167-177.
3. A. Ramanathan, Minimal bicompact spaces, J. Indian Math. Soc., 19 (1948), 40-46.
4. R. Larson, Complementary topological properties, Notices AMS, 20 (1973), 176 (Abstract \#701-54-25).
