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[1] Analysis of a multisensor precipitation product enables us to extract the precipitation
from individual storms in the Arkansas–Red River drainage basin over a period of
11 years. We examine the year-to-year and intraseasonal variations of storm numbers,
duration, sizes, and precipitation in the data set. Intraseasonal variations in numbers of
storms exceed their year-to-year variations. More mountainous regions had greater
numbers of storms than flatter regions. Most storms are small, last less than 2 h, and
produce modest amounts of precipitation. The maximum size of storms and the number of
storms are negatively correlated on a yearly basis. Midsummer months had a greater
percentage of smaller storms but the storms were of longer average duration. We can
roughly divide the storms into three different types, single ordinary cell storms, multiple
storms (includes supercells), and mesoscale convective systems, and look at their year
to year and intraseasonal variability in the data set. The most storms occur around
1700 local time but the most precipitation falls around 0100 local time. Storm duration
was the most important factor determining how much precipitation storms generate per
cell. We do not find that drought years or years with abundant precipitation had any
particular characteristics but occur as a result of simultaneous occurrence of several
features.
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1. Introduction

[2] The climatology of thunderstorms in the United States
has interested meteorologists for over 100 years. Earlier
studies have been summarized byCourt and Griffiths [1986].
Studies of mesoscale weather systems have typically focused
on their structure and dynamics (see summary by Doswell
[2001]). There have been studies done for seasonal or
annual convective precipitation [e.g., Changnon, 2001;
Market et al., 2002] but fewer at the storm level. Except
for storms of notable intensity, the precipitation amounts
from individual storms or small groups of storms have been
of secondary importance. This situation has occurred because
of the difficulty in determining precipitation amounts.
Studies examining precipitation [e.g., Kane et al., 1987;
Changnon, 2001; Ashley et al., 2003] have generally relied
primarily on rain gage data. Although precipitation is the
most densely and routinely measured meteorological quan-
tity in the United States, rain gage networks still do not
resolve many details of the precipitation field. Estimates of
precipitation amounts from radar alone are not consistently
accurate.
[3] Kane et al. [1987] examined the precipitation from

individual mesoscale convective complexes (MCCs) and

other large mesoscale convective systems (MCSs) in the
central United States. They examined 2 years worth of these
storms and attempted to relate the precipitation patterns to
the satellite imagery. They found that the right rear and right
front quadrants of these storms were most likely to have
heavier precipitation. In a related study, Fritsch et al. [1986]
used the same data set to show that the MCCs and large
MCSs account for 30–70% of the precipitation during the
warm season (April–September) over the central United
States. Ashley et al. [2003] examined precipitation from
MCCs over a longer period of time relying primarily on
gage data. They found large interannual variability in the
percentage of warm season (May–August) precipitation
accounted for by the MCCs.
[4] A number of questions remain unanswered by these

studies. We know little about the precipitation produced by
storms smaller than MCS. How many smaller storms are
there? Does the ratio of small to large storms change from
year to year? Ashley et al.’s [2003] study does not com-
pletely address the last problem because it was limited to
storms meeting the criteria for MCCs. What is the average
size and distribution of sizes of convective storms in the
south central United States? What is the average duration of
a convective storm in the south central United States? How
does the amount of precipitation produced vary with the size
of the storms? Answers to these questions are important for
agricultural and hydrological applications in assessing the
likelihood that a storm of a certain size or duration will
form. Other applications such as planning for the protection
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of outdoor workers from lightning and for the efficiency of
wireless communications [Tucker et al., 2008].
[5] In the early 1990s the National Weather Service in

the United States started producing a product that com-
bines radar, rain gage and satellite precipitation estimates.
Although this product still has errors, it provides greater
spatial resolution than the rain gage network alone and
greater accuracy than the radar estimates alone. Since its
resolution is about 5 km, it still misses very small-scale
precipitation features. Nevertheless, we believe this data set
can reveal a great deal about the nature of convective
precipitation in the central United States.
[6] One of the challenges of this data set is its vast size

and the need to process it in a timely fashion. Hocker and
Basara [2007, 2008] recently studied squall lines and
supercell storms using Geographic Information Systems
(GIS). They were concerned with the numbers and spatial
distribution of the storms rather than storm precipitation and
relied almost exclusively on raw radar reflectivity data.
Baldwin et al. [2005] developed an automated procedure
to analyze the gridded radar and rain gage merged product.
They were more concerned with identifying structural and
dynamic features of the storms in the data set than the
amount of precipitation itself. We would like to explore the
application of similar techniques to the problem of precip-
itation produced by convective storms and to address
questions of size and duration of these storms.
[7] In the next section, we will describe the data set and

algorithm we used for extracting individual storms. In
section 3 we will focus on fundamental questions of
numbers, size, and duration of these storms as well as their
variations by season and year. Precipitation amounts and
how they are affected by the size and duration of the storms
will be examined in section 4. We will summarize and
describe future work in section 5.

2. Data and Methodology

2.1. Precipitation Data

[8] Precipitation has traditionally been measured with
rain gages. There are several difficulties with these measure-
ments but the most serious is that they are point measure-
ments and precipitation varies greatly even within small
areas. Precipitation has also been estimated from radar
returns using a Z-R relationship. Radar provides measure-
ments which have greater spatial resolution than almost all
rain gage networks. One problem with this method is that
the Z-R relationship is not constant and varies with time and
location. Other problems can include variations in accuracy
and resolution depending on distance from the radar, partial
blocking of radar beam, storm sampling limitations at near
(cone of silence) and far ranges (overshooting) from the
radar, and contamination from bright band echoes. It is not
surprising, therefore, that precipitation products have been
developed that combine both types of data.
[9] The National Weather Service’s Next Generation

Weather Data WSR-88D (NEXRAD) is a network of
Doppler weather radars deployed throughout the United
States to detect and indirectly measure meteorological and
hydrological phenomena. On the basis of the amount of
processing, calibration and quality control performed, several
rainfall products are derived from the radar measurements.

Precipitation is estimated with a Z-R relationship, integrated
over time to produce hourly values, and quality controlled
and gridded at the individual river forecast offices. The
resulting product is known as the hourly digital precipitation
(HDP) array with a cell size of 4762.5 m which has been
used for subsequent products. The NWS River Forecast
Centers (RFCs) then use the rain gage data to correct biases
in the radar data to produce a product known as Stage II
[Fulton et al., 1998]. The Stage II data from the individual
radars are combined to form a gridded product over the
entire RFC region. This process is performed with input
from the human forecasters and the final product is known
as Stage III [Smith and Krajewski, 1991; Anagnostou et al.,
1999]. These data have been used for a variety of applica-
tions: hydrometeorology and climatology [Seo et al., 1999;
Krajewski and Smith, 2002], weather forecasting [Grecu and
Krajewski, 2000], and flood modeling and forecasting
[Johnson et al., 1999; Young et al., 2000; Knebl et al., 2005].
[10] Instead of using the standard bias correction method,

the Arkansas–Red River Basin River Forecast Center
(ABRFC) developed its own local approach. A ratio between
the gage data and the HDP products is computed and the ratio
is interpolated at each cell. The radar data are multiplied by
the ratio and further examined and adjusted by the human
forecasters. The approach is known as P1 algorithm. The P1
product is generally better at detecting light precipitation than
the Stage III estimates and has fewer effects from the partial
blocking of the radar beam [Young et al., 2000].
[11] The rainfall data used in this study are the hourly

Stage III and P1 products provided by the ABRFC for the
second phase of the Distributed Model Intercomparison
Project (DMIP2), which was organized by the Hydrology
Laboratory of the NWS. The study domain is limited to the
forecast area of the ABRFC (Figure 1). The actual Arkansas–
Red River Basin is shown as a solid black line and the study
domain is the dotted black rectangle circumscribing the
basin. The Rocky Mountains comprise the extreme western
part of the domain and the Ouachita Mountains make up the
southeastern portion of the domain and the majority of the
domain is relatively flat. The rainfall data we used span a
period of 11 years from 1 April 1996 to 30 September 2006.
Since we are examining precipitation during the warm
season, we have only included the months of April–
September. We expect the vast majority of the precipitation
in this area to be from convective storms although the
contribution from stratiform rain may be a larger component
during April and May than in other months. Changnon
[2001] estimated that over 80% of the June–August rainfall
in this region was from thunderstorms. The ABRFC relied
on a standard algorithm for Stage III production prior to late
1996 after which it adapted the locally developed process
(P1) to produce the precipitation data. We have not noticed
that this change of methodology gave any dramatic differ-
ences in the nature of the precipitation patterns for 1996. It
should be noted that this data set contains no missing data.
All cells at all times contain the best precipitation estimate
that can be made with the Stage III or P1 method with the
data available.

2.2. Storm Delineation

[12] A storm in this study is defined as a contiguous
precipitation object in space and time (Figures 2a and 2b). It
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consists of a set of connected precipitation cells delineated
from stacked hourly NEXRAD precipitation grids. The
method used to identify contiguous regions in space and
time is based on the component labeling algorithm in digital
image processing [Haralick and Shapiro, 1992]. Three
parameters, the minimum hourly precipitation (MHP) in a
cell, the minimum time span (MTS) of a storm, and the
definition of spatial and temporal connectivity, were used to
control storm delineation. Only the cells with hourly pre-

cipitation greater than or equal to the MHP are considered
as precipitation cells. The MTS parameter specifies the
minimum time span for a storm. The spatial and temporal
connectivity of the precipitation cells is defined by a 3� 3� 3
binary matrix where 1-valued elements are connected to the
center element. In our analysis of the DMIP2 NEXRAD
precipitation data, MHP and MTS were set to 1 mm and 1 h,
respectively. The 1-h threshold for MHP allows us to
include single-ordinary-cell thunderstorms which often have
small precipitation amounts as well as to completely repre-

Figure 1. Study area. Actual Arkansas–Red River Drainage is outlined in solid black, the study domain
is outlined in dotted black, and U.S. states are outlined in solid gray.

Figure 2a. A 10-h-long storm, which occurred on 12 June 2002, is delineated as a contiguous
precipitation object in space and time. The areas receiving precipitation in each hour are shown as blue 3-D
patches. X and Y are in the unit of cells which have a size of 4762.5 m.
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sent the stratiform region of MCS. The connectivity was
defined as the following matrix:

y

Time ¼ t� 1 Time ¼ t Time ¼ tþ 1

0 1 0 1 1 1 0 1 0

1 1 1 1 1 1 1 1 1

0 1 0 1 1 1 0 1 0

x

where the 1 indicates a cell is connected to the center cell
(at row 2 and column 2 at time t) and is potentially in the
storm if it has precipitation and the 0 indicates a cell is not
connected to the center cell and is not in the storm even if it
has precipitation. The above matrix allows side and point
connectivity between precipitation cells in space but limits
their connectivity to side and face only in time. Note that a
storm’s lifetime ends if it ceases producing precipitation or
leaves the study domain. This method has some differences
from that of Baldwin et al. [2005]. Storms in their study are
delineated as contiguous regions in space but not in time.
Their storms, therefore, are defined without regard to
temporal continuity. We did not attempt to connect
precipitation areas separated by small gaps but considered
all areas not connected as being separate storms. Likewise, a
storm at one hour had to be connected to a storm at the next
hour in order to be considered part of the same storm. These
differences occur because we think that storm lifespan may
last more than 1 h and contiguous precipitation regions in
space and time is a natural way of delineating storms.
[13] A software tool was developed to process NEXRAD

precipitation data using MATLAB#. The tool creates a
precipitation database by converting raw data into MATLAB
file format to take the advantage of data compression
capability in MATLAB. Because of the size of the data
set (more than 96,360 hourly precipitation grids during the

11-year period), the component labeling algorithm cannot
be directly applied to the entire database. The precipitation
database was therefore first scanned to identify cubes of
continuous precipitation hours which were separated by no
rain hour(s) across the grid. Those precipitation cubes were
then used to delineate contiguous precipitation regions (i.e.,
storms). Several properties were calculated for the storms,
including the number of precipitation cells, the total amount
of precipitation, duration, maximum size, and footprint size.
In addition, the precipitation-weighted centroids of the
storms were also calculated and used to represent the storms
as points in space and time.

3. Number, Size, and Duration

[14] On the basis of the above method, a total of 519,562
storms have been delineated for the 11-year time period.
The number of storms varies by year (Figure 3) and month
(Figure 4). The average number of storms per year is
47,232. The number of storms in the year with the most
storms (1999) is 46% higher than the number in the year
with the fewest (2005). The numbers have more dramatic
variations seasonally with the numbers rising from April
until August before decreasing in September. Note that
1997 had the highest precipitation of any year in the data
set with a high (but not the highest) number of storms and
1998 had the lowest precipitation with close to an average
number of storms. We can also look at the numbers in terms
of the spatial distribution of the storms. The storm frequen-
cy grid (Figure 5) was calculated by counting the number of
storms occurred in each cell during the 11-year period. In
May, and to a lesser extent, April, there is an increase in the
number of storms per cell from west to east. By July, this
pattern has reversed and there are more storms in the
western part of the domain until September where numbers
increase in the eastern part of the domain. Over the entire
11 years of warm seasons, there is a high storm frequency

Figure 2b. The same storm projected onto the x � y plane. The x and y axes are in the unit of cells
which have a size of 4762.5 m. Precipitation is in millimeters.
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Figure 4. Total number of storms (gray) and total amount of precipitation (black) by month during the
11-year period.

Figure 3. Total number of storms (gray) and total amount of precipitation (black) by year during the
11-year period.
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near the Rocky Mountains in the western extreme of the
domain. This area is known for its large number of thunder-
storms per year [Court and Griffiths, 1986] but we see here
that these high frequencies are almost all from July and
August. The highest spatial frequencies of storms corre-
spond to complex topography, particularly the eastern
slopes of the Rocky Mountains in the western portion of
the study area as well as the Ozarks and Ouachitas across
the eastern part of the study domain.
[15] We use two ways to measure storm size: maximum

size and footprint. The maximum size is the maximum
number of cells receiving precipitation at any specific hour
during the storm’s lifespan. The footprint consists of all the
cells that receive precipitation from the storm during its

lifetime. Thus, the maximum size and the footprint will be
the same for storms lasting less than 2 h. The footprint,
however, is dependent on duration as well as maximum
size. The mean maximum size for all storms in the 11-year
period is 21.1 cells (478.6 km2). The maximum size and
footprint vary from year to year (Figure 6). The linear
correlation coefficient between the maximum size and the
number of storms on a yearly basis is �0.77. Thus, years
with more storms also tend to have smaller storms. The
maximum size and footprint also have a strong monthly
variation (Figure 7) with August having the smallest storms.
The seasonal decrease in vertical wind shear during the mid
to late summer months, which favors more widely scattered

Figure 5. Total number of storms that occurred at each location in April, May, June, July, August,
September, and all months during the 11-year period.
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and unorganized storms, is one likely contributor to the
decrease in storm size during the month of August.
[16] Assuming all precipitation to be convective, we can

do roughly divide the storms into three different types.
Thunderstorms have customarily been divided into single
ordinary cells, supercells, multiple cells, and MCSs which
include squall lines and MCCs [Lin, 2007]. A single
ordinary cell thunderstorm will not last more than 1 h.
Within this 1 h, we would not expect this storm to affect
more than 20 cells (453.6 km2). If we look at all storms with
a footprint of 30 cells or less (Figure 8), we see that the
number of storms levels out at 21 cells before decreasing
again. To minimize the contamination between different
types of storms we will consider all storms lasting less than
2 h with a size of 20 cells or less to be single ordinary cell
thunderstorms [Byers and Braham, 1949]. We recognize
that without a method to distinguish the storms physically
we cannot be sure that all the storms in our single ordinary

cell thunderstorm category are in fact this type of storm. We
consider the contamination to be small enough that the
classification is still useful. Mesoscale convective systems
(MCSs) are defined to last at least 6 h and have a dimension
of at least 100 km in at least one direction [Glickman,
2000]. Thus, storms lasting 6 h or more with a maximum
size of 21 cells or more are defined MCSs. Since we
measure size as the size of precipitating area, this method
could underestimate the number of MCSs. But storms
lasting more than 6 h with a maximum size of larger than
21 cells are quite uncommon in our 11 years of data.
Supercell thunderstorms are comparable in size to multiple
cell thunderstorms [Lin, 2007] but the two types cannot be
distinguished with the information in our data set. Storms
not meeting the criteria for either a single ordinary cell
thunderstorm or an MCS are therefore defined as multiple in
this paper. On the basis of these definitions, single ordinary
cell thunderstorms, multiple, and MCSs make up 78%, 21%
and 1% of the storms in the database respectively. Variation
from month to month is small (Table 1). April, interestingly,
has the high of 82% and August the low of 75% of storms
being single ordinary cell thunderstorms. Percentages of
storms that are MCS varied, at most 0.5%, between months.
July and August have the highest percentage of multiple cell
thunderstorms, therefore, conditions in July and August
slightly favor the multiple type thunderstorm more than
the other months. From year to year these percentages vary
surprisingly little (Table 2). The year with the highest
percentage of single ordinary cell thunderstorms, 2003,
had 81% and the year with the lowest percentage of these
storms, 2005, had 74%.
[17] The time of day that storms occurred is presented in

Figure 9. The time is at the precipitation weighted center of
the storm’s lifetime. It can be seen that there is a strong
tendency for storms to occur near 2300 and 0000 UTC. This
would be in the early evening local time. This time would
be preferred for single cell and small multicellular thunder-
storms. Maximum precipitation, however, is at 0100 local
time (0700 UTC). MCSs are more likely to occur in the late
evening and maximize during the nighttime and are likely

Figure 6. Mean maximum size (gray) and the mean
footprint (black) for storms each year of the study. Size is
measured in cells, and cell size is 4762.5 m.

Figure 7. Mean maximum size (gray) and the mean
footprint (black) for storms by month. Size is measured in
cells, and cell size is 4762.5 m.

Figure 8. Histogram showing numbers of storms with
footprint sizes of 30 cells or less. Cell size is 4762.5 m.
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responsible for most of this precipitation [Fritsch and
Forbes, 2001].
[18] The average duration of storms in the data set is 1.4 h.

This time is consistent with the finding above that most
storms are relatively small in size. This finding is also
consistent with the study by Robinson and Easterling
[1988] who found an average duration of thunderstorms
in the central United States to be 77 min during the summer.
Robinson and Easterling’s stations were all north of our
domain and since they used station data, they had an
Eulerian approach to measuring duration as opposed to
the Lagrangian approach used here. Since a storm’s lifetime
ceases when it leaves the domain, our estimates of storm
duration may be somewhat reduced. Nevertheless, there is
an average of over 14 storms per 6 months that lasted over
24 h, about one every other week. These very long lived
storms were more common in the June–August period than
in other months. There is some variation between months
(Figure 10) and surprisingly, the months with smaller storms
(mean maximum size, Figure 7) are also the months with
longer average duration of storms. Robinson and Easterling
also found that thunderstorms in the central United States
lasted longer in summer than in spring. The summer
months, however, do favor the very long lived storms but
these storms are only a small percentage of the total storms.
Emanuel [1994] has argued from theoretical considerations
that lifetime of a convective cell is inversely proportional to
its vertical velocity. Percentage wise summer favors the
multiple thunderstorms and these storms will last longer
than the single ordinary celled storms. The multiple thun-
derstorms in our data set are much smaller in August than in
April (33.3 cells in August versus 92.5 cells in April) but
last longer (2.30 h in August versus 1.97 h in April). More
investigations are needed as to what factors influence the
size and lifetimes of the small multiple cell thunderstorms.
[19] The linear correlation between maximum size and

duration is 0.75 in April but averages 0.68 for other months
with little variability. The smallest and most numerous
storm duration is less than 2 h and within this group there
is some storm size variability. With finer time increments
the correlation might be higher although April with the
largest percentage of short-duration storms had the highest
correlation between size and duration. Correlation between
storm size and duration might be nonlinear but no other
functional relationship was apparent. Several storms of
fairly large size lasted less than 2 h. Some such storms
possibly left the study domain quickly. Some other storms

were stratiform precipitation and were more common during
April and May.

4. Precipitation

[20] As would be expected considering the small size and
short duration of most storms, their precipitation is fairly
light. The spatial distribution of precipitation is shown in
Figure 11. Precipitation generally increases from west to
east. This type of increase is not surprising as the atmo-
sphere generally has more moisture available in the eastern
part where it is closer to the Gulf of Mexico. July, however,
has more precipitation in the northern part of the domain
than the southern part. August has a more uniform distri-
bution of precipitation throughout the study area. At the
height of summer the southern portion of the domain is
influenced by the stabilizing effect of the subtropical high.
Overall MCSs account for 86% of the precipitation in the
database even though they are only about 1% of all storms.
Figure 12 displays the spatial distribution of the percentage
of precipitation produced by MCSs by month. Overall
around 90% of the precipitation in the eastern part of the
drainage basin came from MCSs. But the percentage is
slightly reduced during July and August. The western part
of the domain has a much lower percentage of precipitation
produced by MCSs. Fritsch et al. [1986] estimated that
MCSs account for 30–70% of the warm season precipita-
tion in the central United States. Most of our study domain
is in areas that would be on the higher side of their estimate.
Fritsch et al. [1986] included only the larger MCSs in their
study and considered their estimates to be conservative.
Ashley et al. [2003] estimated that the central United States
receives between 8 and 18% of its warm season precipita-
tion from MCCs alone. For most of our study areas they
found these percentages were in the 12–25% range. We
point out that we have included more than just MCCs in the
MCS category and our definition of MCSs was broader than
that of Fritsch et al. Multiple thunderstorms account for
about 13% of the precipitation and single ordinary cell
thunderstorms, in spite of their great numbers, account for
only about 1% of the total precipitation.
[21] The precipitation per cell indicates how efficient the

storm is in producing precipitation. Note that here efficiency
is defined in terms of how much precipitation the storm

Table 1. Total Number and Percentage of Thunderstorm Types by

Month

Month

Number
Single

Ordinary

Percent
Single

Ordinary
Number
Multiple

Percent
Multiple

Number
MCS

Percent
MCS

April 35,253 82.2 7218 16.8 412 1.0
May 48,488 79.7 11,664 19.2 701 1.1
June 71,363 77.4 19,621 21.3 1178 1.3
July 93,817 75.5 28,945 23.3 1486 1.2
August 99,458 74.9 31,755 23.9 1625 1.2
September 52,132 78.0 14,003 20.9 707 1.1

Table 2. Total Number and Percentage of Thunderstorm Types by

Year

Year

Number
Single

Ordinary

Percent
Single

Ordinary
Number
Multiple

Percent
Multiple

Number
MCS

Percent
MCS

1996 34,370 75.9 10,313 22.8 599 1.3
1997 41,205 78.3 10,860 20.6 561 1.1
1998 38,862 78.9 9896 20.1 475 1.0
1999 43,443 78.7 11,168 20.2 581 1.0
2000 34,364 79.0 8718 20.1 403 0.9
2001 41,104 77.8 11,176 21.1 580 1.1
2002 37,407 76.9 10,681 21.9 587 1.2
2003 38,480 78.9 9896 20.1 475 1.0
2004 29,404 76.9 8950 23.0 548 1.4
2005 27,794 73.5 9476 25.1 536 1.4
2006 36,180 74.6 11,624 24.0 669 1.4
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delivers without regard to the amount of water vapor
available. The overall average precipitation per cell per
storm is 2.1 mm. Figure 13 shows that small amounts of
precipitation are most common which would be expected
with most storms of small size and short duration. A small
percentage but still a noticeable number of storms produced
over 23.5 mm per cell. Precipitation per cell appears to be
determined mostly by storm duration (linear correlation
0.67 in April and 0.54 in August). But maximum size and
total precipitation amounts are of moderate importance in
April (correlations 0.51 and 0.57, respectively) and less
important in August (correlations 0.23 and 0.37, respectively).
Yet during August the MCSs have a mean precipitation per
cell of 8.0 mm compared to 3.8 for the multiple thunder-
storms and 1.7 for the single ordinary cell thunderstorms.
Overall, July and August have the most precipitation per
cell. These are the warmest months and the air can poten-
tially contain greater amounts of water vapor. It might be
expected that size would be more important as single
ordinary cell thunderstorms have precipitation efficiencies
of only about 10% [Braham, 1952] but a squall line can
have precipitation efficiencies of up to 50% [Newton, 1966].
Market et al. [2003] showed that precipitation efficiencies
increase with a reduced vertical wind shear, high subcloud-
based moisture and low convective inhibition, all conditions
which would be more likely to occur during July and
August than the other months.
[22] Some examinations of storm characteristics can be

helpful to explain what features produce a drought year or a
year with abundant precipitation. With MCSs controlling so
much of the precipitation, one might think that their

numbers would be indicative of the amount of precipitation
in a given year. We found the case for this to be weak. The
overall linear correlation between number of MCSs per year
and total amount of precipitation was 0.42. The two years
with the lowest numbers of storms, 2004 and 2005, had
moderate amounts of precipitation (Figure 3). Notably, these
were also the years with the highest average storm maxi-
mum size and footprints. Thus, storms were fewer but they
were larger and lasted longer. In particular, 2005 had the
highest percentage of multiple thunderstorms and one of the
higher percentages of MCS storms but the actual numbers
of these storms were the lowest of all years studied. The
year with the lowest precipitation, 1998, had a moderately

Figure 9. Total number of storms (gray) and total amount of precipitation (black) by the time of day
during the 11-year period.

Figure 10. Average duration, in hours, of storms by
month.
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large number of storms. But 1998 had the smallest average
storm size and the smallest average storm footprint. The
precipitation per cell in 1998 was 2.2 mm, higher than
average. We are not able to show any relationship between
storm size and precipitation per cell. The year with the
highest precipitation, 1997, was also the year with the
greatest number of storms. Its maximum storm size and
footprint are below average but its precipitation per cell was
2.2 mm. Interestingly, both 1997 and 1998 were years with
below average numbers of supercells across the state of
Oklahoma [Hocker and Basara, 2008]. The year 1999 had
the most storms of any in the database but the average storm
size and footprint were relatively low. It had the second
highest amount of precipitation of the years in our database
and the most supercells in Hocker and Basara’s [2008]

database. The year 2000 is also an interesting one for
precipitation amounts. It had the shortest average duration
of storms and the second lowest number of storms. Its storm
average footprint and maximum size are only the third
lowest of all years. Its precipitation per cell was 2.0 mm.
It still managed a little more precipitation than 1998. Thus,
the mean maximum size and footprint of storms appear to
be the primary factors determining precipitation amounts
but the number of storms in a year and the average
precipitation per cell are also important factors.
[23] The interplay among these factors can be seen in the

variation of precipitation between months. June is the
month with the highest precipitation (Figure 4). It is not
the month with the largest size of storms, the longest
duration of storm, the largest footprint of the storms, the

Figure 11. Total amount of storm precipitation in millimeters in April, May, June, July, August,
September, and all months during the 11-year period.
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most storms or the largest amount of precipitation per cell.
April and May have larger storms but there are fewer of
them. July and August have many storms but they are small
and have smaller footprints.

5. Conclusions

[24] Our work shows that the vast majority of storms in
the Arkansas�Red River Basin during the warm season of
the 11 years are small and short-lived. Nevertheless, the

rainfall database of the 11 years contains a number of very
long lived storms. The intraseasonal variations in numbers
of storms exceed their year-to-year variations. The more
mountainous regions had greater numbers of storms but less
precipitation per cell than the flatter areas. Midsummer
storms had smaller average size but longer average duration.
We could roughly divide the storms into single ordinary cell
thunderstorms, multiple thunderstorms and MCSs. Intra-
seasonal and year-to-year variations in the percentage of
storms of each type were relatively small. The MCSs

Figure 12. Percentages of precipitation from MCS in April, May, June, July, August, September, and all
months during the 11-year period.
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account for a small percentage of the numbers of storms but
they do account for the vast majority of the precipitation
during the warm season. It follows that the most storms
occur around 1800 local time but the most precipitation
around 0100 local time. Although the MCSs have larger
values of precipitation per cell than the other types of
storms, precipitation per cell is generally only weakly
correlated with the storm’s maximum size; it is better
correlated with the storm’s duration.
[25] This study generated many questions concerning the

factors that determine the lifetime and amount of precipitation
produced by convective storms. Such questions were espe-
cially applicable for the multiple thunderstorms. Although
supercell thunderstorms have been extensively studied,
small multiple cell thunderstorms have not received much
attention from the research community. We do not know
much about how the duration or the amount of precipitation
produced by these storms is affected by the microphysics.
[26] Since this study was observational, it did not gener-

ally address issues as to why particular relationships existed.
It does, however, point out several areas where our knowl-
edge of these storms is lacking and where more research is
required. It is not clear what determines the number of
storms per year or the distribution of storm types. It is
puzzling why the smaller storms of midsummer should last
longer than the larger storms of late spring and early
summer. Likewise, we cannot determine whether there is
a general relationship between storm size and precipitation
amount per cell. Finally, we did not find any particular
characteristic associated with drought years or years with
heavy precipitation. Although the mean size of the storms
was important, other features also contributed heavily.

[27] This data set has the potential to yield many more
insights on these storms. The frequency with which storms
of different sizes and durations affect particular areas is of
interest. We also wish to examine the initiation and termi-
nation times of the various types of thunderstorms. We can
also examine the speed and direction in which storms move.
In addition, we believe the data set can provide information
about the frequency and nature of storm mergers and splits.
[28] Our investigation of warm season storms emphasizes

the amount and intensity of the precipitation they produce.
This approach has a number of applications. The expected
duration of storms can be important in planning activities
that are weather sensitive. The expected amount of
precipitation from storms can be useful for water resour-
ces planning. Continued studies along these lines can
provide more specific information tailored for particular
applications.

[29] Acknowledgments. This research was partially supported by the
United States Department of Agriculture under grant FED38300.
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