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Abstract

In this paper, we formulate a qualitative “lin-
ear” utility theory for lotteries in which un-
certainty is expressed qualitatively using a
Spohnian disbelief function. We argue that
a rational decision maker facing an uncertain
decision problem in which the uncertainty is
expressed qualitatively should behave so as
to maximize “qualitative expected utility.”
Our axiomatization of the qualitative util-
ity is similar to the axiomatization developed
by von Neumann and Morgenstern for prob-
abilistic lotteries. We compare our results
with other recent results in qualitative de-
cision making.

1 Introduction

The main goal of this paper is to construct a lin-
ear utility theory for lotteries in which uncertainty is
described by epistemic beliefs as described by Spohn
20, 21].

Spohn’s theory of epistemic beliefs is finding increasing
acceptance in artificial intelligence since it is viewed
as a qualitative counterpart of Bayesian probability
theory. Spohn’s theory is also referred to as “kappa
calculus.” It has its roots in Adams’s [1] work on the
logic of conditionals, and has been studied extensively
by Goldszmidt and Pearl [10, 11] who refer to it as
“rank-based system” and “qualitative probabilities.”
The main representation function in Spohn’s calculus
is called a disbelief function and its values can be in-
terpreted as infinitesimal or order of magnitude prob-
abilities. Spohn’s calculus includes conditional dis-
belief functions and a notion of conditional indepen-
dence that satisfies the graphoid axioms [12]. This
means that the qualitative theory of (probabilistic)
Bayesian networks based on conditional independence
applies unchanged to Spohn’s calculus. Furthermore

the definitions of combination (pointwise addition [18])
and marginalization (minimization) in Spohn’s calcu-
lus satisfies the axioms described by Shenoy and Shafer
[19] that enable local computation. Thus the message-
passing architectures for computing marginals such as
the Shenoy-Shafer architecture [19] and the Hugin ar-
chitecture [13] apply also to Spohn’s calculus.

One of the major attractions of Bayesian probability
theory is a normative decision theory based on von
Neumann and Morgenstern’s and Savage’s theories of
rational decision making by maximizing expected util-
ity (or maximizing subjective expected utility in the
case of Savage). The focus of this paper is to propose
a qualitative linear utility theory for Spohn’s calculus
so that an analogous decision theory can be formulated
for problems in which uncertainty is characterized by
epistemic beliefs. We propose axioms analogous to the
axioms proposed by von Neumann and Morgenstern
(as described by Luce and Raiffa [14]) and describe
a representation theorem that states that if the de-
cision makers preferences satisfy these axioms, then
there exists a unique qualitative linear utility function
such that the utility of any Spohnian lottery is equal
to the “expected” utility of the lottery.

An outline of the remainder of this paper is as follows.
In Section 2, we briefly describe Spohn’s epistemic be-
lief calculus. In Section 3, we define Spohnian lotter-
ies, qualitative utility function, state the axioms, and
state and prove the main result. We also describe a
small example to illustrate the use of the linear utility
function. In Section 4, we discuss the implications of
the results and explain the significance of the results
using probabilistic semantics of Spohn’s calculus. In
Section 5, we compare our findings with related re-
search on qualitative decision making theories. Finally
in Section 6, we conclude with a summary and some
concluding remarks.



2 Spohn’s Theory of Epistemic Beliefs

Spohn’s theory of epistemic beliefs [20, 21, 10] is an
elegant, simple and powerful calculus designed to rep-
resent and reason with plain human beliefs. The mo-
tivation behind Spohn’s theory is the need for (i) a
formalism to represent plain epistemic beliefs and (%)
procedures for revising beliefs when new information
is obtained.

The main ingredients of Spohn’s theory are (i) a func-
tional representation of an epistemic state called a dis-
belief function, and (i7) a rule for revising this function
in light of new information. Like a probability dis-
tribution function, a disbelief function for a variable
is completely specified by its values for the singleton
subsets of configurations of the variable.

Formally, let €2 denote a set of possible worlds. We
assume § is finite, |2] = n. We use w (perhaps with
subscripts) to denote a world, i.e. w € . If we are
interested in a finite set of variables { Xy, Xo,..., X,;}
each of those is also finite, 2 can be identified with
Cartesian product x7Qx, where Qx denotes the set
of possible values of X. Thus, each world w € € is
identified with a tuple of values (z1, 2, ..., z,) where
x; is a value of X;. We also use notation w(i) to denote
value of variable X; in the world w and X; = z to
denote the subset {w € Q] w(i) =z} of Q.

A Spohnian disbelief function § for 2 is defined as a
mapping
§:2% = ZT U {oc0}

where ZT is set of non-negative integers, satisfying the
following axioms:

S1
mino({w}) = 0
and
S2
[ mingead(w) HO#ACQ
6(A)_{oo ) ifA=10

As a result of Axiom (S2), a disbelief function is com-
pletely determined by its values for singletons. Thus
for computational reasons, we can represent a disbelief
function by a disbelief potential § : Q@ — ZT U {oc}.

For A C Q such that 6(A) < oo, the conditional dis-
belief function 6(.|A4) is defined as

s3 5(B|A) = 5(BN A) — 5(A).

It is easy to verify that §(.|A) is a disbelief function,
i.e., it satisfies S1 and S2.

The notion of independence for Spohn’s epistemic be-
lief is defined similar to that of probability. A and B
are independent events if (AN B) = §(A4) + §(B). Or
in terms of variable we say that X; and X; are inde-
pendent if 6(X; = a,X; =b) =6(X; =a)+ (X, =)
where a,b are arbitrary values of X;, X; respectively.
It is easy to note that axioms S1 through S3 which
describe the static and dynamic aspects of modeling
uncertainty have a similar role to that of Kolmogorov’s
axioms and Bayes’s rule in probability.

To define the semantics of disbelief functions, we will
define a related function called a Spohnian belief func-
tion. Given disbelief function §, we can define a Spoh-
nian belief function 3 : 2% — Z U {—o00,00} (where Z
is the set of all integers) as follows [18]:

—4(4)
B(A) = { 5(Ac)

where A° is the complement of A in Q. B(A) = m,
where m > 0, means proposition A is believed to degree
m. [B(A) = m, where m < 0, means proposition A is
disbelieved to degree m. (3(A) = 0 means proposition
A is neither believed nor disbelieved. 8(A) = oo means
proposition A is believed with certainty. And G(A4) =
—oo means proposition A is disbelieved with certainty.

if 6(A) >0
otherwise

(1)

3 Spohnian Lotteries and Their
Utilities

Following Luce and Raiffa [14], we use the term Spoh-
nian lottery to denote a lottery in which uncertainty
is modeled by a Spohnian disbelief function. Let
O = {01,09,...,0.} denote a finite set of prizes in-
volved in a lottery. We assume, without loss of gen-
erality, a strict preference order over the set of prizes
01 > 02 > ... = o where > reads “is qualitatively
preferred to”. So there are no two equally preferred
prizes in O. oy is the best prize, and o, is the worst.

A simple Spohnian lottery is a pair of a prize vector
and a vector representing a Spohnian disbelief poten-
tial. We write it in the form (O.5) where O is the
prize vector (01,02, ...,0,) and § = (d1,92,...,0,) is a
Spohnian disbelief potential vector, i.e., §; € ZTU{oco}
and

min §; = 0.
1<i<r

Sometimes [01.01, 02.02, . ..,0,.0;] is used to denote a
lottery. And because the set of prizes is fixed, a simple
lottery can be identified with just a disbelief vector
(61,09, ...,d,). We use the convention that a prize is a
simple lottery in which the disbelief degree associated
with the prize is zero and others are infinity. This leads
us to the concept of compound or multi-stage lotteries
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Figure 1: A lottery tree of depth 2.

in which the prizes are again lotteries. We use L to
denote the set of all lotteries, simple or compound.

Graphically, a lottery is a rooted tree whose leaves are
prizes and associated with branches outgoing from a
node is a (conditional) disbelief function. So we can
define a lottery’s depth as the depth of the correspond-
ing tree. For example, a prize is a lottery of depth
0, a simple lottery has depth 1, and so on. In Fig-
ure 1, a graphical representation of a lottery of depth
2, [[01-4, 02.0, 05.0].0, [01.0, 03.2].5], is shown.

A standard lottery is one that realizes in either the
most preferred prize o or the least preferred prize o,
i.e., [01.k1,0..K:]. Of course, condition min(k,ka) =
0 must also be satisfied. We use S to denote the set of
all standard lotteries.

Since our task is to compare lotteries, we will study a
complete and transitive relation' > on the set L. No-
tice that > denotes a qualitative preference relation on
L,ie., L1 = Ly means L; is “approximately preferred
or indifferent to” Lo. This preference relation will be
represented by what we call a “qualitative utility func-
tion.” To enable this representation, we assume that
the preference relation satisfies some desirable proper-
ties. Formally, we will adopt axioms similar to those
presented in Luce and Raiffa [14].

Axiom 1 (Ordering of prizes) The preference re-
lation = over the set of prizes O is complete and tran-
sitive.

This axiom simply formalizes our assumption about
the set of prizes.

Axiom 2 (Reduction of compound lotteries)

Any compound lottery is indifferent to a sim-
ple lottery whose disbelief degrees are calcu-
lated according to Spohn’s calculus. A com-

!Derivative relations > and ~ are defined from > as
usual, i.e., a > b means a = b and b ¥ a, and a ~ b means
a>=bandb>a.

pound lottery L, = [Ly1.01, La.62, . . ., Ly.0]
where L, = [01.Ki1,02-Ki2y - ., Op.Kir]  fOr
1 < i < k is indifferent to the simple lottery

Ls = [01.K1,09.K9, . .., 0p.K,] where

Kj = 12‘&{5]' + Kij (2)

The intuition behind this axiom is as follows. The
compound lottery L. can be interpreted as two stage
process. The outcomes possible for the first stage are
T1,%2,...,TE. If x; realizes, the lottery player gets
simple lottery L; which in turn has set of outcomes
Y1, Y2, .., Yr. If y; realizes, the player is rewarded with
0j. Another way to view L. is by collapsing the two
stages together to obtain a lottery with the set of pos-
sible outcomes {(z;y;)|1 < ¢ < k and 1 < j < r}.
When a (xy;) is realizes (wildcard * can match with
any x), the player is rewarded with prize o;. So the
degree of disbelief the player associates with getting
prize o; is disbelief degree he assigns to set xy;. As per
Spohn’s calculus, the disbelief degree associated with
combined state x;y; is calculated by J; + ;5. Hence,
disbelief degree assigned to set *y; is min{d; + ;;|1 <
i < k}.

Axiom 3 (Substitutability) Indifferent

lotteries  are  substitutable. That is if
Lz’ ~ L; then [L1.51,...,Li.5i...,Lk.ék] ~
[L1.01,..., L8, .., Li.0k].

This requirement is the same as presented in Luce and
Raiffa and it conveys the idea that preference relation
reflects the desirability of a lottery and that desirabil-
ity is not context sensitive.

Axiom 4 (Quasi-continuity) For each prize o;,
there exists a standard lottery that is indifferent to it.

In particular, we assume 01 ~ [01.0,0,.00] and o, ~
[01.00, 0,-.0]. This is reasonable since in [0;.0, 0,.00], we
believe in 07 with certainty, and in [01.00, 0,..0], we be-
lieve in o, with certainty. A comparison with the con-
tinuity assumption adopted for probabilistic case may
give an impression that this assumption is too strong
because set of standard (qualitative) lotteries does not
constitute a continuum. We hold that it is quite rea-
sonable since > should be read as “qualitatively pre-
ferred to”. One can regard the set of standard lotteries
as a fishing net that spreads from most preferred lot-
tery o1 to the least preferred one o,. Therefore, any
lottery L is caught between a pair of successive knots,
for example, between say [01.0, o,..k] and [01.0, 0,.k+1].
So what this axiom entails is to disallow the ambiva-
lence and force a “qualitative indifference” between L
and one of the two standard lotteries.



Axiom 5 (Transitivity) Preference relation over
the set of lotteries is complete and transitive. For-
mally, for L;,L;, L € L, either L; = L; or L; = Ly;
and if Ly = L and Lj = Ly, then L; = Ly,

Axiom 6 (Qualitative monotonicity) The prefer-
ence relation > over S satisfies the following condi-
tion. Suppose s = [01.K1,0r.kr| and ' = [01.K], 0.k ]
are two standard lotteries then

k1=r=0& Kk >k, (9)
s=s iff k1=0& K] >0 ()  (3)
k1 < Ky & ko=KL =0 (ii1)

The intuition behind this axiom is as follows. In the
first case (i) when k; = K} = 0, we believe (using
function 3 given in equation (1)) o1 to degree k, in s
and we believe 0; to degree k.. in s’. Since k, > K. one
should prefer s to s’. In the second case, we believe
o1 (to degree k,) in s and we believe in o, (to degree
k) in s’. Again, one should prefer s to s’ (regardless
of the values of k, and ). In the third case (ii7),
we believe o, to degree k1 in s, and we believe o, to
degree £} in s’. Since k; < K}, one should prefer s
to s’. Thus, on the set of standard lotteries S there
is a well defined (complete and transitive) preference
relation.

We have the following lemma that states that the set of
Spohnian lotteries divided by the indifference relation
is isomorphic to the set of standard lotteries.

Lemma 1 If the preference relation = on the set of
lotteries L satisfies axioms 1 though 6, then for each
lottery there exists one and only one standard lottery
indifferent to it.

Proof: We prove the existence of indifferent standard
lottery by induction on the depth of lottery trees.

For a constant lottery (of depth 0), because of axiom
4, each prize o; is indifferent to a standard lottery s;.

A lottery of depth 1 is either a standard lottery
or a simple lottery.  Obviously, a standard lot-
tery is indifferent to itself.  For a simple lot-
tery L = [01.01,02.02,...,0..0;], by axiom 3, L ~
[$1.01, 82.09, ..., 8..0p]. By axiom 2, the latter
can be reduced to a standard lottery s such that
[$1.01,82.02, ..., 8:.00] ~ .

Suppose for all lotteries of depth not greater than n,
there is a standard lottery indifferent to it.

For a lottery L of depth n + 1. This lottery is a com-
pound lottery whose prizes are lotteries of depth not
greater than n. Because of induction hypothesis, each
prize of L is indifferent to a standard lottery. By sub-
stitutability, L is indifferent to a compound lottery of

(0,0) (00,0)
Figure 2: The space By depicted by dots.

depth 2. Again by induction hypothesis, there is a
standard lottery indifferent to it.

Finally, we have to show that there is only one stan-
dard lottery indifferent to a given lottery. Suppose
there are two standard lotteries s1,59 € S such that
s1 ~ L and s; ~ L. By axiom 5, we have s; ~ s3. But
by axiom 6, it is possible only if 51 = s2. m

From a decision theoretic perspective, we would like to
model a preference relation > on the set of all lotteries
L by a utility function v : L — Z U {—00,00} such
that given any two lotteries L and L', u(L) > u(L') if
and only if L > L'. Clearly, this implies that u(L) =
u(L'") whenever L ~ L’. Notice that unlike traditional
quantitative utility function which has range in the
real line, the function u has value in a discrete set
which in this case is the set of integers and the labels
—oo and co. From Lemma 1, it is clear that if we find
a way to assign utility values to standard lotteries then
it is straightforward to do so for any lottery.

Next we define an utility function for standard lotter-
ies. We abbreviate s = [01.k1, 0,.k;] by a pair (K1, 7).
From the qualitative monotonicity axiom, it is clear
that the following function will satisfy the definition
of a qualitative utility function above:

us((k1, Kr)) = Kr — K1 (4)

For maintaining the analogy with the case of proba-
bilistic lotteries, we will define a utility function as a
function U : L — B where By is defined as follows:
B, &'
{(x,y)|z,y € ZT U{oo} s.t. min(z,y) =0}

Even though By is a subset of (ZT U {oo}) x (Z+ U
{o0}), we can define a complete and transitive order
> on the set By as follows: (z1,y1) > (22,y2) if and
only if y3 — z1 > yo — x9. Alternatively, notice that
Equation 4 establishes an isomorphism between By
and ZU{—o0,00}. Therefore, By inherits all the order
relations of ZU{—00,00}. Thus a function U : L — By
is a qualitative utility function if U(L) > U(L') iff
L>=1L.

Since By is a set of binary vectors, addition of a scalar,



and pointwise minimization are defined as usual. Sup-
pose c € ZT, b= (z,y) and b; = (z;, ;)
c+b ¥

min {b;} %

(o4 ey +o) )
(min {os},min ()~ (6)

Next, we state and prove a “qualitative linear utility”
representation theorem that is analogous to the repre-
sentation theorem of von Neumann and Morgenstern.

Theorem 1 Suppose we are given a preference rela-
tion = on the set of all lotteries L that satisfies Ax-
ioms 1 to 6. There exists a qualitative utility function
U : L — By such that

U([L1.61, L2.6a, ..., Ly.6x]) = 1I£¢i£k {6 +U(Ls)}
(7)

Futhermore, such a qualitative wutility function is

UNLQUE.

Proof: First we prove the existence of a qualitative
utility function U : L — By by constructing it as
follows. For standard lotteries, U is defined as follows:

U([o1.61, 0r-r]) & (51, iy (8)

For an arbitrary lottery L, we define U(L) = U(s)
where s is the standard lottery that is indifferent to L.
By Lemma 1, each lottery L is indifferent to exactly
one standard lottery s. Therefore the function U is a
well-defined qualitative utility function.

Next, we will show that U as constructed above sat-
isfies Equation 7. Consider depth-one lottery L =
[01.01,02.02, ..., 0..0;]. By Axiom 4, each prize o; is in-
different to a standard lottery, say s; = [01.K41, Op.Kir ).
Therefore, U(o;) = (ki1, kir). Consider lottery L' =
[s1.01,82.02,...,8..0;]. From Axiom 3, L ~ L. By
Axiom 2, L' is indifferent to the standard lottery
s = [01.K1, 0.Ky] Where

K1 = lréliigr {0; + kin} and Kk, = lgliigr {0; + kir} (9)
Therefore U(L) = U(L') = U(s) = (k1, k). Finally
we notice that

min {0; + U(0i)}
= win {0; + (i1, Kir) }

min {((Sl + nih& + Kuir)}

1<i<r

= (min {0; + Kir}, L {0i + Kir})

= (’ilv KT)

Therefore U(L) = miny<;<, {0; + U(0;)}. By induc-
tion on the lottery’s depth, we can prove this property
for any general lottery.

The proof of the fact that U defined above is the
only qualitative utility function satisfying Equation 7
breaks down into several small steps. Let u be an-
other qualitative utility function from L to By satis-
fying Equation 7.

First, we will show that u has value in both “half
lines” {(0,y)} and {(x,0)}. Suppose to the contrary,
u(L) > (0,h) for all L € L. Let us denote stan-
dard lottery [o01.a, 0,.b] by s{qp}. Let u(sgo,03) = (0, k)
and u(sgm,03) = (0,k’). Because s{g,0y = S{m,0}, and
u is utility function, we have k > k’. Consider lot-
tery [570,01-0, 5{m,01-0]. We have [s{0,03.0, 5{m,03.0] ~
8{0,0y- Since wu is a qualitative utility function
’UJ([S{O)O}.O,S{m,O}.O]) = U(S{O,O}) = (0,k). On the
other hand, applying the formula in the right-hand
side of Equation 7, we have u([s{,0}.0,5{m,0}.0]) =
min{(0, k), (0,k")} = (0, k") leading to a contradiction.
Therefore v has values in both half lines of Bg.

We will now show that u(s,01) = (0,0). Suppose to
the contrary u(sfo,0y) = (0,k) with & > 0. From the
previous step, we can assume there are lotteries s, so
such that u(s;) = (0,k) and u(s2) = (h,0). By con-
sidering lotteries of the form [s1.0, s2.9] or [s1.0, $2.0],
using the right-hand side of Equation 7, we see that
points (0,6) and (6,0) with § < min{k, h} represent
values of u for some lotteries. In particular there is
a standard lottery s such that u(s) = (0,0). Since
u(sg0,03) = (0,k) > (0,0) = u(s), s must have the
form sp,, 01 for some m > 0 ie. u(sgm,03) = (0,0).
Consider again the lottery [s10,0}-0, S{m,0}-0]. We have
[8{070}.0, s{m,0}~0] ~ 8{070}. SO, ’LL([S{O,O}.O7 S{m,0}~0]) =
u(s{0,01) = (0, k). On the other hand, applying the for-
mula in the right-hand side of Equation 7, we have
u([540,01-0, 8{m,01-0])) = min{(0,%),(0,0)} = (0,0)
leading to a contradiction. Therefore u(sfo0y) =
(0,0).

We can use the Dirichlet principle to show that
u(s70,my) = (0,m). Suppose u(s{g,m}) = (0,n). Con-
sider case n < m. Since S{om} = S{om—1} = --- =
5{0,0y, we have m + 1 different lotteries but only n+1
slots for utility values from (0,0) to (0,n). Thus, two
lotteries one of which is strictly preferred to the other,
must be given the same value by u leading to a contra-
diction. In case n > m, consider lotteries of the form
(570,010, 8{0,m}-0] where 0 < n. Applying the right-
hand side of Equation 7 for them, we see that every
of n 4 1 slots from (0,0) to (0,n) must be filled by a
lottery in L. Using Lemma 1 these slots must be filled
by standard lotteries. But between sg o} to s{o,m},
there are only m + 1 standard lotteries again leading
to a contradiction.

Thus, if u is a qualitative utility function satisfying
equation 7 then u = U. In other words, U is unique.
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Figure 3: Expected utility of a lottery.

Figure 3 illustrates the calculation of expected utility
of the lottery in Figure 1 if we assume o ~ [01.0, 03.3]
and o7 is the best prize and o3 is the worst prize.

Notice that when L is a simple lottery, Equation 7 can
be rewritten as

U([01.01,02.02,...,0..0,]) = 1212; {0+ U(0:)}

which is structurally similar to von Neumann - Mor-
genstern’s expected utility formula. Multiplication in
probability is replaced by addition in Spohn’s theory.
And addition in probability theory is replaced by min-
imization in Spohn’s theory. Therefore, we refer to
the right hand side of Equation 7 as “qualitative ex-
pected utility.” We have used B as a scale for mea-
suring preferences. However, this is done only to show
that the form of the utility function in Equation 7 is
analogous to the von Neumann-Morgenstern utility for
probabilistic lotteries. Using Equation 4, we can use
Z U {—00, 00} as the scale of the utility function.

One difference between qualitative and quantitative
lotteries should be noted. While quantitative util-
ity uses a continuous scale (real numbers), qualitative
utility use a discrete scale. So one should not expect
a smooth gradation in utility for qualitative lotteries
as is the case for probabilistic lotteries. For example,
consider two prizes o; > 0,41 that are successive in the
sense that there is no other prize in between them i.e.
there is no o; such that o; > 0; > 0;41. Consider a lot-
tery of the form [0;.0;, 0;41.6;11] where min(d;,d;41) =
0 and d;,9;4+1 < co. Intuition from quantitative utility
would suggest U(o;) > U([0;.0;, 0i+1.0i+1]) > U(0i41).
However, the following example shows that this rela-
tionship does not always hold in the case of qualitative
utility. Let us assume U(0;) = (0, s+0) and U(0;4+1) =
(0,k). In the case 0;+1 > ¢; = 0, by Theorem 1,
U([Oi-070i+1-6i+1]) = min{U(oi),(SiH + U(Oi+1)} =
(0,min{x + o,k + d;+1}. If we further assume that
g S 51'_;'_1 then U([OZO, 0i+1-6i+1]) = (0, Ii+0’) = U(Oz)

Thus the qualitative utility scale is unable to always
make fine distinctions that the probabilistic utility the-
ory can make.

Example: Building Houses in an Earthquake Zone.

Outcomes. Houses that can survive an earthquake of
intensity k where 0 < k£ < 12 are measured in Mercalli
Intensity Scale?, which ranks earthquakes in terms of
magnitude of destruction they cause for structures:

q0,915---5,912-

Qualitative Utility of an Earthquake-Proof Res-
idence. Let us consider the following hypothetical
situation. A person is planning to build her house
in a earthquake-prone region. When the homeowner
considers what earthquake intensity her house should
withstand, she may not be able to relate a certain in-
tensity, say g5, with an uncertain situation involving
only no earthquake (go) and the most intense earth-
quake (q12). However, in terms of financial cost, ob-
viously the higher the earthquake intensity a house
can survive the costlier it is. So, the homeowner will
definitely prefer g9 > g1 > ... > ¢q12. We can as-
sociate an earthquake of intensity k with a pair of
numbers (ag,br) as follows. The damage caused by
earthquakes can range from no perceptible damage to
complete destruction. Thus we set o; as no damage
and o, as complete destruction. For each earthquake
intensity, we find an equally preferred standard lottery
and denote the disbelief function by (ag,br). An ex-
ample of one set of such assessments is shown in Table
below. One interpretation of the assessments is that
the damage caused by earthquakes of intensity up to
2 is viewed as “acceptable” since they are all equally
preferred to standard lotteries where the homeowner
believes the outcome is no damage (to different de-
grees, of course), and damage caused by earthquakes
of intensity 4 or more are “unacceptable” since they
are all equally preferred to standard lotteries where
the homeowner believes the outcome is complete de-
struction (to different degrees). The damage caused
by intensity 3 earthquake lies between these two cate-
gories.

Given that “scientists have never predicted a major
earthquake, nor do they know how or expect to know
how any time in the foreseeable future” (The United

2Level 0 represents no earthquake. A level 1-5 on the
Mercalli scale would represent a small amount of observable
damage. For example, at this level doors would rattle,
dishes break and weak or poor plaster would crack. As
the level rises toward the larger numbers, the amount of
damage increases considerably. The number 12 represents
total damage. List of 1-12 levels of the Modified Mercalli
Intensity Scale of 1931 (Abridged; Wood and Neumann,
1931). See Earthquakes & Volcanoes, v. 25, no. 2, 1994,
p- 87 for more details.



States Geological Surveys’ web site), it seems there is
not sufficient information to produce a probability dis-
tribution of earthquakes in a certain region. However,
the subjective epistemic belief about EQ occurrence
may be represented in the form of a Spohnian epis-
temic disbelief function dg, d1,...,d12, i.e., the home-
owner believes (to degree 1) that an earthquake of in-
tensity 4 will occur during her ownership of her new
home.

The above situation can be seen to satisfy the axioms
of qualitative utility. Therefore, we can estimate “ex-
pected utility” of the situation.

U([qO.(S(), e ,q12.(512}> = Og%lgle {51 + U(q,)} (10)

Suppose the information is given in the following two
tables

EQIntensity | g0 @1 @ g3 @1 @5 6
Utility 0 o o o 2 3 4
assessment oo 7 2 0 0 0 0
0; 4 3 2 1 0 1 2
EQ Intensity | g7 g8 g9 quo  qu1 qi2
Utility 6 9 11 14 18 21
assessment 0 0 0 0 0 0
0; 2 3 4 5 6 7

The calculation of qualitative expected utility of the
situation results in (1,0). That ranks the given un-
certain situation in between earthquakes of intensity 3
and 4, i.e., slightly unacceptable. In other words, the
prospective homeowner should build her home so that
it can survive an earthquake of intensity 4. m

4 Qualitative vs. Quantitative Utility

So far, we have discussed essentially ordinal relation-
ship among qualitative lotteries. Thanks to the ordi-
nal semantics, the proposed qualitative utility theory
is well suited for situations when quantitative assess-
ment of the strength of belief and/or the desirability of
consequences is difficult. Various reasons contribute to
that difficulty such as the nature of a problem, and the
subjective ability of assessors, or the cost of doing an
assessment. In practice, ordinal information is often
represented by numbers. Thus in practice, informa-
tion is rarely purely quantitative or purely qualitative,
but somewhere in between. For example, by assum-
ing an objective probability distribution for prizes of
lotteries, utility theory in probabilistic lottery frame-
work considered by von Neumann and Morgenstern is
quantitative. But when the theory is applied in prac-
tice, often, the required probability distribution is ob-
tained through some conversion of subjective opinions

or sparse statistical data. In that sense, the applica-
tion of the theory is somewhat qualitative.

For the qualitative utility theory based on Spohn
epistemic belief developed here, the question we ad-
dress in this section is how can quantitative informa-
tion be used when it is available. It is well known
that one interpretation of Spohnian disbelief degree is
the order-of-magnitude approximation of probabilities
[20, 21, 10, 5, 23, 11]. The idea is to express probability
as a polynomial function of some € > 1

P(w)=> aj*e’ (11)

i>0

where 0 < a; < e. That is, 0- aga; ...a, is a numeri-
cal representation of P(w) in the e—base system. Then
the degree of disbelief is the absolute value of the or-
der of the polynomial which is the smallest index with
strictly positive coefficient. Note that since P, (w) <1
and € > 1, the order of P, is non-positive. The same
result can be obtained though a logarithmic transfor-
mation k(w) = |—log.(P(w))]. Suppose ¢ = 10, for
example, .325 = 3% e ! + 2% ¢ 2 + 5% ¢ 2. Thus, the
degree of disbelief associated with a probability in the
interval [.1,1] is 0. When probability is in [.01,.1) dis-
belief degree is 1, and so on. In other words, we have
the following rule: the degree of disbelief is the num-
ber of leading zeros in the e—based representation of
a probability.

Thus, Spohn’s calculus can be interpreted in the light
of manipulation of orders of probability polynomials.
The order of sum of two polynomials equals the max-
imum of the two orders. And the order of product of
two polynomials is the sum of the two orders.

The idea of representing a number as a polyno-
mial function can also shed some light on the ex-
pected qualitative utility formula (7). Let us con-
sider a von Neumann-Morgenstern lottery L =
[p1.01,D2.02,...,Dn.0,] where p; is the probability of
winning prize o;. Assume 01 = 02 > ...0, and also
that utility of prizes is normalized i.e. u(o;) =1 and
u(on) = 0. The expected utility of the lottery u(L) is
shown to be

u([p1.01,p2.02, ..., Pn.0n]) = Zpi*u(oi) (12)
i=1

Now let us express p;, u(L) and u(o;) as polynomi-
als of some € > 1 ie. p; = P(e), u(L) = L(e) and
u(o;) = O;(e). We shall abuse notation slightly by
considering k as operator that extracts the absolute
value of the order of a polynomial i.e. x(P(e)) is the
absolute value of order of P(€). Now applying k oper-
ator on both sides of equation (12) with value replaced



by corresponding polynomials we have

n

k(L(€)) = k(Y Pi(e) * Oi(e)) (13)

=1

By definition of «, the right hand side of (13) expands
to
H(Z Fi(e) x 0i(€)) = min{r(Pi(€)) +r(Oi(e))}. (14)
So,
r(L(e)) = min{r(P;(c)) + #(O0i(€))}.  (15)

Comparing (15) and (7), we see that the ex-
pected qualitative utility theorem is in agreement
with (quantitative) expected utility theorem if we
interpret disbelief degree and qualitative utility as
order-of-magnitude abstraction of probability and von
Neumann-Morgenstern utility respectively.

5 Related Work

In the literature, Dubois and Prade [8, 9, 6] propose
a qualitative decision theory based on possibility the-
ory. There are certain facts that make their proposal
comparable to our study. First, there is a close rela-
tion between possibility theory and Spohn’s epistemic
belief theory as pointed out in [7]. The possibility of
a proposition 7(x) is related to the degree of disbe-
lief by the relation 7(z) = exp(—d(x)), and vice versa.
Second, Dubois and Prade base their proposal on von
Neumann and Morgenstern’s axioms as we do in this
study.

However, there are several important differences.
First, the setting in [8] is to qualitatively compare be-
lief states given a fixed act where as the setting in our
study is to compare acts given a fixed state of belief.
The setting of [8] sometimes leads to a confusion about
the intuition behind the preference relation on belief
states. For example, Dubois and Prade’s preference
relation = pp on the set of possibility distributions, by
definition, is supposed to reflect comparison on util-
ity. However, their Axiom 3: If 7 < 7’ then 7 = 7’
(“precision is safer”) is imposed just by informational
consideration. This axiom is contradicts our axiom
6 (“qualitative monotonicity”). When proposing Ax-
iom 6, we have stated the rationale for adopting it.
Let us consider an example. There are two situations,
2 denotes a loss of $1,000 and y denotes a gain of
$1,000,000. Dubois-Prade’s Axiom 3 would suggest
that the loss of $1,000 with certainty has no less util-
ity than a lottery in which a loss of $1,000 and a gain
of $1,000,000 are equally possible. However, according
to our Axiom 6, the latter lottery is preferred to the
former.

In [6], for a possibilistic lottery that is defined in a way
similar to our lottery construction, there are two kinds
of utilities called the “pessimistic” and “optimistic”
utilities that are obtained by using two different sets
of rules. Obviously, optimal decision depends on which
utility is employed. In other words, there is informa-
tion about the meta-preference provided by users that
is not covered within the formal systems proposed by
the authors. In contrast, our utility theory doesn’t
make any assumption about the risk attitude of the
decision maker as in the case of von Neumann and
Morgenstern’s theory. This feature allows us to avoid
the ambiguity a user faces when she wants to use pos-
sibilistic utility.

Another difference between Dubois-Prade’s and our
proposals is in how compound lotteries are handled
as summarized in their Axiom 5 and our Axiom 2. In
our proposal, as in von Neumann-Morgenstern theory,
the notion of independence between betting stages is
exploited to derive the rule for reducing multi-stage
lotteries. In Dubois-Prade’s Axiom 5, just conser-
vative reasoning is invoked. We feel that incorpo-
rating independence information in the rule for ma-
nipulating compound lotteries, like in von Neumann-
Morgenstern’s work, makes a decision theory more re-
alistic and practical than ignoring it. Although we
are aware of problems and difficulties in justifying in-
dependence when all one has is information about ir-
relevance or lack of interaction, in practice people do
perceive those notions interchangeably. In some situ-
ations, people may behave very cautiously, but they
often rationally engage in risky business if the risk is
reasonable for them.

However, it is important to note that in simple sit-
uations like the one in Savage’s omelette example, a
decision maker using a pessimistic utility function can
be modeled as a user who follows our qualitative utility
theory.

An interesting line of work in qualitative decision have
been pursued by Brafman and Tennenholtz [3, 4]. The
authors adopt an axiomatic approach argued by Sav-
age [17] and characterize conditions under which an
agent can be said as using maximin, minimazr re-
gret, competitive ratios and maximazx decision crite-
ria. They show that these very different criteria are
equivalent in terms of representation power. In partic-
ular, the representation theorem for maximin rule says
that if an agent’s preference satisfies a property simi-
lar to Savage’s sure thing principle and a transitive-like
property then the agent’s decision can be modeled by
maximin rule. Purely qualitative rule such as maximin
is justified because in their setting the consideration
of chance or likelihood of possible worlds is ignored.
In our setting, the notion of beliefs of possible worlds



enters explicitly in decision making. It can be easily
shown that preference based on the notion of expected
qualitative utility we develop here cannot be modeled
by a simple maximin rule.

Qualitative decision based on Spohn’s calculus has also
been studied by Pearl and his associates at UCLA
[10, 16, 11, 22, 5, 2] and Wilson [23]. They show that
a disbelief degree (ranking) can be viewed as order-of-
magnitude probabilities. A similar idea can be traced
back to Adams [1] (see [15] for a discussion). These au-
thors successfully use the relationship between kappa
rankings and probability to solve problems in non-
monotonic reasoning, for example, defining probabilis-
tic semantics for default rules and conditional ought
statements. They provide various set of decision mak-
ing rules justified by semantics of non-standard prob-
ability. However, none of these studies approach the
problem from an axiomatic point of view as we do in
this paper. We conjecture that most of these results
can be justified by using our qualitative utility func-
tion and some assumptions of the nature of the utility
function.

6 Summary and Conclusions

Our goal in this paper is to propose a utility theory
for Spohnian lotteries in which the uncertainty of win-
ning different prizes is expressed by epistemic beliefs.
The utility function obtained is qualitative in the sense
that a discrete scale is used. Also, in the formula of
expected utility, minimization and addition operations
are used in place of addition and multiplication in the
formula for quantitative expected utility. This seems
to make sense for lotteries in which uncertainty is char-
acterized qualitatively by disbelief values. Method-
ologically, we adapt the construction of a linear utility
function for the case of probabilistic lotteries to the
case of Spohnian lotteries. We show that preference
among Spohnian lotteries that is required to satisfy
some plausible axioms can be represented by an anal-
ogous qualitative linear utility function.

Decision making based on qualitative expected utility
is somewhere in between purely qualitative rules such
as maximin, minimax regret or maximax on one hand,
and the purely quantitative rule of maximizing von
Neumann-Morgenstern’s expected utility on the other
hand. Unlike, for example, the maximin rule which
focuses on the worst possible outcome, our qualitative
utility theory incorporates the epistemic beliefs about
realization of all possible outcomes. However, qualita-
tive utility may be viewed as order-of-magnitude ap-
proximation of quantitative utility. We think that the
position in the middle ground between the two camps
is a good one. That avoids criticisms both camps make

toward the other. For quantitative utility, a common
critique is that it often demands more than realisti-
cally available assessments of uncertainty and prefer-
ences for standard lotteries. For decision rules such
as maximin, the critique is that it is too conservative
and often ignores information even when available. It
is easy to find examples in which maximin rule leads
to unrealistic choices. Although we do not claim that
the earthquake example is a realistic one, it helps to
illustrate our point. In order to calculate vINM utility,
we are suppose to have a probability distribution of
earthquakes (despite the fact that earthquake special-
ists say that these are hard to come by) and we need
to assess precise utilities for each of the earthquake in-
tensities. On the other hand, if the maximin rule were
used, people would base their decisions on the effects
of intensity 12 earthquake which is not realistic. Our
qualitative utility theory demands assessments of un-
certainty in terms of epistemic beliefs and assessments
of qualitative utilities for each of the earthquake in-
tensities, a reasonable middle ground between the two
extremes.
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