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Error-prevention scheme with two pairs of qubits
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A scheme is presented for protecting one-qubit quantum information against decoherence due to a general
environment and local exchange interactions. The scheme operates essentially by distributing information over
two pairs of qubits and through error-prevention procedures. In the scheme, quantum information is encoded
through a decoherence-free subspace for collective phase errors and exchange errors affecting the qubits in
pairs; leakage out of the encoding space due to amplitude damping is reduced by quantum Zeno effect. In
addition, how to construct decoherence-free statea-fubit information against phase and exchange errors is
discussed.
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Quantum computing has attracted much interest in cavitypairs of qubits(a four-qubit encoding The present code
QED, trapped ion systems, NMR systems, and solid statéorms a decoherence-free subspéRgS) [7,10—17 for col-
systems using nuclear spins, quantum dots, superconductitective phase and exchange errors, if the following approxi-
quantum interference devices, Josephson junctions, arfiations apply{a) the exchange interaction between the two
single-Cooper-pair devices. It is realized that one of the mairpairs can be made negligibléhis is possible by setting the
obstacles in realizing a quantum computer is the decoherend®o pairs apart, since the exchange effects generally decrease
resulting from the coupling of the system with environment.rapidly as the qubit-qubit distance increagép, and(b) the
Among methods designed to protect information, there aréwo qubits in each pair are close to each other so that each
theoretical proposals for preventing quantum informationpair undergoes collective decoherence.
against errors by using the quantum Zeno efféet4]. Com- Consider two separate pairs | and Il each containing two
pared with conventional error-correction schemes, thdjubits. The four identical qubits are labeled by 1, 2 and
decoherence-reducing strategies based on the Zeno effect &g Qubits 1 and 1 form the pair | while qubits 2 and "2
significantly simpler since they only require making tests onconstitute the other pair Il. The two qubits in either pair are
a system and no error-correction steps are needed. The ma@ssumed to be close to each other so that they will undergo
important point is that they can reduce the number of qubitsollective decoherence. Under the assumption that the ex-
involved in the encoding of a quantum state. change interaction between the two pairs is small enough to

Recently, using the Zeno effect, Hwaegal. [4] consid-  be negligible, the Hamiltonian for the qubit system and the
ered how to protect information in an error model whereenvironment is therefore of the form
phase errors are dominant but other errors are still non-
negligible. Their schemes are based on encoding one-qubit H=Hgs+Hg+HggtHey, €h)
information «|0)+ B|1) through a code|0,)=|01) and
|1)=]10). Without doubt, their schemes work perfectly if where Hg and Hg denote the qubit system and the
there is no qubit-qubit exchange interacti@6]. However,  environment-free Hamiltonians, respectivelygg is the in-
it is obvious that exchange interacti¢exchanging the qu-  teraction Hamiltonian, and the operatér, corresponds to
bits) tumns the encoded state|01)+B[10) into a[10)  |ocal exchange interactions between the two qubits in either
+p/01), which leads to potentially fatal consequenfes.,  pair. If the two pairs are physically identical, i.e., the sepa-
another term for bit-flipping error appears in the resultingration of the qubits in each pair is the same, the opetatgr
state(8) of Ref.[4], not only the phase errors as mentioneduill act simultaneously and identically on both pairs of qu-
therd. Therefore, their schemes cannot work in the presencgits. In this caseH., acts as a collective exchange operator

of exchange interaction. _ which has the following form:
In this paper, an alternative scheme is proposed for pro-
tecting one-qubit information against decoherence due to a Hey=J(Eqy +Eyp) @)
ex ’ !

general environment and local exchange interaction, based

on the method of pairing qubif§—9] and the Zeno effect. In . tante.. i ind dent exch tor f

this scheme, the original message is encoded through t\/\k)] IS a constan Eij IS an independent exchange operator for
two identical qubitsi and j, which has the property
Eijlei€))=|€j&), € <{0,1 [6]). The expressions fdi s and
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Hsg=N20?®V,+\; o @V, +\j o] ®@V_+\,0% @V, |0)=(|02)+10))11(]01) —[10)) o2 ,
Ay 0@V N o9V 3 110)=(10D)~[10)) 11:(|01) +]10)) 52 - (5)

Here, ol=dl+0),, ol =0b+0), (j=2,+,—); ol is This encoding will protect the statef) against collective
Pauli spin operators of the qubitV; andV/ are the envi- Phase errors taking place at either pair or both, since the
ronment operators coupled to these degrees of freedom. THi#ibits 11 and 22 are paired up in the decoherence-free
interaction HamiltoniarH s applies to the following situa- State combination$01) and [10). Moreover, it is obvious
tion: the qubits inside each pair undergo collective decoherthat the collective exchange operat@ has the property
ence while the two pairs undergo independent decoherenddex0).=(E1r+E22)[0),=0  and  Hg1) =(Eir

for the case of differenV; and V| or imperfect collective +Ej»)|1) =0, which shows that the independent exchange
decoherence for the case of the savheand V! errors for each pair cancel each other due to the cooperative
i i

Suppose that qubit 1 is the original information carrier,;cé'?gcg?tevy(iﬁgr:hg Ii?]fgai):%ma&g;;nﬁ;ﬁtm;r'ni %netr?:'gggg
which is initially in an arbitrary unknown state/) = a|0) 9 par, 1.€.,
+B[1). The encoding is also forms a DFS for exchange errors. _
' Suppose that the environment is initially in the state

| enc=a|0) + B|1), , (4) |4,(0)). During a finite timeT,, perform a tesN times. In
a short period of timé /N, under the Hamiltoniail), the
where encoded staté4) will evolve into

|
|(ToIN))~[1—iH(To/N)]|h)enc®|p(0))=[a(]01)+]10))11/(|01) — |10)) oo + B(]01) —[10)) 11/(|01) +|10)) 2]
®[1—iHg(To/N)1[¢hp(0)) =i (To/N)[11)11/(|01) —[10)) o @ N1 @V 4 |45(0)) =i (T /N)|00) 11 (]0L)
—[10)) 22 @ N3 @V _|4,(0)) —i(To/N)(|01) = [10)) 11/ [11) o @ N5 BV, [hp(0)) =i (To/N)(|01)

—110))11/[00) 50 ® N5 BV |5(0)). (6)
|
Equation(6) shows that after evolution for a short time |(To/N)Y"=d|11)11/(]02) — |10)) 5
To/N, if one performs a subsequent measurement to deter-
mine whether the four-qubit system has left the encoding +€[00)11/(|01)—[10)) 2 - (8)

space spanned by E(p), the probability for getting a result .
“out of the encoding space” is of the order ofN?, and Under the condition of larg&, the effects of the stat€s),

therefore the probability of obtaining such an outcome durVhich is outside the encoding space, can be negligible. Thus,
ing the timeT, is proportional to 1. TakingN, the number after this test step, the four qubits and the environment will

of tests during the timd,, large enough one can decreaseP® N the staté?). ,
the probability of such an error below any desired level. On 1€ second step follows the same procedure as described
the other hand, after the evolution of tiffg/N the state 2POVe. One needs to have the test quinitthe zero state

inside the encoding space remains the same as the initi‘iﬂfceract with each of the two qubits in the second pair Il by a

encoded state, and the probability of obtaining such an ouf®int operationC,C,. and then make a measurement on the

come during the timd, is proportional to + O(1/N). test qubit. From Eq(7) one can see that the measurement

The required projection can be performed in two steps@Utcome|0) projects the whole system onto the state

The first step is to prepare a test quitbeled byt) in the
state|0), make it interact with each of the two qubits in the
first pair | consecutively by a joint operatidd,;C;,;, and
then perform a measurement on the test qubit. The measu
ment outcomel) projects the whole system onto the state

b(|01)—[10))11/[11), +¢(|01) —[10)) 11/|00) 2, (9)

which is the wrong state out of the encoding space, and again
e effects of this stat€d) can be neglected if one frequent
enough performs, on the other hand, if the test qubit is mea-
;L _ sured in the statél), the four qubits will remain in the
|[4(To/N))’ =ala(|01) +]10))1x(|02) ~|10)) o + B(|0D) original encoded staté). Thus, after the tim&,, the final

—110))11/(|01) +|10)) 5] + b(]01) state for the whole system will be given by

—[10))12/[11) 2 +¢(|01) = |10)) 11/[00) 2z , |(To)) =) enc® | ), (10)

(7 -
where| ) is the state of the environment. It is clear that no
while |0) corresponds to the projection onto the state errors in the encoded stat4) occur after overall time evo-
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lution. Thus, one can protect one-qubit information against n+2
decoherence without any other error-correction. iD= 11 i)
The present scheme works via the Zeno effect; thus it can k=1
deal only with “slow” noise. The characteristic time of the —li i i
noise Co{|pling has to be larger than the time interval between i) ®liz2)® - Slinianea) A4
the projection measurements. These limitations are also re- |n Eq. (14), |jki) indicates the encoded zero or one of the
quired by other error-prevention schemes based on the quapth pair, which is given by
tum Zeno effecf1-4.

One might envision using Vaidmaet al’s code[1] |0y ) — %(|01>+|10>)kk, ,
00)=(100)+[11))(|00) +[11)),
|10)=(]00)— [11))(|00) — |12)) (11) |1kk,>ﬂg(|01>—|1o>)kk, , (15

to accomplish the goal. As long as the exchange interaction

between the left two qubits and the right two qubits is smallwherekk’ represents the two qubits in tieh pair. Clearly,

enough to be negligible, this code also forms a DFS forsuch an encodingl5) on each pair ensures that the encoded

exchange errors. It is noted that the cad#) works for the state(13) is a DF state for collective phase errors if the two

case of each qubit undergoing independent decoherence, i.8Ubits in each pair are close to each other.

the left or the right two qubits in Eq11) do not need to be ~ Assume that the separation of the two qubits in each pair

set close. In this sense, the scheme of Vaidetaal. is better  is the same and that the exchange interaction between any

than the present scheme since it has a less strict conditiofV0 pairs is negligible. Thus the collective exchange operator

However, as was argued by Vaidmenal.[1], after a short- Hex S

time evolution, the test qubit has to interact wah four n+2

physical qubitsof the system consecutively to detect phase Hex=JZ Exkr - (16)

errors, as well as interacting with every two physical qubits k=1

?g;hpiesgjrﬁ?rgogoeTosrtr',gglgsglzbs't ffclj'rpcir”rgé‘:‘i'vgnpchogst;a:tr’r;r'gcﬁlt is worth noting that not all the DF states for pha_lse errors

phase errors occur and thus no such step for detecting pi1a8ree .DF_states for e.xch.ange errors, since exchgngmg the two
. . ﬁ/ublts in each pair will makeO,:)— |0y ) while 1)

errors is required. As shown above, the present scheme on . .

needs to detect bit-flip errors by a test qubit interacting With_)_|1kk'> (for the latter, there is a phase-flip enroHow-

ever, one can still expect that the encoded sthBpis a DF

two qubits for each test step. Therefore, the present error= i .
X . state for exchange errors, through an appropriate encoding
prevention procedures are much simpler.

Duan and Gud2] have shown that one-qubit information on each pair and making the encoded stag an eigenstate

: of the collective exchange operatdr6).
can be protected against decoherence due to a general envi- .

. ! : In order to have the encoded stdf8) an eigenstate of
ronment with only two qubits and the assistance of an exter;

nal driving field. The present scheme, however, focuses otnhe collective exchange operat(tt), one needs to make

how to protect one-qubit information without using an exter—eaCh logical state in the encoded Stelld) be an eigenstate

A . of the collective exchange operatd®6) with the same eigen-

nal driving field and how to reduce decoherence arising from . .

the qubit-qubit exchange interaction. value. In general, fon+ 2 pairs of qubits, one can construct
Cp., orthogonal states. Each of them takes the fqim)

Another point may need to be made here. If there is no a4 all of th ) f th llecti h
exchange interaction, and if a general environment affectgnd all of them are eigenstates of the collective exchange

e ; tor (16) with the same eigenvalug(n—2m+2)
qubits independently0, ) and|1,) in Eq. (4) could be the OP€'@ ©
logical zero and 1 of the five-quiiL3] or seven-qubit codes [Where: m=1.2,...,@+1)/2 for odd n and m

[14]: or they could be the logical zero and 1 of the four-qubit = 1:2 - - - N/2+1 for evenn]. Itis easy to see that) Chls
code[15]. reaches maximum whem= (n+1)/2 for oddn or m=n/2

In what follows, our purpose is to show how to construct © 1 for evenn, and(b) such a maximum satisfies the relation
DF states fon-qubit quantum information against collective N<<109; Cy\,<<n+1. The point(a) means that in the case
phase and exchange errors. The general statequibits is ~ When each orthogonal state is an eigenstate of the collective

expressed as exchange operatdf6) with the same eigenvalukfor oddn
or 0 for evenn, the number of such orthogonal states is
|¢>:E C{i|}|{il}>7 (12 maximal; the point(b) implies that all these orthogonal
{in} states, as logical statd§i }).}, are sufficient to encode

logical qubits. Thusn+2 pairs of qubits are sufficient to
encode an arbitrary state ofqubits into a DF state. For large
n, the efficiency of the encoding is approximately 1/2. On the
other hand, it is easy to show that- 1 pairs of qubits are
not sufficient to do the above.

where |{i;}) represents a computational basis stitg
®lig)®---®lin)y with i;=0 or 1. The staté12) is encoded
into the following state oh+ 2 pairs:

|l//>enc={i2|} C{i|}|{"}>L' (13 It is interesting to note that, for some kinds of entangled
state ofn (distan} qubits, the DF states for collective phase
Here, and exchange errors can be obtained by pairing each en-
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tangled qubit with an ancilla qubit and applying local opera-yhere ¢:th:l[(_1)ik_(_1)7|<]3kk, . This accumulated
tion on each pair. For example, consider the following enphase factor in the final state might not be significant for the
tangled state: stateg(18) in some applications. Furthermore (& the num-
[Py D= a|0);, a-l1)n ber of the originally entangled qubits is evéh) the number
. of 1's is the same as that of O's in each of the two basis states

nt 0 of Eq. (18), (¢) Jx=J, the phase factop will be zero. In
+ 241 ailn=201% . a-1l0n. (17 this case, the encoded state is perfectly protected against col-
lective phase and exchange errors during the time evolution.
where the number of entangled qubits=3, and |n So far, a three-qubit error-correction code8—20 and a

two-qubit error prevention codgl,3], which protect one-
qubit information against phase damping and exchange er-
rors, have been proposed. Compared with these schemes, the
ones. In the case dfag|=|a;|=1/Jn, the stateg17) are  present method Iralaspthe advantgge of not requiring error cor-
known as the entangled/ stateq 16]. If each entangled qubit rection or error detection. Moreover, compared with the
is paired with an ancilla qubit and then the two orthogonalschemeg§18—20, the present method requires less qubit re-
states|0) and [1) of the originalkth entangled qubit are source in protecting the entangled sta&® and(18), or in
encoded into the logical zer®,) and one|ly.) in Eq.  protecting n-qubit information 6=5). Thus, the present
(15), respectively, one can see that the resulting encodeghethod is more efficient, although one has to have the two
state for the statél?) is an eigenstate of the collective ex- qubits in each pair close to each other and all the pairs well
change operatoHq,=J>|_,E,- with an eigenvalue {  separated.
—2)J, i.e., the encoded state is a DF state for exchange Finally, according to the above description, for each pair
errors; and it is also a DF state for collective phase errors ifeakage out of the encoding subspace spanned by15y.
collective decoherence holds for each pair. due to amplitude damping, can be suppressed by frequent
In addition, entangled states of the form tests on each pair. Thus, for a general environmeaf,ibit
information or aboven-qubit entangled states can also be

—-2,0{} o 1) denotes théth computational basis state

of the n—1 entangled qubits involvingp—2 zeros and 1

v) aliviz, . i+ Bliaia, ey (18 protected by encoding them into the above DF states plus the
(which, in the caséa|=|B|=1/\/2, are known as entangled Zeno effect. _
Greenberger-Horne-Zailinger stafds]) are widely used in In conclusion, we have presented an error-prevention

inf i . H th - scheme for protecting one-qubit information against decoher-
n ot[rrr:a' lon prc:cesswt\g. B ere, theare ohnestor z;ergs agf}ti it ence due to a general environment and local exchange inter-
are their compiements. By pairing €ach entangied qubit wi %ctions. As shown above, the present error-prevention proce-

an_ancnla ?)Ub't and performing tr;ﬁ startr;]e etncodlng on €acl res are relatively simple. We have discussed how to
palr. as a- ove, ong_ <.:_an See__ ‘? e two components,nsiryct DF states far-qubit information protecting against
liasia, .. i) @nd|iq,ia, ...ip) in the encoded state collective phase and exchange errors. Moreover, we have
VYR =alig,in, ...din) +Bli1 iz, ... ,in are eigen- shown that certain kinds of important entangled states of
states of the collective exchange operatdd,, (distan} qubits can be protected, by pairing each entangled
=301 Jkw Bk With an eigenvalue=;_,(—1)'kJy for  qubit with only one ancilla qubit and applying only local

PP while SN 1)k, for  operations on each pair.
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