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Abstract. A sequence (Mk) of closed subsets of Rn converges normally to M ⊂ Rn if (sc) M =
lim supMk = lim inf Mk in the sense of Painlevé–Kuratowski and (nc) lim sup G(NMk ) ⊂ G(NM ),
where G(NM ) (resp., G(NMk )) denotes the graph of NM (resp., NMk ), Clarke’s normal cone to M
(resp., Mk).

This paper studies the normal convergence of subsets of Rn and mainly shows two results. The
first result states that every closed epi-Lipschitzian subset M of Rn, with a compact boundary, can
be approximated by a sequence of smooth sets (Mk), which converges normally to M and such that
the sets Mk and M are lipeomorphic for every k (i.e., the homeomorphism between M and Mk

and its inverse are both Lipschitzian). The second result shows that, if a sequence (Mk) of closed
subsets of Rn converges normally to an epi-Lipschitzian set M , and if we additionally assume that
the boundary of Mk remains in a fixed compact set, then, for k large enough, the sets Mk and M
are lipeomorphic.

In Cornet and Czarnecki [Cahier Eco-Maths 95-55, 1995], direct applications of these results
are given to the study (existence, stability, etc.) of the generalized equation 0 ∈ f(x∗) + NM (x∗)
when M is a compact epi-Lipschitzian subset of Rn and f : M → Rn is a continuous map (or more
generally a correspondence).
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1. Introduction. A closed subset M of Rn is said to be epi-Lipschitzian if its
Clarke’s normal cone NM (x) is pointed (i.e., if NM (x)∩−NM (x) = {0}) at every x ∈
M . This class of sets, introduced in optimization by Rockafellar [16], is of particular
importance since it includes both (i) closed convex sets with a nonempty interior and
(ii) sets defined by finite smooth inequality constraints satisfying a nondegeneracy
assumption (independence of the binding constraints). Closed epi-Lipschitzian subsets
M of Rn are equivalently defined as sets that can be locally written as the epigraph
of a Lipschitzian function (see [16]).

A sequence (Mk) of closed subsets of Rn converges normally to M ⊂ Rn if
(sc) M = lim supMk = lim inf Mk in the sense of Painlevé–Kuratowski and (nc)
lim sup G(NMk

) ⊂ G(NM ), where G(NM ) = {(x, y) ∈ Rn × Rn|x ∈ M,y ∈ NM (x)}
(resp., G(NMk

)) denotes the graph of NM (resp., NMk
), Clarke’s normal cone to M

(resp., Mk).
This paper studies the normal convergence of subsets of Rn and mainly shows

two results. The first result (Theorem 2.1) states that every closed epi-Lipschitzian
subset M of Rn, with a compact boundary, can be approximated by a sequence of
smooth sets (Mk), which converges normally to M and such that, for every k, the sets
Mk and M are lipeomorphic (i.e., the homeomorphism between M and Mk and its
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SMOOTH APPROXIMATIONS OF EPI-LIPSCHITZIAN SETS 711

inverse are both Lipschitzian). Moreover, we prove that one can additionally assume
that the approximating sequence (Mk) is internal (resp., external) in the following
sense: Mk ⊂ intMk+1 (resp., Mk+1 ⊂ intMk) for all k ∈ N. This result extends
previous ones in the literature (which do not consider the lipeomorphism properties);
see Benoist [1] and (with a different formalism, without the geometrical concept of
Clarke’s cones) Nečas [15] (in Russian), Massari and Pepe [13], and Doktor [8].

In the above result, the lipeomorphism property is in fact a consequence of the
normal convergence of the sequence (Mk). This is a consequence of our second re-
sult (Theorem 2.2), which states that if (Mk) is a sequence of closed subsets of Rn
which converges normally to an epi-Lipschitzian set M , then the sets Mk and M
are lipeomorphic for k large enough if we additionally assume that, for all k, bdMk

remains in some given compact set K ⊂ Rn. In fact, we shall show (Theorem 2.3)
that one can weaken assertion (nc) by only assuming that the convex hull of the set
{p ∈ Rn|(x, p) ∈ lim sup G(NMk

)} is pointed for every x ∈M .
In [7], direct applications of these results are given to the study (existence, sta-

bility, etc.) of the generalized equation 0 ∈ f(x∗) + NM (x∗) when M is a compact
epi-Lipschitzian subset of Rn and f : M → Rn is a continuous map (or more generally
a correspondence).

The paper is organized as follows. The definitions and the main results are given
in section 2. The proof of the approximation result (Theorem 2.1) is given in section
3, and the proof of the lipeomorphism result (Theorem 2.3) is given in section 4.

2. Definitions and statement of the results.

2.1. Preliminaries1. Let M be a closed subset of Rn and let x ∈M . We define
Clarke’s normal cone to M at x, denoted NM (x), in two steps as follows. We first
call perpendicular vector to M at x every vector in the set

⊥M (x) = {v ∈ Rn|∃α > 0, B(x+ αv, α‖v‖) ∩M = ∅}.
Then Clarke’s normal cone to M at x is the closure of the convex hull of the following
limiting cone:

N̂M (x) = {v ∈ Rn|∃(xk)k∈N ⊂M, ∀k ∈ N, ∃vk ∈ ⊥M (xk), (xk)→ x, (vk)→ v}.
We now define Clarke’s tangent cone to M at x, denoted TM (x), as the negative polar
cone of NM (x), i.e.,

TM (x) = {u ∈ Rn | ∀v ∈ NM (x), (u|v) ≤ 0}.
We recall that a closed subset M of Rn is said to be epi-Lipschitzian if NM (x) is
pointed (i.e., NM (x)∩−NM (x) = {0}) for all x ∈M . We say that M is Ck-smooth if
it is a Ck (with k ∈ {1, . . . ,∞}) submanifold with a boundary of Rn of full dimension,

1We let R+ = {x ∈ R|x ≥ 0}. If x = (x1, . . . , xn) and y = (y1, . . . , yn) belong to Rn, we denote

the scalar product of Rn by (x|y) =
∑n

i=1
xiyi, the Euclidean norm by ‖x‖ =

√
(x|x); we denote

B(x, r) = {y ∈ Rn| ‖x− y‖ < r}, B(x, r) = {y ∈ Rn| ‖x− y‖ ≤ r}, S(x, r) = {y ∈ Rn| ‖x− y‖ = r},
B = B(0, 1), and S = S(0, 1). If X ⊂ Rn, Y ⊂ Rn, and x ∈ Rn, we let d(x,X) = infy∈X ‖x − y‖
(also denoted dX(x)), and we denote by X + Y = {x + y|x ∈ X, y ∈ Y } the sum of X and Y ,
B(X, r) = X + B(0, r), clX or X the closure of X, intX the interior of X, bdX the boundary
of X, and coX the convex hull of X. If X and Y are two nonempty compact subsets of Rn,
δ(X,Y ) = max{supx∈X d(x, Y ), supy∈Y d(y,X)} is the Hausdorff distance between X and Y . A
correspondence Φ from X ⊂ Rn to Rm is a map from X to the set of all the subsets of Rm and the
graph of Φ, denoted G(Φ), is defined by G(Φ) = {(x, y) ∈ X × Rm|y ∈ Φ(x)}.
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712 BERNARD CORNET AND MARC-OLIVIER CZARNECKI

i.e., if for all x ∈M , there is an open neighborhood U of x and a Ck function f : U → R
such that M ∩U = {x ∈ U |f(x)≤0}, and such that ∇f(x) 6= 0 if f(x) = 0. M is said
to be smooth if it is C∞-smooth.

We recall the following definitions and properties associated with a sequence (Mk)
of subsets of Rn (see, for example, Kuratowski [12]):

lim inf Mk = {x ∈ Rn|∃(xk) ⊂ Rn, xk → x, xk ∈Mk for all k};
lim supMk = {x ∈ Rn|∃(xk) ⊂ Rn,∃ϕ ∈ I, xk → x, xk ∈Mϕ(k) for all k},2

where I is the set of all increasing maps ϕ : N→ N.
We recall that the inclusion lim inf Mk ⊂ lim supMk always holds true; the se-

quence (Mk) is said to be set-convergent if lim inf Mk = lim supMk. We say that the
sequence (Mk) is smooth if the set Mk is smooth for k large enough. We say that
it is increasing (resp., decreasing) if Mk ⊂ intMk+1 (resp., Mk+1 ⊂ intMk) for all
k ∈ N. If (Mk) is an increasing (resp., decreasing) sequence, then one notices that it
set-converges to some M ⊂ Rn if and only if M = cl(∪k∈NMk) (resp., M = ∩k∈NMk).
An increasing (resp., decreasing) converging sequence is also called an internal (resp.,
external) approximation of its set-limit.

2.2. Statement of the results. We give a stronger notion of set-convergence
which involves both the set-convergence and the convergence of the graph of the
normal cones in the following sense.

Definition 2.1. We say that a sequence (Mk) of closed subsets of Rn is a nor-
mal approximation of a closed subset M ⊂ Rn (or converges normally to M) if the
two following assertions hold:

(sc) (set convergence) M = lim supMk = lim inf Mk;
(nc) (normal convergence) lim sup G(NMk

) ⊂ G(NM ).

Remark 2.1 (the convex case). Let (Mk) be a sequence of closed convex subsets
of Rn. Assume that (Mk) set-converges to some subset M ⊂ Rn. Then one easily
notices that the set M is convex and that (Mk) is a normal approximation of M .

The next theorem shows the existence of internal and external smooth normal
approximations of a compact epi-Lipschitzian subset of Rn, which satisfy additional
properties also of interest for themselves (in fact we weaken the compactness assump-
tion by assuming only that M is closed and that bdM is compact). We recall that
subsets M and N of Rn are lipeomorphic if there exists a map Φ : M → N which is
a lipeomorphism, i.e., is a Lipschitzian invertible map with a Lipschitzian inverse.

Theorem 2.1. Let M be a closed epi-Lipschitzian subset of Rn, such that bdM
is nonempty and compact. Then there exists a smooth internal normal approxi-
mation and a smooth external normal approximation of M which both additionally
satisfy the following properties:

(lip) the sets Mk and M are lipeomorphic for all k;
(lipc) the sets Rn \ intMk and Rn \ intM are lipeomorphic for all k;
(L) there is ` > 0 and a compact subset K ⊂ Rn such that, for all k,

bdMk ⊂ K and

δ(bdMk,bdMk+1) ≤ `min{‖x− y‖ |x ∈ bdMk, y ∈ bdMk+1}.
Theorem 2.1 is proved in section 3. A general discussion about assertion (L) is given

in the next section.

2Equivalently, lim supMk = ∩p∈Ncl(∪k≥pMk). Note also that for every subsequence (Mϕ(k)) of
(Mk), one has that lim inf Mk ⊂ lim inf Mϕ(k) ⊂ lim supMϕ(k) ⊂ lim supMk.
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SMOOTH APPROXIMATIONS OF EPI-LIPSCHITZIAN SETS 713

At this stage, it is worth pointing out that in Theorem 2.1 the two lipeomorphism
assertions (lip) and (lipc) are a consequence of the normal convergence of the sequence
(Mk) as is shown in the next result.

Theorem 2.2. Let (Mk) be a sequence of closed subsets of Rn such that the
boundaries bdMk remain in a given compact subset K ⊂ Rn. Assume that (Mk)
set-converges to some subset M ⊂ Rn and that

(∗) (Mk) converges normally to M , and M is epi-Lipschitzian.
Then, for k large enough,

(i) the sets M , Rn \ intM , Mk and Rn \ intMk are epi-Lipschitzian;
(ii) Mk is lipeomorphic to M and Rn \ intMk is lipeomorphic to Rn \ intM .
Theorem 2.2 is a consequence of the following result, which slightly weakens

assertion (∗) by noticing that the condition (nc) of normal convergence implies that

{p ∈ Rn|(x, p) ∈ lim sup G(NMk
)} = lim sup

x′→x,k→∞
NMk

(x′) ⊂ NM (x).

Theorem 2.3. Theorem 2.2 remains true if one replaces assertion (∗) with the
following assertion:

(∗∗) co lim supx′→x,k→∞NMk
(x′) is pointed for all x ∈M .

The proof of Theorem 2.3 is given in section 4.
Remark 2.2. Theorem 2.2 and Theorem 2.3 may not be true if bdMk does not

remain in a fixed compact set K. Consider M = R × R+ and the smooth internal
normal approximation of M defined by Mk = R×[1/k,∞)\B((k, 3/k), 1/k) for k ≥ 1.
Then, for every k, Mk is clearly not homeomorphic to M .

Remark 2.3. Theorem 2.2 may not be true if the set-limit M is not epi-
Lipschitzian. Consider M = {0} in R and the smooth external normal approxi-
mation of M defined by Mk = [−1/k, 1/k]. Then for every k, Mk is not home-
omorphic to M . Similarly, Theorem 2.3 may not be true without the assumption
that co lim supx′→x,k→∞NMk

(x′) is pointed for all x ∈ M , even if one assume that
M is epi-Lipschitzian. Consider M = [1, 1] in R and the smooth internal nor-
mal approximation of M defined by Mk = [−1,−1/k] ∪ [1/k, 1], and notice that
co lim supx′→0,k→∞NMk

(x′) = R.
Remark 2.4. Theorem 2.3 may not be true if we do not assume that lim supMk =

lim inf Mk. Consider M2k = B(0, 1), M2k+1 = B(0, 1) \ B(0, 1/2) (or M2k+1 = ∅),
and notice that B(0, 1) = lim supMk.

2.3. General remarks about assertion (L).
Remark 2.5. There may exist a normal (external or internal) approximation

satisfying all the conclusions of Theorem 2.1 except for assertion (L). Consider the
subset M = [0, 1] of R and the sets Mk = [−1/k, 1 + 1/2k].

Remark 2.6. If bdM is not compact, there may not exist an internal (or an exter-
nal) normal approximation of M which satisfies assertion (L). Consider the following
closed epi-Lipschitzian subset of R:

M =

(
R− \ ∪∞k=1

(
−k − 1

k + 1
,−k +

1

k + 1

))
∪
(
∪∞k=1

[
k − 1

k + 1
, k +

1

k + 1

])
.

Then, if (Mk) is any smooth internal (or external) normal approximation of M , we
let the reader check that it does not satisfy assertion (L).

Remark 2.7. Note that the inequality

δ(X,Y ) ≥ min{‖x− y‖ |x ∈ X, y ∈ Y }
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714 BERNARD CORNET AND MARC-OLIVIER CZARNECKI

is always true if X and Y are two nonempty compact subsets of Rn. Hence, one
necessarily has ` ≥ 1 in assertion (L) of Theorem 2.1.

Remark 2.8. If we additionally assume that (Mk) is increasing or decreasing, then

(L′) ∀k, δ(bdMk,bdM) ≤ `min{‖x− y‖ |x ∈ bdM,y ∈ bdMk}.
Indeed, one just needs to notice that δ(bdMk,bdM) ≤ ∑∞i=k δ(bdMi,bdMi+1) and
that

min{‖x− y‖ |x ∈ bdM,y ∈ bdMk} ≥
∞∑
i=k

min{‖x− y‖ |x ∈ bdMi, y ∈ bdMi+1}.

Assertion (L′) is no longer true if we do not assume that the sequence (Mk) is
increasing or decreasing. Consider the set M = [0, 1], the sets M2k = [−1/k, 1] and
M2k+1 = [0, 1 + 1/(k+ 1)] for all k ≥ 1. Then (Mk) is a smooth approximation of M
which satisfies assertion (L), but the above property (L′) is not true.

2.4. Other concepts of normal convergence.

2.4.1. Involving the subdifferential of the distance function. We first
recall the definition of Clarke’s subdifferential of a locally Lipschitzian function.3 Let
U be an open subset of Rn and consider f : U → R; if f is differentiable at x ∈ U , we
denote ∇f(x) the gradient of f at x. If f is locally Lipschitzian, its subdifferential
∂f(x) at x ∈ U is defined by

∂f(x) = co{ lim
k→∞

∇f(xk)|xk → x, xk ∈ Dom(∇f)},

where Dom(∇f) is the set on which f is differentiable. In the case of the distance
function dM to a closed set M ⊂ Rn, one can be more precise. Indeed, from Clarke
[4, Thm. 2.5.6],

∂dM (x) = co
(

(N̂M (x) ∩ S) ∪ {0}
)
,(1)

where N̂M (x) is the limiting normal cone defined previously and S is the unit sphere
in Rn.

It seems natural to compare the normal convergence with the following concept
of ∂-convergence, in which one replaces the normal cone by the subdifferential of the
distance function. More precisely, we say that a sequence (Mk) of closed subsets of
Rn ∂-converges to a closed subset M ⊂ Rn if it satisfies assertion (sc) together with

(∂c) lim sup G(∂dMk
) ⊂ G(∂dM ).

It is worth noticing that the ∂-convergence can be formulated only in terms of the
distance function, by noticing that assertion (sc) can be equivalently reformulated as
follows:

(sc′) ∀x ∈ Rn, limk→∞ dMk
(x) = dM (x).

The link between normal convergence and ∂-convergence can be summarized as
follows. It will appear that the concept of ∂-convergence is too strong (for a mat-
ter of normalization), even in the epi-Lipschitzian case. Indeed, in this paper we

3If X ⊂ Rn, a map f : X → Rm is locally Lipschitzian if, for all x ∈ X, there is a neighborhood
U of x and a real number K ≥ 0 such that ‖f(y)− f(z)‖ ≤ K‖y − z‖ for all y and z in U .
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SMOOTH APPROXIMATIONS OF EPI-LIPSCHITZIAN SETS 715

show that every compact epi-Lipschitzian set can be approximated in the sense of
normal convergence by a sequence of smooth sets. This result is no longer true with
the ∂-convergence as shown below (Proposition 2.2) by taking M = R2 \ intR2

+.
Furthermore, in the epi-Lipschitzian case, the following proposition shows that the
∂-convergence implies the normal convergence, a result which is no longer true in
general (see Remark 2.9).

Proposition 2.1. Let (Mk) be a sequence of closed subsets of Rn which ∂-
converges to some epi-Lipschitzian set M ⊂ Rn. Then (Mk) converges normally to
the set M .

Proof of Proposition 2.1. Let (x, p) ∈ lim sup G(NMk
). Then there is a sequence

(xk) converging to x, a sequence (pk) converging to p, and an increasing map ϕ :
N → N, such that xk ∈ Mϕ(k) and pk ∈ NMϕ(k)

(xk) for all k. Since NMϕ(k)
(xk) =

cl[∪λ≥0λ∂dMϕ(k)
(xk)] (see Clarke [4]) for all k, there is a sequence (λkr )r∈N in R+

and a sequence (vkr )r∈N in ∂dMϕ(k)
(xk) such that λkrv

k
r converges to pk when r →∞.

Hence, without any loss of generality (using a diagonal argument), we may assume
that p = limk→∞ λkvk, with λk ≥ 0 and vk ∈ ∂dMϕ(k)

(xk) ⊂ B(0, 1), and that the
bounded sequence (vk) converges to some v ∈ Rn. Then, from above and (1), for
every integer k,

vk ∈ ∂dMϕ(k)
(xk) = co

(
(N̂Mϕ(k)

(xk) ∩ S) ∪ {0}
)
.

Hence, from Carathéodory’s theorem, there are n+1 elements (vik, λ
i
k) (i ∈ {1, . . . , n+

1}) in Rn × R+ such that vik ∈ N̂Mϕ(k)
(xk) ∩ S ⊂ ∂dMϕ(k)

(xk),
∑n+1
i=1 λ

i
k = 1, and

µk ∈ [0, 1] such that

vk = µk

n+1∑
i=1

λikv
i
k.

Again, without any loss of generality, we may assume that (v1
k, . . . , v

n+1
k , (λ1

k,. . . ,
λn+1
k ), µk) converges to some element (v1, . . . , vn+1, (λ1,. . . ,λn+1), µ) ∈ Sn+1 × Σ ×

[0, 1], where Σ is the unit simplex of Rn+1. From assertion (∂c), we get that v ∈
∂dM (x) and that vi ∈ ∂dM (x) for all i ∈ {1, . . . , n + 1}. But for all i, from above

vi ∈ S and vi ∈ co
(

(N̂M (x) ∩ S) ∪ {0}
)

, noticing that

co
(

(N̂M (x) ∩ S) ∪ {0}
)
∩ S = N̂M (x) ∩ S,

we deduce that vi ∈ N̂M (x) ∩ S. Then w =
∑n+1
i=1 λ

ivi ∈ co(N̂M (x) ∩ S), which
does not contain 0 since M is epi-Lipschitzian; hence w 6= 0. Recalling that p =
limk→∞ λkvk = limk→∞ λkµk

∑n+1
i=1 λ

i
kv
i
k, the sequence (λkµk) converges to ρ =

‖p‖/‖w‖, and p = ρw with w ∈ co(N̂M (x) ∩ S) ⊂ ∂dM (x); hence p ∈ NM (x).
This shows that (Mk) converges normally to M .

Remark 2.9. Proposition 2.1 may no longer be true if M is not epi-Lipschitzian.
Consider the set

M = {(x, y) ∈ R2|y ≤
√
|x|}

and, for every integer k ≥ 1, the set

Mk = {(x, y) ∈ R2|[y ≥ 0 and y ≤
√
|x| − 1/k] or [y < 0 and y ≤ |kx| − 1/k]}.
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716 BERNARD CORNET AND MARC-OLIVIER CZARNECKI

Then the sequence (Mk) ∂-converges to M (note that ∂dM (0) = [−1, 1] × {0} =
lim supx′→0,k→∞ ∂dMk

(x′)). But lim supx′→0,k→∞NMk
(x′) = R × R+ and NM (0) =

R× {0}; hence assertion (nc) is not satisfied.
The next proposition shows that the concept of ∂-convergence is too strong (for

a matter of normalization).
Proposition 2.2. The set R2 \ intR2

+, i.e., the complementary of the interior of
R2

+ in R2, cannot be approximated, in the sense of the ∂-convergence, by a sequence
of smooth sets.

Proof of Proposition 2.2. Assume that it is not true, and let (Mk) be a sequence
of smooth subsets of R2 which ∂-converges to M = R2 \ intR2

+. From Proposition 2.1,
since M is clearly epi-Lipschitzian, (Mk) converges normally to M ; this implies that
(R2 \ intMk) converges normally to R2 \ intM = R2

+ (see Proposition 3.1) and we
shall prove later (Lemma 4.1) that this implies

⊥R2
+

(0) ⊂ lim sup
x→0,k→∞

NR2\intMk
(x).

Since v = −(1/
√

2, 1/
√

2) ∈ ⊥R2
+

(0)(= −R2
+), the above inclusion implies that there

is a sequence (xk) converging to 0, a sequence (vk) converging to v, and an increasing
map ϕ : N → N, such that, for all k, xk ∈ bd(R2 \ intMϕ(k)) = bdMϕ(k) and
vk ∈ NR2\intMϕ(k)

(xk) = −NMϕ(k)
(xk) (since the set Mϕ(k) is smooth). For k large

enough, vk 6= 0; since the set Mϕ(k) is smooth, −vk/‖vk‖ is the unique element in
NMϕ(k)

(xk) ∩ S and hence belongs to ∂dMϕ(k)
(xk). Then the sequence (−vk/‖vk‖)

converges to −v, which, from assertion (∂c), belongs to ∂dM (0). Hence,

−v = (1/
√

2, 1/
√

2) ∈ ∂dM (0) = co{(1, 0), (0, 1), (0, 0)},

which is a contradiction.

2.4.2. Involving the limiting normal cone. We now compare the normal
convergence with the following concept of N̂ -convergence, in which one replaces
Clarke’s normal cone NM with the limiting normal cone N̂M (see Mordukhovich [14])
defined previously. More precisely, we say that a sequence (Mk) of closed subsets of
Rn N̂ -converges to a closed subset M ⊂ Rn if it satisfies assertion (sc) together with

(n̂c) lim sup G(N̂Mk
) ⊂ G(N̂M ).

The next proposition shows that the N̂ -convergence and the ∂-convergence are in
fact equivalent.

Proposition 2.3. Let (Mk) be a sequence of closed subsets of Rn and let M be
a closed subset of Rn. Then (Mk) N̂ -converges to M if and only if (Mk) ∂-converges
to the set M .

Proof of Proposition 2.3 (N̂ -convergence ⇒ ∂-convergence). Let

(x, v) ∈ lim sup G(∂dMk
).

Then there is a sequence (xk) converging to x, a sequence (vk) converging to v,
and an increasing map ϕ : N→ N, such that xk ∈Mϕ(k) and vk ∈ ∂dMϕ(k)

(xk) for all
k. Since from (1)

∂dMϕ(k)
(xk) = co

(
(N̂Mϕ(k)

(xk) ∩ S) ∪ {0}
)
,

from Carathéodory’s theorem, there are n+ 1 elements (vik, λ
i
k) (i∈{1, . . . , n+ 1}) in
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SMOOTH APPROXIMATIONS OF EPI-LIPSCHITZIAN SETS 717

Rn×R+ and an element µk ∈ [0, 1] such that vik ∈ N̂Mϕ(k)
(xk)∩S,

∑n+1
i=1 λ

i
k = 1, and

vk = µk

m+1∑
i=1

λikv
i
k.

Without any loss of generality, we may assume that (v1
k, . . . , v

n+1
k , (λ1

k, . . . , λ
n+1
k ),

µk) converges to some element (v1, . . . , vn+1, (λ1, . . . ,λn+1), µ) ∈ Sn+1 × Σ × [0, 1],
where Σ is the unit simplex of Rn+1. From assertion (n̂c), we deduce that vi ∈
N̂M (x) ∩ S for all i ∈ {1, . . . , n + 1}. Then v ∈ co((N̂M (x) ∩ S) ∪ {0}) = ∂dM (x)
from (1). This shows that (Mk) ∂-converges to M .

Proof of Proposition 2.3 (∂-convergence⇒ N̂ -convergence). Let (x, p) ∈ lim sup G
(N̂Mk

). Then there is a sequence (xk) converging to x, a sequence (pk) converging to

p, and an increasing map ϕ : N → N, such that xk ∈ Mϕ(k) and pk ∈ N̂Mϕ(k)
(xk) for

all k. If p = 0, then clearly p ∈ N̂M (x). Assume now that p 6= 0. Then for k large
enough, pk 6= 0, and pk/‖pk‖ converges to p/‖p‖. Since pk/‖pk‖ ∈ N̂Mϕ(k)

(xk) ∩ S ⊂
∂dMϕ(k)

(xk) (from (1)), and since (Mk) ∂-converges to M , we deduce that p/‖p‖ ∈
∂dM (x). Since

∂dM (x) ∩ S = co
(

(N̂M (x) ∩ S) ∪ {0}
)
∩ S = N̂M (x) ∩ S,

we deduce that p/‖p‖ ∈ N̂M (x) ∩ S, hence that p ∈ N̂M (x). This shows that the
sequence (Mk) N̂ -converges to M .

Remark 2.10. The proof of the equivalence between the ∂-convergence and the
N̂ -convergence relies heavily on the following equality:

∂dM (x) = co
(

(N̂M (x) ∩ S) ∪ {0}
)
.

The difference between the ∂-convergence and the normal convergence might be ex-
plained by the fact that the inclusion

∂dM (x) ⊂ co
(

(NM (x) ∩ S) ∪ {0}
)

may be strict, even in the epi-Lipschitzian case. Consider M = R2 \ intR2
+.

3. Proof of the approximation result. The first idea to prove Theorem 2.1
is to smooth the distance function dM by using a classical convolution argument.
Indeed, by doing so one directly gets the existence of a normal smooth approximation
of M . However, the lipeomorphism properties are more difficult to obtain and our
proof will consist of using a more refined argument of convolution (in fact, by using
the representation theorem in [6]).

The proof of Theorem 2.1 has three steps. In the first step, we show that (Mk) is
an internal (resp., external) smooth approximation of M which satisfies (lip), (lipc),
and (L) if and only if (Rn \ intMk) is an external (resp., internal) smooth approxi-
mation of Rn \ intM which satisfies (lip), (lipc), and (L). In view of this equivalence
property, it is sufficient to only show in the following the existence of smooth in-
ternal approximations of epi-Lipschitzian sets. In the second step, we improve the
representation theorem of Cornet and Czarnecki [6] when the epi-Lipschitzian set is
additionally assumed to have a compact boundary. In the third step, the previous
representation result allows us to get the approximating sequence. These three steps
are proved successively in the following three sections.
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718 BERNARD CORNET AND MARC-OLIVIER CZARNECKI

3.1. Complementarity property of internal and external approxima-
tions.

Proposition 3.1. Let M and Mk (k ∈ N) be closed epi-Lipschitzian subsets of
Rn. Then the two following assertions are equivalent:

(i) (Mk) is a (resp., internal, resp., external, resp., smooth, resp., satisfying (lip),
resp., (lipc), resp., (L)) normal approximation of M ;

(ii) (Rn \ intMk) is a (resp., external, resp., internal, resp., smooth, resp., satis-
fying (lipc), resp., (lip), resp., (L)) normal approximation of Rn \ intM .

Remark 3.1. Proposition 3.1 is no longer true if we do not assume that M is epi-
Lipschitzian. Consider M = {0} in R and Mk = [−1/k, 1/k] for k ≥ 1. Then (Mk)
is a smooth external normal approximation of M and (R \ intMk) is not a normal
approximation of R \ intM . Consider also the set M = {(x, y) ∈ R2|y ≥ √|x|}
and the set Mk = {(x, y) ∈ R2|[y ≥ 0 and y ≥ √|x| − 1/k] or [y < 0 and y ≥
(k3/4)x2 − (1/4k)]} for k ≥ 1. Then (Mk) is a smooth internal approximation of M
but (Rn \ intMk) is not a normal approximation of Rn \ intM . Indeed, NRn\intM (0) =
R × {0}; hence the set {0} × R+, which is contained in lim supG(NRn\intMk

), is not
contained in G(NRn\intM ).

Before proving Proposition 3.1, we prove a claim.
Claim 3.1. Let (Mk) be a sequence of closed subsets of Rn converging normally

to a closed subset M ⊂ Rn. Then

(int) intM = ∪p∈Nint(∩k≥pintMk);
(scc) Rn \ intM = lim sup(Rn \ intMk) = lim inf (Rn \ intMk).

Proof of Claim 3.1. We first prove assertion (int).4 Since

∪p∈N ∩k≥pMk ⊂ lim inf Mk = M,

the inclusion ∪p∈Nint(∩k≥pintMk) ⊂ intM is immediate. Let us consider

x ∈ intM \ ∪p∈Nint(∩k≥pintMk) = intM ∩ [∩p∈Ncl(Rn \ ∩k≥pintMk)].

Then there is a sequence (xk) in Rn converging to x such that, for all k ∈ N, xk /∈
∩l≥kintMl. Without any loss of generality, we may assume that there is an increasing
map ϕ : N → N such that, for all k, xk /∈ intMϕ(k). Since x ∈ intM ⊂ lim inf Mk,
there is a sequence (yk) in Rn converging to x such that for all k ∈ N, yk ∈Mk. Since
yϕ(k) ∈Mϕ(k), there is zk ∈ bdMϕ(k)∩ [xk, yϕ(k)] and there is vk ∈ NMϕ(k)

(zk)∩S (see
Clarke [4]). The sequence (zk) converges to x, and we may assume without any loss of
generality that vk converges to some v ∈ S. Hence (x, v) ∈ lim supG(NMk

) ⊂ G(NM ),
which implies that v ∈ NM (x). The fact thatNM (x) 6= {0} contradicts that x ∈ intM .

Let us now prove assertion (scc). Since M = lim supMk = ∩p∈Ncl(∪k≥pMk), we
get that

Rn \M = ∪p∈Nint(∩k≥pRn \Mk) ⊂ ∪p∈N ∩k≥p Rn \ intMk ⊂ lim inf(Rn \ intMk),

hence that Rn \ intM ⊂ lim inf(Rn \ intMk) ⊂ lim sup(Rn \ intMk). From assertion
(int), we get that Rn\ intM = ∩p∈Ncl(∪k≥pRn \ intMk) = lim sup(Rn\ intMk).

Proof of Proposition 3.1. Note that, without any loss of generality, we only need
to prove the implication [(i)⇒ (ii)]. The implication [(ii)⇒ (i)] can then be deduced

4In fact, we prove it in a more general setting later in this paper with a longer proof (Lemma 4.3).

D
ow

nl
oa

de
d 

01
/2

3/
15

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



SMOOTH APPROXIMATIONS OF EPI-LIPSCHITZIAN SETS 719

from [(i) ⇒ (ii)], applying the result to the set Rn \ intM , since Rn \ intM is epi-
Lipschitzian, since Rn \ int(Rn \ intM) = intM = M5 and Rn \ int(Rn \ intMk) =
intMk = Mk for all k.

In view of Claim 3.1, the sequence (Rn \ intMk) and the set Rn \ intM clearly
satisfy assertion (sc) of Definition 2.1. Let us prove that they satisfy assertion (nc).
Let (x, p) ∈ lim supG(NRn\intMk

). Without any loss of generality, we may assume that
p 6= 0, hence that x ∈ lim sup bd(Rn\intMk) = lim sup bdMk, since bd(Rn\intMk) =
(Rn \ intMk) \ int(Rn \ intMk) = intMk \ intMk = bdMk for all k (since Mk is epi-
Lipschitzian). This implies that x ∈ M ∩ (Rn \ intM) = bdM = bd(Rn \ intM).
Then, since Mk is epi-Lipschitzian, NRn\intMk

(x′) = −NMk
(x′) for all x′ ∈ bdMk,

hence (x,−p) ∈ lim supG(NMk
), hence (x,−p) ∈ G(NM ), which implies that (x, p) ∈

G(NRn\intM ), since NRn\intM (x) = −NM (x). We proved that (Rn \ intMk) is an
approximation of Rn \ intM . If (Mk) is a smooth (resp., internal, resp., external,
resp., satisfying (lip), resp., (lipc), resp., (L)) approximation of M , then (Rn \ intMk)
is clearly a smooth (resp., external, resp., internal, resp., satisfying (lip), resp., (lipc),
resp., (L)) approximation of Rn \ intM .

3.2. A representation theorem. We first state a representation theorem of
M when bdM is compact.

Theorem 3.1. Let M be a closed epi-Lipschitzian subset of Rn with compact
boundary bdM . Then there is a function fM : Rn → R which is a quasi-smooth
inequality representation of M in the following sense:

(i) fM is locally Lipschitzian on Rn and C∞ on Rn \ bdM ;

(ii) M = {x ∈ Rn|fM (x) ≤ 0};
(iii) bdM = {x ∈ Rn|fM (x) = 0};6
(iv) 0 /∈ ∂fM (x) if fM (x) = 0;

(v) NM (x) ∩ −NRn\intM (x) = ∪λ≥0λ∂fM (x) for all x ∈ bdM .

Furthermore, one can assume that for some ε > 0:

(vi) f−1
M ([−ε, ε]) is compact;

(vii) ∀x ∈ f−1
M ([−ε, ε]), co∂fM (B(x, ε)) ∩B(0, ε) = ∅.

Proof of Theorem 3.1. The existence of a function f satisfying assertions (i)–(v)
is exactly Theorem 2.1 of Cornet and Czarnecki [6] (in which the closed set M is not
assumed to have a compact boundary).

Let f be a quasi-smooth representation of M on Rn (i.e., satisfying assertions
(i)–(v)). Let α : Rn → [0, 1] be a C∞ function such that α(x) = 0 if x ∈ B(bdM, 1/2)
and α(x) = 1 if x /∈ B(bdM, 1). We define the function fM : Rn → R for all x ∈ Rn
by

fM (x) = (1− α(x))f(x) + α(x)sgnf(x) if f(x) 6= 0,
fM (x) = 0 if f(x) = 0,

denoting sgn t = t/|t| if t ∈ R \ {0}.
Proof of (i)–(iii). The function fM clearly satisfies assertions (i), (ii), and (iii) of

Theorem 3.1.
Proof of (iv) and (v). Let x ∈ bdM . Since α = 0 on a neighborhood of x, one

gets that ∂fM (x) = ∂f(x); hence assertions (iv) and (v) of Theorem 3.1 are satisfied.

5This is a classical result on epi-Lipschitzian sets (see, for example, Cornet and Czarnecki [6]).
6This assertion is a consequence of assertions (ii) and (iv).
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720 BERNARD CORNET AND MARC-OLIVIER CZARNECKI

Proof of (vi). Since f−1
M ((−1, 1)) ⊂ B(bdM, 1), then cl(f−1

M ((−1, 1))) is compact.
Proof of (vii). It is a consequence of the following lemma (taking m = n, K =

bdM = f−1
M ({0}), and Φ = ∂fM ) and of the fact that f−1

M ([−ε, ε]) ⊂ B(bdM, r) for
some ε ∈ (0, 1] (since B(bdM, r) is an open set containing the intersection of compact
sets ∩ε∈(0,1]f

−1
M ([−ε, ε])).

Lemma 3.1. Let K be a compact subset of Rn and let Φ be a u.s.c. correspondence
from Rn to Rm, with nonempty compact convex values, such that 0 6∈ Φ(x) for every
x ∈ K. Then there exists r > 0 such that

coΦ(B(x, r)) ∩B(0, r) = ∅, for all x ∈ B(K, r).

Proof of Lemma 3.1 (by contraposition). Suppose that there exists a sequence
(xk) in Rn such that, for all k, xk ∈ B(K, 1/k) and

coΦ(B(xk, 1/k)) ∩B(0, 1/k) = ∅.

From Carathéodory’s theorem, there exist n+1 elements (xki , y
k
i , λ

k
i ) (i = 1, . . . , n+1)

in Rn × Rm × R+ such that xki ∈ B(xk, 1/k), yki ∈ Φ(xki ),
∑m+1
i=1 λki = 1, and∥∥∥∥∥

m+1∑
i=1

λki y
k
i

∥∥∥∥∥ ≤ 1/k.

Without loss of generality, we assume that the sequence (xk, λk1 , . . . , λ
k
m+1, y

k
1 , . . . , y

k
m+1)

converges to some element (x∗, λ∗1, . . . , λ
k∗
m+1, y

∗
1 , . . . , y

∗
m+1) ∈ K×Σ×Rm(m+1), since

the sequence belongs to the compact set B(K, 1)×Σ×Φ(B(K, 1))m+1, where Σ is the
unit simplex of Rm+1 and the set Φ(B(K, 1)) is clearly bounded (since Φ(B(K, 1))
is the image of the compact set B(K, 1) by the u.s.c. correspondence Φ). However,
for all i ∈ {1, . . . ,m + 1}, the sequence (xki ) also converges to x∗ (since from above
‖xki − xk‖ ≤ 1/k).

Taking the limit when k → ∞, we get 0 =
∑m+1
i=1 λ∗i y

∗
i and y∗i ∈ Φ(x∗) for all

i ∈ {1, . . . ,m+ 1}, since the correspondence Φ is u.s.c. Consequently, 0 ∈ Φ(x∗) since
Φ(x∗) is convex. Since x∗ ∈ K, this contradicts the assumption 0 /∈ Φ(x∗).

Remark 3.2. When bdM is not compact, assertion (vi) is clearly false for any
quasi-smooth inequality representation of M . The following example shows that as-
sertion (vii) may not be true if bdM is not assumed to be compact. Consider the set
M = {(x, y) ∈ R2|(x ≤ 0) or (x > 0 and y ∈ [−1/x, 1/x])}.

3.3. Proof of Theorem 2.1. In view of Proposition 3.1, we only need to show
the existence of smooth internal approximations of epi-Lipschitzian sets. Let fM be a
quasi-smooth representation of M satisfying the conclusions of Theorem 3.1 for some
ε > 0; we let

Mk = {x ∈ Rn|fM (x) ≤ −ε/k}

for every integer k ≥ 1. We shall prove that (Mk) is a smooth internal approximation
of M satisfying the conclusions of Theorem 2.1.

It is clearly an increasing sequence, and the set-convergence assertion (sc) is im-
mediate. The sets Mk are clearly smooth, since fM is C∞ on {x ∈ Rn|fM (x) 6= 0}
and since ∇fM (x) 6= 0 when x ∈ bdMk (in that case, fM (x) = −ε/k, fM (x) ∈ [−ε, ε]
and 0 /∈ ∂fM (x) = {∇fM (x)} from Theorem 3.1, assertion (vii)).
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SMOOTH APPROXIMATIONS OF EPI-LIPSCHITZIAN SETS 721

Proof of the normal convergence assertion (nc). Let (x, v) ∈ lim supG(NMk
).

Then there exist two sequences (xk) and (vk) in Rn and an increasing function ϕ :
N→ N, such that (xk) converges to x, (vk) converges to v, and, for all k, xk ∈Mϕ(k)

and vk ∈ NMϕ(k)
(xk). Then, for all k, there is λk ≥ 0 such that vk = λk∇fM (xk).

Since fM is Lipschitzian on a neighborhood of x, the sequence (∇fM (xk)) is bounded.
Without any loss of generality, we may assume that it converges to some u ∈ Rn. Since
the correspondence ∂fM is u.s.c., u ∈ ∂fM (x), hence u 6= 0 since 0 /∈ ∂fM (x). This
implies that the sequence (λk) converges to λ = ‖v‖/‖u‖ and v = λu with λ ≥ 0 and
u ∈ ∂fM (x). Hence v ∈ NM (x).

Proof of the lipeomorphism assertions (lip) and (lipc). Let us now prove that the
sets M and Mk are lipeomorphic for all k. In view of Bonnisseau–Cornet [2, Theorem
2.5],7 assertion (lip) is a clear consequence of the following facts:

Mk = {x ∈ Rn|fM (x) ≤ −ε/k} for every k,
M = {x ∈ Rn|fM (x) ≤ 0},
f−1
M ([−ε/k, 0]) is compact,

0 /∈ ∂fM (x) when fM (x) ∈ [−ε/k, 0].

The proof that the sets Rn \ intMk and Rn \ intM are lipeomorphic is a consequence
of the same result, since Rn \ intMk = {x ∈ Rn|fM (x) ≥ −ε/k} and Rn \ intM =
{x ∈ Rn|fM (x) ≤ 0}.

Proof of (L). In view of assertion (sc) of Definition 2.1, since the sequence (Mk)
is increasing, and since bdM is compact, there clearly is an integer k0 such that
bdMk ⊂ B(bdM, ε) for all k ≥ k0. Let us consider k ≥ k0, and let L be the Lipschitz
constant of fM on B(bdM, ε). We first prove that

ε[(1/k)− 1/(k + 1)] ≤ Lmin{‖x− y‖, x ∈ bdMk, y ∈ bdMk+1}.

Indeed, if x ∈ bdMk and y ∈ bdMk+1, then fM (x) = −ε/k and fM (y) = −ε/(k+ 1).
Then ε[(1/k) − 1/(k + 1)] = |fM (x) − fM (y)| ≤ L‖x − y‖. We now end the proof of
Theorem 2.1 by proving that

δ(bdMk,bdMk+1) ≤ [(1/k)− 1/(k + 1)].

We first consider x ∈ bdMk. Since fM satisfies Theorem 3.1, assertion (vii), we
can separate the compact convex sets co∂fM (B(x, ε)) and B(0, ε). Hence there is
p ∈ S(0, 1) such that (p|y) > ε for all y ∈ co∂fM (B(x, ε)). Then, considering the map
t 7→ fM (x+ tp), from the mean-value theorem (see Clarke [4]) one easily proves that
fM (x + tp) − fM (x) ≥ εt for all t ∈ [0, ε]. Then fM (x + εp) ≥ −ε/k + ε2 > 0 (if k
is large enough), hence there is t ∈ [0, ε] such that fM (x + tp) = −ε/(k + 1). Hence
εt ≤ fM (x + tp) − fM (x) = ε[(1/k) − 1/(k + 1)]. This implies that d(x,bdMk+1) ≤
‖tp‖ ≤ [(1/k)− 1/(k + 1)]. One proves that d(x,bdMk) ≤ [(1/k)− 1/(k + 1)] for all
x ∈ bdMk+1 in the same way. Hence δ(bdMk,bdMk+1) ≤ [(1/k)− 1/(k+ 1)].

Remark 3.3. From the above proof, we note that assertion (L) is satisfied by
the sequence Mk = {x ∈ Rn|fM (x) ≤ εk}, where fM : Rn → R is a quasi-smooth
representation of M and (εk) is a strictly decreasing sequence of positive real numbers
converging to zero. However, there may exist normal converging sequences which
cannot be represented as above. Consider the example in Remark 2.5.

7Bonnisseau and Cornet [2] prove a homeomorphism result, but only a slight change in their
proof gives a lipeomorphism result.
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722 BERNARD CORNET AND MARC-OLIVIER CZARNECKI

4. Proof of the lipeomorphism result. In view of Proposition 3.1, the proof
of Theorem 2.3 has three steps. We first show that the sets M and Mk are epi-
Lipschitzian for k large enough. In the second step, we show the existence of a
Lipschitzian transverse field between M and Mk, in a sense that will be explained
later. In the third step of the proof we show that, if there is a such transverse field
between two sets M and N , then M and N are (epi-Lipschitzian and) lipeomorphic.
These three steps are proved successively in the following three sections.

4.1. The sets M and Mk are epi-Lipschitzian.
Proposition 4.1. Let (Mk) be a sequence of closed subsets of Rn such that

bdMk ⊂ K for all k, for some fixed compact subset K ⊂ Rn, and such that

(∗∗) co lim supx′→x,k→∞NMk
(x′) is pointed for all x ∈ lim supMk.

Then the set M = lim supMk and the set Mk, for k large enough, are epi-Lipschitzian.
Proof of Proposition 4.1. We first prove that Mk is epi-Lipschitzian for k large

enough. Assume that it is not true. Then there is a sequence (xk) in Rn, a sequence
(pk) in S, and an increasing map ϕ : N→ N, such that, for all k ∈ N, xk ∈Mϕ(k), pk ∈
NMϕ(k)

(xk), and −pk ∈ NMϕ(k)
(xk). Then xk ∈ bdMϕ(k) ⊂ K; hence we may assume

without any loss of generality that the sequence xk converges to some x ∈ K and
that the sequence pk converges to some p ∈ S. Then x ∈ M (since M = lim supMk)
and p and −p belong to lim supx′→x,k→∞NMk

(x′), which contradicts the fact that
co lim supx′→x,k→∞NMk

(x′) is pointed for every x ∈M .
We now prove that M is epi-Lipschitzian. Let x ∈ M . Then, since the set

co lim supx′→x,k→∞NMk
(x′) is pointed, it is sufficient to prove that NM (x) ⊂ co

lim supx′→x,k→∞NMk
(x′) for all x ∈M , which we do in the next lemma, which gen-

eralizes Lemma 6.2 from Benoist [1] (see also Kruger and Mordukhovich [11, Theorem
P.3] and Ioffe [10, Theorem 3]).

Lemma 4.1. Let (Mk) be a sequence of closed subsets of Rn, and let M =
lim supMk. Then, for all x ∈M

(i) ⊥M (x) ⊂ lim supx′→x,k→∞NMk
(x′);8

(ii) NM (x) ⊂ cl (co lim supx′→x,k→∞NMk
(x′));

(iii) if we additionally assume that the set co lim supx′→x,k→∞NMk
(x′) is

pointed, then we can suppress cl in the above assertion, i.e., formally

NM (x) ⊂ co lim sup
x′→x,k→∞

NMk
(x′).

Proof of Lemma 4.1. Proof of (i). Let x ∈ M and p ∈ ⊥M (x) \ {0}. One easily
notices from the definition of ⊥M (x) that, for µ > 0 small enough,

B(x+ µp, µ‖p‖) ∩M = {x}.(2)

We define the function ψ : Rn → R by ψ(x) = (1/2)‖x − (x + µp)‖2. Then, for all
integer k there is a solution xk ∈ Rn of the following minimization problem:

(Pk)

{
minimize ψ(x),
x ∈Mk.

Then, from (2), x + µp /∈ M . Hence, since M = lim supMk, x + µp /∈ Mk for k

8One can easily replace assertion (i) with ⊥M (x) ⊂ lim supx′→x,k→∞⊥Mk (x′) or, equivalently,
G(⊥M ) ⊂ lim supG(⊥Mk ). However, without the convexification of the right-hand side, assertion
(iii) does not hold in general.
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SMOOTH APPROXIMATIONS OF EPI-LIPSCHITZIAN SETS 723

large enough; hence xk ∈ bdMk. Then xk satisfies the following first-order necessary
condition associated with (Pk) (see Clarke [4]):

−xk + x+ µp = −∇ψ(xk) ∈ NMk
(xk).(3)

Let us show that the sequence (xk) admits a bounded subsequence. Since x ∈ M =
lim supMk, there is a sequence (xk) converging to x and an increasing map ϕ : N→ N,
such that xk ∈Mϕ(k) for all k. Then, for every k, xk satisfies the constraint of (Pϕ(k));
hence

ψ(xϕ(k)) = (1/2)‖xϕ(k) − x− µp‖2 ≤ ψ(xk) = (1/2)‖xk − x− µp‖2.(4)

Because the sequence (xk) is convergent, hence bounded, this implies that (xϕ(k)) is
bounded. Without any loss of generality, we may assume that the sequence (xϕ(k))
converges to some x ∈ Rn. Since xϕ(k) ∈ Mϕ(k) for all k ∈ N, we get that x ∈ M .
Since the sequence (xk) converges to x, ψ(xk) converges to (1/2)µ2‖p‖2, hence (4)
implies that ψ(x) ≤ (1/2)µ2‖p‖2 and hence that x ∈ B(x+ µp, µ‖p‖). In view of (2),
since additionally x ∈M , we get that x = x. Letting pϕ(k) = (1/µ)(−xϕ(k) +x+µp),
we proved that p = limk→∞ pϕ(k) with pϕ(k) ∈ NMϕ(k)

(xϕ(k)).
Proof of (ii) and (iii). Since A = lim supx′→x,k→∞NMk

(x′) is a cone, since the
correspondence x 7→ lim supx′→x,k→∞NMk

(x′) is closed at x, we get that NM (x) ⊂
cl(coA), which proves (ii). If we additionally assume that coA is pointed, then
cl(coA) = coA, since A is closed (recalling that coA is closed, when A is a closed
cone such that coA is pointed).

4.2. A transverse field between M and Mk.
Proposition 4.2. Let M and (Mk) satisfy the hypothesis of Theorem 2.3. Then,

for k large enough, there exists a Lipschitzian transverse field between the two sets M
and N = Mk in the following sense:

(T)


There is bounded Lipschitzian map F : Rn → Rn, such that

(a) M \ intN and N \ intM are compact;
(b) ∀x ∈ bdM (resp., bdN), F (x) ∈ intTM (x), (resp., F (x) ∈ intTN (x));
(c) for all x in an open neighborhood U of M \ intN ∪N \ intM ,

∃(t, t′) ∈ R2, ϕ(t, x) ∈ bdM,ϕ(t′, x) ∈ bdN .9

Remark 4.1. From [5], the assertion ∀x ∈ bdM , F (x) ∈ intTM (x) is equivalent
to the weaker one, ∀x ∈ bdM , F (x) ∈ intTM (x), where TM (x) is Bouligand’s tangent
cone to M at x.

Note that from Proposition 4.1 the sets M and Mk are epi-Lipschitzian for k large
enough. Before proving Proposition 4.2, we prove some preliminary lemmas.

4.2.1. Preliminary lemmas. The first lemma gives an extended Gauss corre-
spondence, an essential step to the construction of the transverse field.

Lemma 4.2. There is r > 0 and a correspondence G from Rn to Rn which is
u.s.c., with nonempty compact convex values and such that

(i) GM (x) = NM (x) ∩ S ⊂ G(x) for all x ∈ bdM ;
(ii) GMk

(x) = NMk
(x) ∩ S ⊂ G(x) for all x ∈ bdMk, for k large enough;

9Where ϕ is the flow of the following differential equation:

(E) ẋ(t) = F (x(t)), x(0) = x,

i.e., ϕ : R× Rn → Rn is the unique C1 map such that t 7→ ϕ(t, x) is the (unique) maximal solution
of (E) (and is defined on R since F is bounded).
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724 BERNARD CORNET AND MARC-OLIVIER CZARNECKI

(iii) 0 /∈ G(x) for all x ∈ B(lim sup bdMk, r),
recalling that S is the unit sphere of Rn.

Proof of Lemma 4.2. We let

G∞(x) = co
(

co
(

lim sup
x′→x,k→∞

NMk
(x′)

)
∩ S
)

for all x ∈ lim sup bdMk.

Claim 4.1. The correspondence G∞, from lim sup bdMk to Rn, is u.s.c. with
nonempty compact convex values and 0 /∈ G∞(x) for every x ∈ lim sup bdMk.

Proof of Claim 4.1. The correspondence x 7→ lim supx′→x,k→∞NMk
(x′) has a

closed graph, hence the correspondence x 7→ lim supx′→x,k→∞NMk
(x′) ∩ S is u.s.c.,

with compact values. We now show that it has nonempty values. Let x∈ lim sup bd
Mk. Then there is a sequence (xk) in Rn converging to x and an increasing map
ϕ : N → N such that xk ∈ bdMϕ(k) for all k. Then there is a sequence (pk) in
S such that pk ∈ NMϕ(k)

(xk) for all k (see Clarke [4]). Let p be a cluster point of
the sequence (pk). Then p ∈ lim supx′→x,k→∞NMk

(x′) ∩ S ⊂ G∞(x). We proved
that the correspondence G∞ is u.s.c., with nonempty compact convex values. Finally
0 /∈ G∞(x), for all x ∈ lim sup bdMk ⊂ M , since co lim supx′→x,k→∞NMk

(x′) is
pointed.

In view of the extension theorem of Cellina [3],10 we let Ĝ∞ be an extension of
G∞ on Rn, which is u.s.c., with nonempty compact convex values. For r > 0 we
define the correspondence Gr from Rn to Rn by

Gr(x) = coB
(
Ĝ∞(B(x, r)), r

)
.

It has clearly nonempty convex values. Also, the correspondence Gr has compact
values (since it is the sum of a compact set and of the convex hull of the image of
a compact set by a u.s.c. correspondence). The correspondence Gr is clearly u.s.c.
(recalling that, if Φ is a u.s.c. correspondence with convex values from Rn to Rn and
if r > 0, then the correspondence coΦ, and the correspondences Φ1 and Φ2, defined
by Φ1(x) = Φ(B(x, r)) and Φ2(x) = B(Φ(x), r), respectively, are also u.s.c.).

Proof of (i). Since M = lim supMk and since co lim supx′→x,k→∞NMk
(x′) is

pointed, then NM (x) ⊂ co lim supx′→x,k→∞NMk
(x′) for all x ∈ bdM (Lemma 4.1).

Since M = lim supMk, then, from Lemma 4.1, bdM ⊂ lim sup bdMk (this can also
be proved more directly). Then assertion (i) is a direct consequence of the definition
of Gr.

Proof of (ii). We now prove that, for k large enough, NMk
(x) ∩ S ⊂ Gr(x) for

all x ∈ bdMk. Suppose that it is not true, then we may assume without any loss
of generality that there are two sequences (xk) and (pk) in Rn such that, for all k,
xk ∈ bdMk, pk ∈ NMk

(x) ∩ S, and pk /∈ Gr(xk). Since the sequence (xk, pk) belongs
to the compact set K × S, without any loss of generality, we may assume that it
converges to an element (x, p) ∈ K × S. Then x ∈ M (since M = lim supMk) and
p ∈ lim supx′→x,k→∞NMk

(x′). For k large enough, xk ∈ B(x, r) and pk ∈ B(p, r),

hence pk ∈ Ĝ∞(B(xk, r)) +B(0, r) ⊂ Gr(xk), which is a contradiction.
Proof of (iii). Since lim sup bdMk ⊂ K, it is compact. The end of the proof

consists of choosing r > 0 as in Lemma 3.1 (taking m = n, considering the compact

10Let Φ be a u.s.c. correspondence, with nonempty compact convex values defined on a closed
set X ⊂ Rn, with values in Rm. Then there is a u.s.c. correspondence Φ̂, with nonempty compact
convex values, defined on Rn with values in Rm, such that Φ̂|X = Φ and such that Φ̂(Rn) ⊂ coΦ(X).
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SMOOTH APPROXIMATIONS OF EPI-LIPSCHITZIAN SETS 725

set lim sup bdMk and the correspondence G∞), recalling that 0 /∈ G∞(x) if x ∈
lim sup bdMk (Claim 4.1).

The second lemma is a consequence of Lemma 4.2 and eliminates the situation
where M = B(0, 1) and Mk = M \B(0, 1/k) for k ≥ 1 (see Remark 2.3).

Lemma 4.3.

(int) intM = ∪p∈Nint(∩k≥pintMk).

Proof of Lemma 4.3. We recall that the inclusion ∪p∈Nint(∩k≥pintMk) ⊂ intM is
an immediate consequence of the equality lim inf Mk = M . We now prove the converse
inclusion. Let x ∈ intM . There is ε > 0 such that B(x, ε) ⊂M , and from Lemma 3.1,
such that 0 /∈ coG(B(x, ε)). Assume that x /∈ ∪p∈Nint(∩k≥pintMk). Then there is a
sequence (xk) converging to x and a subsequence (Mϕ(k)) such that, for all k, xk ∈
bdMϕ(k) (see the proof of Claim 3.1). Hence x ∈ lim sup bdMϕ(k) ⊂ lim sup bdMk.
From a classical separation argument, there is p ∈ S and a real number a > 0 such
that (p|y) > a for all y ∈ coG(B(x, ε)). We may assume without any loss of generality
that a = ε. Then, since coG(B(x, ε)) is bounded (it is the convex hull of the image
of a compact set by a u.s.c. correspondence), there is ε′ > 0 such that (p′|y) > 0 for
all p′ ∈ B(p, ε′) and for all y ∈ coG(B(x, ε)). Without any loss of generality, we may
assume that ε′ = ε. Then −p′ ∈ intTMk

(x′) for all x′ ∈ B(x, ε) ∩ bdMk and for all
p′ ∈ B(p, ε′), if k is large enough since, from Lemma 4.2, NMk

(x′) ∩ S ⊂ G(x′).
Then the following claim implies that, for k large enough, xk + tp′ /∈ Mϕ(k) for

all p′ ∈ B(p, ε/2) and all t ∈ (0, ε/2), hence that B(x + (ε/3)p, (ε2/6)) ∩Mϕ(k) = ∅,
hence that x + (ε/3)p /∈ lim supMϕ(k), contradicting the fact that M = lim sup
Mϕ(k).

11

Claim 4.2. Let M be a closed epi-Lipschitzian subset of Rn, let x /∈ intM , ε > 0,
and p ∈ S such that −p ∈ intTM (x′) for all x′ ∈ B(x, ε) ∩M . Then x + tp /∈ M for
t ∈ (0, ε).

Proof of Claim 4.2. Assume that x+ tp ∈M for some t ∈ [0, ε). Since x /∈ intM ,
we may assume without any loss of generality that x + tp ∈ bdM . Then x + tp ∈
B(x, ε), hence −p ∈ intTM (x+ tp). We recall that from Rockafellar [16]

intTM (x+ tp) = { v ∈ Rn|∃α > 0, y + λw ∈M
for all (y, w, λ) ∈ (B(x+ tp, α) ∩M)×B(w,α)× [0, α)}.

Let α > 0 be chosen as above. Then (x+ tp)− (α/2)p ∈M . Hence (x+ tp)− (α/2)p+
(α/2)p′ ∈M for all p′ ∈ B(p, α); hence x+tp ∈ intM , which is a contradiction.

4.2.2. Proof of Proposition 4.2. We now prove that, for k large enough,
there is a Lipschitzian transverse field between the sets M and Mk. We recall that
bdM ⊂ lim sup bdMk ⊂ K, hence that it is compact. We let U = B(bdM, ε) for a
given real number ε > 0.

Proof of (a). Since B(M, ε) = M ∪ B(bdM, ε) and since B(Rn \ intM, ε) =
(Rn \ intM) ∪ B(bdM, ε), the following claim clearly implies that Mk \ intM ⊂
B(bdM, ε) = U and that M \ intMk ⊂ U , hence that Mk \ intM and M \ intMk are
compact, since B(bdM, ε) is clearly compact.

11Recalling that the equality M = lim supMk = lim inf Mk implies that M = lim supMϕ(k) =
lim inf Mϕ(k).
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726 BERNARD CORNET AND MARC-OLIVIER CZARNECKI

Claim 4.3. Let ε be a positive real number. Then, for k large enough,12

Mk ⊂ B(M, ε);
Rn \ intMk ⊂ B(Rn \ intM, ε).

Proof of Claim 4.3. Assume that the inclusion Mk ⊂ B(M, ε) does not hold for
k large enough. Then, without loss of generality, we assume that there is a sequence
(xk) in Rn such that, for all k, xk ∈Mk and d(xk,M) ≥ ε. If {x|d(x,M) = ε} ∈Mk:
S(M, ε)∩Mk 6= ∅, we let yk ∈ S(M, ε)∩Mk. If S(M, ε)∩Mk = ∅, there is yk ∈ bdMk

such that d(yk,M) > ε. Indeed, let x ∈ S(M, ε) such that ‖xk−x‖ = d(xk, B(M, ε)).
Then x /∈Mk, xk ∈Mk and hence there is yk ∈ (x, xk]∩bdMk, and d(yk, B(M, ε)) >
0; hence d(yk,M) > ε. Then the sequence (yk) is in the compact set S(M, ε) ∪ K
(since S(M, ε) ⊂ S(bdM, ε), which is compact, and since bdMk ⊂ K). We may
assume without any loss of generality that it converges to some x ∈ S(M, ε)∪K. Then
d(x,M) ≥ ε, but, since yk ∈ Mk for all k, and since M = lim supMk, we get that
x ∈M , which is a contradiction. To get the second inclusion, apply the first result to
the sets Rn\intM and Rn\intMk, noticing that assertion (int) (see Lemma 4.3) implies
that Rn \ intM = lim sup(Rn \ intMk), that bd(Rn \ intM) = intM \ intM ⊂ bdM ,
and that bd(Rn \ intMk) = intMk \ intMk ⊂ bdMk ⊂ K.

Proof of (b). We let F : Rn → Rn be a map satisfying the conclusions of the
following lemma, which is a slightly different version of Lemma 3.1 of Bonnisseau–
Cornet [2] (its proof is left to the reader). Then, in view of Lemma 4.2, if we choose
ε < r′, assertion (b) follows.

Lemma 4.4. There is r′ > 0 and a bounded locally Lipschitzian map F : Rn →
Rn, such that

∀ x ∈ B(bdM, r′), ∀ y ∈ G(x), (F (x)|y) > r′.

Proof of (c). We let f : Rn → R be a quasi-smooth representation of M satisfying
the conclusions of Theorem 3.1, i.e., such that f−1([−ε0, ε0]) is compact for some
ε0 > 0. Then from Lemma 4.4, since ∂f(x) ⊂ NM (x) for all x ∈ bdM , since the
correspondence ∂f is u.s.c., with nonempty convex compact values, and since bdM
is compact, there is r′′ > 0 such that

(F (x)|y) > r′′ ∀ x ∈ bdM and ∀ y ∈ ∂f(x).

Then assertion (c) holds, if we choose ε > 0 given by the following claim.
Claim 4.4. Let f be a quasi-smooth representation of an epi-Lipschitzian subset

M ⊂ Rn such that f−1([−r, r]) is compact for some r > 0, and such that (F (x)|y) > r
for all x ∈ bdM and for all y ∈ ∂f(x). Then there are two real numbers ε > 0 and
α > 0 such that

(i) B(bdM, ε) ⊂ f−1([−α, α]) ⊂ B(bdM, r);

(ii)
(
∂f(ϕ(t, x))|(∂ϕ/∂t)(t, x)

) ⊂ [r,+∞) ∀ x ∈ B(bdM, r) and ∀ t ∈ R such
that |f(ϕ(t, x))| ≤ α;

(iii) the function f ◦ ϕ(., x) is strictly increasing on {t ∈ R| |f(ϕ(t, x))| <
α} ∀ x ∈ B(bdM, r);

(iv) there are t and t′ in R such that f(ϕ(t, x)) ≤ −α and f(ϕ(t′, x)) ≥ α ∀
x ∈ f−1([−α, α]),

12Note that these inclusions imply that δ(M,Mk) ≤ ε and that δ(bdM, bdMk) ≤ ε, defining
δ(X,Y ) = max{supx∈X d(x, Y ), supy∈Y d(y,X)} if X and Y are two subsets of Rn (not necessarily
nonempty compact), hence that δ(M,Mk) → 0 and that δ(bdM, bdMk) → 0. Conversely, the
assumption that δ(M,Mk) ∈ R and converges to 0 implies that M = lim inf Mk = lim supMk.
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SMOOTH APPROXIMATIONS OF EPI-LIPSCHITZIAN SETS 727

recalling that ϕ : R × Rn → Rn is the flow of the differential equation (E) ẋ(t) =
F (x(t)), x(0) = x, where ϕ(., x) is defined on R.

Proof of Claim 4.4. Since the correspondence ∂f is u.s.c. with compact convex
values and since the map F is continuous, the correspondence H defined by H(x) =
(F (x)|∂f(x)) is u.s.c., with compact convex values. Then, from Lemma 3.1, there is
β > 0 such that B(bdM,β) ⊂ U and such that

(F (x)|y) > r for all x ∈ B(bdM,β) and for all y ∈ ∂f(x).

Then there is α > 0 such that f−1([−α, α]) ⊂ B(bdM,β) (since B(bdM,β) is an open
set containing the intersection of compact sets ∩α∈(0,ε0]f

−1([−α, α)). Without any
loss of generality, we may assume that f−1([−α, α]) ⊂ B(bdM, r). Since f−1((−α, α))
is an open set containing the intersection of compact sets ∩ε>0B(bdM, ε), there is
ε > 0 such that B(bdM, ε) ⊂ f−1([−α, α]), which proves (i). Let x ∈ B(bdM, r). We
define the function hx : R→ R by hx(t) = f(ϕ(t, x)). Then, from Clarke [4],

∂hx(t) ⊂
(
∂f(ϕ(t, x))|(∂ϕ/∂t)(t, x)

)
,

i.e., ∂hx(t) ⊂
(
∂f(ϕ(t, x))|F (ϕ(t, x))

)
, which is minorized by r if |f(ϕ(t, x))| < α;

this proves (ii). Hence from the mean-value theorem, the function f ◦ ϕ(., x) = hx is
strictly increasing on {t ∈ R| |f(ϕ(t, x))| < α}, which proves (iii). If we additionally
assume that x ∈ f−1([−α, α]), then (see, for example, Hirsch and Smale [9]; the fact
can also be proved directly) ϕ(t, x) /∈ f−1([−α, α]) when t is large enough; hence,
from (ii), f(ϕ(t, x)) ≥ α when t → +∞. In the same way, f(ϕ(t, x)) ≤ −α when
t→ −∞.

4.3. The sets M and Mk are lipeomorphic. In view of Propositions 4.1
and 4.2, the proof of Theorem 2.3 is finished if we prove the next proposition.

Proposition 4.3. Let M and N be two closed subsets of Rn admitting a Lips-
chitzian transverse field in the sense of (T). Then M and N are epi-Lipschitzian and
lipeomorphic.

Remark 4.2. One could reduce Proposition 4.3 to the smooth case. Indeed, since
bdM and bdN are compact, there are two smooth normal approximations (Mk) and
(Nk) of M and N , respectively. Then, for k large enough, there is a Lipschitzian
transverse field between the two sets Mk and Nk in the sense of (T). But the proof
would be identical. Proposition 4.3 can be proved directly, without using the notion
of normal approximation, as we do in the following.

Proof of Proposition 4.3. The set M is clearly epi-Lipschitzian, since the transver-
sality condition (T) implies that, for every x ∈ bdM , intTM (x) 6= ∅, hence that NM (x)
is pointed. Similarly, the set N is also epi-Lipschitzian. Let fM (resp., fN ) be an
inequality representation of M (resp., N) satisfying the conclusions of Theorem 3.1,
i.e., such that f−1

M ([−ε0, ε0]) (resp., f−1
N ([−ε0, ε0])) is compact for some ε0 > 0. The

following lemma is a different version of Lemma 3.2 of Bonnisseau–Cornet [2] that we
prove for the sake of completeness.

Lemma 4.5. There is a real number β > 0 and two Lipschitzian functions τ and
θ, defined from U × [−β, β] to Rn, such that

(i)
{
x ∈ Rn|min{fM (x), fN (x)} ≤ β,max{fM (x), fN (x)} ≥ −β

}
⊂ U

and such that, for all (x, δ, t) ∈ U × [−β, β]× R, then
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728 BERNARD CORNET AND MARC-OLIVIER CZARNECKI

(ii) fM (ϕ(x, t)) = δ ⇔ t = τ(x, δ);
(iii) fN (ϕ(x, t)) = δ ⇔ t = θ(x, δ).

Proof of Lemma 4.5. Note that, without any loss of generality, we only need to
prove assertions (i) and (ii). Since the set{

x ∈ Rn|min{fM (x), fN (x)} ≤ 0,max{fM (x), fN (x)} ≥ 0
}

is equal to the set [M \ intN ]∪ [N \ intM ], which is included in the set U , we get the
inclusion

∩β∈(0,ε0]

{
x ∈ Rn|min{fM (x), fN (x)} ≤ β,max{fM (x), fN (x)} ≥ −β

}
⊂ U.

This implies assertion (i) for some β > 0 (since we have an intersection of compact
sets included in U). Then from the assumption (T), (b), there is r > 0 such that
(F (x)|y) > r for all x ∈ bdM and for all y ∈ ∂fM (x). We may assume that β is
small enough and we thus satisfy the conclusions of Claim 4.4, given the function
fM . Then f−1

M ([−β, β]) ⊂ U , and the function fM ◦ ϕ(., x) is strictly increasing on
{t ∈ R| |fM (ϕ(t, x))| < β} for every x ∈ Rn. Let us now consider x ∈ U . From the
assumption (T), (c), there is t ∈ R such that ϕ(x, t) ∈ bdM , i.e., fM (ϕ(x, t)) = 0. Let
(δ, t) ∈ [−β, β]×R. Then there is one and only one t′ ∈ R such that fM (ϕ(t′, x)) = δ.
We let t′ = τ(x, δ). Let us now prove that the function τ is Lipschitzian. We let

Ω = {(x, t, δ) ∈ Ω× R| |fM (ϕ(t, x))| < β},
and we define H : Ω → R by H(x, t, δ) = fM (ϕ(t, x)) − δ. The function H is clearly
Lipschitzian. The fact that τ is Lipschitzian around some (x, δ) is a direct consequence
of the implicit function theorem [4, p. 255], if we prove that t∗ 6= 0, for every element
(x∗, t∗, δ∗) ∈ ∂H(x, t, δ), where t ∈ R satisfies H(x, t, δ) = 0. In other words, if
πt : Rn ×R×R→ R is the projection defined by πt(x, t, δ) = t, if 0 /∈ πt[∂H(x, t, δ)].
From Clarke [4, Proposition 2.6.2], we get that

πt[∂H(x, t, δ)] ⊂
(
∂fM (ϕ(t, x))|F (ϕ(t, x))

)
,

which is minorized by β if we chose β small enough (Claim 4.4).
We then get the following property on the functions τ and θ.
Claim 4.5. For all (x, δ, t) ∈ U × [−β, β]× R

(i) fM (ϕ(x, t)) ≥ δ ⇔ t ≥ τ(x, δ);
(ii) fN (ϕ(x, t)) ≥ δ ⇔ t ≥ θ(x, δ);

If y ∈ U is such that ϕ(x, t) = y for some t, then τ(x, δ) = τ(y, δ) + t and θ(x, δ) =
θ(y, δ) + t for all δ.

Proof of Claim 4.5. The proof comes from Lemma 4.5 and from the Cauchy–
Lipschitz theorem for ϕ, since fM ◦ϕ(x, .) is strictly increasing on {t ∈ R| |fM (ϕ(t, x))|
< β}.

We are now able to build the lipeomorphism between M and N . Let us define
the map h : M → N by

h(x) = x if x ∈ int(M−β ∩N−β),

h(x) = ϕ
(
x, ix(τx − θx)/(τx − ix)

)
if x ∈M \ int(M−β ∩N−β),
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where we let M−β = {x ∈ Rn|fM (x) ≤ −β}, N−β = {x ∈ Rn|fN (x) ≤ −β}, τx =
τ(x, 0), θx = θ(x, 0), and ix = inf{τ(x,−β), θ(x,−β)}. Let x ∈M \ int(M−β ∩N−β);
then fM (x) ≤ 0 and max{fM (x), fN (x)} ≥ −β; hence x ∈ U from Lemma 4.5.
Hence the map h is well defined. The map h has its values in N . Indeed, let x ∈
M \ int(M−β ∩N−β). Then, recalling that x = ϕ(x, 0),

fM [ϕ(x, 0)] = fM (x) ≥ −β = fM [ϕ(x, τ(x,−β))],
or fN [ϕ(x, 0)] = fN (x) ≥ −β = fN [ϕ(x, θ(x,−β))];

hence, from Claim 4.5, and 0 ≥ τ(x,−β) or 0 ≥ θ(x,−β), which implies that ix ≤
0. The same claim implies that ix < τx (since fM [ϕ(x, τ(x,−β))] < fM [ϕ(x, τx)]),
ix < θx (since fN [ϕ(x, θ(x,−β))] < fN [ϕ(x, θx)]), and τx ≥ 0 (since fM [ϕ(x, 0)] =
fM (x) ≤ 0 = fM [ϕ(x, τx)]). Then we get that ix(τx−θx)/(τx− ix) ≤ θx, which proves
that fN (h(x)) ≤ 0, i.e., h(x) ∈ N .

Claim 4.6. The map h is locally Lipschitzian.
Proof of Claim 4.6. The map h is clearly Lipschitzian on int(M−β ∩ N−β).

From Lemma 4.5, the map x 7→ inf{τ(x,−β), θ(x,−β)} is Lipschitzian and τ(x, 0)−
inf{τ(x,−β), θ(x,−β)} 6= 0 for all x ∈M\(M−β∩N−β). Then clearly h is Lipschitzian
on M \int(M−β∩N−β). If x ∈ bd(M−β∩N−β), then fM (x) = −β or fN (x) = −β; be-
sides, fM (x) ≤ −β and fN (x) ≤ −β. This implies that τ(x,−β) = 0 or θ(x,−β) = 0,
and that τ(x,−β) ≥ 0 and θ(x,−β) ≥ 0. Hence inf{τ(x,−β), θ(x,−β)} = 0 and
h(x) = x. This proves that h is Lipschitzian on M−β ∩N−β . Hence h is Lipschitzian
on M .

Claim 4.7. The map h is one to one, and h−1 is Lipschitzian.
Proof of Claim 4.7. Let us define the map k : N →M by

k(x) = x if x ∈ int(M−β ∩N−β);

k(x) = ϕ
(
x, ix(θx − τx)/(θx − ix)

)
if x ∈ N \ int(M−β ∩N−β).

We let the reader check that k has its values in M and that it is Lipschitzian. Let us
now prove that h◦k = idN . Let us consider x ∈M . We let y = k(x); then iy = ix− t,
τy = τx−t, and θy = θx−t, where t = ix(θx−τx)/(θx−ix). Hence iy(τy−θy)/(τy−iy) =
ix(τx− θx)/(θx− ix), and hence h(y) = ϕ(y, iy(τy − θy)/(τy − iy)) = x. The fact that
k ◦ h = idM goes in the same way.

Acknowledgment. We wish to thank an anonymous referee for suggesting that
we consider the link between normal convergence and the one considered in section
2.4.2.
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