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Abstract Simulations of the urban environment contribute to assessments of current and future
urban vulnerabilities to extreme heat events. The accuracy of simulations of the urban canopy can be
degraded by inaccurate or oversimplified representations of the urban-built environment within models.
Using a 10 year (2003–2012) series of offline 1 km simulations over Greater Houston with the
High-Resolution Land Data Assimilation System (HRLDAS), this study explores the model accuracy gained
by progressively increasing the complexity of the urban morphology representation in an urban canopy
model. The fidelity of the simulations is primarily assessed by a spatiotemporally consistent comparison of
a newly developed HRLDAS radiative temperature variable with remotely sensed estimates of land surface
temperature from the Moderate Resolution Imaging Spectroradiometer. The most accurate urban
simulations of radiative temperature are yielded from experiments that (1) explicitly specify the urban
fraction in each pixel and (2) include irrigation. The former modification yields a gain in accuracy that is
larger than for other changes, such as increasing the number of urban land use types. The latter
modification (irrigation) substantially reduces simulated temperature biases and increases model precision
compared to model configurations that lack irrigation, presumably because watering of lawns, parks, etc. is
a common activity that should be represented in urban canopy models (although it is generally not).
Ongoing and future efforts to improve urban canopy model simulations may achieve important gains
through better representations of urban morphology, as well as processes that affect near-surface energy
partitioning within cities, such as irrigation.

1. Introduction

Extreme heat events are a leading cause of weather-related human mortality in the United States [Centers for
Disease Control and Prevention, 2006; Borden and Cutter, 2008]. The impact of extreme heat events on urban
populations is particularly acute [e.g., Curriero et al., 2002], in part because cities are generally warmer than
adjacent rural areas due to the characteristics of the built environment [Oke et al., 1991; Li and Bou-Zeid, 2013].
Extreme heat events disproportionally impact the most vulnerable groups within cities, including the elderly,
minorities, linguistically and socially isolated persons, low income groups, and those with preexisting medical
conditions [Schuman, 1972; Jones et al., 1982; Semenza et al., 1996; Medina-Ramon et al., 2006; Uejio et al.,
2011]. Previously rare extreme heat events are now occurring with increased frequency and intensity in some
regions of the United States, and are projected to become common throughout the country in the 21st
century, partly due to greater persistence of weather patterns that cause them [Duffy and Tebaldi, 2012;
Diffenbaugh and Ashfaq, 2010;Meehl and Tebaldi, 2004]. As a result, heat-related mortality is projected to rise
[Patz et al., 2000, 2005; Greene et al., 2011].

The System for Integrated Modeling of Metropolitan Extreme Heat Risk (SIMMER) is a project funded by
the National Aeronautics and Space Administration (NASA) to comprehensively characterize and address
urban extreme heat risk. The objectives of SIMMER are to advance methodologies for assessing current
and future urban vulnerabilities to extreme heat events through the refinement and integration of
physical and social science models [Wilhelmi and Hayden, 2010; Heaton et al., 2014] and to build local
capacity for heat hazard mitigation and climate change adaptation in the public health sector. SIMMER is
being developed and tested over Greater Houston, Texas (Figure 1a), due to its warm and humid
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subtropical climate that is characterized
by extreme heat events in the warm
season that are projected
to become more frequent in the
future [e.g., Oleson et al., 2013]. The
present study investigates how the
characterization of urban morphology
within an urban canopy model (UCM)
can impact the accuracy of
simulations of near-surface
temperature in Greater Houston.

Approaches for modeling the urban
canopy range from “slab” routines that
treat the urban area as a homogeneous,
yet distinct region [e.g., Atwater, 1972],
to single-layer UCMs that treat a
simplified urban canyon geometry
below a specified level of near-surface
atmospheric forcing [e.g., Mills, 1997;
Masson, 2000; Kusaka et al., 2001], to
multilayer UCMs in which the urban
canopy projects upward into the lowest
several layers of forcing within an
atmospheric model [Kondo and Liu,
1998; Vu et al., 1999]. Generally speaking,
urban meteorology is better simulated
when using single-level and multilevel
UCMs as opposed to slab treatments,
when land use properties are explicitly
defined instead of parameterized, and
when the UCM—usually embedded
within a land surface model (LSM)—is
coupled to an atmospheric model and
the models are integrated

simultaneously [e.g., Kusaka and Kimura, 2004; Kusaka et al., 2004, 2012a, 2012b; Otte et al., 2004; Best, 2005;
Chen et al., 2011a;Miao et al., 2011; Salamanca et al., 2011]. The coupled approach allows adjacent urban and
rural grid cells to interact via advection of state variables within the atmospheric model [e.g., Freitas et al.,
2007; Dandou et al., 2009].

Numerous studies have employed UCMs coupled to atmospheric models to investigate the urban
meteorology of Houston. The results indicate that the built environment of Houston has important influences
on the spatial and temporal variability of near-surface air temperatures [Kusaka et al., 2004; Salamanca et al.,
2011], the timing and magnitude of sea breezes [Bornstein et al., 2006; Chen et al., 2011b; Carter et al., 2012],
and the spatial distribution, frequency, and intensity of rainfall [Shepherd et al., 2010]. The results of these
papers also suggest that model deficiencies are partly linked to inaccurate or oversimplified representations
of the urban-built environment within UCMs [e.g., Cheng and Byun, 2008], thus motivating the present work.
Using a series of 1 km simulations over Greater Houston, this study explores the model accuracy gained by
progressively increasing the complexity of the urban morphology representation in a UCM. The fidelity of the
simulations is assessed via comparison to in situ observations of air temperature and remotely sensed
estimates of land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer
(MODIS) onboard NASA’s Terra and Aqua satellites. A particularly novel aspect of the work is the use of a
rigorously tested methodology for comparison of the simulations to the MODIS LST, developed by Hu et al.
[2014]. Methods are described in section 2, results presented in section 3, and discussion and conclusions
provided in section 4.

Figure 1. (a) HRLDAS 0.01° model domain over the Greater Houston area
showing the land use type for each grid box (counties indicated in black
font). The three urban land use types are defined from NLCD. Locations of
TEXAQS-II weather stations used for model validation are indicated by
white circles. A regional inset map showing the location of Greater
Houston (red box) is included in the lower left corner. (b) Fraction of each
grid box that is specified as any category of urban in NUDAPT. Dark blue
areas denote water bodies.
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2. Methodology
2.1. Modeling
2.1.1. Overview
The meteorology of Houston’s urban heat island (UHI) is simulated using an offline version of the Noah Land
Surface Model (Noah LSM) [e.g., Chen and Dudhia, 2001], known as the High-Resolution Land Data Assimilation
System (HRLDAS) [Chen et al., 2007]. The Noah LSM simulates the fluxes of energy and water from the land
surface as a function of the underlying land surface and soil properties while also maintaining stores of water
and energy in four soil layers to a depth of 2m. The offline HRLDAS framework is chosen as opposed to
performing “online” coupled WRF-Noah LSM simulations, because the former approach is 1 to 2 orders of
magnitude less expensive computationally, an important consideration because of the number of long-term
(10 year) high-resolution (1 km) simulations required. While the offline approach neglects the coupled
atmosphere-land surface interactions that are important in Houston, such as sea breezes [e.g., Chen et al.,
2011b], it is well suited for the objectives of the present work, as will be demonstrated in the results section.

In order to better represent the physical processes involved in the exchange of heat, momentum, and water
vapor in the urban environment, a UCM [Kusaka et al., 2001] is coupled to the Noah LSM [Chen et al., 2004;
Kusaka et al., 2004]. The main purpose of the coupled model is to improve the description of the lower
boundary conditions and to provide more accurate simulations for urban regions. The UCM is a single layer
model with simplified urban geometry. Features of the UCM include shadowing from buildings, diurnal
changes of the solar azimuth angle, reflection of short- and long-wave radiation, and multilayer heat transfer
equations for roof, wall, and road surfaces [Kusaka and Kimura, 2004].
2.1.2. Modifications for This Study
It is necessary to estimate heat transfer from the natural surface (parks, recreation areas, etc.) when a grid cell
is not fully covered by urban “artificial” surface. Therefore, the UCM is coupled to the Noah LSM through an
“urban fraction” parameter to represent urban subgrid-scale heterogeneity. The urban land use categories for
Houston are estimated from the 30m resolution 2001 U.S. Geological Survey National Land Cover Database
(NLCD 2001) [Homer et al., 2004]. The urban surface has three categories: (1) light intensity, (2) heavy intensity,
and (3) commercial/industrial usage (Figure 1a). Each category has unique parameters such as albedo,
emissivity, heat capacity, roughness, and urban fraction that distinguish the urban environments from each
other and from the outlying rural areas (Table 1). The urban fraction parameter is prescribed in some
experiments (described below) explicitly using the National Urban Database and Access Portal Tool

Table 1. Parameter Values Employed in the HRLDAS UCM for Each Urban Surface Type (Light-Intensity Urban= LU,
Heavy-Intensity Urban=HU, Commercial/Industrial-Intensity Urban=CU)

Parameter LU HU CU Units HRLDAS Name

Urban fractiona 0.50 0.90 0.95 - FRC_URB
Exchange coefficientb 0.30 0.40 0.50 - AKANDA_URBAN
Building height 5.0 7.5 10.0 m ZR
Roof width 8.3 9.4 10.0 m ROOF_WIDTH
Road width 8.3 8.4 10.0 m ROAD_WIDTH
Roof heat capacity 1.0E + 06 1.0E+ 06 1.0E+ 06 Jm�3 K�1 CAPR
Wall heat capacity 1.0E + 06 1.0E+ 06 1.0E+ 06 Jm�3 K�1 CAPB
Road heat capacity 1.4E + 06 1.4E+ 06 1.4E+ 06 Jm�3 K�1 CAPG
Roof conductivity 0.67 0.67 0.67 Jm�1 s�1 K�1 AKSR
Wall conductivity 0.67 0.67 0.67 Jm�1 s�1 K�1 AKSB
Road conductivity 0.4004 0.4004 0.4004 Jm�1 s�1 K�1 AKSG
Roof albedo 0.20 0.20 0.20 - ALBR
Wall albedob 0.40 0.40 0.40 - ALBB
Road albedob 0.30 0.30 0.30 - ALBG
Roof emissivity 0.90 0.90 0.90 - EPSR
Wall emissivity 0.90 0.90 0.90 - EPSB
Road emissivity 0.95 0.95 0.95 - EPSG
Roof roughness length 0.01 0.01 0.01 m Z0R
Wall roughness length 0.0001 0.0001 0.0001 m Z0B
Road roughness length 0.01 0.01 0.01 m Z0G

aValues for experiments A1/A2, B1/B2, and C1/C2. Spatially explicit values used for experiments D1/D2.
bModified from default values.
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(NUDAPT) [Ching et al., 2009; Burian and Ching, 2009], a two-dimensional data set of critical urban properties
(Figure 1b). The use of NUDAPT provides a more heterogeneous and realistic UHI characterization for
the HRLDAS simulations compared to using the one-dimensional lookup table values for each urban
category. Other minor modifications applied to all three urban types include (1) increasing the broadband
albedo (reflectivity) of road surfaces from 0.2 to 0.3 and wall surfaces from 0.2 to 0.4 to more accurately
characterize the pavement and buildings typical of Houston and (2) modifying the parameters used in
the Kanda et al. [2007] approach for calculating the urban canopy exchange coefficients, so as to simulate
more vigorous (and realistic) sensible heat exchanges between the urban canopy and atmosphere aloft
(variable AKANDA_URBAN in URBPARM.TBL is changed to 0.5, 0.4, and 0.3 from 1.29, 1.29, and 1.29).
2.1.3. HRLDAS Output
Half-hourly, 1 km resolution HRLDAS simulations are performed over metropolitan Houston for 2003–2012,
preceded by a 1 year (2002) “spin-up” period to allow the soil temperature and moisture states to equilibrate.
The upper boundary conditions for HRLDAS are derived from one-eighth degree hourly meteorological data
from the North American Land Data Assimilation Phase 2 (NLDAS-2) [Cosgrove et al., 2003; Xia et al., 2012]
forcing data set. NLDAS-2 was originally developed to provide a high-quality, long-term data set to drive a
suite of research-grade land-surface models [Cosgrove et al., 2003; Mitchell et al., 2004] but has subsequently
been used for a variety of climate research applications over central North America. The nonprecipitation
fields in the NLDAS-2 forcing data are derived from analysis fields of the National Centers for Environmental
Prediction (NCEP) North American Regional Reanalysis (NARR) [Mesinger et al., 2006] with bias corrections for
downward solar radiation using satellite data from the National Environmental Satellite, Data, and
Information Service Geostationary Satellite system. A vertical adjustment is applied to the fields of surface
pressure, surface-downwelling long-wave radiation, near-surface air temperature and near-surface specific
humidity to account for the vertical difference between the NARR and NLDAS-2 topographic height. The
precipitation field is developed from a temporal disaggregation of a gauge-only analysis of daily precipitation
from the NCEP Climate Prediction Center, augmented with satellite- and radar-derived precipitation
estimates. The forcing level height of NLDAS-2 over Greater Houston varies from approximately 25–40m
above ground level (AGL), generally well above the urban canopy. The NLDAS-2 data are interpolated to the
1 km HRLDAS domain and smoothed before forcing the simulations.

Output for the June–August (JJA) summer months from the half-hourly HRLDAS simulations are used to
calculate diagnostic surface radiative temperature (Trad) and 2mAGL air temperature (Tair) variables for use in
the present study, in order to ensure that the simulated fields are as similar as possible to the observational
fields they are validated against, which are described below. HRLDAS Trad, which would be considered at
nadir if viewed from space, is calculated as follows. At each time step, the energy balances for the roof, wall,
and road components for each grid cell-containing urban areas are simulated by the UCM subroutine within
the Noah LSM. The simulated outward long-wave radiation values for the roof, wall, and road are then
combined into a bulk urban long-wave radiation value for each grid cell, based on the weighted average of
the roof and canyon (considering sky-view geometry for the wall and road) long-wave radiation components.
A bulk urban emissivity value is calculated in the samemanner for each grid cell. Concurrently, the long-wave
radiation is calculated in the LSM for the vegetated portion of each grid cell. Then, the bulk urban and
vegetated long-wave radiation and emissivity values are averaged, weighted by their fractional area in each
grid cell. Finally, these resulting “integrated” long-wave radiation and emissivity values for each grid cell are
used to calculate Trad using the Stefan-Boltzmann law. The component radiative temperatures for the
vegetated and urban portions of each grid cell (Trad_V and Trad_U), as well as the roof, wall, and road areas
comprising the urban portions (Troof, Twall, and Troad) are employed for additional in-depth analysis, being
calculated from their respective component long-wave radiation and emissivity values.

Tair is calculated as follows. For the vegetated portion of each grid cell, Tair is calculated as a departure from
the surface skin temperature based on the sensible heat flux and the atmospheric stability, manifested as an
exchange parameter calculated at 2m AGL following heat transfer theory [Arya, 1998]. In grid cells containing
urban areas, the vegetation type is uniformly set to savanna, (i.e., a blend of grass and trees), the default urban
vegetation type for the UCM. For the urban portion of the grid cell, Tair is approximated by the simulated
urban canopy air temperature, which is a function of the sensible heat- and long-wave radiative fluxes from
the canyon walls and road (air temperature over urban surfaces cannot be calculated using skin temperature
as it is for vegetated surfaces, because urban skin temperature in the Noah LSM is calculated at the top of the
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canyon rather than within it). Finally, Tair for the entire grid cell is calculated as the area-weighted average of
the cell’s vegetated and urban components of Tair.
2.1.4. HRLDAS Experiments
Eight experiments are performed in which the complexity of the urban land use representation within
simulations is progressively increased (Table 2). Experiment A1 is a vegetation-only experiment in which it is
assumed that all grid cells containing urban areas are 100% vegetated with the urban default “savanna”
vegetation type. Experiment B1 employs the “default” one-category urban land use type in HRLDAS, which
involves setting all urban grid cells to the light-intensity urban type. The urban fraction of each grid cell
containing any urban area is specified by the UCM default value of 0.5. Experiment C1 employs the three-
category urban land use types specified by NLCD, as described above, with the urban fraction being specified
as 0.5, 0.90, and 0.95 respectively for all light-intensity, heavy-intensity, and commercial/industrial grid cells.
Experiment D1 is the same as C1, except that the urban fraction of each grid cell is specified explicitly by
NUDAPT. Experiments A2–D2 are identical to A1–D1, except that it is assumed all vegetated surfaces are
irrigated/watered. This is achieved by not allowing the volumetric soil moisture in any of the four soil layers to
fall below 0.3. All experiments use the same urban footprint, defined as all cells containing any type of urban
land use in NLCD, as well as any additional cells for which NLCD has no urban area but NUDAPTurban fraction
(buildings + roads) is greater than 0.3.

2.2. Evaluation of Model Simulations
2.2.1. MODIS
Three methods for comparing MODIS LST to HRLDAS Trad are evaluated in Hu et al. [2014], and the optimal
technique is employed for the analysis in the present study. The reader is referred to Hu et al. [2014] for a
more thorough description of, and justification for, the data and methodology than is presented here. The
MODIS sensor on board the Terra and Aqua satellites provides global coverage of LST four times daily. The
spatial resolution is as high as 1 km for LST, which coincides with the scale of the HRLDAS output. The LST
MOD11A1 (Terra) and MYD11A1 (Aqua) Version 5 [Wan, 2008] products from 2003 to 2012 summers
(June-July-August, JJA) across the Houston area are collected and processed. The median local standard
times of satellite overpasses for the data sets are about 11:16 (Terra day), 13:34 (Aqua day), 22:34 (Terra night),
and 02:16 (Aqua night). Therefore, 11:30, 13:30, 22:30, and 02:30 are selected as the four daily local standard
times to compare HRLDAS with MODIS, because these are the nearest half hours to the median MODIS
overpass times. Cloudy pixels are removed in MOD11A1 and MYD11A1 Version 5 [Wan, 2008], which is an
especially important consideration over Houston, where daytime clouds occur frequently [Burian and
Shepherd, 2005]. Additionally, because numerous cloud-contaminated pixels are still found within the data,
manifested as LST outliers, only MODIS LST data within 1.5 times the interquartile range are used. Finally, only
passes between �35° and +35° from nadir are used in order to minimize view-angle biased MODIS LSTs,
which are most apparent for larger view angles (view angles range from �65° to +65° from nadir). All
remaining MODIS LST pixels after applying these masks for clouds and view angles are used for the
comparison with HRLDAS Trad. The MODIS LST data therefore represent clear-sky conditions.

The HRLDAS Trad data are sampled conditionally based upon the remaining MODIS LST data, i.e., on a pixel-
by-pixel basis. For example, if there are 103 available MODIS pixels for grid cell X spread across the total
920 days (10 years times 92 d/yr), those same 103 grid cells are selected from HRLDAS for the comparison.
This approach thus assumes the cloud distributions in MODIS and HRLDAS are similar in time and space
(clouds are not explicitly resolved in the HRLDAS forcing data, so determining whether they are present at a

Table 2. List of HRLDAS Simulation Experiments

Experiment Description # Urban Categories NUDAPT? Irrigated?

A1 Vegetation only 0 No No
B1 One-category urban 1 No No
C1 Three-category urban 3 No No
D1 Three-category urban with NUDAPT 3 Yes No
A2 Same as A1 but irrigated 0 No Yes
B2 Same as B1 but irrigated 1 No Yes
C2 Same as C1 but irrigated 3 No Yes
D2 Same as D1 but irrigated 3 Yes Yes
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given simulated time is not directly possible), which Hu et al. [2014] demonstrate to be a reasonable
assumption. The approach has the advantages of using the largest possible sample size for the comparison
and being temporally consistent between both data sets. It has the disadvantages of having unequal sample
sizes from each grid box, and the possibility of unaccounted for cloud influences in the HRLDAS simulations.
The total sampled pixels for 2003–2012 is about 16.8%, 11.6%, 24.2%, and 20.7% of the total possible pixel
days in the domain (excepting water areas) for Terra day, Aqua day, Terra night, and Aqua night passes,
respectively. Therefore, even the smallest sample of 11.6% yields, a robust sample of 1,550,428 available grid
cells over the 125 × 125 cell domain (less 1097 water grid points) for the 920 day period, which is adequate to
draw statistically meaningful conclusions. The analysis herein focuses on the three urban types: light-
intensity urban, heavy-intensity urban, and commercial/industrial urban, as well as a variety of vegetation
types. Due to the major focus on urban regions, in the few instances where rural areas are analyzed, all
vegetation types are combined for the analysis.
2.2.2. Screen-Height Air Temperature and Humidity Observations
HRLDAS Tair data are compared for the month of August 2006 to hourly screen-height air temperature
measurements from a dense network of 17 weather stations (Figure 1) installed for the Second Texas Air
Quality Experiment (TEXAQS-II) [Parrish et al., 2009]. HRLDAS data are bilinearly interpolated to the location of
each weather station. The data are then averaged across stations by hour to facilitate analysis and
comparison of the diurnal cycle among the observations and eight experiments.

3. Results
3.1. Distribution Comparison of MODIS LST and HRLDAS Trad

The probability distributions of MODIS LST and HRLDAS Trad are compared for JJA 2003–2012 for each
experiment (EXP), overpass, and urban land use type (Figure 2). As expected, HRLDAS Trad becomes
progressively warmer by changing from an urban surface with vegetation only (EXPs A), to one with a light-
intensity urban land use type (EXPs B), to one with three urban land use types of increasing intensity (EXPs C).
The mean HRLDAS Trad decreases from EXPs C to EXPs D because the use of NUDAPT for EXPs D yields
substantially less fractional urban area (i.e., more vegetation) per pixel. The mean NUDAPT urban fractions for
light-intensity, heavy-intensity, and commercial/industrial urban land use types in EXPs D are about 0.17, 0.27,
and 0.41, compared with 0.50, 0.90, and 0.95 as the default values in EXPs C. Substantial warm biases exist
across most experiments and land use types during daytime (up to about 8.6 K for the average of EXPs C1),
tending to be greatest for the light-intensity urban category compared to the heavy-intensity and
commercial/industrial categories. This seemingly paradoxical relationship can be attributed to a warm bias
over the vegetated fraction of each pixel, which can be detected by examining the vegetation-only
simulations (EXPs A). In general, for a given pixel consisting of both vegetation and urban components one
would expect Trad for vegetation to be cooler than MODIS LST, and Trad for urban surfaces to be warmer, so
that the weighted average of the two (if the model were perfect) would be equal to MODIS LST, which
measures the combined vegetation + urban radiative temperature for each pixel. This bias is most prominent
for light-intensity urban pixels because they have the largest vegetated fraction. A sensitivity experiment in
which the vegetation type within urban areas is changed from the default savanna to forest (not shown) does
little to reduce the Trad bias because the skin temperature of the forested vegetation is no cooler than for the
grassy savanna. Adding irrigation reduces the Trad biases (EXPs A2-D2, green distributions in Figure 2) because
more energy is partitioned toward the latent heat fluxes (evapotranspiration) rather than sensible heat fluxes
over the vegetated portion of pixels. For example, the root-mean-square error (RMSE) of Trad is reduced
(because the bias is reduced) on average by about 39% during daytime for EXPA2 versus EXPA1. However, the
vegetation-only Trad (EXPA2) is still warmer on average than MODIS LST for all Terra day experiments and the
light-intensity Aqua day experiment. While a full analysis of the causality of the warm bias of HRLDAS Trad for
vegetated surfaces is beyond the scope of the present work, it is partly due to an apparent warm bias in the
NLDAS-2 temperatures used to force the HRLDAS simulations (discussed in section 3.4).

HRLDAS Trad biases are much smaller at nighttime compared to daytime, partly because biases between
latent and sensible heat flux partitioning are not as pronounced in the absence of solar forcing. HRLDAS Trad
for the vegetation-only scenarios (EXPs A) is cooler than MODIS LST, as expected. The comparative impacts of
altering the number of urban types (EXPs B versus EXPs C) versus adjusting urban fraction (EXPs C versus EXPs D)
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are almost equivalent, while the irrigation impact is trivial (EXPs A2-D2 versus EXPs A1-D1) because
evapotranspiration is negligible. It is evident from Figure 2 that a portion of the RMSE is attributed to the
HRLDAS Trad warm bias compared to MODIS LST.

In order to better understand the experimental results in the context of biased and unbiased errors, the
systematic (RMSE_s) and unsystematic (RMSE_u) components of RMSE [Willmott et al., 1985] are calculated at
each time of day and for the three urban types. RMSE_s is a measure of the modeled linear bias, and RMSE_u
is a measure of model precision. Noting that MSE= RMSE2 and that RMSE2 = RMSE_s2 + RMSE_u2, the
proportions of MSE_s and MSE_u to MSE are calculated (Figure 3). The MSE_s proportion pattern is consistent
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Figure 2. Comparison of 2003–2012 JJA distributions of MODIS LST with HRLDAS Trad (K; left axis) for Terra and Aqua (a, b) daytime and (c, d) nighttime passes.
Scenarios are grouped by nonirrigated (A1–D1; red) and irrigated (A2–D2; green) experiments, as well as by (top) light-intensity, (middle) heavy-intensity, and (bottom)
commercial/industrial-intensity urban land use types. MODIS LST distributions are identical for both groups of scenarios. The black bars represent mean values. The
root-mean-square errors (RMSEs) between MODIS and each HRLDAS scenario are shown with the red (nonirrigated) and green (irrigated) lines (K; right axis).
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with the biases in Figure 2, with MSE_s being the major component of total MSE during daytime when large
biases occur, whereas MSE_u is generally the largest component during nighttime when biases are small.
Interestingly, the proportions remain approximately the same for the non-irrigated (EXPs A1-D1) versus
irrigated (EXPs A2-D2) simulations, despite overall lower RMSEs for the irrigated experiments, indicating that
irrigation not only reduces the bias but also improves model precision. Although EXPA2 (vegetated only) has
comparatively low RMSEs and biases, especially during daytime and for light-urban land use types, EXP D2
generally exhibits the lowest RMSEs (Figure 2) and lowest MSE_s (Figure 3) among those experiments that
contain urban land use types (EXPs B, C, and D) during both daytime and nighttime.

To assess the primary drivers of HRLDAS Trad, the distributions of the component radiative temperatures for
JJA 2003–2012 are analyzed for EXPs D1 and D2 (Figure 4). The three urban surfaces that contribute to Trad_U
—Troof, Troad, and Twall—vary substantially during daytime hours, with Troad being about 8.1 K (Terra day) and
10.7 K (Aqua day) warmer than Troof, and about 6.8 K (Terra and Aqua day) warmer than Twall, a result that is
nearly identical for all three urban types. During night, the urban component temperatures cool by 20–30 K
for the Aqua overpass time (13–25 K for Terra), with Troad cooling the most, making it on average about 2.1 K
warmer than Troof and 1.6 K cooler than Twall. The differential cooling of these three components is due to the
nighttime surface energy balance, which becomes dominated by sensible heat and long-wave radiative
losses that are proportional to the magnitude Trad reaches during daytime (i.e., the largest losses occur for
Troad). Within the canyon there are exchanges of sensible and radiative heat between the road and walls,
causing the walls to cool at a slower rate than the (initially warmer) road. Interestingly, the integrated urban
radiative temperature, Trad_U, is warmer for the light-intensity urban type during daytime than for heavy-
intensity and commercial/industrial types, because Troad is greater in light-intensity areas due to less shading
from shorter buildings (average building heights are 5.0m, 7.5m, and 10.0m for light, heavy, and
commercial/industrial intensity, respectively). By contrast, at nighttime the commercial/industrial-intensity
urban type is about 0.4–0.5 K and 0.8–0.9 K warmer than heavy- and light-intensity urban types for Terra and
Aqua respectively, because Twall and Troad do not cool as much among taller buildings due to trapped heat in
the urban canyon. The mean radiative temperature for vegetation, Trad_V, is similar among all daytime and all
nighttime scenarios. Irrigation decreases the vegetation temperature by about 3.4 K, 2.6 K, and 2.4 K for light-,
heavy-, and commercial/industrial-intensity land use types, respectively, during daytime compared to both
Terra and Aqua and has a nearly negligible impact during nighttime. Irrigation has no impact on any of the
urban radiative temperature components, because the UCM assumes there is no latent heat flux over urban
areas. Thus, when Trad_V and Trad_U are combined to calculate Trad, the impact of irrigation is smaller than for
Trad_V alone, about 2.5 K, 1.9 K, and 1.5 K for the three respective urban types. Interestingly, mean daytime
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HRLDAS Trad differs among the three urban types by less than 1 K (commercial/industrial areas are
warmest), which is a smaller difference than for MODIS LST, which differs by about 2.5–3.0 K among urban
types. The similarity of HRLDAS Trad among the three urban types is caused by the compensating effect of
warmer road temperatures for light-intensity urban pixels compared to more urban fraction for heavy- and
commercial/industrial-intensity pixels. Both HRLDAS Trad and MODIS LST differ by about 1 K among the
three urban types at nighttime.

3.2. Spatial Comparison of MODIS LST and HRLDAS Trad

HRLDAS Trad from EXPs C2 and D2 is compared with MODIS LST spatially for the 2003–2012 JJA average of all
available Terra daytime, nighttime, and diurnal data for each pixel (Figure 5). Results are similar for Aqua
(not shown). Because averages are performed independently for each pixel, the maps are not temporally
congruent in space (e.g., far more days are available for the less cloudy rural areas than the cloudier urban
core). Diurnal maps were calculated from the differences of the averaged day and night radiative
temperature maps. The urban heat island is evident in both HRLDAS Trad andMODIS LST. It is noteworthy that
the urban-to-rural temperature difference is larger during the daytime than the nighttime and that the
diurnal cycle is larger in the urban core than in the outlying rural areas. Both phenomena are somewhat

300

310

320

330

Li
gh

t U
rb

an
(a) Terra−Day

EXP D1
EXP D2

300

310

320

330

H
ea

vy
 U

rb
an

300

310

320

330

C
om

m
er

ci
al

/In
du

st
ria

l
Li

gh
t U

rb
an

H
ea

vy
 U

rb
an

C
om

m
er

ci
al

/In
du

st
ria

l

Li
gh

t U
rb

an
H

ea
vy

 U
rb

an
C

om
m

er
ci

al
/In

du
st

ria
l

Li
gh

t U
rb

an
H

ea
vy

 U
rb

an
C

om
m

er
ci

al
/In

du
st

ria
l

LST Trad Trad_V Trad_U Troof Troad Twall

LST Trad Trad_V Trad_U Troof Troad Twall

LST Trad Trad_V Trad_U Troof Troad Twall

LST Trad Trad_V Trad_U Troof Troad Twall

290

295

300

305

310

(c) Terra−Night

EXP D1
EXP D2

290

295

300

305

310

290

295

300

305

310

290

300

310

320

330

340

(b) Aqua−Day

EXP D1
EXP D2

290

300

310

320

330

340

290

300

310

320

330

340

290

295

300

305

(d) Aqua−Night

EXP D1
EXP D2

290

295

300

305

290

295

300

305

Figure 4. Comparison of the 2003–2012 JJA distributions of MODIS LST with the components of HRLDAS Trad (K; left axis) for Terra and Aqua (a, b) daytime and
(c, d) nighttime passes. Scenarios are grouped by experiment D1 (red) and D2 (green), as well as by (top) light-intensity, (middle) heavy-intensity, and (bottom)
commercial/industrial-intensity land use types. The component temperatures for HRLDAS Trad (Trad_V, Trad_U, Troof, Troad, and Twall) are described in the methods
section. The black bars represent mean values.

Journal of Geophysical Research: Atmospheres 10.1002/2013JD021227

MONAGHAN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 6384



counterintuitive to the convention for urban heat islands, which typically have larger urban-to-rural
differences at nighttime, and which have smaller diurnal cycles over the urban core compared to outlying
areas due to the larger thermal inertia of the built environment [e.g., Oke, 1982]. The paradox is caused by the
use of radiative temperature, rather than air temperature, for the present analysis. Radiative temperature
undergoes larger fluctuations over urban regions than rural regions because urban surface energy fluxes
have larger swings compared to rural areas due to differences in surface properties [Roth et al., 1989].

Figure 5. The 2003–2012 average JJA (row 1) MODIS LST (Terra) and (rows 2 and 3) HRLDAS Trad for experiments C2
and D2, for (column 1) day, (column 2) night, and (column 3) difference of day and night (diurnal). (rows 4 and 5) The
difference maps for HRLDAS minus MODIS for experiments C2 and D2 are shown.
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Differences between HRLDAS Trad and MODIS LST are apparent for both day and night, and for both rural and
urban pixels. For example, a daytime HRLDAS Trad warm bias in the northeast corner of the domain (outside
of Greater Houston) is strongly related to vegetation types; shrubland (about 2% of nonwater pixels) and
wooded wetland (about 23% of nonwater pixels) vegetation types in this area have Trad biases of about 7 K
and 5 K, respectively, suggesting the specified properties and/or surface types themselves may require
refinement. Within the urban area, large HRLDAS warm biases are prevalent during daytime in EXP C2.
Irrigation (EXP D2) greatly reduces and in some cases reverses the HRLDAS daytime warm bias over Greater
Houston. At nighttime HRLDAS biases are comparatively smaller, and the bias patterns are more
homogeneous. The HRLDAS Trad diurnal range is generally overestimated, mainly due to the simulated warm
bias during daytime. Greater spatial heterogeneity is evident in MODIS LST within the urban areas compared
to HRLDAS Trad, likely due to unavoidable simplifications in the model regarding assumed subgrid-scale
features and parameter estimates.

The spatial pattern correlation coefficients between HRLDAS Trad and MODIS LST are estimated for all
experiments (Figure 6), based on the 2003–2012 JJA average temperature maps (like those shown in
Figure 5). The results quantify some of the qualitative conclusions drawn from inspection of Figure 5. HRLDAS
Trad is correlated more strongly with MODIS LST at nighttime compared to daytime. Generally, correlations
become stronger with progressively better representation of the urban surface but especially for EXPs D1 and
D2 compared to A1–C1 and A2–C2, respectively. Thus, the inclusion of explicit urban fraction generates the
largest increases in correlation coefficients. The improvement is most consistent for the commercial/
industrial-intensity urban types during daytime, and all urban types at nighttime. Irrigation (EXPs A2–D2)
improves the pattern correlations during daytime, a result that is consistent with the finding in section 3.1
that irrigation not only reduces biases but also improves precision. Diurnal correlation coefficients are similar
to those for daytime, emphasizing the dominance of HRLDAS Trad daytime errors on errors in the diurnal
cycle. Finally, while correlations between HRLDAS Trad and MODIS LST over rural vegetated surfaces are
comparatively high during nighttime, they are anticorrelated during daytime, even for the irrigated
experiments. The results from this subsection suggest that future work to improve the representation of
vegetation in land surface models may yield substantial gains in model accuracy, in both urban and
rural areas.

3.3. Temporal Comparison of MODIS LST and HRLDAS Trad

Assessing the interannual variability of urban temperatures provides a collective measure of how well the
HRLDAS simulates the frequency, magnitude, and intensity of urban extremes from year to year. The
interannual variability of HRLDAS Trad and MODIS LST, along with the NLDAS-2 forcing temperature and
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HRLDAS Tair, is compared for JJA 2003–2012 for EXP D2 (Figure 7). MODIS LST exhibits comparatively large
(small) interannual variations for daytime (nighttime). Correlations between the HRLDAS Trad and MODIS
LST time series are generally >0.80 for daytime and nighttime (Table 3), except for Aqua nighttime, when
there is disagreement during the beginning of the time series that lowers the correlations. However, the
nighttime correlations may be sensitive to small errors because the interannual variations are smaller; for
example, the RMSE between nighttime HRLDAS Trad and MODIS LST is only 0.8 K and 0.4 K for Terra and
Aqua, respectively, for the light-intensity urban type. The interannual variability of daytime HRLDAS Trad
tends to be underestimated compared to MODIS LST, whereas nighttime interannual variability is similar or
larger than for MODIS (Figure 7 and Table 4). The dampened (amplified) HRLDAS Trad during daytime
(nighttime) appears to be related to the NLDAS-2 forcing temperature, to which Trad exhibits similar
variability. In general, increasing temporal trends of similar magnitude are present in all time series
(Table 4). However, statistically insignificant positive trends are apparent for most of the MODIS LST
daytime series, whereas all of the HRLDAS Trad daytime trends are significant (p< 0.05) because of their
comparatively dampened variability. Conversely, the nighttime MODIS LST trends are all statistically
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significant, whereas none of the HRLDAS Trad trends are (mainly because the HRLDAS trends are
comparatively smaller, although greater variability also plays a role).

To gain a better understanding of the interannual variability at the subdomain scale, distributions of
2003–2012 annual average JJA correlation coefficients and biases between HRLDAS Trad and MODIS LST were
calculated for each land use type, satellite, and time of day for EXP D2 (Figure 8). Average pixel correlation
coefficients typically range from 0.3 to 0.6 for both day and night. Mean biases are larger during daytime than
nighttime, consistent with the spatial results presented above. Relationships are similar among different land
use types. Interestingly, daytime correlations are higher for Aqua (afternoon) compared to Terra (before
noon), and conversely during nighttime they are higher for Terra (before midnight) and Aqua (after
midnight). It is possible that the correlations are highest during the afternoon and evening hours because the
surface is more closely coupled to the overlying atmosphere compared to early and late morning hours.
Although such coupling is not explicitly captured in the offline HRLDAS simulations, land surface
temperatures are likely more similar to overlying air temperatures when coupling is vigorous, and therefore
our simulations, which are partially a function of the NLDAS-2 air temperatures used to force them, may be
more accurate. In summary, the temporal analysis indicates that for EXP D2, the most realistic scenario, Trad is
more accurate at night than during day and generally has the highest correlations during the afternoon and
late evening.

3.4. Comparison of Meteorological Observations and HRLDAS Tair

Comparing HRLDAS Trad to MODIS LST provides a means to comprehensively examine model performance
spatially over a long period. It is also useful to compare HRLDAS Tair to air temperature observations from
weather stations if available, as air temperature is often the variable of interest for assessing extreme heat
events. HRLDAS Tair data are compared for themonth of August 2006 to hourly screen-height air temperature
measurements (Figure 9), with the results averaged across 17 weather stations (shown in Figure 1) for the

Table 4. The Standard Deviation After Detrending the 2003–2012 Domain Average, Annual Average JJA MODIS LST, HRLDAS Trad (Experiment D2), and NLDAS-2
Tforce, for Each Land Cover Type, Satellite, and Time of Day (Top)a

Light-Intensity Urban Heavy-Intensity Urban Commercial/Industrial Urban Rural Vegetation

Pass LST Trad Tforce LST Trad Tforce LST Trad Tforce LST Trad Tforce

Standard Deviation After Detrending (K)
Terra day 1.04 0.67 0.81 1.28 0.82 0.96 1.44 0.99 1.06 1.23 0.51 0.77
Aqua day 1.25 0.81 0.85 1.39 0.93 1.01 1.68 1.17 1.09 1.64 0.65 0.89
Terra night 0.37 0.42 0.46 0.4 0.43 0.45 0.41 0.44 0.42 0.32 0.36 0.47
Aqua night 0.19 0.4 0.35 0.24 0.43 0.37 0.28 0.43 0.36 0.21 0.35 0.34

Trend (K yr�1)
Terra day 0.33 0.23 0.31 0.33b 0.27 0.34 0.34b 0.28 0.35 0.29b 0.19 0.31
Aqua day 0.39 0.39 0.45 0.36b 0.46 0.52 0.30b 0.47 0.51 0.33b 0.28 0.38
Terra night 0.16 0.09b 0.10b 0.15 0.09b 0.09b 0.15 0.10b 0.08b 0.14 0.08b 0.11b

Aqua night 0.11 0.00b -0.01b 0.13 0.00b 0.00b 0.14 0.01b 0.00b 0.08 -0.01b -0.01b

aThe 2003–2012 trends (bottom).
bThe result is not significant at the 95% confidence interval.

Table 3. The Pearson’s Correlation Coefficients Between the Domain Average, Annual Average JJA 2003–2012MODIS LST
and HRLDAS Trad (Experiment D2) for Each Land Cover Type for Day, Night, and the Difference Between Day and
Night (Diurnal)

Terra Aqua

Land Use Day Night Diurnal Day Night Diurnal

Light-intensity urban 0.83 0.89 0.64 0.92 0.36a 0.85
Heavy-intensity urban 0.81 0.89 0.68 0.81 0.43a 0.68
Commercial/industrial urban 0.84 0.88 0.72 0.85 0.38a 0.78
Rural vegetation 0.75 0.90 0.50a 0.80 0.36a 0.71

aThe result is not significant at the 95% confidence interval.
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monthly mean diurnal cycle. HRLDAS Tair for all experiments is warmer than observed during the daytime
hours (~0800–2100 LST), and cooler than observed during nighttime. As with the results for Trad presented
above, daytime Tair biases are smallest (but still positive) for the vegetation-only experiment (EXPA1), largest
for the three-class urban experiment with fixed urban fraction (EXP C1), and are reduced when NUDAPT is
employed to explicitly specify urban fraction (EXPs D1 and D2). While the daytime warm bias (1–3 K) for Tair is
not surprising given its consistency with the Trad comparison with MODIS LST, the nighttime cool bias
(0.25–1.25 K) for Tair is more prominent than for Trad, which is generally unbiased or slightly warmer than
MODIS LST (e.g., Figure 2). These opposing daytime and nighttime biases result in the diurnal cycle of Tair
being larger than observed by about 1–5 K, mainly due to the daytime warm bias. The daytime warm bias is
partly due to the forcing temperature, because NLDAS-2 Tforce is approximately the same as or slightly
warmer than the observed air temperature, and Tair and Trad cannot be cooler than Tforce during daytime
hours unless a temperature inversion exists (which is extremely unlikely during summer in Houston).
However, the amplitude of the diurnal cycle for Tforce is approximately the same as observed, so it likely
contributes little to the overestimated diurnal cycle of HRLDAS Tair. The larger-than-observed diurnal cycle of
Tair in the HRLDAS simulations may be partly related to the simulations being performed offline with no
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coupling present between the surface and atmosphere. Such coupling might otherwise dampen the HRLDAS
daytime warm bias (e.g., via a wind speed feedbacks related to afternoon sea breezes).

The centered RMSE (C-RMSE), which is a measure of unbiased model error versus observations (much like the
RMSE_u statistic presented above for Trad), indicates that the model accuracy is highest for EXPs D1 and D2
throughout the diurnal cycle (Figure 9), which supports the findings above for the comparison of HRLDAS Trad
with MODIS LST, that the simulations which use NUDAPT urban fraction have higher fidelity. Additionally,
correlation coefficients are highest for EXPs D1 and D2 over the entire diurnal cycle, indicating that these
experiments best capture temperature variability in time and space based on the 17 station analysis.

4. Discussion and Conclusions

A series of eight 1 km HRLDAS simulation experiments are performed over Greater Houston to explore the
model accuracy gained by progressively increasing the complexity of the urban morphology representation
in a UCM. The fidelity of the simulations is assessed via comparison to in situ observations of air temperature
and remotely sensed estimates of MODIS LST. HRLDAS Trad and Tair become progressively warmer by
changing from an urban surface with vegetation only (EXPs A), to one with a light-intensity urban land use
type (EXPs B), to one with three urban land use types of increasing intensity (EXPs C). However, HRLDAS Trad
decreases when EXPs C are modified for EXPs D so that they explicitly employ observationally based
estimates of urban fraction in Greater Houston from NUDAPT rather than fixed urban fractions that are a
function of the urban land use type. This modification yields HRLDAS Trad simulations that are cooler (and
more similar to observed temperatures) because the average NUDAPT urban fraction in each pixel is much
lower than assumed in the HRLDAS default settings: 0.17, 0.27, and 0.41, compared with 0.50, 0.90, and 0.95
for the light-, heavy-, and commercial/industrial-intensity urban types, respectively. In summary, of the
experiments that include urban land use types, EXP D2 (which differs from EXP D1 only in that it is irrigated)
consistently yields the most accurate results spatially and temporally when compared with MODIS LST and
screen-height air temperature observations from a network of weather stations.

Differences between HRLDAS simulated temperatures and observed temperatures are due to myriad factors.
Observational constraints lead to some of the differences, despite efforts to reduce their impact. For example,
Hu et al. [2014] demonstrate that MODIS LST is biased as a function of the view angle of each overpass and
that cloud contamination of some pixels still is present even in quality-controlled versions of MODIS data.
Additionally, despite efforts to ensure MODIS LST and HRLDAS Trad are consistent, it is not clear that MODIS
“sees” from space the same surface that HRLDAS simulates. For example, MODISmay detect a greater fraction
of vegetation in many pixels due to trees obscuring buildings. The UCM in HRLDAS does not simulate the
effects of vegetation shading on urban surfaces, which may lead to overestimated HRLDAS Trad warm biases
compared to MODIS LST. Regardless of the observational constraints, comparisons of HRLDAS Trad and Tair
with MODIS LST and weather station observations clearly indicate a warm bias in the HRLDAS temperature
simulations during daytime. Examples of model constraints that likely contribute to the warm bias include
performing the HRLDAS simulations offline (i.e., uncoupled to an atmospheric model) to reduce
computational expense, inadequate representation of subgrid-scale processes and land use heterogeneity,
and the use of outdated or inaccurate morphological data sets. For example, HRLDAS land use remains static
throughout 2003–2012. However, the MODIS MCD12Q1 yearly land cover product indicates rapid changes
throughout the period, such as an increase in urban area of 78 km2 from 2003 to 2005.

In the present study the most accurate urban simulations are yielded from experiments that (1) explicitly
specify the urban fraction in each pixel and (2) include irrigation. The former modification (explicit land use)
yields a gain in accuracy that is larger than for several other modifications tested, suggesting that continuing
to improve urbanmorphological data sets, as has been done in recent years [e.g., Burian and Ching, 2009], is a
worthwhile endeavor. The latter modification (irrigation) substantially reduces simulated temperature biases
and increases model precision, presumably because watering lawns, parks, etc. is a common activity that is
neglected in the current version of HRLDAS. However, the irrigation approach used in the present study—
basically assuming all surfaces are irrigated all of the time—is clearly oversimplified, and for parts of the city
and outlying rural areas irrigation may lead to improved results for the wrong reason. Quantitative
knowledge of the spatiotemporal distribution of irrigation practices is not well constrained and therefore is
difficult to simulate accurately. Such information is greatly needed, and additionally, research is also required
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to understand how local policies affect irrigation practices and subsequently the urban heat island. For
example, considering that extreme heat events often coincide with droughts [e.g., Fischer et al., 2007], what
are the trade-offs of implementing urban watering restrictions that likely exacerbate high temperatures?
Public health concerns about heat and projected increases in the frequency, duration, and intensity of
extreme heat events emphasizes the need for improved characterization of urban environments in
meteorological models so that human exposure to heat both within cities and between urban and rural areas
can be more accurately differentiated.
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