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ABSTRACT 

Tissue engineering traditionally has taken an “outside-in” approach to address 

deformities, injuries, and wear-and-tear of tissues. The current thesis examines an opposite 

approach through an “inside-out” strategy using non-viral gene delivery with mesenchymal stem 

cells to regenerate mechanosensory hair cells and supporting cells of the inner ear responsible for 

hearing and balance. Primary cells, stem cells, and progenitor cells are often difficult to transfect 

unless using a viral vector, which may have systemic safety concerns. However, non-viral 

vectors circumvent the safety issues associated with viral vectors, but commonly exhibit low 

transfection efficiencies. The work of the current thesis identified and enhanced an effective non-

viral gene delivery approach that reprogramed human mesenchymal stromal cells, isolated from 

Wharton’s jelly of human umbilical cords to produce characteristics similar to the hair cell and 

supporting cell phenotype found in the cochlea and vestibular organs of the inner ear. Studies 

from the literature highlighted electroporative methods as effective non-viral strategies for 

difficult-to-transfect cells. In vitro studies demonstrated that human Wharton’s jelly cells 

(hWJCs) that underwent electroporation and were treated with Y-27632 ROCK Inhibitor 

outperformed untreated cells in transfection efficiency and cell viability by factors of four and 

three, respectively. The identification and tracking of positively transfected cells was 

tremendously improved by use of a photo-converting reporter, which greatly increased signal to 

noise ratios. The up-regulation of atoh1, and down-regulation of hes1 and hes5, in hWJCs 

produced a complex phenotype that exhibited over an 11-fold increase in gene expression of the 

critical hair cell marker, myosin VIIa, with visual morphological changes compared to untreated 

cells. The current thesis has demonstrated that hWJCs are susceptible to non-viral gene delivery 

methods, and for the first time non-viral genetic reprogramming of hWJCs induced phenotypic 
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changes characteristic of hair cells and neural epithelium. The current thesis has bridged the gap 

between non-viral gene delivery, stem cell therapy, and tissue engineering, which now presents 

new opportunities for further investigation utilizing non-viral gene delivery in concert with stem 

cell therapies for regenerative medicine applications. 
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CHAPTER 1: Introduction 
 

The overall objective of this thesis was to combine non-viral gene therapy with stem cell 

therapy to produce a tissue engineering strategy that could be applied to a variety of different 

tissues. Mechanosensory hair cells responsible for hearing and balance, found in the cochlea and 

vestibular organs, respectively, of the inner ear were targeted for the current thesis, because hair 

cells do not regenerate, thus sensorineural hearing loss is a disease with few treatment options. 

The overall progression was to preliminarily develop and evaluate a method to reprogram the 

intercellular gene expression of stem cells to induce a terminal phenotype not otherwise 

reachable by the stem cells. Nucleofection™ is an electroporative method, that was determined 

to be highly effective at transfecting primary cells; however, Nucleofection™ led to poor cell 

viabilities, which limited the use of Nucleofection™ for tissue engineering studies. Hence, 

development and evaluation of transfected stem cells for inner ear hair cell regeneration included 

three corresponding specific aims: (1) improvement of human Wharton’s jelly cell (hWJC) 

transfection through ROCK Inhibitor treatment, (2) enhancement of identifying positively 

transfected cells, and (3) differentiation of hWJCs toward an inner ear hair cell phenotype. 

The first aim evaluated different cell medium formulations to identify a formulation that 

rescued cell viability and improved transfection efficiency in hWJCs after undergoing 

Nucleofection™. The second aim evaluated the use of a photo-convertible reporter gene to 

identify positively transfected hWJCs in the presence of high auto-fluorescence or high 

background noise, and evaluated the use of a photo-converting reporter gene to track cell 

movement. The third aim investigated the effect of over-expressing atonal homolog 1 (atoh1) by 

separately delivering the human homolog of atoh1, hath1, and the mouse homolog of atoh1, 

math1, to hWJCs. Additionally, key negative regulators of atoh1, hes1 and hes5, were knocked 



 

 

2 
down simultaneously to evaluate whether the atonal effect would be enhanced and produce more 

morphological characteristics consistent with the inner ear hair cell phenotype. The progression 

of the chapters is chronological with respect to the development of the genetic program to alter 

the intercellular gene expression of hWJCs, as each aim built on one-another and culminated in 

the final design of the thesis. The organization of the chapters is as follows:  

Chapter 2 provides a background on the field of gene delivery as it pertains to tissue 

engineering, differentiating between viral and non-viral vectors, and focusing on non-viral gene 

delivery strategies with an emphasis in physical non-viral gene delivery strategies. Chapter 2 

highlights the barriers that must be overcome for non-viral vectors to successfully deliver genetic 

material to a target cell that results in the expression of a desired protein. The primary physical 

non-viral methodologies are identified and the advantages and disadvantages of each 

methodology are outlined with respect to tissue engineering. Chapter 2 concludes with 

suggestions on how to effectively apply the identified methodologies to tissue engineering, and 

improve the integration between tissue engineering and physical non-viral gene delivery. Chapter 

2 serves as a central literature review for this thesis, and frames the approach to the work 

presented in the experimental chapters (3 through 5). 

Chapter 3 addresses the first aim, i.e., improvement of hWJC cell transfection through 

treatment with a ROCK Inhibitor. The RhoA guanosine tri-phosphate (GTP) signaling pathway 

is associated with apoptosis when adherent cells are lifted from a surface or are flash frozen. 

Several studies have reported inhibition of ROCK (Rho-associated coiled-coil kinase) has 

improved cell viability of stem cells after lifting cells from a surface or thawing frozen cells. Y-

27632 ROCK Inhibitor was used to treat hWJCs before and after Nucleofection. The results 
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enabled the development of a reliable protocol to transfect hWJCs through Nucleofection for all 

subsequent studies. 

Chapter 4 introduces a strategy to differentiate between low signal expression in 

positively transfected cells and high background noise or auto-fluorescence. hWJCs were 

transfected with a photo-convertible reporter gene that enable green fluorescence to be switched 

to red fluorescence by exposure to a low power ultra-violet (UV) light or high power blue light. 

The kinetics of photo-conversion were measured, as well as the sensitivity of the photo-

convertible fluorophores through time-lapse epifluorescent and confocal microscopy.  

Chapter 5 addresses the third and final aim by evaluating and characterizing the 

phenotypic changes that occur when hWJCs are transfected with different combinations of 

plasmid DNA and siRNA. hWJCs were transfected with math1 pDNA, hath1 pDNA, siRNA 

against hes1 and hes5, math1 pDNA and siRNA against hes1 and hes5, or hath1 pDNA and 

siRNA against hes1 and hes5. hWJCs were evaluated at 1, 3, and 7 days post-transfection for 

gene expression and protein expression of hair cell markers, development of morphological 

features through FM 1-43 lipophilic dye infiltration, and visual changes in cell morphology 

through microscopy  

Chapter 6 serves as a conclusion for the thesis, where the major findings are summarized 

and discussed from a global perspective. Limitations of the work are presented and addressed, 

and suggestions of how limitations may be overcome are made with respect to recommendations 

for future investigations on regenerating inner ear hair cells through non-viral gene delivery.  

The work within the current thesis proposes an approach for treating sensorineural 

hearing loss through the integration of non-viral gene delivery into tissue engineering to produce 

inner ear hair cells outside of the body. The available treatments for sensorineural hearing loss 
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are limited to hearing aids and cochlear implants. Several investigators have exploited over-

expression of atoh1 in supporting cells to induce the transdifferentiation of support cells into 

functional hair cells, but a successful treatment is still far off. Other investigators have explored 

using stem cell therapy to replace damaged hair cells, but success has been limited, and requires 

highly difficult surgeries to administer. Thus, the potential to produce inner ear hair cells outside 

of the body is highly attractive to elucidate mechanisms behind the physiological development of 

hair cells that are still poorly understood.  
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CHAPTER 2: Physical Non-Viral Gene Delivery Methods for Tissue 

Engineering 1 

 

ABSTRACT 

 
The integration of gene therapy into tissue engineering to control differentiation and 

direct tissue formation is not a new concept; however, successful delivery of nucleic acids into 

primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral 

vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, 

both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. 

Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and 

possess many customizable attributes that are desirable for tissue engineering applications. 

However, there is no single non-viral gene delivery strategy that “fits-all” cell types and tissues. 

Thus, there is a compelling opportunity to examine different non-viral vectors, especially 

physical vectors, and compare their relative degrees of success. This review examines the 

advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene 

delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-

induced molecular vibration), with particular attention given to electroporation because of its 

versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular 

character that can be used to improve differentiation strategies are examined for tissue 

engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in 

many cell types, which is highly desirable for tissue engineering applications, but electroporation 

                                                
1 Published as Mellott, A.J., Forrest, M.L., and Detamore, M.S. Physical Non-Viral Gene Delivery Methods for 
Tissue Engineering. Annals of Biomedical Engineering, 41(3):446-468, 2013. 



 

 

6 
and other physical non-viral gene delivery methods are still limited by poor cell viability. 

Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques 

is the key to using gene delivery to enhance tissue engineering applications. 

 

INTRODUCTION 

 
Combining tissue engineering and gene therapy for clinical applications is not a new idea; 

however, figuring out how to successfully integrate them has proven to be a major challenge. 

Both tissue engineering and gene therapy strategies endeavor to treat degenerative diseases, 

cancers, trauma, and tissue defects that compromise the functions of organs.155 However, both 

groups of strategies seem to utilize opposing methodologies. From a broad perspective, most 

tissue engineering strategies attempt to manipulate cellular behavior from an “outside-in” 

approach by varying cellular interactions with biomaterials, growth factors, and mechanical 

stimuli.132 Conversely, gene therapy strategies attempt to control cellular behavior through an 

“inside-out” approach by directly delivering nucleic acids (i.e., DNA, siRNA, shRNA, miRNA, 

and antisense oligonucleotides) into cells to trigger or stall gene expression.214, 220 Several tissue 

engineering strategies utilize progenitor cells or stem cells to regenerate damaged tissues by 

seeding them into biomaterial scaffolds.252 The culture conditions, type of biomaterial, and 

mechanical stimuli can be used to direct progenitor and stem cells toward a specific lineage. 

Additionally, growth factors have been added to cell culture medium or encapsulated for 

controlled release from biomaterial scaffolds to promote cell differentiation.53, 141, 148, 154 

However, growth factors can be costly and exhibit short half-lives.193 Furthermore, once growth 

factors are deposited into cell culture or into extracellular matrices (ECM), there is no way to 

control how the growth factors will disperse and interact with cells, meaning that not all cells 



 

 

7 
may interact with the growth factors uniformly or at all. Hence, a strategy where cells could 

produce, express, and control growth factors needed for differentiation would be beneficial for 

tissue engineering. 

Gene therapy has been investigated as a potential solution to overcome the challenges 

associated with using growth factors by delivering DNA to induce gene expression or delivering 

siRNA, shRNA, miRNA, or antisense oligonucleotides to knockdown gene expression; however, 

gene therapy has its own set of unique challenges.43, 97, 112, 121, 237 Nucleic acids have proven 

difficult to deliver to a variety of primary cells, progenitor cells, and stem cells, and the ability to 

manipulate gene expression in targeted cells has proven challenging as well.38 

The difficulty behind achieving successful transfection is due in part to the many barriers a 

delivery vector must overcome to gain access to the cellular membrane, cytoplasmic 

compartment, and interior of the nucleus before target genes can be expressed (Figure 2.1). 

Nucleic acids must first be stabilized in some form to survive the extracellular environment to 

avoid degradation from changes in pH, exposure to proteases and nucleases, and opsonization.1 

After navigating through the extracellular environment to the target cell, nucleic acids must 

properly associate with the cell membrane and cross the plasma membrane via penetration, 

electrostatic interaction, adsorption, or ligand mediated receptor binding.51, 96, 129, 173, 209, 211, 221, 246, 

260, 279 Both Mercer et al.161 and Conner et al.40 have extensively reviewed cell entry methods 

through various endocytotic pathways. Once the nucleic acids reach the cytoplasmic 

compartment, they must avoid degradation by endocytotic mechanisms and cytoplasmic 

nucleases.127 If a nucleic acid enters the cell through an endocytotic mechanism, the complex 

must successfully escape the endosome before undergoing degradation by a lysosome or before 

the endosome is recycled back to the cell surface.4, 268, 282 Once the nucleic acid has escaped the 



 

 

8 
endosome, it must avoid degradation while trafficking through the highly crowded cell 

cytoplasm, which slows the diffusion of DNA to less than 1% of its rate in water.151 RNA 

complexes and antisense oligonucleotides only need to reach mRNAs located in the cell 

cytoplasm; however, DNA complexes must cross the nuclear envelope before transcription can 

occur. We refer the reader to Merdan et al.162, who have provided a comprehensive review on the 

“barriers” that polymeric gene delivery vectors must overcome.   

 A variety of methods have been engineered to overcome the barriers to gene delivery, but 

they each have their own unique advantages and disadvantages. Viral vectors have proven to be 

the most efficient and effective gene delivery method, and the benefits of viral vectors have been 

reviewed in depth by Kay et al.122 and Zhang et al.285. However, there are major concerns 

regarding the safety of viral vectors such as toxicity, immunogenicity, and oncogenesis from 

insertional mutagenesis.29, 244 Furthermore, viral vectors possess restricted sequence sizes, and 

viral vectors can be laborious and costly to engineer. Viral vectors may possess innate tropisms 

to specific cell types or cell-selective promoters, which may limit their effectiveness in other cell 

populations.249  

Non-viral methods are able to circumvent most of the concerns associated with viral gene 

delivery methods. However, non-viral methods exhibit lower delivery efficacies than viral gene 

delivery methods. Non-viral gene delivery methods can be broadly separated into chemical and 

physical approaches. Chemical approaches utilize cationic lipids, cationic polymers, and cell-

penetrating peptides that can be engineered to target specific cells locally or systemically.14-16, 128 

Chemical vectors avoid some safety concerns associated with disease-causing viral vehicles; 

however, effective doses of chemical vectors can be toxic, especially to sensitive cell populations 

because large doses are required to overcome the poor efficiency.259 Chemical approaches seem 
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to be most effective at targeting cancer cells in vitro and in vivo, and chemical vectors can be 

customized for specific tissue engineering applications; however, primary cells, progenitor cells, 

and stem cells have proven more difficult to transfect with chemical vectors. Despite the 

difficulty in transfecting primary cells, progenitor cells, and stem cells, there has been 

considerable enthusiasm for the further improvement of chemical vectors for the hope of one day 

achieving efficacies and efficiencies that could potentially mimic viral vectors.74, 75, 85, 115, 162-164, 

191 Chemical vectors face many challenges and obstacles because chemical vectors must 

overcome all of the previously stated barriers. Physical methods, on the other hand, have been 

shown to be effective at transfecting primary cells, progenitor cells, and stem cells through in 

vitro, ex vivo, and in vivo approaches.158 This effectiveness may be in part due to the fact that 

physical approaches attempt to directly force nucleic acids into the cytoplasmic compartment or 

nucleus to achieve successful transfection. However, physical delivery methods face different 

limitations than chemical delivery methods. Depending on the physical delivery method used, 

the cell may sustain heavy trauma and initiate apoptotic or programmed cell death mechanisms. 

Thus, physical gene delivery strategies tend to exhibit lower cell viabilities and there is risk that 

the physical invasion may cause cells to senesce, which could negatively influence cell 

phenotype. Hence, a major obstacle that limits physical gene delivery in tissue engineering 

applications is low cell viability.  

Over the last decade, significant improvements have been made in areas of microinjection, 

ballistic gene delivery, electroporation, sonoporation, and laser irradiation, presenting a 

refreshing opportunity for using non-viral vectors for tissue engineering applications. 

Nonetheless, different non-viral physical vectors are successful in different cell types. Thus, 

there is a need to examine which attributes of different non-viral physical vectors enable 
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successful transfection and which physical characteristics of cells enable the ability of the cell to 

survive the transfection. Comparing the attributes of successful transfection techniques with 

characteristics of difficult-to-transfect cells that survive transfection methods may provide 

insight into physical details between the delivery vector and cell that may lead to more efficient 

gene delivery strategies for tissue engineering applications.  

Hence, the goal of this review is to examine the advantages and disadvantages of non-viral 

physical vectors (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser 

irradiation, and less well-known methods such as magnetofection and electric field-induced 

molecular vibration), with special attention given to electroporation because of its versatility, and 

to identify the physical characteristics of cells that survive and successfully express the target 

gene for the purpose of determining which physical features between delivery vector and cell 

type can be used to enhance differentiation strategies for tissue engineering applications.   

 

PHYSICAL GENE DELIVERY STRATEGIES 

 
 While much attention has been given to viral and chemical non-viral delivery systems for 

transporting nucleic acids into cells, physical non-viral gene delivery methodologies have shown 

promise for transfecting difficult-to-transfect cells. Physical gene delivery methods attempt to 

deliver nucleic acids directly to the cell, and attempt to avoid complications associated with 

targeting, endocytotic pathways and immunogenicity.131 However, physical gene delivery has its 

own set of advantages and disadvantages, which limits its use for certain applications. 

Microinjection is a technique that directly delivers DNA to the cell nucleus, whereas ballistic 

gene delivery uses a projectile to deliver DNA to the cell. Electroporation utilizes electrical 

potentials to induce the formation of pores in the cell membrane while sonoporation utilizes 
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physical disturbances in the fluid to induce pores in the cell membrane for nucleic acid delivery. 

Laser irradiation perforates individual cells by focusing a laser beam on a localized area of the 

cell membrane to enable the entry of nucleic acids. Nonetheless, physical gene delivery has been 

favorable for tissue engineering applications where ex vivo approaches can be utilized, but there 

is room for improvement. In the following sections, this review attempts to illuminate some of 

the advantages and disadvantages of the most common (and uncommon) physical gene delivery 

methods from a tissue engineering perspective, provide examples of how physical gene delivery 

has been integrated into tissue engineering, and examine challenges that still need to be 

addressed to further improve the integration of gene therapy and tissue engineering.   

 

MICROINJECTION 

 Microinjection is perhaps the most direct nucleic acid delivery method of all of the physical 

delivery methods. The development of microneedles and the applications for which they can be 

used have expanded considerably over the past 30 years. Prausnitz et al.205, 207 have published 

excellent reviews regarding the evolution of microneedles for drug delivery applications and 

developing gene vaccines. Microneedles are no longer confined to the toolbox of cell biologists, 

but now are widely used by pharmaceutical manufacturers and are gaining popularity among 

bioengineers.  

 In their earliest form, microneedles were made of glass and used to inject nucleic acids 

directly into cellular cytoplasm and nuclei.269 Microinjection of nucleic acids became a robust 

method to transfect cells with specific amounts of pure nucleic acids.137 However, the technique 

proved to be tedious, and no more than a few hundred cells at best could be transfected using this 

method. Despite the difficulties associated with microinjection, the technique persisted, and 
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became quite valuable among cellular biologists for studying RNA trafficking,196 

immunocytochemistry,140 and making transgenic animals.9, 36, 42 Specifically, the ability to create 

transgenic animals became a powerful tool for illuminating functions of uncharacterized genes. 

Today, single microneedles are used for transfecting rat and mouse ova for creating transgenic 

animals and for facilitating somatic nuclear transfer.  

 Beyond creating transgenic animals, microneedles are used for transdermal delivery of 

nucleic acids and drugs.52 Microneedles can be arranged in arrays, which have proven to be 

advantageous for transdermal drug delivery as microneedles can penetrate the outer layer of the 

skin and the stratum corneum, and deliver drugs, nucleic acids, and macromolecules directly to 

the epidermis by creating microchannels in the stratum corneum.195 Furthermore, microneedles 

can be easily fabricated and engineered to accommodate multiple delivery applications. For 

example, microneedles can be manufactured from silicon, metal, or biodegradable polymers.190 

As such, the size and shape of microneedles can be easily modified for drug delivery 

applications. Microneedles can be made hollow to be used as an injectable vehicle, or 

microneedles can be made solid and coated with drug or nucleic acid for direct application to 

tissue as illustrated in Fig. 2.2.73, 224 In addition, Choi et al.31 and Daugimont et al.44 have 

published exciting investigations on combining electroporation techniques with microinjection 

techniques for the purpose of creating DNA vaccinations delivered through the skin.    

 However, despite the benefits of microinjection, there are still limitations to the use of 

microinjection for tissue engineering. The use of single microneedles is highly inefficient for 

most tissue engineering applications, as typically the transfection of cells is needed on a larger 

scale than a few hundred cells and on multiple overlapping cell layers. Additionally, rat and 

mouse ova are large cells that can accommodate microneedles, whereas some smaller cells such 
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as fibroblasts are much more difficult to target with a microneedle. The diameter of the pipette 

tip and timing of injection (within the cell cycle) can play a major role in the ability of the cell 

membrane to reseal and survive.250 Thus, a major factor that determines the success of the 

technique is the technical ability of the individual injecting the cells. Furthermore, when 

microneedles are used in an array format, care must be taken to ensure that the stiffness of the 

microneedles are strong enough to endure the shear forces of the tissue so that the needles do not 

break and tear the tissue layer or fail to distribute drugs or nucleic acids uniformly.  

 In summary, microneedles are a safe way to deliver nucleic acids to a variety of cell types 

directly, thus avoiding many of the gene delivery barriers mentioned earlier; however, single cell 

transfections are inefficient for most tissue engineering applications. Microinjection requires 

precision and high accuracy for success, which places the majority of the success or failure of the 

technique on ability of the individual performing the technique. The shape, size, and location of 

target cells can greatly restrict the ability of the investigator to effectively transfect cells via 

microinjection as well. Furthermore, isolation and immobilization of cells are an additional 

challenge that requires specialized training for successfully transfecting cells via microinjection. 

Microinjection could be far more attractive for tissue engineering if the process of isolating and 

injecting the cell of interest could be automated to remove the “human” factor from the process.    

  

BALLISTIC GENE DELIVERY (GENE GUN) 

 Interdermal powder injection, biolistics, or ballistic gene delivery are names for a needle-free 

gene delivery technique originally developed by Sanford et al.218 to transfect plant cells using 

DNA-coated metal particles. Over the years, the ballistic method was refined and 

commercialized for use in mammalian cells using both DNA and RNA.272 Ballistic gene delivery 
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is a needle-free alternative to electroporation and microinjection that allows for DNA or RNA to 

be precipitated onto gold or tungsten particles, ranging in size from the nanometer to micron 

scale. The particles are delivered directly to mammalian tissues as a projectile out of a barrel of a 

pressurized ballistic device, colloquially referred to as a “gene gun”. Particles are projected via a 

helium discharge or high-voltage electric spark, and can be propelled directly into the cell 

cytoplasm or nucleus (Fig. 2.3). Ballistic gene delivery has gained popularity as a potential 

delivery method for gene vaccines, as the DNA or RNA can penetrate the stratum corneum of 

the skin and reach the epidermis.245 Additionally, investigators have successfully transfected 

mouse skeletal muscle fibers and liver tissue in vivo using ballistic gene delivery.281 

Furthermore, ballistic gene delivery has become not only a method to deliver therapeutic agents, 

but diagnostic agents as well. Several researchers have used the gene gun to deliver fluorescent 

dyes to track the functions of neurons.18, 126 Thus, ballistic gene delivery has continued to grow 

in popularity as an alternative to microinjection for in vivo applications. 

 However, while useful for potential gene vaccine applications, ballistic gene delivery has 

several limitations. Ballistic gene delivery has a limited tissue depth to which DNA 

microparticles can be transmitted, thus many studies have investigated gene delivery to the skin. 

Furthermore, the path of the projectile can cause inflammation and damage to the target tissue 

with improper operation of the gene gun, or if the target tissue is bombarded with a high density 

of microparticles.234 Moreover, ballistic gene delivery lacks cell specificity, so non-targeted cells 

may be transfected with the gene of interest if the non-targeted cells fall within the dispersal area 

of the gene gun. In addition, microparticles can accommodate very limited quantities of DNA or 

RNA. Thus, several treatments are needed to transfect a large population of cells if ballistic gene 

delivery is to be used for tissue engineering applications. Furthermore, there is no reliable way to 
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ensure that multiple treatments would uniformly distribute DNA microparticles, and not produce 

an inflammatory response in the target tissue. Mitchell et al.168 and Kendall et al.125 explored the 

effects of temperature, distance, and pressure on the penetration of DNA microparticles on 

buccal mucosa and porcine skin, respectively, and both groups found that uncontrolled 

environmental factors can greatly influence the efficacy of using ballistic gene delivery. Thus, 

the physical parameters need to be tightly regulated to optimize uniform delivery to cell cultures, 

which may not be possible for in vivo applications.  

 Thus, in summary, ballistic gene delivery can produce transient gene expression by directly 

delivering DNA to the cell cytoplasm or nucleus; however the delivery of DNA via ballistic gene 

delivery can be quite variable. Ballistic gene delivery is able to transfect primary tissues and 

difficult-to-transfect cells. However, ballistic gene delivery is limited in tissue engineering 

applications, as it can only transfect a limited number of cells, and not always in a uniform 

manner. Despite the drawbacks of ballistic gene delivery, it is an excellent method for 

developing gene vaccines as the DNA microparticles can readily penetrate the stratum corneum. 

As more research is conducted on ballistic gene delivery, perhaps a high throughput design will 

be developed that can consistently maintain precision and accuracy for nucleic acid delivery, or 

use different particle delivery materials to avoid inflammation and increase nucleic acid payload.    

    

ELECTROPORATION 

 One of the most effective non-viral gene delivery methods, which has been extensively used 

and studied is electropermeabilization, also known as DNA electrotransfer, and colloquially 

referred to as “electroporation.” Neumann et al.178 introduced electroporation almost 30 years 

ago by successfully transfecting mouse lyoma cells. Since then, electroporation has evolved 
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rapidly. In vivo studies have been well underway since 1996, and since then electroporation 

technologies have successfully transfected skin, skeletal muscle, liver, tumor tissues in vivo.3, 17, 

46, 99, 101 Thus, it is necessary to look at how electroporation is thought to work to better 

understand its potential for tissue engineering. Additionally, we will examine two commercial 

electroporators that have gained much attention to aid in our understanding and discussion of 

how electroporation could be used for tissue engineering and cell differentiation.  

 In the broadest sense, electroporation is the application of an electrical field to a cell 

population for a finite amount of time to increase cell permeability to DNA, RNA and small 

proteins by creating localized transient disturbances in the cell membrane.7, 166, 256, 257 

Electroporation has shown to be highly effective in a wide variety of tissues in vivo, and cell 

cultures in vitro. In particular, electroporation has been used to aid chemotherapy for cancer 

treatment.100, 149, 210, 228, 229, 258 In cancer treatments, irreversible electroporation is employed to 

ablate cancer tissues by inducing permanent formation of stable, non-resealing pores.177 In gene 

therapy, reversible electroporation is employed, which keeps tissues intact because membrane 

pores are able to reseal.  

 There are many excellent reviews, in particular those published by Farvard et al.,63 Teissié et 

al.,241 Cemazar et al.,25 Weaver et al.,257 Mir et al.,165 and Zimmerman et al.287 as well as work 

published by Golzio et al.,79, 80 which collectively explain the physical mechanisms proposed to 

take place during electroporation. To summarize, when an electric field is applied across a set of 

cells, hydrophilic pores are thought to form on the sides of the cell facing the electrodes, hence 

the name “electroporation.”197, 208 However, the precise mechanisms by which nucleic acids 

cross the cell membrane are still under investigation. Electrophoresis has been implicated as a 

possible process for enabling nucleic acids to diffuse from the extracellular environment into the 
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intracellular environment during the application of the electric field when nucleic acids are 

tightly associated with the cell membrane.266 However, other studies suggest internalization of 

nucleic acids is restricted to nucleic acids bound to the cell membrane.81 In addition to uptake 

mechanisms, the subject of how nucleic acids are transported and trafficked through the cell to 

the nucleus is still widely debated. Wu et al.264 have recently suggested that nucleic acids may be 

transported via an endocytotic mechanism, while Vaughan et al. have provided data supporting 

trafficking via microtubules in TC7 cells and A549 cells.247 Zaharoff et al.278 and Lukacs et al.151 

provided evidence that suggested that DNA does not diffuse through the cell cytoplasm after 

microinjection and electroporation, but in fact must traffic via another mechanism such as 

endocytosis or via some form of convection.  

 Despite the many discrepancies over how electroporation works, a few general themes have 

been observed. There are distinct physical and biological considerations that must be tailored for 

each tissue to achieve maximum transfection efficiency. The size and type of the cell, nucleic 

acid concentration, and orientation of the cell are important factors to consider when adjusting 

pulse duration, pulse shape (square wave vs. exponential decay), and electric field strength, to 

achieve maximum transfection efficiency. Jordan et al.117 directly addressed how to tailor 

physical parameters of electroporators to achieve maximum transfection efficiency in a variety of 

cell lines that are difficult to transfect. For example, morphological characteristics between 

human umbilical vein endothelial cells (HUVECs) and neuroblastomas differ dramatically.59, 117, 

157 Thus, the voltage, pulse shape, pulse duration, nucleic acid quantity, and cell density must be 

experimentally determined for each cell type to achieve maximum transfection efficiency, cell 

viability, and gene expression.104, 153, 226 Mehier-Humbert et al.158 suggested that long pulses (20 

– 60 ms) combined with modest field strengths (100 – 200 V/cm) produce larger pores in cell 
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membranes that remain open for longer durations. Tailoring electroporation parameters is 

especially important for improving the stability of gene expression in primary cells such as 

HUVECs, neurons, and Jurkat cells, which are not as robust to electroporation procedures as 

opposed to skeletal muscle fibers, which are very robust to electroporation.150, 166, 175, 216, 240, 275   

 Another important component to consider in electroporation is the electrodes that are used to 

generate the electric field. Normally, electrodes are directly applied to the tissue in vivo or a cell 

culture in vitro. A variety of electrodes have been developed for different applications 

commercially, and several investigators have built custom electrodes for specific applications. 

The strength, orientation, shape, and homogeneity of the electric field are directly dependent on 

the geometry and spacing of the individual electrodes.158 Furthermore, the material used to coat 

the surface of the electrode that interacts directly with the tissue can affect the transfection 

efficiency. Stainless steel is commonly chosen to minimize ion stripping during electroporation, 

which can change the pH of the suspension buffer of cells and increase cell toxicity.7 A variety 

of different electrodes have been developed for different applications, which include plate 

electrodes, needle electrodes, and catheter electrodes.98 Plate electrodes are commonly used for 

electroporation of surface tissues and for in vitro electroporation of cell suspensions in cuvettes. 

Needle electrodes are used to electroporate deep tissues in vivo, and catheter electrodes have 

been developed to electroporate blood vessels.158 Figure 2.4 illustrates how plate electrodes and 

needle electrodes can be used to transfect cells in vitro and in vivo, respectively. Plate electrodes 

are able to generate more uniform (defined and homogenous) electric fields, but usually require 

stronger voltages for electroporation. Needle electrodes allow for more flexibility and 

customizability in setting up electric fields, but at the expense of less homogenous electric 

fields.7, 98 
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 Many viral and chemical vectors have limited efficiency in non-dividing cells, but 

electroporation has successfully transfected both dividing and non-dividing cells.3, 275 For tissue 

engineering applications, transfection of non-dividing cells is a highly desirable attribute as 

several primary cells in cartilage, bone, and neurons have rates of division that are too slow for 

passive gene delivery.132, 193, 216, 220 Furthermore, electroporation has been shown to transfect 

progenitor cells and stem cells, which is another highly desirable attribute for tissue engineering, 

as many groups focus on utilizing various stem cell sources for differentiation and tissue 

regeneration.6, 65  

 Despite the advantages of electroporation, there are some major limitations restricting its use. 

First, several physical and biological parameters must be carefully tailored for each tissue to 

achieve maximum transfection efficiency, which can be very tedious. Second, electroporation 

may be able to efficiently transport nucleic acids into cells, but the benefit usually comes at a 

cost of low cell viability. Low cell viability is a major disadvantage of electroporation. Low cell 

viability may be a result of some cells undergoing irreversible electroporation or cells may die 

because of an increased cytotoxicity occurring from changing pH, resulting from the use of 

electrodes with poor biocompatibility. Furthermore, when electroporating tissues directly in vivo, 

there is the risk of producing inflammation, as not all cells will survive the procedure, and there 

may be a deposition of metal ions into the tissues from the electrodes. Another disadvantage of 

electroporation is that the up-front cost can be expensive, depending on the model of pulse 

generator and the associated electrodes. Furthermore, if in vivo studies are being conducted, a 

specially trained physician or technician must be present to properly place the electrodes on the 

subject to prevent injury and ensure proper alignment and generation of the electric field.  
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 In summary, electroporation has great potential in tissue engineering and for gene vaccine 

applications, as electroporation is able to successfully transfect a variety of cells in vitro and in 

vivo, including dividing and non-dividing cells. However, electroporation can be an invasive 

procedure depending on the target tissue, and electroporation is notorious for producing low cell 

viabilities. However, unlike other transfection vectors, electroporation can transfect a large 

number of cells. Furthermore, the electroporative technology is rapidly evolving, and new 

systems are being developed each year to address the issues noted above. Nucleofection™ by 

Amaxa and Neon™ by Invitrogen are two such leading electroporative systems that will be 

further discussed below for tissue engineering applications. Both systems attempt to mitigate the 

issue of low cell viability and increase transfection efficiency.  

 

NUCLEOFECTION™ 

 Nucleofection™ has had incredible wide-reaching success in tissue engineering and cancer 

studies, compared against other physical non-viral gene delivery methods, and is therefore 

highlighted with special emphasis in this review. Nucleofection™ is a patented commercial 

electroporation system created by Amaxa, and owned by Lonza. Nucleofection™ is an 

electroporator that uses a sterile disposable cuvette to facilitate electroporation, Amaxa has 

developed a variety of cell specific buffers that are proprietary, and are designed to enable 

maximum transfection while reducing cell death. In addition to the cell specific buffers, the 

Nucleofector™ comes pre-programmed with an assortment of programs specific to different cell 

lines that vary voltage, frequency, and pulse duration. However, the voltage, frequency, and 

pulse duration for each cell type are not revealed to the user, although Amaxa does provide 

suggested protocols for the user. The Nucleofection™ system has gained great popularity among 
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many researchers as the Nucleofector™ is able to transfect many difficult-to-transfect cells, 

including several progenitor cells and stem cells. For example, Aslan et al.8 transfected human 

bone marrow-derived stem cells (hBMSCs) with human bone morphogenetic protein 2 (hBMP2) 

and human bone morphogenetic protein 9 (hBMP9) via Nucleofection™ and achieved a 

transfection efficiency of 68 ± 41%. Aslan and colleagues confirmed that the Nucleofected™ 

cells were able to form new bone tissue both in vitro and in vivo through RT-qPCR, micro 

computed tomography (µCT), and immunohistochemistry. In an additional example, Bowles et 

al.22 used a Nucleofector-96-Shuttle™ to transfect naïve dendritic cells with retinoic acid-

inducing gene 1 (RIG-I) small interfering RNA (siRNA) to knockdown the RIG-I viral 

recognition receptor. Bowles et al. determined through RT-qPCR and western blotting that 

Nucleofection™ enabled a 75% knockdown of the detection of RIG-I. In a third experiment, 

Gonzalez et al.82 successfully generated induced pluripotent stem cells (iPSCs) by 

Nucleofecting™ mouse embryonic fibroblasts with a polycistronic construct containing octamer-

binding transcription factor 4 (Oct4), (sex determining region Y)-box 2 (Sox2), krueppel-like 

factor 4 (Klf4), and v-myc myelocytomatosis viral oncogene homolog (avian) (c-Myc). The 

identities of the iPSCs were confirmed via RT-qPCR, Southern blotting, and western blotting. 

Furthermore, iPSCs were differentiated in vitro toward neuronal lineages, cardiomyocyte 

lineages, or endoderm lineages. In addition to these studies, several more have summarized the 

ability of Nucleofection™ to successfully transfect progenitor cells, stem cells, and connective 

tissues (Table 2.1) as well as blood cells and blood vessel tissues (Table 2.2), cancer cells (Table 

2.3), neuronal tissues (Table 2.4), and the Nucleofection™ technique has been successfully used 

for gene knockdown studies in a variety of cells (Table 2.5). However, as displayed in the tables, 

not all cell types tolerate Nucleofection™ well. Some cells types lack desirable cell viabilities. 
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Thus, the cell types lacking high cell viabilities may require more customization of buffer 

solution, electrical parameters, or a combination of both to increase viability.  

 Thus, in summary, Nucleofection™ is an effective transfection method for difficult-to-

transfect cells, and Nucleofection™ can facilitate high transfection in a variety of cell types, 

which makes Nucleofection™ an attractive technique for in vitro and ex vivo tissue engineering 

applications.    

 

NEON™ 

 Neon™ is a proprietary electroporation system produced by Invitrogen. Neon™ uses a 

proprietary universal buffer for all cell types that is meant to facilitate high transfection 

efficiencies while preserving cell viabilities. Neon™ was released in early 2010, thus few 

publications are available using the Neon™ system; however, human embryonic stem cells, 

human embryonic kidney 293 cells (KEK293), mouse myoblasts (C2C12), adenocarcinomic 

human alveolar basal epithelial cells (A549), primary human fibroblasts, and several other cell 

types have been successfully transfected by Neon™.30, 50, 102, 156, 169, 171, 172, 222, 235, 239  

 Unlike the Nucleofector™, the Neon™ system uses an open pipette that contains a 

cylindrical electrode. Invitrogen claims that the design creates a more uniform electric field. In 

contrast to the Nucleofector™ system, the Neon™ transfection system allows the end user to 

program electrical parameters such as voltage, frequency, and pulse duration. Additionally, 

Invitrogen provides recommended protocols for end-users; however, since the Neon™ system is 

open, end-users may customize electrical parameters to their specific cells and experiments. 

 Thus, in summary, Neon™ provides the flexibility to program custom electrical parameters 

for experiments. However, Neon™ is still a young product, and publications are still being 
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produced on the effectiveness of Neon™ for cellular transfection, so it may be premature to draw 

conclusions regarding the Neon™ system at this time.   

 

SONOPORATION  

 Similar to electroporation methods, high-intensity ultrasound has demonstrated the ability to 

induce pore formation in cell membranes, and allow for movement of plasmid DNA into cell 

cytosol.67 This method is commonly referred to as “sonoporation,” and in contrast to 

electroporation methods, induces pore formation through physical movement of fluid rather than 

using an electric field. Ultrasound is used in the clinic for diagnostic imaging, kidney stone 

treatment, pain relief, and ablation of cancer tissues.120, 181, 243 High-intensity focused ultrasound 

(HIFU) produces localized shear forces in extracellular fluids that facilitate cavitation, or the 

controlled collapse of active air bubbles present in the surrounding fluid, and induce pore 

formation in cell membranes, increasing the permeability of cells to plasmid DNA and drugs 

(Fig. 2.5).183, 204, 263 Cavitation can be enhanced with the use of ultrasound contrast agents, such 

as Optison™, and drugs and nucleic acids can be complexed with contrast agents for systemic 

delivery.276 Zhou et al.286 have examined the effects of pore formation in Xenopus oocytes, and 

have found that the resealing of pores is affected by extracellular calcium concentration. 

Sonoporation has gained popularity in clinical settings because it is non-invasive, and already 

used in the clinic to enhanced transdermal absorption of drugs. Furthermore, Newman et al.179 

have reviewed the use of sonoporation on a variety of cell types and tissues, and noted that 

sonoporation seems to be a less destructive method for delivery of plasmid DNA than 

electroporation. Currently, sonoporation is primarily used to enhance drug delivery and gene 

delivery to diseased tissues in vivo rather than for tissue engineering applications. Interestingly, 
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Liang et al.144 have noted that sonoporation has exhibited enhanced transfection efficiency in 

tissues such as the heart, blood vessels, lung, kidney, brain, muscles, and the tumors when 

physical parameters of sonoporation are optimized.  

  Sonoporation is limited by relatively poor control of the energy localization. While 

sonoporation can induce cavitation in tissues, there currently is no way to control the uniformity 

of the cavitation or the entry of DNA. Complexation of DNA and contrast agents have greatly 

improved targeting; however, each target tissue needs to be carefully evaluated to ensure that 

cavitation induces pore formation in target cells.158 Thus, sonoporation cannot be as precisely 

controlled as in electroporation, where cells are placed between electrodes. Furthermore, 

sonoporation seems to be more effective in vivo for tissues that are in direct contact with blood 

vessels.     

 In summary, sonoporation is effective for transfecting cells in vivo as it is non-invasive, and 

already used in the clinical setting. However, sonoporation exhibits lower transfection 

efficiencies because cavitation cannot be precisely controlled within the tissue. Improving the 

uniformity of cavitation for membrane pore formation and improving the accuracy of cell 

contrast could make sonoporation highly effective for tissue engineering.   

 

LASER IRRADIATION 

 Laser irradiation is an alternative strategy under investigation for gene delivery applications. 

Investigators have used neodymium-doped yttrium aluminum garnet (Nd:YAG), holmium-YAG, 

titanium sapphire, and argon powered lasers to perforate cells to enable the entry of DNA by 

varying the pulse frequency of the laser.189, 215, 238, 280 Typically, a laser is focused through an 

objective onto a localized area of an individual cell in culture and increases the permeability of 
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the cell to exogenous DNA in the culture medium. Interestingly, cells seem to not undergo any 

lethal injury when perforated by a laser, and they are able to repair the “holes” made by 

perforations in less than a second.138, 189 Furthermore, a laser can be used indirectly to induce 

stress waves in the medium to perforate cells temporarily to enable the entry of DNA. Yao et 

al.274 provided a comprehensive review of the different methods to use a laser to facilitate gene 

delivery in cell culture. Ogura et al.184 demonstrated the precision and efficiency of using laser 

irradiation by injecting Sprague-Dawley rats with plasmid DNA coding for enhanced green 

fluorescent protein (EGFP). EGFP expression was confined to the exact area of skin irradiated 

with the laser 24 hours after transfection. In another report, Shirahata et al.232 successfully 

delivered EGFP to HuH-7 and NIH/3T3 cells in culture by using a pulsed 355 nm Nd:YAG laser 

to perforate cells, while a 1015 nm continuous-wave Nd:YAG laser was used to trap individual 

cells. Figure 2.6 provides an illustration of a cell undergoing perforation by a pulsed laser while 

being immobilized by a continuous laser. 

 Laser irradiation has great potential for tissue engineering as it can be used to target precise 

cells in tissue or in culture. Laser irradiation is less invasive than microinjection or 

electroporation as no needle is required and individual cells can be targeted. The brief 

perforation of the cell by a pulsed laser seems not to cause cell death. Furthermore, optical fibers 

can deliver laser light that can be controlled by computers, and may eventually provide 

convenient access to tissues inside the body for gene therapy that were previously 

inaccessible.274  

 However, despite the advantages of laser irradiation, some key limitations exist. While 

precise and efficient, laser irradiation is still a young technology, and more studies are needed to 

determine how robust the procedure is on different cell types. Laser irradiation is highly efficient 
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at targeting individual cells, but it is not efficient at targeting large populations of cells 

efficiently. In addition, optical lasers can be very large and costly. Furthermore, specialized 

training is required to operate an optical laser properly.  

 In summary, laser irradiation has great potential for gene therapy and tissue engineering 

applications as optical lasers can be used to precisely target individual cells in culture or in 

tissue. However, laser irradiation is still a young technology that needs further investigation, and 

is costly. Nevertheless, as laser irradiations strategies improve and the technology is further 

investigated, optical lasers may allow investigators to target tissues for gene therapy and tissue 

engineering in ways that were previously not possible.   

 

EMERGING TECHNIQUES IN GENE DELIVERY 

 In contrast to the techniques described above, there are additional techniques under 

development that may prove advantageous for specific gene delivery and tissue engineering 

applications. Here we briefly describe the techniques of electric field-induced molecular 

vibration gene delivery, a novel technique introduced by Tuan and colleagues in 2004 236, and 

magnetofection, a technique used as a tool to enhance gene delivery strategies.  

 Tuan et al.236 developed a unique gene delivery method known as electric field-induced 

molecular vibrations as an alternative to electroporation to facilitate high transfection efficiencies 

in mesenchymal progenitor cells and a variety of cell lines. Tuan and colleagues created a unique 

apparatus where cells and DNA are suspended in a glass dish that undergoes vigorous vibration 

induced by two electrodes.236 The electrodes do not directly contact the cells, and no current is 

applied across the cells; however, the vigorous shaking enables exogenous molecules to 

penetrate the cell membrane and reach the cytoplasm. According to Tuan et al.236 electric field-
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induced vibration transfection is economical and efficient because it requires no additional 

reagents and exhibits high transfection efficiency with low cell mortality. Furthermore, Tuan et 

al.236 noted that electric field-induced molecular vibration transfection does not interfere with 

cell proliferation, and provides stable gene expression. Limited literature is available on this 

technique; however, if these claims and data can be verified then electric field-induced molecular 

vibration transfection could be a suitable transfection technique for ex vivo and in vitro tissue 

engineering applications.     

 Magnetofection is a technique that exploits the energy of a magnetic field to enhance the 

delivery efficiency of DNA, siRNA, or shRNA via viral or non-viral vectors.45, 61, 72, 225 

Paramagnetic particles typically made of iron oxide are coated with viral particles, liposomes, or 

cationic polymers and combined with nucleic acids.103, 107, 225 Several in vitro studies have placed 

a magnetic plate underneath a cell culture vessel once the magnetic particles and gene delivery 

vector have been combined with the target tissue of cells to preferentially direct or “pull” the 

magnetic particles into cells or tissue explants.273 Magnetofection does not necessarily improve 

the transfection efficiency of gene delivery methods; instead, magnetofection increases the speed 

at which nucleic acids traffic into the cell and nucleus while enabling smaller doses of nucleic 

acids to be used.201 Plank et al.200, 202 have published insightful reviews on how magnetofection 

works and the potential benefits of magnetofection on in vitro gene delivery applications. In 

addition, magnetofection has been used to enhance gene delivery to primary cells such as 

neurons and endothelial cells in vitro, and has been applied to enhance gene delivery to the 

gastrointestinal tract and blood vessels in vivo.23, 136, 198, 219, 225, 227 As new technologies develop, 

magnetofection could prove quite valuable to enhancing tissue engineering applications.    
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APPLICATIONS OF GENE DELIVERY TO TISSUE ENGINEERING 

 The goal behind integrating gene therapy and tissue engineering together is to manipulate the 

behavior of cells so that cells can be used to produce proteins and associate into tissues that are 

capable of replacing, restoring, regenerating, or enhancing the function of tissue defects within 

the human body. The marriage of these two fields is not a new idea. In fact, there are a multitude 

of examples where gene therapy and tissue engineering have been integrated for enhancing 

differentiation strategies. Multiple groups have used a variety of synthetic polymers (PEI), 

biodegradable polymers (PLL-PA, PBAE, PLGA), and biological polymers (chitin, fibrin, 

collagen) to either encapsulate or anchor nucleic acids to the scaffolding material on which cells 

are seeded for nucleic acid uptake.21, 39, 76, 77, 84, 86, 87, 91, 111, 143, 145, 180, 199, 223, 270 Several of the 

studies have shown sustained gene delivery for periods up to two to three weeks, but the overall 

transfection efficiency has varied. Polymers provide flexibility in designing scaffolds to 

accommodate stem cells for differentiation, and the incorporation of nucleic acids to direct 

differentiation is a natural progression. However, no one polymer has emerged as a reliable 

vector for primary cells, progenitor cells, and stem cells. Nor should any one polymer be 

expected to successfully transfer nucleic acids to all cell types. While it seems several 

investigators within the field of tissue engineering have placed an emphasis on trying to deliver 

nucleic acids via polymers, others have focused on physical methods. Cesnulevicius et al.26 

transfected mesencephalic neuronal progenitor cells from Sprague-Dawley rats with fibroblast 

growth factor 2 (FGF-2) linked to enhanced green fluorescent protein (EGFP) via 

Nucleofection™ and found that the transfected cells tested positive for nestin, an important 

protein for neuron growth. Furthermore, the cells were able to survive transplantation into 

lesioned rat brains, demonstrating a potential for developing a new primary transplantation 
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method for neuronal tissues. The significance of the work by Cesnulevicius et al.26 is that they 

achieved a transfection efficiency of 47% in neuronal progenitor cells, which is high for a non-

viral method, especially because neuronal tissues are notoriously difficult to transfect. This study 

shows promise for using physical non-viral gene delivery vectors, in this case Nucleofection™. 

 In a different experiment, Duffy et al.57 transfected human mesenchymal stem cells (hMSCs) 

with Ephrin-B2 via Nucleofection™ and achieved a transfection efficiency of approximately 

45%. hMSCs have been known not to transfect easily. Furthermore, in this study, the hMSCs 

expressed Ephrin-B2 and took on early endothelial phenotype and are thought to have 

contributed to the increased detection of VEGF in cell culture, which could potentially promote 

angiogenesis in ischemic tissues.  

   

UNDERSTANDING CHALLENGES THAT LIMIT NON-VIRAL GENE 

DELIVERY 

 Every single vector must first cross the plasma membrane. However, before a delivery 

vehicle reaches the cell membrane, there are obstacles to overcome. For example, most cells in a 

connective tissue are located within the labyrinth of the extracellular matrix (ECM). Some 

investigators have suggested that the collagen in the ECM could be hindering the diffusion of 

large nucleic acids and other macromolecules, preventing them from reaching the target cell 

surface.176, 203 Thus, one approach to overcome this limitation is to disrupt the ECM. Disrupting 

the ECM in vivo could pose difficulties for the subject; however, if the target tissue is excised, 

the ECM could be disrupted with trypsin to expose cell membranes. An additional consideration 

is that electrophoresis may be able to help move nucleic acids through the ECM, but this process, 

depending on the tissue, may not be able to bring the nucleic acids close enough to the cell 
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membrane for interaction.101 Thus, the ECM may be an additional barrier to consider when 

designing delivery vectors.  

 Beyond the ECM, the cell membrane remains a significant barrier for all delivery vectors. 

Many chemical vectors attempt to associate the nucleic acid delivery vehicle with the cell 

membrane through electrostatic interactions, ligand mediated receptor binding, and through 

adsorption. Several studies suggest that association with the cell membrane is required for entry 

into the cytoplasmic compartment of the cell.62, 66, 78, 92, 206 However, microinjection and ballistic 

gene delivery bypass the cell membrane by directly transporting nucleic acids into the cell 

cytoplasm of nucleus. Electroporation, sonoporation, and laser irradiation disrupt the cell 

membrane to facilitate infiltration of nucleic acids. However, microinjection, ballistic gene 

delivery, electroporation, sonoporation, and laser irradiation display one common weakness. All 

methods rupture the cell membrane in some fashion, and if the cell is unable to mend the 

membrane, then the cell dies. Thus, taking a closer look at the function of the cell membrane 

may provide questions and answers to finding ways to better overcome this important barrier and 

maximize cell viability. 

 What is the plasma membrane? Simply, the plasma membrane is a barrier to separate two 

hydrophilic compartments, namely, the intracellular space and the extracellular space. The 

plasma membrane is composed of a phospholipid bilayer with proteins permeating both the 

intracellular and extracellular sides of the plasma membrane.5, 24 Furthermore, the composition of 

lipids and proteins can vary among cell types, and the plasma membrane is not a rigid structure, 

meaning that lipids and proteins are not static, but rather moving targets. The composition of the 

cell membrane can have an influence on the physical and mechanical functions of the cell 

membrane. For example, cells that are a part of tissues that provide structure and support (e.g., 
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bone) may be more inflexible and rigid, containing fewer unsaturated lipids to maintain a less 

fluid structure, and hence lower membrane permeability, whereas secretory cells may contain 

more unsaturated lipids and fewer proteins to maintain a more fluid membrane composition that 

is more permeable.5 Furthermore, depending on the target cell and the condition of the tissue 

(i.e., adherent cells or cells in suspension), access to the plasma membrane may be restricted. 

Thus, an appropriate questions is “does exposure to cell surface affect localization of nucleic 

acids on the surface?” Adler et al.2 endeavored to address this very subject by exploring the 

effect of cell surface topography on transfection efficiency. Adler plated fibroblasts onto 

micropitted surfaces at varying densities and found a 25% increase in transfection efficiency 

when using Lipofectamine 2000™ to deliver GFP for cells plated on densely pitted surfaces as 

opposed to smooth surfaces. This increase could have been attributed to a variety of factors. The 

cells did spread across the pitted surfaces, but not on the smooth surfaces. So why did 

transfection efficiency increase? Were delivery vehicles able to associate with the cell membrane 

because the membrane had an increased surface area? Did the composition of the membrane 

change because of the cell spreading across the pitted surface? Adler suggested that a 

consequence of the cell spreading was a loss of integrin mediated cell adhesion, which resulted 

in the internalization of caveolae, and could have been responsible for a down regulation of 

particle uptake through competitive mechanisms. The spreading of cells on pitted surfaces did 

not lead to an increase in cell proliferation. Thus, the rate of cellular mitosis did not increase, 

which means passive diffusion of DNA into the cell nucleus was not responsible for the increase 

in gene expression. Adler’s study was exciting because it drew attention to the consideration of 

surface topography, and presented questions about how nucleic acids associate with the cell 

membrane and how the cell membrane might be altered to accommodate molecules. Perhaps the 
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permeability of a cell membrane can be manipulated mechanically to alter firmness or fluidity 

for delivery vectors. An exciting next step would be to see how other non-viral vectors perform 

when a cell spreads. For example, combining cell spreading with an electroporative technique 

would be an exciting study to investigate how cell spreading affects the ability of the cell to 

permeabilize and mend under an electric field. Another question to ask is whether different cell 

types produce the same results when cultured on pitted surfaces. 

 Chalut et al.27 presented an additional insight regarding the influence of changing 

mesenchymal stem cell (MSC) membrane topography and how deforming the MSC changes the 

structure of its nucleus. As the nucleus is connected via the cytoskeleton to the cell membrane, 

mechanical forces on the cell membrane act via the cytoskeleton on the nucleus. They offered 

evidence that is consistent with findings in the literature that the nucleus changed shape in 

response to the deformation of the cell.27, 142, 233 If the nucleus can alter its shape in response to 

mechanical forces exerted on the cytoskeleton, then how does gene expression change? Does the 

elongation of the nucleus in response to mechanical forces acting on the cell increase transfection 

efficiency by shortening the distance between the cell membrane and nucleus? These questions 

need further investigation. 

 Despite the interest in the membrane topography and deformation of the nucleus as they 

relate to gene expression, there is an additional parameter to consider. Chemical vectors tend to 

use an endocytotic route of delivery once the nucleic acids have entered the cell, while physical 

vectors attempt to deliver nucleic acids directly to the cytoplasm or nucleus. However, chemical 

methods seem to have higher cell viabilities, but low transfection rates in primary cells, 

progenitor cells, and stem cells, whereas the opposite is true for physical methods. Thus, the 

questions arises, “how do nucleic acids traffic through the cytoplasm?” Nucleic acids must 
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escape endosomes to avoid degradation by lysosome enzymes, but then how do the nucleic acids 

reach the interior of the nucleus? Dividing cells provide an opportunity on a regular interval as 

the nuclear envelope deconstructs during mitosis, and reforms at the conclusion of mitosis. In 

non-dividing cells, the nucleic acids must enter through a nuclear pore. Thus, how do the nucleic 

acids reach the nuclear pore? Zaharoff et al.278 suggested the nucleic acids do not diffuse through 

the cytoplasm, but move by some other mechanism such as convection. Lukacs et al.151 

presented work that was consistent with Zaharoff et al.278 in that DNA did not seem to diffuse 

through the cytoplasm. Vaughan et al.247 provided evidence that suggested that nucleic acids 

may traffic via microtubules. Unfortunately, there is still very little that is known about how 

nucleic acids traffic through the cytoplasm. Elucidating how nucleic acids traffic through the 

cytoplasm will be crucial to improving future vectors.  

 

DISCUSSION 

 Improving physical non-viral gene delivery methods for tissue engineering applications 

requires an examination of the fundamental mechanisms utilized by each physical non-viral gene 

delivery method as well as the reason different cell types are more or less responsive to each 

gene delivery method. Elucidating the basic mechanisms by which physical non-viral gene 

delivery methods work and understanding why different cell types are responsive to different 

gene delivery methods will allow investigators to exploit the positive attributes of gene delivery 

methods and different cell types to enhance tissue engineering applications.  

 Microinjection is perhaps the most efficient and direct method for delivering nucleic acids to 

cells; however, the major weaknesses associated with microinjection are the restricted access to 

tissues, and the inability to transfect large numbers of cells. Likewise, ballistic gene delivery 
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lacks access to tissues and is restricted by the quantity of nucleic acids that can be delivered. 

However, both of these methods have significant potential if the weaknesses previously stated 

can be overcome, as both methods can directly control the amount of nucleic acids directly 

delivered to individual cells. 

 In addition, electroporation, sonoporation, and laser irradiation seek to transiently disrupt the 

cell membrane to increase permeability of nucleic acids to the cells. Sonoporation is attractive 

because it is already used in a clinical setting, but the tissues that are being targeted need to be 

extensively evaluated to produce maximum efficiency. Electroporation suffers the same 

weakness as sonoporation, yet electroporation has more flexibility for targeting cells, as the 

electric field can be controlled via a pulse generator and electrodes can be designed specifically 

for individual applications. However, electroporation still suffers from low cell viability. Laser 

irradiation can precisely target individual cells; however, laser irradiation is not efficient for 

targeting thousands of cells in different layers of tissues. In contrast, several non-viral chemical 

vectors exhibit high cell viabilities, but limited transfection efficiencies. Thus, it is necessary to 

look at which physical features enable the high cell viability of most non-viral chemical 

transfection vectors and which physical features enable moderate to high transfection in non-

viral physical vectors. Perhaps it is best to consider these questions from the point of view of the 

cell and the environment of the cell to gain a better understanding of what affects cell viability 

and limits transfection.  

 If the cell can be physically manipulated, how else can non-viral vectors be improved? Is it 

possible to make cells more susceptible to electroporation or sonoporation by adjusting the 

osmolarity of the extracellular fluid? If the extracellular fluid is made to be hypotonic to the 

intracellular fluid of the cell to induce swelling of the cell, will the swelling produce similar 
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responses in the cell membrane as cell spreading? These questions are important to consider 

when designing new vectors. Furthermore, can delivery vectors be combined to achieve higher 

transfection efficiencies? Is there a way to design a combinational polymer scaffold to where one 

polymer acts as an electrode and another polymer acts as an anchor for nucleic acids and an 

attachment platform for cells seeded into the scaffold to permit increased transfection efficiency? 

 Increasing the abilities of non-viral vectors to manipulate gene expression and mitigate cell 

death depend on finding ways to improve the uptake of nucleic acids into cells and minimizing 

the trauma to the cell membrane from points of entry. The physical methods described in this 

review are capable of overcoming the limitation of the cell membrane entry by directly acting on 

the cell membrane and forcing nucleic acids into the cytoplasm or even the nucleus. However, 

the method of membrane disruption can directly influence the cell’s ability to mend the 

membrane. The diameter of the “holes” created in the cell membrane and the duration for which 

these “holes” remain open seem to directly correlate with the cell’s ability to survive. As 

suggested by Mehier-Humbert et al.,158 larger pores that remain open for increased durations 

increase the uptake of nucleic acids; however, larger pores permit the exchange of additional 

agents that normally cannot cross the cell membrane increasing the risk that homeostatic 

concentration gradients will be disrupted leading to cell death. Thus, a balance needs to be struck 

between facilitating the entry of nucleic acids without compromising the homeostatic 

concentrations of ions such as Na+ and K+ inside and outside of the cell.  

 As investigations continue to investigate how cell membranes and gene expression can be 

manipulated from a chemical and mechanical perspective, new mechanisms of how the cell 

membrane reseals and how nucleic acids are trafficked within the cytoplasm in different cell 

types are bound to be proposed in the literature. Elucidating these fundamental mechanisms will 
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contribute to developing new delivery strategies that enhance the delivery of nucleic acids with 

minimal risks to compromising the cell membrane. Perhaps even combinational approaches may 

yield beneficial consequences for gene transfer into target tissues. Tissue engineering currently 

focuses on manipulating cellular behavior externally by applying mechanical stimuli and 

different biomaterials to simulate native environments to aid in the differentiation of progenitor 

cells and stem cells. Perhaps considering the external environment as part of the nucleic acid 

delivery system is the key to changing the behavior of the cell to better accommodate nucleic 

acid delivery and improve differentiation of cells into target tissues for regeneration and tissue 

engineering applications. 

 

CONCLUSION 

 The improvements in physical gene delivery methods over the past three decades have been 

impressive and have greatly enabled increased gene expression in difficult-to-transfect cells; 

however, the fundamental challenges still remain. Non-viral physical methods still focus on 

deforming the cell membrane in some manner to increase transfection rates at the expense of cell 

viability. However, investigators are working to elucidate mechanisms of how nucleic acids can 

cross the cell membrane and traffic through the cytoplasm to the nucleus. These endeavors are 

expected to lead to the development of new vectors that can increase the gene expression in cells 

without compromising significant numbers of cells in vitro or in vivo. Furthermore, exploration 

of how cellular behavior can be manipulated externally to achieve a desired behavior is of 

interest in tissue engineering, which may be key in developing new strategies to better facilitate 

cell differentiation. Thus, it would seem that applying a tissue engineering approach to gene 

therapy rather than a gene therapy approach to tissue engineering may be a potential solution for 
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providing a fruitful integration of these two fields together to expand approaches for cell 

differentiation and tissue formation in tissue engineering and regenerative medicine applications. 
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CHAPTER 3: Improving Viability and Transfection Efficiency with Human 

Umbilical Cord Wharton’s Jelly Cells Through use of a ROCK Inhibitor2 

 

ABSTRACT 

Differentiating stem cells through gene delivery is a key strategy in tissue engineering 

and regenerative medicine applications. Non-viral gene delivery bypasses several safety 

concerns associated with viral gene delivery; however, leading non-viral techniques, such as 

electroporation, subject cells to high stress and can result in poor cell viabilities. Inhibition of 

Rho-associated coiled-coil kinase (ROCK) has been shown to mitigate apoptotic mechanisms 

associated with detachment and freezing of induced pluripotent stem cells and embryonic stem 

cells; however, inhibiting ROCK in mesenchymal stromal cells (MSCs) for improving gene 

delivery applications has not been reported previously. In this study, we hypothesized that 

ROCK Inhibitor would improve cell viability and gene expression in primary human umbilical 

cord Wharton’s jelly cells (hWJCs) when transfected via Nucleofection™. As hypothesized, the 

pre-treatment and post treatment of hWJCs transfected via nucleofection with Y-27632 ROCK 

Inhibitor significantly improved survival rates of hWJCs and gene expression as measured by 

green fluorescent protein intensity. This study provides the first comparative look at the effect of 

Y-27632 ROCK Inhibitor on hWJCs that underwent transfection via nucleofection, and shows 

using Y-27632 ROCK Inhibitor in concert with nucleofection could greatly enhance the utility of 

differentiating and reprogramming hWJCs for tissue engineering applications.   

 

                                                
2 Reformatted for thesis. Published as Mellott, A.J., Godsey, M.E., Shinogle, H.E., Moore, D.S., Forrest, M.L., and 
Detamore, M.S. Improving Viability and Transfection Efficiency with Human Umbilical Cord Wharton's Jelly Cells 
Through Use of a ROCK Inhibitor. Cell Reprogram. 16(2):91-97, 2014. 
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INTRODUCTION 

Many tissue engineering strategies utilize gene delivery approaches to differentiate stem cells 

toward terminal lineages 110, 132, 231, 285. While viral gene delivery remains popular for many tissue 

engineering applications due to high efficiency, concerns regarding toxicity, immunogenicity, 

and oncogenesis from insertional mutagenesis still remain 29, 244. Non-viral vectors are an 

alternative to viral vectors, and in many cases are able to circumvent the safety concerns 

associated with viral vectors. However, in primary cells and stem cells, non-viral vectors usually 

exhibit low transfection efficiencies compared to their viral vector counterparts 159. Significant 

technological advancements have been made in the last decade regarding electroporation that 

have led to increased transfection efficiencies, but low cell viabilities 7, 59, 78. Thus, a method is 

needed that will enable primary cells and stem cells to be transfected at a high efficiency while 

maintaining acceptable cell viabilities for tissue engineering applications. 

 Over the past five years, several observations have been made regarding stem cell 

apoptosis related to detachment and freezing protocols as related to RhoA GTP signaling 

pathways 186, 267, 283, 284. In particular, several research groups have noted that inhibition of the 

Rho-associated coiled-coil kinase (ROCK) appeared to increase cell survival by mitigating 

negative effects associated with cell dissociation and thawing 37, 60, 70, 71, 230. The Y-27632 ROCK 

Inhibitor (Y-27632-RI) appeared to be especially useful for improving stem cell viability in 

human induced pluripotent (iPS) cells and embryonic stem (ES) cells 116, 174. Furthermore, the 

use of Y-27632-RI was shown not to affect the pluripotency of ES cells 255. Chatterjee et al. 28 

were the first group to use RI to aid in the transfection of human iPS cells via Nucleofection™, 

an electroporative technique developed by Lonza Group Ltd. (Basel, Switzerland).  
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Human umbilical cord Wharton’s jelly cells (hWJCs) have a number of advantages over other 

cell sources and hold great potential for clinical translation, as we have reviewed extensively 10, 

253. Unfortunately, hWJCs are difficult to transfect, and few studies are available on the 

transfection of hWJCs. Based on its aforementioned success in other applications, we 

hypothesized that Y-27632-RI would improve cell viability and transfection efficiency for 

hWJCs that are transfected via nucleofection. In this study, transfection efficiency, gene 

expression, and cell viability were evaluated for hWJCs transfected via nucleofection with green 

fluorescent protein (GFP), with or without Y-27632-RI. 

 

MATERIALS AND METHODS 

Procurement and expansion of hWJCs 

 hWJCs were isolated from Wharton's jelly of human umbilical cords obtained from the 

KU Medical Center Hospital (IRB# 10951), Lawrence Memorial Hospital (IRB# LMH 08-2) and 

Stormont-Vail Hospital (IRB approved, no reference number) for a total of five umbilical cords 

used in the study (n = 5). Four cords were from males that were born at full term and one cord 

was from a female born at 38.3 weeks, all under normal delivery conditions. Maternal age was 

not available. We isolated hWJCs according to our previous published protocol 48. hWJCs were 

cultured in traditional hWJC medium (10% fetal bovine serum (FBS-MSC Qualified) and 1% 

Penicillin-Streptomycin in low glucose DMEM (Life Technologies, Grand Island, NY)). hWJC 

media was changed three times per week, and hWJCs were maintained at 37°C with 5% CO2 in a 

cell culture grade incubator. hWJCs were trypsinized with 0.05% Trypsin-EDTA (1X) (Life 

Technologies) at 80 to 90% confluency. All hWJCs were expanded to passage 2 (P2) for the 
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experiments. Five umbilical cords (n = 5) were used in total for this study. All experiments were 

performed in triplicate for each cord.  

 
Cell Characterization 

 At P2, a sub-culture of cells from each cord was characterized through cell surface 

marker identification via flow cytometry on a MoFlo XDF fluorescent activated cell sorter 

(FACS) (Beckman Coulter, Brea, CA). hWJCs were characterized using the following antibodies 

and secondary antibodies: STRO-1 Mouse IgM (2.5:200) (1 mg/mL; R&D Systems, 

Minneapolis, MN); Alexa Fluor 568® Rabbit Anti-Mouse IgG (2:200) (2 mg/ mL; Life 

Technologies); CD105 Mouse IgG (2.5:200) (1 mg/mL; R&D Systems); Qdot® 525 donkey 

anti-mouse IgG (2:200) (1 µM; Life Technologies); Human CD45 pre-conjugated to Qdot® 800 

(2:200) (Life Technologies); Human CD73 pre-conjugated to FITC (5:200) (BD Biosciences, 

San Jose, CA); Human CD34 pre-conjugated to Brilliant Violet (5:200) (BD Biosciences); 

Human CD90 pre-conjugated to APC (5:200) (BD Biosciences). 20,000 events were recorded for 

each sample. Positive identification of cell markers was defined as fluorescent emission that 

exceeded the fluorescent threshold of cells stained with corresponding isotype (negative) 

controls. The isotype controls used in these studies were Rabbit IgG Alexa Fluor 568, Donkey 

IgG Qdot 525, IgG2 Qdot 800 (all from Life Technologies), and IgG1 FITC, IgG1 Brilliant 

Violet, and IgG1 APC (all from BD Biosciences). The cell characterization experiments were 

repeated three times for each cord. 

 

ROCK Inhibitor treatments and transfection  

 On the day of transfection, media from all wells were removed, and cells were washed 

with PBS twice. Afterward, cells were incubated for 1 h at 37°C in traditional hWJC medium 
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(10% FBS-MSC Qualified/1% Penicillin-Streptomycin/Low glucose DMEM) or traditional 

hWJC medium with 10 µM of Y-27632-RI (Reagents Direct, Encinitas, CA). After 1 h, hWJCs 

were washed twice with PBS, trypsinized, and then resuspended in 95 µL of 4D Nucleofector™ 

P1 Primary Solution (P1PS) (Lonza) at a density of 500,000 cells per 95 µL in a 50-mL conical 

tube (Phenix Research Products, Candler, NC). 5 µL of P1PS or 5 µL of pmaxGFP (1 mg/mL; 

Lonza) was added to each sample, depending on the group to bring the final cell suspension 

volume to 100 µL. hWJCs were separated into five groups consisting of three replicates per 

group. Groups 1 and 3 received no pmaxGFP. Groups 2, 4, and 5 each received 5 µL of 

pmaxGFP (1 mg/mL; Lonza). Groups 1, 2, 3, and 4 were cultured in traditional hWJC medium 

before and after transfection while Group 5 was cultured in traditional hWJC medium with 10 

µM of Y-27632-RI (Reagents Direct) before and after transfection. Our preliminary experiments 

revealed a concentration of 10 µM of Y-27632-RI used both before and after transfection were 

preferred for effective transfection. hWJC suspensions from Groups 1 and 2 were immediately 

transferred to 6-well plates (BD Biosciences) containing 1.5 mL traditional hWJC medium and 

incubated at 37°C. hWJC suspensions from Groups 3, 4, and 5 were transferred to 100-µL 4D 

Nucleofection™ cuvettes. Each cuvette was gently tapped twice then placed in a 4D 

Nucleofector™ (Lonza) and nucleofected with the program FF-104. hWJCs were incubated at 

room temperature (ca. 22°C) for 10 minutes then transferred to a 6-well plate (BD Biosciences) 

containing 1.5 mL traditional hWJC medium (Groups 3 and 4) or traditional hWJC medium with 

10 µM of Y-27632-RI (Reagents Direct) (Group 5) and incubated at  37 °C. 
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Fluorescent Microscopy  

At 24 h and 48 h after transfection, hWJCs were collected for analysis. 0.5-µL of Hoechst 

33342 dye (Life Technologies) was added to each well, and hWJCs were incubated for 10 

minutes at 37°C. Afterward, hWJCs were imaged using an Olympus IX81 inverted (Olympus 

America, Center Valley, PA) epifluorescent microscope with an Olympus LUCPlanFL 20X 0.4 

NA objective (Olympus). Images were captured using the software, SlideBook (Intelligent 

imaging Innovations (3i), Denver, CO). A mercury arc lamp was used with the following 

excitation filters (Excitation/Emission) for image collection: Hoechst (387 ± 11 nm/447 ± 60 

nm) and GFP (494 ± 20 nm/531 ± 22 nm). For each sample that was imaged, a montage was 

generated from 25 (five by five arrangement) neighboring fields of view that were aligned 

together to generate one comprehensive composite image of the sample. All experiments were 

repeated three times for each umbilical cord at 24 h and 48 h. 

 
FACS Analysis 

Immediately after imaging, cells were washed twice, trypsinized, and transferred into 5 mL 

polypropylene round-bottom tubes (BD Biosciences). 0.5 µL of propidium iodide (PI) (1 mg/mL; 

Life Technologies) was added to each sample just before analysis. hWJCs were analyzed via 

flow cytometry on the Beckman Coulter MoFlo XDP FACS. 20,000 events were recorded for 

each sample analyzed. Flow Cytometry was used to analyze both cell viability and transfection 

efficiency. Live hWJCs were characterized as hWJCs expressing Hoechst at an intensity of 102 

Relative Fluorescent Units (RFU) or above, with expression of PI at an intensity below 100 RFU. 

Dead hWJCs were characterized as hWJCs that expressed Hoechst at an intensity below 102 

RFU and expressed PI at an intensity of above 100 RFU. GFP-positive hWJCs were 

characterized as live hWJCs that expressed GFP at an intensity of 100 RFU or greater. 
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Transfection efficiency was determined by dividing the number of live GFP positive cells in a 

sample by the total population of the sample. All experiments were repeated three times for each 

cord at 24 h and 48 h post-transfection. An example of how cell populations were gated is 

provided in Figure 3.1 and the statistics for all samples from an entire umbilical cord are 

displayed in Table 3.1.  

 
Statistics 

All values are reported as means ± standard deviations. A one-way ANOVA was performed with 

a Tukey's post hoc test to assess statistical significance with n = 5 cords. Statistical significance 

was set at p < 0.05. 

 

RESULTS AND DISCUSSION 

As hypothesized, hWJCs treated with RI displayed a significantly increased survival rate and 

transfection efficiency after nucleofection than hWJCs that were not treated with RI. Gene 

delivery is a powerful tool for reprogramming hWJCs as demonstrated by 13 and Devarajan et al. 

48. Until now, non-viral delivery methods have suffered from poor transfection efficiency with 

high cell viability, or high transfection efficiency with poor cell viability. RhoA GTP signaling 

pathways are critical for inducing several apoptotic mechanisms in response to unfavorable 

environmental changes 105, 185. Inhibiting ROCK can reduce apoptosis associated with 

detachment and freezing protocols 94, 106, 134, 139, 187. One of the key disadvantages of using non-

viral physical delivery methods such as electroporation is the need to dissociate cells from 

adherent surfaces. However, by using Y-27632-RI to mitigate some of the apoptotic mechanisms 

induced by cell detachment and electric shock, it might be possible to rescue positively 

transfected cells from cell death, which was the primary goal of this study. 
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Flow cytometry analysis revealed that the cell populations were mostly non-

hematopoietic as the hWJCs were 98.1 ± 0.04% negative for CD34 expression and 90.4 ± 1.1% 

negative for CD45 expression. The expression of CD90, a key mesenchymal stem cell marker, 

was detected in 98.5 ± 0.54% of cells. The expression of remaining key mesenchymal stem cell 

markers, CD73 (12.0 ± 7.8%), CD105 (10.2 ± 0.15%), and STRO-1 (3.4 ± 0.33%), were low and 

relatively variable, suggesting sub-populations may exist within each cell population that 

displayed surface epitopes consistent with mesenchymal stem cell markers as reviewed by 252, 253 

  As was seen in the microscopy images at 24 h (Fig. 3.2A) and 48 h (Fig. 3.3A) after 

transfection hWJCs that were not subjected to nucleofection displayed high cell densities 

compared to hWJCs that were subject to nucleofection. However, hWJCs that were treated with 

10 µM of Y-27632-RI before and after transfection displayed a greater cell density than hWJCs 

that were subject to nucleofection and not treated with Y-27632-RI as shown in microscopy 

images and corroborated by flow cytometry data.   

There was a clear increase in both cell viability and transfection efficiency between the 

experimental group of hWJCs that was nucleofected and treated with Y-27632-RI and the group 

of hWJCs that was nucleofected and not treated with Y-27632-RI at both 24 h and 48 h after 

transfection (Fig. 3.4). Cell viability was 3.3 times greater in hWJCs treated with Y-27632-RI 

than hWJCs that were not treated with Y-27632-RI 24 h after transfection (p < 0.05), while cell 

viability was 3.2 times greater in hWJCs treated with Y-27632-RI than hWJCs not treated with 

Y-27632-RI 48 h after transfection (p < 0.01). Transfection efficiency was 4.6 times greater in 

hWJCs treated with Y-27632-RI than hWJCs not treated with Y-27632-RI 24 h after transfection 

(p < 0.01). At 48 h after transfection, transfection efficiency was 4.8 times greater in hWJCs 

treated with Y-27632-RI than hWJCs not treated with Y-27632-RI (p < 0.05). 
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The difference in GFP intensity may have been a result of an increased number of live 

cells present and able to re-adhere to a surface when treated with Y-27632-RI as opposed to 

hWJCs that were not treated with Y-27632-RI. The flow cytometry histograms were consistent 

with microscopy images in showing that a greater number of hWJCs treated with Y-27632-RI 

survived and expressed GFP at varying intensities at both 24 h (Fig. 3.2B) and 48 h (Fig. 3.3B) 

after transfection than hWJCs that were not treated with Y-27632-RI. Furthermore, the data from 

the histograms suggested that there might be a relationship between GFP expression and cell 

density. Further formal studies are needed to verify if an actual relationship exists.  

 hWJCs treated with Y-27632-RI at both 24 h and 48 h post-transfection displayed an 

increase in cell viability, and a far more substantial increase in transfection efficiency compared 

to hWJCs that were not treated with Y-27632-RI. Thus, future studies are needed to explore 

whether a synergistic phenomenon is occurring in which Y-27632-RI is not only rescuing dying 

cells, but improving cell health to facilitate expression of GFP in cells that may not have been 

previously able to express GFP. Further long-term studies are needed to determine whether Y-

27632-RI can prolong and sustain gene expression in hWJCs. Additionally, follow-up studies are 

needed to determine whether Y-27632-RI can negatively affect multipotency character and 

downstream differentiation of hWJCs for tissue engineering applications 188, 255.  

 

CONCLUSION 

 For the first time, it was demonstrated that Y-27632-RI enhanced survival and gene 

expression in mesenchymal stromal cells for an electroporative gene delivery strategy. 

Transfection efficiency significantly increased 4 fold and cell viability increased 3 fold in hWJC 

populations that were treated with 10 µM of Y-27632-RI before and after transfection compared 
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to hWJC populations not treated with Y-27632-RI. While this study focused on hWJCs and 

provides an example for evaluating the effect of Y-27632-RI, other cell types undergoing 

electroporation may benefit from Y-27632-RI treatment, although dosing levels application of 

treatment, and timing of treatment should be tailored for each cell type and application. The use 

of Y-27632-RI provides an opportunity to benefit strategies that combine both stem cell therapy 

and gene therapy for regenerative medicine applications.   
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CHAPTER 4: Converting green to red: Tracking cells for tissue engineering3 

 

ABSTRACT 

Identifying or tracking cells in vitro with fluorescent markers can sometimes be 

challenging when background auto-fluorescence is high, fluorophore selection is limited, and/or 

background noise is high. In the current study, a new method is introduced to the tissue 

engineering community to address these problems based on the use of the photo-convertible 

protein Dendra2. Selective photo-conversion allows for tracking of individual cells in tissue 

engineering applications including differentiation, cell migration, and tissue integration. Human 

umbilical cord mesenchymal stromal cells isolated from Wharton’s jelly were successfully 

transfected via Nucleofection™ with pDendra2, and robust photo-conversion was achieved in 

multiple cells and individuals cells, allowing for precise cell tracking. The current study 

demonstrates how Dendra2 can enhance identification of positively transfected cells and how a 

photo-converting reporter gene can be used for cell tracking in tissue engineering applications.  

 

INTRODUCTION 

Fluorescent proteins are often used as reporters for a variety of different biological and 

chemical applications, including protein tagging, cell structure identification, and cell tracking.11, 

58, 83 Green-to-red photo-convertible proteins such as Kaede, KikGR, EosFP, and Dendra2 are 

incredibly useful for observing cell trafficking and cell tracking, and have been well 

characterized.182 However, these photo-convertible proteins have been highly under-utilized in 

tissue engineering. Photo-convertible proteins allow for the potential to create highly specific 
                                                
3  Under review as Mellott A.J., Shinogle, H.E., Moore, D.S., and Detamore, M.S., Converting green to red: 
Tracking cells for tissue engineering. at Cellular and Molecular Bioengineering, March 2014. 
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biochemical assays, and significantly increase signal-to-noise ratios in fluorescent applications. 

Green fluorophores, red fluorophores, and blue fluorophores are popularly used in many 

biological reagents, as well as in reporter genes. However, there are times when fluorophore 

selection is limited, and some cells undergoing transfection weakly express the reporter gene. To 

further complicate matters, if a transfection occurs in a highly confluent cell culture, or in vivo, 

auto-fluorescence or high background noise can be difficult to distinguish from reporter signal. 

In scenarios such as these, a photo-convertible protein is attractive because the reporter protein 

can be converted from green to red, significantly revealing cells that have been positively 

transfected (Fig. 4.1). Thus, selection and targeting of transfected cells becomes highly accurate 

and precise. Tracking of cells is important in tissue engineering applications and developmental 

applications to identify cell migration in tissues as well as integration into biomaterials.95 

In addition, photo-conversion of reporter genes may provide significant insights into the 

turnover of proteins within an individual cell, protein kinetics and distribution within a cell, and 

the structural and morphological changes occurring in organelles such as the nucleus or 

mitochondria as cells undergo mitosis and differentiation. Gunewardene et al.89 and Wu et al.265 

demonstrated that photo-convertible reporter genes can be used to accurately track protein 

distribution and kinetics in mouse fibroblasts and multiple cell types in Arabidopsis root, 

respectively. The potential to use photo-convertible proteins in tissue engineering may become a 

powerful tool to provide fundamental information about proteins and cells while enabling the 

identification of positively transfected cells in a large population.      

 Dendra2 has an advantage over other photo-convertible reporter genes in that Dendra2 

can be photo-converted with low intensity ultra-violet (UV) (360 – 420 nm) light or high 

intensity blue light (460 – 500 nm), as opposed to only UV light at varying powers, which makes 
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Dendra2 more versatile in tissue engineering applications, as exposure of cells to UV light can 

be avoided or drastically reduced.34, 68, 242, 265  

Human Wharton’s jelly cells (hWJCs) are mesenchymal stromal cells that are an 

alternative to bone marrow stem cells. hWJCs are an excellent source for tissue engineering 

applications because they are abundant in supply, cause no donor site morbidity, are highly 

proliferative, and not ethically controversial.10, 47, 167, 252 However, hWJCs are primary cells, and 

typically are difficult gene delivery targets unless a viral vector is used. Viral vectors are highly 

effective at transducing primary cells, stem cells, and progenitor cells, but safety concerns 

regarding toxicity, immunogenesis, and oncogenesis from insertional mutagenesis still remain.29, 

244 Non-viral vectors are able to circumvent many safety concerns associated with viral gene 

delivery; however, non-viral vectors suffer from low transfection efficiencies, which can make 

identification of positively transfected cells challenging.159 Nucleofection™ is an electroporative 

method that has demonstrated a reliable ability to transfect primary cells, stem cells, and 

progenitor cells non-virally.6, 57, 93 Hence, it was hypothesized that a photo-convertible reporter 

gene would be transfected into hWJCs and used to selectively identify positively transfected 

cells and used to track cell movement over time.  

 The current study provides a brief overview of how Dendra2 may be used for the first 

time to transfect hWJCs via Nucleofection™, and presents a new way in which photo-

convertible fluorophores could be utilized for tissue engineering applications. The current study 

examined transfection efficiency, photo-conversion kinetics of Dendra2, and the ability to 

reliably track cells.  
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MATERIALS AND METHODS 

Procurement and expansion of hWJCs 

 hWJCs were isolated from Wharton's jelly of three human umbilical cords (n = 3) 

obtained from Lawrence Memorial Hospital (LMH) (LMH IRB approval #LMH 08-2). The three 

umbilical cords came from males born at full term under normal conditions. hWJCs were 

isolated according to the previously published protocol.48 hWJCs were cultured in traditional 

hWJC medium (10% fetal bovine serum (FBS-MSC Qualified) and 1% Penicillin-Streptomycin 

in low glucose DMEM (Life Technologies, Grand Island, NY)). hWJC medium was changed 

three times per week, and hWJCs were maintained at 37°C with 5% CO2 in a cell culture grade 

incubator. hWJCs were trypsinized with 0.05% Trypsin-EDTA (1X) (Life Technologies) at 80 to 

90% confluency. All hWJCs were expanded to passage 1 (P1), and flash-frozen until needed for 

experiments. Cell were thawed and expanded to P4 for all experiments. Three umbilical cords (n 

= 3) were used in total for the current study. All experiments were performed in triplicate for 

each cord.  

 

Cell surface marker characterization 

 At P2, a sub-culture of cells from each cord was characterized through cell surface 

marker identification via flow cytometry on a MoFlo XDF fluorescent activated cell sorter 

(FACS) (Beckman Coulter, Brea, CA). hWJCs were characterized using the following antibodies 

and secondary antibodies: STRO-1 Mouse IgM (2.5:200) (1 mg per mL; R&D Systems, 

Minneapolis, MN); Alexa Fluor 568® Rabbit Anti-Mouse IgG (2:200) (2 mg per mL; Life 

Technologies); CD105 Mouse IgG (2.5:200) (1 mg per mL; R&D Systems); Qdot® 525 donkey 

anti-mouse IgG (2:200) (1 µM; Life Technologies); Human CD45 pre-conjugated to Qdot® 800 
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(2:200) (Life Technologies); Human CD73 pre-conjugated to FITC (5:200) (BD Biosciences, 

San Jose, CA); Human CD34 pre-conjugated to Brilliant Violet (5:200) (BD Biosciences); 

Human CD90 pre-conjugated to APC (5:200) (BD Biosciences). 20,000 events were recorded for 

each sample. Positive identification of cell markers was defined as fluorescent emission that 

exceeded the fluorescent threshold of cells stained with corresponding isotype (negative) 

controls. The isotype controls used in these studies were Rabbit IgG Alexa Fluor 568, Donkey 

IgG Qdot 525, IgG2 Qdot 800 (all from Life Technologies), and IgG1 FITC, IgG1 Brilliant 

Violet, and IgG1 APC (all from BD Biosciences). The cell characterization experiments were 

repeated three times for each cord. 

 

Plasmid 

pDendra2-C (Clonetech, Mountain View, CA) is a fluorescent fusion protein vector, in 

which the gene of interest can be fused to the c-terminal of the Dendra2 photo-convertible 

reporter gene, upstream of a poly-A sequence. Dendra2 is driven by a cytomegalovirus (CMV) 

promoter, and contains a Kanamycin resistant gene driven by Simian virus 40 (SV40) for 

bacterial selection. The entire empty vector backbone is 4.7 kb.    

 

Transfection 

On the day of transfection, medium from all wells was removed, and cells were washed 

with phosphate buffered saline (PBS) twice. Afterward, cells were incubated for 1 h at 37°C in 

traditional hWJC medium (10% FBS-MSC Qualified, 1% Penicillin-Streptomycin, Low glucose 

DMEM) with 10 µM of Y-27632-ROCK Inhibitor (Reagents Direct, Encinitas, CA). After 1 h, 

hWJCs were washed twice with PBS, trypsinized, and then resuspended in either 100 µL 4D 
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Nucleofector™ P1 Primary Solution (P1PS) (Lonza, Basel, Switzerland) (Untreated Control) or 

95 µL of P1PS and 5 µL of pDendra2 (1 µg per µL; Clonetech). Cells were resuspended at a 

density of 5x105 cells per 100 µL. Untreated control cells were immediately transferred to 6-well 

plates (BD Biosciences) containing 1.5 mL traditional hWJC medium and incubated at 37°C. 

hWJC suspensions containing pDendra2 were immediately transferred to 100-µL 4D 

Nucleofection™ cuvettes. Each cuvette was gently tapped twice then placed in a 4D 

Nucleofector™ (Lonza) and nucleofected with the program FF-104. hWJCs were incubated at 

room temperature (ca. 22°C) for 10 minutes then transferred to a 6-well plate (BD Biosciences) 

containing 1.5 mL traditional hWJC medium with 10 µM of Y-27632-RI (Reagents Direct) and 

incubated at  37 °C. 

 

Fluorescent microscopy  

Twenty-four hours after transfection, hWJCs were collected for analysis. hWJCs were 

imaged using a customized Olympus IX81 inverted (Olympus America, Center Valley, PA) 

microscope, outfitted for both epifluorescence (filters: Semrock, Inc, Rochester, NY, filter 

wheels: Sutter Instrument, Novato, CA) and Spinning Disk Confocal (Yokogawa, Toyko, Japan) 

microscopy. The microscope is equipped with a XY stage (Prior, Rockland, MA) and 

temperature, humidity, and CO2 control for chronic, automated live cell imaging.  Images were 

collected using an Olympus LUCPlanFL 20X 0.4 NA objective and were captured using the 

acquisition and analysis software, SlideBook (Intelligent imaging Innovations (3i), Denver, CO).  

Three experiments were performed in total 24 h after transfection. In the first experiment, 

all cells within the field of view were exposed to a 100 mW (mercury arc lamp) of UV light (387 

± 11 nm) for photo-conversion, blue light (494 ± 20 nm) for green fluorescent expression, and 
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green light (560 ± 25 nm) for red fluorescent expression. Cells were exposed to UV light at a 

frequency of 1 Hz every 10 seconds. The experiment was repeated nine times with three sets of 

cells from 3 different umbilical cords (n = 3). 

In the second experiment, the UV light was confined to a diameter of 15 – 20 µm to limit 

UV exposure to a single transfected cell. The UV light output was reduced to 20 mW (mercury 

arc lamp), and exposure was set to 1 Hz every 20 s. To minimize photo-conversion from blue 

light, excitation of green and red fluorescent expression were done using 488-nm and 561-nm 

solid-state lasers, respectively, through a Yokogawa Spinning Disk. The experiment was 

repeated nine times with three sets of cells from three different umbilical cords (n = 3). 

In the third experiment, a single hWJC within a population of positively transfected cells 

was photo-converted by exposure to UV light at 100 mW (mercury arc lamp) for a duration of 10 

s at a frequency of 1 Hz. After photo-conversion, cells within the entire field of view were 

exposed to 488-nm and 561-nm solid-state lasers for green and red fluorescent expression 

respectively every 30 min at a frequency of 1 Hz over the time period of 48 h..  

    

RESULTS 

Cell surface marker characterization 

 hWJCs from three different umbilical cords (n = 3) were analyzed for cell surface 

markers found on mesenchymal stem cells via flow cytometry (Table 4.1). hWJCs from all three 

cords were non-hematopoietic with cells showing little to no presentation of CD34 (97.2 ± 1.6% 

negative) (all values are reported as means ± standard deviations), and little to no presentation of 

CD45 (81 ± 13% negative). Cells from each umbilical cord displayed varying degrees of 
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presentation of CD73 (12.8 ± 5.3% positive), CD90 (97.1 ± 4.3% positive), CD105 (21.6 ± 9.7% 

positive), and STRO-1 (6.2 ± 3.8% positive), which are all found on mesenchymal stem cells.   

 

Transfection efficiency and cell density 

 hWJCs were transfected from three different umbilical cords (n = 3) with 5 µg of 

pDendra2 per 500,000 cells, and exhibited a transfection efficiency of 31 ± 7.4% with a cell 

density of 3,200 ± 1,900 per randomized field of view.  

 

Fluorescence Microscopy 

Multiple cell photo-conversion 

 hWJCs transfected with pDendra2 showed reliable and consistent photo-conversion of all 

cells within the field of view. The kinetics of photo-conversion were measured in randomized 

fields of view from hWJCs from three different umbilical cords (n = 3), as cells were exposed to 

UV light (384 nm) for a duration of 300 s (Fig. 4.2). The intensity of the green fluorescence 

dropped dramatically from 5,300 ± 1900 Arbitrary Units (AU) to under 1,200 ± 360 AU in 300 s, 

while the intensity of the red fluorescence started at 750 ± 130 AU and increased to 4,200 ± 

2,400 AU in 300 s. The critical point at which the intensity of red fluorescence overtook green 

fluorescence occurred at 125 ± 60 s. There was a marked visual change in the overall fluorescent 

color of the hWJCs that underwent photo-conversion, which is displayed in a time-lapse video 

from one recording that is representative of all attempts (Supplementary Fig. 4.6). The 

experiment was repeated nine times, with three attempts from a different set of cells from each 

umbilical cord. Each experiment yielded reproducible results.  
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Individual cell photo-conversion  

 Individual hWJCs were photo-converted from green to red fluorescence without inducing 

photo-conversion in surrounding hWJCs (Fig. 4.3). A single hWJC within a population of 

positively transfected hWJCs was targeted for photo-conversion, and the photo-conversion 

kinetics of the targeted cell and an adjacent cell were measured. The procedure was repeated nine 

times with three different sets of cells used from each of three different umbilical cords (n =3).  

In each procedure, the cell targeted for photo-conversion was labeled “Target 1” while the 

adjacent cell was labeled “Target 2”. The green fluorescent intensity of Target 1 started out at 

2,655 ± 700 AU and decreased to 900 ± 260 AU over 720 s, whereas the red fluorescent intensity 

started at 480.5 ± 4.9 AU and increased to 1,470 ± 290 AU over 720 s. The critical point at 

which red fluorescent intensity overtook green fluorescent intensity occurred at 197.0 ± 4.2 s. 

The green fluorescent intensity in Target 2 started at 3,700 ± 2,800 AU and was recorded at 

2,800 ± 1,700 AU at the end of 720 s, whereas the red fluorescent intensity of Target 2 started at 

480 ± 7.8 AU and was recorded at 1,200 ± 750 AU at the end of 720 s. The starting and ending 

green and red fluorescent intensities varied between each set of cells; however, no photo-

conversion occurred in cells not directly targeted for photo-conversion. Each experiment yielded 

reproducible results. A time-lapse video from one recording that is representative of all attempts 

clearly shows Target 1 photo-converts from green to red, while Target 2 and all surrounding cells 

remain green (Supplementary Fig. 4.7). 

   

Tracking cell movement of photo-converted cells 

A single hWJC was photo-converted within a population of hWJCs positively transfected 

with pDendra2. The photo-converted cell was tracked over 48 h and monitored to observe 
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whether long-term exposure of a photo-converted cell induced photo-conversion of surrounding 

cells (Fig. 4). The experimental procedure was repeated twice with two different sets of hWJCs 

(n = 2), yielding reproducible results. The photo-converted hWJC displayed a red fluorescence 

that changed to an orange fluorescence over 48 h in both experiments; while surrounding cells 

remained firmly green (Fig. 4.5). In both experiments the photo-converted cell moved in a 

circular pattern, and touched several cells over the duration of 48 h. At the end of 48 h, the 

photo-converted cell from one experiment appeared to be undergoing cell division, and is 

represented in Figure 5. None of the cells that came in contact with the photo-converted cell in 

each experiment showed any visual signs of photo-conversion. The entire time-lapse video 

shows the movement of the photo-converted cell and is representative of both experiments 

(Supplementary Fig. 4.8).  

 

DISCUSSION 

Dendra2 is a monomeric photo-convertible protein that was engineered by Gurskaya et 

al.90 Dendra2 is highly photo-stable, and matures at 37°C, which makes Dendra2 an attractive 

candidate for labeling proteins or structures within cells. Chudakov et al.33, 35 have conducted 

extensive research on using photo-convertible proteins, such as Dendra2 for studying and 

tracking protein movement in cells. Kaede is a popular rival photo-convertible protein used in 

many experiments to track cells; however, Dendra2 has not been utilized for cell tracking 

experiments. Dendra2 has been extensively used for molecule identification and tracking in 

cells, and offers the advantage of being able to be photo-converted with blue light instead of UV, 

and can be precisely photo-converted.123, 130, 261 Thus, the objective of the current study was to 

use Dendra2 to identify and track stem cells in culture.  
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For the first time, it was demonstrated that hWJCs responded well to photo-conversion 

when exposed to UV light (384 nm) at 100 mW output every 10 s for 1 Hz. Individual hWJCs 

were photo-converted successfully multiple times without triggering photo-conversion of 

surrounding cells, which is consistent with studies that have precisely tracked intercellular 

proteins within much smaller spatial areas than cells.33, 130, 182 Tracking of photo-converted cells 

in tissue culture revealed that photo-converted cells did not trigger photo-conversion events in 

cells that came in contact with the photo-converted cell. Interestingly, the photo-converted cell 

changed from red to orange over the course of 48 h. The shift from red fluorescence to orange 

fluorescence may have been the result of de-localization of protein or protein turnover in the cell 

as the cell stretched and migrated over the course of 48 h.  

The current study demonstrates that Dendra2 could be a highly effective tool for gene 

delivery and tissue engineering studies, and future investigation of Dendra2 in ex vivo and in 

vivo transfection experiments may yield fascinating results that improve diagnostic techniques 

for research. The use of Dendra2-transfected cells seeded on tissue engineering scaffolds could 

provide valuable information on how cells interact with biomaterials regarding migration, tissue 

integration, and morphological changes over time. The use of a photo-convertible reporter gene 

has been highly underutilized in tissue engineering, and could be an extremely effective tool in 

tissue engineering experiments by allowing continuous real-time observation of cells in materials 

and tissues.  

 

CONCLUSION 

In summary, Dendra2 is a robust non-toxic photo-convertible protein that expressed well in 

hWJCs, and allowed for precise control of photo-conversion from green to red in individual cells 
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or multiple cells over the time scale of 120 s. For the first time, a photo-convertible reporter gene 

was transfected into hWJCs, and the current study demonstrates how photo-convertible reporter 

genes may be used for experiments where fluorophore selection is limited and gene expression is 

low in contrast to high background noise. Photo-convertible reporter genes are attractive tools for 

increasing signal-to-noise ratios in low expression systems. Photo-convertible proteins such as 

Dendra2 enable strategic photo-conversion of select cells without photo-converting surrounding 

cells, which could be highly beneficial for in vivo applications. Thus, the potential to use a 

photo-convertible protein in tissue engineering applications could provide new insights regarding 

cell behavior in tissues and biomaterials, which could provide means to create new therapies in 

regenerative medicine.  
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CHAPTER 5: Non-viral reprogramming of human Wharton’s jelly cells 

reveals differences between Atoh1 homologues4 

 

ABSTRACT 

The transcription factor atonal homolog 1 (atoh1) has multiple homologues that are 

functionally conserved between species and is responsible for the generation of sensory hair 

cells. To evaluate potential functional differences between homologues, human and mouse atoh1 

were delivered to human umbilical cord mesenchymal stromal cells from Wharton’s jelly. 

Delivery of the human atonal homolog, hath1, to human Wharton’s jelly cells demonstrated 

superior expression of inner ear hair cell markers and characteristics compared to delivery of the 

mouse homolog, math1. Inhibition of hes1 and hes5 signaling further increased the potency of 

the atonal effect. Transfection of Wharton’s jelly cells with hath1 DNA, hes1 siRNA, and hes5 

siRNA displayed positive identification of key hair cell and support cell markers found in the 

organ of Corti. In the first side-by-side evaluation of hath1 and math1 in human cells, substantial 

differences were observed, suggesting that the two atonal homologues may not be 

interchangeable between species as previously thought, perhaps opening the door for evaluation 

of other homologues currently believed to be interchangeable.   

 

 

 

                                                
4  Reformatted in expanded version as Mellott, A.J., Devarajan, K., Shinogle, H.E., Moore, D.S., Talata, Z., 
Laurence, J.S., Forrest, M.L., Noji, S., Tanaka, E., Staecker, H., and Detamore, M.S. Non-viral reprogramming of 
human Wharton’s jelly cells reveals differences between Atoh1 homologues. To be submitted to Nature 
Biotechnology, April 2014. 
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INTRODUCTION 

Hair cells located in the cochlea and vestibular organs of the inner ear are responsible for 

hearing and balance, respectively. Sensorineural hearing loss occurs when the hair cells are 

irreversibly damaged. Mammalian hair cells in the inner ear do not regenerate and are 

susceptible to damage from noise-induced trauma, genetic diseases, viral infections, ototoxic 

antibiotics, and age-related wear and tear.49, 55 Hearing aids and cochlear implants are the only 

available therapies for sensorineural hearing loss. As such, considerable effort has been invested 

into developing ways to regenerate damaged hair cells via gene delivery or replace hair cells via 

transplantation through stem cell therapy.32, 108, 114, 192 Atonal homolog 1 (atoh1) is a basic helix-

loop-helix (bHLH) transcription factor necessary for hair cell differentiation that is negatively 

regulated by hes1 and hes5 via the notch-signaling pathway.56, 69, 118, 119, 170, 277 Several groups 

have demonstrated that delivery of atoh1 or math1 (Mouse homolog of atoh1) in vivo to 

neuroprogenitors and supporting cells have enabled the target cells to transdifferentiate into hair 

cells.54, 124, 135, 147 However, while highly encouraging, most studies have focused on targeting 

inner ear epithelium in mouse and rat models that rely on treatment during embryogenesis or 

shortly after birth. Several research groups have focused on differentiating stem cells into 

neuroprogenitors or hair cells through gene delivery, co-culture, or growth factor exposure using 

math1 with limited success.20, 41, 146, 194, 212 Transdifferentiation has been demonstrated but not 

post-mitotic cell division and differentiation, which is a key barrier that needs to be overcome for 

hair cell regeneration. Transdifferentiation induces one differentiated cell type to change into 

another differentiated cell type without self-renewal of the original cell.152 Thus, there is still 

much that is unknown about how hair cells develop and the mechanisms required for 

regenerating functional hair cells. 
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 The potential to engineer terminal cell phenotypes outside of the body through cellular 

reprogramming may provide significant insights into the physiology of hair cells. An ex vivo 

model would be highly beneficial in understanding hair cell physiology and aiding in the 

development of a therapy for hearing loss. Thus, the current study endeavored to explore the 

possibility of producing hair cells by transfecting human Wharton’s jelly cells (hWJCs) with two 

different homologues of atoh1. hWJCs are a highly desirable cell population because hWJCs are 

abundant in supply, not ethically controversial, exhibit no risk of injury to the donor, are highly 

proliferative, and have demonstrated differentiation potential similar to human bone marrow 

stem cells.10, 47, 167, 251  

Devarajan et al.48 were first to show that hWJCs are amenable to inner ear hair cell 

lineage differentiation when transduced with math1 via adenovirus. However, while viral gene 

delivery is popular for high transduction efficiency and gene expression, challenges regarding 

toxicity, immunogenicity, and oncogenesis from insertional mutagenesis still exist for some viral 

delivery systems, such as lentivirus.29, 244 To circumvent safety concerns associated with viral 

gene delivery, hWJCs in the current study were transfected with hath1 (Human homolog of 

atoh1) and math1 via Nucleofection™. Nucleofection™ is a highly effective electroporation 

method for transfecting primary cells and stem cells, which are known to be notoriously difficult 

to transfect.6, 26, 88, 159 While, electroporation has been known to cause high cell death, cell pre-

treatment and post-treatment with a Y-27632 ROCK Inhibitor can mitigate cell death and low 

gene expression by preventing apoptosis associated with the RhoA GTP signaling pathways.160   

Math1 has received more attention in investigation in both mouse and human tissues, but 

focus on hath1 has been limited.133, 217, 271 The atonal homologues hath1 and math1 share 

86.04% nucleotide identity and 89.17% amino acid identity.19 More specifically, hath1 is  1,385 
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base-pairs (bp) in length and located on human chromosome 4 (Entrez Gene ID: 474), whereas 

math1 is 2,728 bp in length and located on mouse chromosome 6 (Entrez Gene ID: 11921), yet 

no side-by-side evaluation of the two atonal homologues in the same tissue exists. While math1 

and hath1 show similar identity, it was hypothesized that the differences in sequences were not 

interchangeable as implied by Wang et al.254, and that math1 may not interact with human 

signaling pathways in human tissues as math1 would interact with mouse signaling pathways in 

mouse tissues. Furthermore, given that hes1 and hes5 are known negative regulators of atoh1, it 

was hypothesized that knocking down hes1 and hes5 could enhance the expression of atoh1 and 

promote development of hair cell characteristics.  

 

MATERIALS AND METHODS 

Procurement and expansion of human Wharton’s jelly cells 

 Human Wharton’s jelly cells (hWJCs) were isolated from Wharton's jelly of five human 

umbilical cords with informed consent (KU-IRB #15402) following a modification of our 

previous protocol.48 Two cords were from males who were born at full term and delivered under 

normal delivery conditions. Two cords were from females born at 38.3 and 39 weeks under 

normal delivery conditions. The gender of the last cord used was not available; however, the 

child was born at full term under normal conditions. Within 24 h of delivery, umbilical cords 

were soaked in sterile 2% antibiotic-antimycotic (AA) (100X; Life Technologies, Grand Island, 

NY) in phosphate-buffered saline (PBS) and drained of excess cord blood. Umbilical cords were 

cut into approximately 3-cm segments, which were filleted open and stripped of blood vessels. 

The umbilical cord segments were minced finely and were suspended in a sterile digesting media 

composed of 0.2% type II collagenase (298 U per mg; Worthington Biochemical, Lakewood, NJ, 
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USA) and 1% Penicillin-Streptomycin (10,000 U per mL; Life Technologies) in low glucose 

Dulbecco's Modified Eagle Medium (DMEM) (Life Technologies), and then incubated at 37°C 

in a 5% CO2 environment on a shaker table at 50 rpm for 6 h. After digestion, the homogenous 

solution was diluted in sterile 2% AA in PBS at a 1:16 ratio and centrifuged. The supernatant 

was discarded and cells were combined and plated at a density of 7x103 cells per cm2 in tissue 

culture treated T-75 flasks (MidSci, St. Louis, MO). hWJCs were cultured in traditional hWJC 

medium (10% fetal bovine serum (FBS-MSC Qualified) and 1% Penicillin-Streptomycin in low 

glucose DMEM (Life Technologies)). hWJCs medium was changed three times per week, and 

hWJCs were maintained at 37°C with 5% CO2 in a cell culture grade incubator. hWJCs were 

trypsinized with 0.05% Trypsin-EDTA (1X) (Life Technologies) at 80 to 90% confluency. All 

hWJCs were expanded to passage 1 (P1). Upon reaching 90% confluency, cells were washed 

with PBS twice, trypsinized, and resuspended at a concentration of 1x106 cells per 1 mL of 

Recovery™ Cell Culture Freezing Medium (Life Technologies) in 2-mL round-bottom 

cryogenic vials (Corning Incorporated, Acton, MA). Cryogenic vials were immediately placed in 

a Nalgene® Mr. Frosty container (Sigma-Aldrich, St. Louis, MO) filled with isopropanol, and 

stored at -80°C for 12 h. Cryogenic vials were then transferred and stored in liquid nitrogen. 

When ready for use, cells were thawed by transferring cryogenic vials into a 10-cm petri dish 

filled with PBS warmed to room temperature. Cells were diluted into 50 mL of thawing medium 

(Low glucose DMEM, 20% FBS-MSC Qualified, and 1% Penicillin-Streptomycin) (Life 

Technologies), and transferred to a T-300 flask (MidSci). Cells were expanded from P2 to P5, 

then used for experiments. Five umbilical cords (n = 5) were used in total for this study. All 

experiments were performed in triplicate for each cord.  
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Plasmid and siRNA 

Two PrecisionShuttle mammalian vectors with independent turboGFP expression from 

OriGene (Rockville, MD) were used to deliver target genes to hWJCs. Cloning and verification 

services were provided by Blue Heron (Blue Heron Biotech LLC, Bothell, WA) to manufacture 

the vectors. In one vector, a math1 insert (NCBI GenBank ID: NM-007500.4) was cloned in, and 

in the other vector a hath1 insert (NCBI GenBank ID: U61148.1) was cloned in. The math1 and 

hath1 gene inserts were driven by a cytomegalovirus (CMV) promoter followed by a Kozak 

sequence, and the turboGFP gene was driven by a Simian virus 40 (SV40) promoter. The 

PrecisionShuttle vectors contained a Kanamycin resistance gene for bacterial selection. Upon 

arrival, vectors were reconstituted in 10 mM Tris and 1 mM EDTA (TE) Buffer Solution and 

stored at -20°C. Plasmids were verified and sequenced by Blue Heron to ensure no mutations or 

shifts in reading frame occurred after math1 or hath1 plasmid generation from a Qiagen Plasmid 

Plus Giga kit (Qiagen, Valencia, CA).     

 Based on data from pilot studies (Data not shown) custom hes1 siRNA (Hs_hes1_5, Gene 

Accession no.: NM_005524, Gene ID: 3280) modified with 3’-Alexa Fluor 555 and custom hes5 

siRNA (Hs_hes5_5, Gene Accession no.: NM_001010926, Gene ID: 388585) modified with 3’-

Alexa Fluor 647 (Qiagen) were selected for experiments. Upon arrival, siRNA was reconstituted 

with RNase-Free water and both hes1 and hes5 siRNA were diluted to 100 nM and stored at -

20°C.  

 

Experimental design and transfection  

 Twenty-four hours before transfection, hWJCs were trypsinized and plated into tissue 

culture treated 6-well plates (BD Biosciences, San Jose, CA) at a density of 5x105 cells per well. 
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On the day of transfection, media from all wells were removed and cells were washed with PBS 

twice. Afterward, cells were incubated for 1 h in a 37°C culture grade incubator supplied with 

5% CO2 in 37°C pre-warmed traditional hWJC medium (10% FBS-MSC Qualified, 1% 

Penicillin-Streptomycin, Low glucose DMEM) with 10 µM of Y-27632 ROCK Inhibitor 

(Reagents Direct, Encinitas, CA). After 1 h, hWJCs were washed twice with PBS, trypsinized, 

and then resuspended in 4D Nucleofector™ P1 Primary Solution (4DNP1) (Lonza) and one of 

six treatment solutions. All cells were suspended at a concentration of 5x105 cells per 100-µL 

solution at one of the five following ratios: 100 µL 4DNP1 (Untreated), 95 µL 4DNP1: 5 µL 

math1 pDNA (1µg per µL) (Math1), 95 µL 4DNP1: 5 µL hath1 pDNA (1µg per µL) (Hath1), 99 

µL 4DNP1: 0.5 µL hes1 siRNA (100 nM): 0.5 µL hes5 siRNA (100 nM) (H1/H5), 94 µL 

4DNP1: 5 µL math1 pDNA (1 µg per µL): 0.5 µL hes1 siRNA (100 nM): 0.5 µL hes5 siRNA 

(100 nM) (Math1/H1/H5), 94 µL 4DNP1: 5 µL hath1 pDNA (1 µg per µL): 0.5 µL hes1 siRNA 

(100 nM): 0.5 µL hes5 siRNA (100 nM) (Hath1/H1/H5). The untreated control cells were not 

nucleofected and were immediately pipetted into 6-well plates (BD Biosciences) or Nunc™ Lab-

Tek™ 8-well chambered coverglass slides (Thermo Scientific, Waltham, MA) pre-coated with 

Fibronectin (BD Biosciences) containing 1.5 mL or 0.5 mL, respectively, of 37 °C pre-warmed 

traditional hWJC medium. Cells were placed into a cell culture grade incubator set at a 

temperature of 37°C and supplied with 5% CO2. hWJC suspensions were transferred to 100-µL 

4D Nucleofection™ cuvettes via separate pipettes. The cuvettes were placed in a 4D 

Nucleofector™ (Lonza) and nucleofected with the FF-104 program. Afterward, hWJCs were 

allowed to incubate at room temperature (ca. 22°C) for 10 minutes. hWJCs were transferred to a 

6-well plate (BD Biosciences) or Nunc™ Lab-Tek™ 8-well chambered coverglass slides 

(Thermo Scientific) pre-coated with Fibronectin (BD Biosciences) containing 1.5 mL or 0.5 mL 
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of pre-warmed 37°C traditional hWJC medium with 10 µM of Y-27632 ROCK Inhibitor, and 

placed into a cell culture grade incubator at 37°C with 5% CO2. 

 

Gene expression 

At 1, 3, and 7 d after transfection, cells were collected and harvested for gene expression 

analysis via real time quantitative polymerase chain reaction (RT-qPCR). At each time point, 

RNA was collected from each cell sample according to manufacturer’s instructions of Qiagen 

RNeasy Plus Mini Kit (Qiagen). RNA purity and quality was assessed via NanoDrop 2000 

(Thermo Scientific) and Agilent 2200 TapeStation (Agilent Technologies, Santa Clara, CA), 

respectively. An RNA integrity number (RIN) of 7-10 was considered acceptable for cDNA 

conversion. 

RNA was converted to cDNA using the High Capacity cDNA conversion Kit (Life 

Technologies) and the Eppendorf Realplex Mastercycler (Eppendorf, Hamburg, Germany). 

Converted cDNA purity and quality was assessed quantitatively via the NanoDrop 2000 (Thermo 

Scientific) and qualitatively via the Agilent 2200 TapeStation (Agilent), respectively.  

 cDNA from each sample was loaded into a MicroAmp® Fast Optical 96-well Reaction 

plate (0.1-mL, Life Technologies). Individual wells were loaded sequentially in the following 

ratios: 1 µL TaqMan Assay (Life Technologies), 9 µL sample cDNA, 10 µL TaqMan Fast 

Universal PCR Master Mix (Life Technologies). The TaqMan Assays used are listed in Table 1. 

Plates were sealed with MicroAmp® Optical Adhesive Film (Life Technologies) and 

centrifuged. Afterward, the samples were loaded into the Eppendorf Realplex Mastercycler and 

run according to the recommended TaqMan Fast Universal PCR Master Mix Protocol (Life 

Technologies). Cycle threshold (Ct) values were recorded and analyzed via the Delta-Delta-Ct 
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method. Values were normalized to day 0 untreated control samples and the endogenous 

controls. Three replicates from each of five umbilical cords (n = 5) were taken for gene 

expression analysis at 1, 3, and 7 d post transfection.  

 

Live cell fluorescent imaging and flow cytometry  

hWJCs were collected for live stain imaging 24 h after transfection. A 0.5-µL aliquot of 

Hoechst 33342 dye (Life Technologies) was added to each well, and hWJCs were incubated for 

10 min at 37°C in 5% CO2. Afterward, hWJCs were imaged using a custom epifluorescent and 

confocal microscope composed of the following components: an Olympus IX81 inverted 

spinning disc confocal microscope base (Olympus America, Center Valley, PA), a Prior 

microscope stage for automated image acquisition (Prior Scientific, Rockland, MA), an Olympus 

40X Long Working Distance Air objective (Olympus), and a Hamamatsu Electron Multiplying 

Charge-Coupled Device (EMCCD) camera (Hamamatsu, Hamamatsu, Shizuoka Prefecture, 

Japan). Images were captured using the acquisition and analysis software, SlideBook (Intelligent 

Imaging Innovations (3i), Denver, CO). A mercury arc lamp was used with the following 

excitation filters (Excitation/Emission) for image collection: Hoechst (387 ± 11 nm/447 ± 60 

nm), GFP (494 ± 20 nm/531 ±22 nm), Alexa Fluor 555 (575 ± 25 nm/624 ± 40 nm), and Alexa 

Fluor 647 (650 ± 25 nm/684 ± 25 nm). A montage was generated from 25 (five by five 

arrangement) neighboring fields of view that were aligned together to generate one 

comprehensive composite image of the sample.  

So as to not bias cell viability after imaging, spent medium containing non-adhering or 

loose adhering cells was collected from each sample and transferred into a pre-labeled 15-mL 

conical tube (Phenix, Candler, NC). Remaining adherent hWJCs were washed twice with PBS 



 

 

69 
then trypsinized and added to corresponding 15-mL conical tubes containing the previous spent 

medium with the unattached cells so that both live cells and dead cells would be retained for 

analysis. Then 4 mL of fresh traditional hWJC medium was added to each conical tube, and all 

conical tubes were centrifuged at 1,500 rpm (~500 g) for 5 min. The supernatant was discarded, 

and hWJCs were resuspended in 500 µL of PBS and pipetted through a 70-µm nylon mesh cell 

strainer (BD Biosciences). 0.5 µL of Sytox Red (Life Technologies) was added just before 

analysis. hWJCs were analyzed via flow cytometry on the MoFlo XDP Fluorescent Activated 

Cell Sorter (FACS) (Beckman Coulter, Brea, CA). Flow Cytometry was used to analyze both 

cell viability and transfection efficiency. Live hWJCs were characterized as hWJCs expressing 

Hoechst at an intensity of 102 Relative Fluorescent Units (RFU) or above, with expression of 

Sytox Red at an intensity below 100 RFU. Dead hWJCs were characterized as hWJCs that 

expressed Hoechst at an intensity below 102 RFU and expressed Sytox Red at an intensity of 

above 100 RFU. GFP-positive hWJCs were characterized as live hWJCs that expressed GFP at 

an intensity of 100 RFU or greater. Transfection efficiency was determined by dividing the 

number of live GFP positive cells in a sample by the total population of the sample. All 

experiments were performed in triplicate for each umbilical cord 24 h after transfection. 

 

FM® 1-43 staining 

Cells from each cord were stained with FM 1-43 and imaged 7 d after transfection under 

a confocal microscope. Briefly, cells were washed twice with PBS, and 500 µL of FM 1-43 (5 µg 

per mL in Hanks Balanced Salt Solution (HBSS)) was added to the cells while on ice. Cells were 

fixed with 500 µL of 4% formaldehyde in HBSS on ice for 10 min then washed three times with 

HBSS. Cells were then sealed with ProLong® Gold Antifade Reagent with DAPI (Life 
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Technologies) and imaged on the same custom confocal microscope as stated previously. A 488 

nm solid-state laser was used for excitation with a confocal emission of 625 ± 11 nm.  A 

montage was generated from 25 (five by five arrangement) neighboring fields of view that were 

aligned together to generate one comprehensive composite image of the sample.  

 

Immunocytochemistry 

At 1, 3, and 7 d after transfection, cells were collected for immunocytochemistry. 

Primary antibodies were pre-conjugated to Quantum Dots (Qdot®) using the 525, 565, 605, 655, 

and 805 Qdot® Antibody Conjugation Kits (Life Technologies). Primary antibodies were 

conjugated to Qdots according to manufacturer’s instructions, and stored at 4°C for immediate 

use. The following primary antibodies were conjugated to the following Qdots: Anti-human 

atoh1 (Millipore, Billerica, MA) pre-conjugated to Qdot 525 (1:200; Life Technologies), Anti-

human hes1 (Millipore) pre-conjugated to Qdot 565 (1:200; Life Technologies), Anti-human 

myosin VIIa (Novus, Littleton, CO) pre-conjugated to Qdot 605 (1:500, Life Technologies), 

Anti-human hes5 (Millipore) pre-conjugated to Qdot 655 (1:200, Life Technologies), and Anti-

human GFAP (Millipore) pre-conjugated to Qdot 800 (1:100, Life Technologies). Cells were 

fixed by first washing cells in 37°C PBS, followed by fixation with 4% formaldehyde in PBS for 

15 min. Cells were then washed and incubated for 5 min with PBS three times. Afterward, cells 

were permeabilized with 0.25% Triton X-100 in PBS, then washed three times in PBS. Cells 

were blocked with 4% bovine serum albumin (BSA) in PBS for 60 min. Afterward, cells were 

incubated with all primary antibodies pre-conjugated to respective Qdots as listed above for 60 

min in blocking buffer. Following three PBS washes, cells were counterstained with Syto 9 (10 

nM, Life Technologies) for 30 min, and then dehydrated with graded ethanol, followed by 
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double exposure to 100% toluene. Cells were then mounted in Qmount™ Qdot® Mounting 

Media (Life Technologies). Cells were imaged using confocal microscopy using a 405 nm solid-

state laser for Qdot excitation, a 488 nm solid-state laser for Syto 9 excitation, and the following 

emission filters: Syto 9 (531 ± 22 nm), Qdot 525 (531 ± 22 nm), Qdot 565 (560 ± 25 nm), Qdot 

605 (613 ± 20 nm), Qdot 655 (655 ± 15 nm), and Qdot 800 (788 ± 20 nm). Cells were collected 

from each umbilical cord at 1, 3, and 7 d after transfection and images were taken from 

individual wells on 8-well chambered glass slides.     

 

Analysis of stem cell characteristics 

 A sub-culture of cells from each cord was characterized through cell surface marker 

identification via flow cytometry. hWJCs were trypsinized and centrifuged. The supernatant was 

discarded and hWJCs were suspended in 5% FBS-MSC Qualified (Life Technologies) in PBS 

and placed on ice and kept in the dark for 20 min. Aliquots containing 5x105 hWJCs in 

approximately 200-µL were pipetted into 50-mL conical tubes (Phenix). Primary cell surface 

antibodies and secondary antibodies were added sequentially one-at-a-time per incubation-wash 

cycle to avoid cross-reaction; however, pre-conjugated primary antibodies with secondary 

antibodies were added simultaneously. A single incubation-wash cycle consisted of adding a 

primary antibody, secondary fluorescent antibody, or primary antibody pre-conjugated to a 

specific fluorescent secondary antibody to the cell suspension. After incubation, 800 µL of 5% 

FBS in PBS was added to the cell suspension to bring the total volume of the cell suspension up 

to 1 mL, and the cell suspension was then centrifuged. The supernatant was discarded, and cell 

pellets were suspended in 5% FBS-MSC Qualified (Life Technologies) in PBS, which concluded 

one incubation-wash cycle. Cell surface marker antibodies and secondary antibodies were added 
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in the following order at the following ratios: STRO-1 Mouse IgM (2.5:200) (1 mg per mL; 

R&D Systems, Minneapolis, MN); Alexa Fluor 568® Rabbit Anti-Mouse IgG (2:200) (2 mg per 

mL; Life Technologies); CD105 Mouse IgG (2.5:200) (1 mg per mL; R&D Systems); Qdot® 

525 donkey anti-mouse IgG (2:200) (1 µM; Life Technologies); Human CD45 pre-conjugated to 

Qdot® 800 (2:200) (Life Technologies); Human CD73 pre-conjugated to FITC (5:200) (BD 

Biosciences); Human CD34 pre-conjugated to Brilliant Violet (5:200) (BD Biosciences); Human 

CD90 pre-conjugated to APC (5:200) (BD Biosciences). At the end of the last incubation-wash 

cycle, hWJCs were resuspended in PBS and pipetted through a 70-µm nylon mesh cell strainer 

(BD Biosciences). hWJCs were analyzed by flow cytometry on a MoFlo XDF FACS (Beckman 

Coulter). Positive identification of cell markers was defined as fluorescent emission that 

exceeded the fluorescent threshold of cells stained with corresponding isotype (negative) 

controls. The isotype controls used in these studies were Rabbit IgG Alexa Fluor 568, Donkey 

IgG Qdot 525, IgG2 Qdot 800 (all from Life Technologies), and IgG1 FITC, IgG1 Brilliant 

Violet, and IgG1 APC (all from BD Biosciences). The cell characterization experiments were 

repeated three times for each cord. 

 

Statistical analysis 

All values are reported as statistical means with standard deviations, unless otherwise 

noted. Cells were isolated from five (n = 5) different umbilical cords, and three technical 

replicates were used for each quantitative analysis. Five samples were considered adequate based 

on Mead’s resource equation. A one-way ANOVA was performed with a Least Sum of 

Differences (LSD) post hoc in conjunction with a Dunnett’s (multi-comparison) test to assess 

statistical significance with p set at < 0.05, and power > 0.8. The Dunnett’s test was set up as a 
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one-tailed assessment to examine increased values against control samples. The software SPPS 

(IBM) version 22 was used to compute all statistical analyses.   

 

RESULTS 

Cells transfected with hath1 showed greater cell density than cells transfected with math1  

hWJCs were transfected via Nucleofection™, an electroporative technique (Lonza, Basel 

Switzerland), with one of five different treatments: math1pDNA, hath1pDNA, siRNA against 

hes1 and hes5, math1 pDNA and siRNA against hes1 and hes5, or hath1 pDNA and siRNA 

against hes1 and hes5. At 24 h post-transfection, there was a noticeable visual difference in cell 

numbers between cells treated with hath1 versus cells treated with math1 (Fig. 5.1). Twenty-four 

hours after transfection, flow cytometry revealed that there were 1.9 times more viable cells 

transfected with hath1, and 2.2 times more viable cells transfected with hath1 and siRNA against 

hes1 and hes5, than viable cells transfected with math1 (Fig. 5.2). In addition, 24 h post-

transfection cells co-transfected with hath1 and siRNA against hes1 and hes5 displayed 3.7 times 

more viable cells than cells co-transfected with math1 and siRNA against hes1 and hes5. At 24 h 

post-transfection, cells transfected with hath1 displayed transfection efficiency that was 0.2 

times greater than cells transfected with math1. Moreover, 7 d after transfection, cell counts 

revealed that there were 2.8 times more viable cells transfected with hath1, and 3.1 times more  

viable cells transfected with hath1 and siRNA against hes1 and hes5, than cells transfected with 

math1. At 7 d post-transfection cells co-transfected with hath1 and siRNA against hes1 and hes5 

displayed 2.8 times more viable cells than cells co-transfected with math1 and siRNA against 

hes1 and.  
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Only cells transfected with hath1 revealed significant visual changes in morphology 

Visual morphological differences were evident between untreated control cells and cells 

treated with hath1 and siRNA against hes1 and hes5 starting at Day 3 (Fig. 5.3). Cells treated 

with math1 displayed a fibroblastic morphology, consistent with hWJCs. However, cells treated 

with hath1, siRNA against hes1 and hes5, or a combination of both showed an elongated cell 

body with small projections expanding away from the cell body. Cells treated with both hath1 

and siRNA against hes1 and hes5 displayed a bipolar phenotype with cell extensions reaching 

out from the nucleus and terminating with multiple slender projections, uncharacteristic of 

hWJCs.  

 

Hath1- transfected cells revealed infiltration of lipophilic dye, FM® 1-43 

 To further evaluate the development of morphological features of hair cells, controls and 

treatment groups were stained 7 d after transfection with FM® 1-43, a lipophilic dye that is 

known to enter cells through transduction channels found in hair cells and neurons. Cells treated 

with hath1 stained positive for FM® 1-43, as did cells treated with only siRNA against hes1 and 

hes5. FM® 1-43 entered hath1-transfected cells more readily and robustly than math1–

transfected cells. Across cells from all five umbilical cords, we saw positive FM® 1-43 staining 

in the greatest quantities in cells treated with hath1 only or hath1 and hes1 siRNA and hes5 

siRNA. The amount of positive FM® 1-43 staining varied between cells treated only with hath1 

and cells treated with hath1 and siRNA against hes1 and hes5 (Fig. 5.4). Limited infiltration of 

FM® 1-43 was observed in some of the samples co-transfected with math1 and siRNA against 

hes1 and hes5 across cell samples from all five umbilical cords.    
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Hath1-transfected cells up-regulated different genes from math1-transfected cells 

Gene expression was evaluated across all treated cells from all human umbilical cords at 

1, 3, and 7 d after transfection. The relationship regarding how all of the analyzed genes are 

related to each other is illustrated in Supplementary Figure 5.7. The common trend observed 

across all analyzed genes was an up-regulation of gene expression 1 d after transfection, and 

gene expression levels returned to levels similar to untreated controls 7 d after transfection (Fig. 

5.5). Gene expression in math1-transfected cells did not significantly differ from untreated 

control cells within the 7-day time period following transfection, except for jagged2, hes1, and 

hes5 genes, 1 d after transfection. Cells co-transfected with math1 and siRNA against hes1 and 

hes5 displayed no significant gene expression differences from untreated control samples within 

the 7-day time period following transfection. Perhaps most importantly, math1-transfected cells 

failed to show any significant increase in gene expression over the 7-day time period, whereas 

hath1-transfected cells showed significant (p < 0.05) increases in gene expression 1 d after 

transfection compared to untreated control cells in atoh1 (4.5 x105 fold change), hes1 (6.8 fold 

change), hes5 (33.3 fold change), and myosin VIIa (6.5 fold change). Cells that were co-

transfected with hath1 and siRNA against hes1 and hes5 displayed significant (p < 0.05) 

increases in gene expression across atoh1 (3.2 x 105 fold change), hes5 (17.6 fold change), 

myosin VIIa (11.0 fold change), gfi1 (2.9 fold change), and jagged2 (2.4 fold change) 1 d after 

transfection. hWJCs co-transfected with hath1 and siRNA against hes1 and hes5 displayed 

significant (p < 0.05) increases in gene expression across myosin VIIa (9.1 fold change) and 

jagged2 (1.2 fold change) 3 d after transfection. To further explore biochemical pathways related 

to hair cell morphology, a pilot trial microarray analysis was performed with a single cord (in 

triplicate) in collaboration with Agilent Technologies. In the cells from the umbilical cord 
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analyzed, math1 had a far greater impact on gene expression than hath1, with twice as many 

genes experiencing at least a two-fold change (Supp. Fig. 5.8).   

 

Only cells transfected with hath1 displayed prolonged protein expression of myosin VIIa 

Cells were analyzed for protein expression via immunocytochemistry 1 d and 7 d after 

transfection (Fig. 5.6). All treated cells displayed positive identification of myosin VIIa and hes5 

1 d after transfection. However, cells co-transfected with hath1 and siRNA against hes1 and hes5 

displayed positive identification of glial fibrillary acidic protein (GFAP) 1 d after transfection. 

Math1-transfected cells displayed a visual decrease in myosin VIIa and hes5 expression, whereas 

hath1-transfected cells displayed a visual increase in immunostaining for myosin VIIa and hes5 7 

d after transfection. No GFAP expression was detected in any treated group 7 d after 

transfection. Untreated control cells displayed no presentation of any hair cell marker proteins at 

1 d or 7 d after culture.  

In a pilot study 7 d after transfection, treated cells from one cord were stained with a 

fluorescent probe, developed by Vytla et al.248, against the α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptor to identify active calcium permeable ion channels. 

Math1-transfected cells and cells co-transfected with math1 and siRNA against hes1 and hes5 

visually displayed limited presentation of the AMPA receptor, whereas hath1-transfected cells, 

and cells co-transfected with hath1 and siRNA against hes1 and hes5 displayed strong 

presentation of active AMPA receptors (Supp. Fig. 5.9).  
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Only minor changes in cell surface markers observed between untreated and treated cells 

We characterized hWJCs for CD markers associated with stem cells 10 d after 

transfection and found no significant changes between untreated and treated cells. All cell 

populations were strongly negative for CD34 and CD45, which indicated that cell populations 

were non-hematopoietic. Additionally, all cell populations displayed presentation of CD73, 

CD90, and CD105, which are surface markers found on mesenchymal stem cells. Supplementary 

Table 1.2 summarizes the flow cytometry data collected from cell characterization.        

 

DISCUSSION 

  The key challenge in treating sensorineural hearing loss is that mammalian hair cells in 

the inner ear do not regenerate, unlike avian hair cells, which are able to renew and regenerate 

after damage.64, 213 However, researchers have made numerous advances in revealing the 

molecular cues that enable the development of mammalian hair cells. Atoh1 is the key 

transcription factor that is implicated in starting several different biochemical pathways that lead 

to the development of both hair cells and supporting cells.41, 54 Hence, several groups have 

explored and exploited over-expression of atoh1 as a method for producing ectopic hair cells in 

vivo and ex vivo, with varying success.32, 54, 108, 135, 262 The inner ear epithelium, specifically the 

organ of Corti in the cochlea, and the utricle and saccule in the vestibular organs, require precise 

quantities, types, and spacing of both hair cells and supporting cells to enable proper reception 

and transmission of neurosensory signal. While several groups have succeeded at producing cells 

structurally similar to hair cells in vivo or ex vivo, no group has found a way to fully restore or 

repair inner ear sensory epithelium to its original state. While strategies rely on overexpression 

of atoh1 to generate hair cells, there is currently no genetic protocol that allows for generation of 
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new hair cells without over-generation of hair cells. Kraft et al.135 demonstrated that over-

expression of atoh1 can help improve hearing after damage; however, Yang et al.271 revealed 

that atoh1 overexpression in supporting cells results in direct transdifferentiation, not 

regeneration. Furthermore, Liu et al.147 found that the ability of supporting cells, such as pillar 

cells or Deiter’s cells, to transdifferentiate into hair cells is age-restricted to neonatal and juvenile 

stages in mice. Thus, there is still much left to explore and understand regarding hair cell 

development and regeneration. The development of a hair cell model outside the body may have 

a significant impact on further understanding how hair cells develop and are damaged, which 

may lead to new approaches for developing a therapy or a model for screening ototoxic drugs. 

Very few gene delivery studies have been conducted with hWJCs.12, 48 In the current 

study, we demonstrated that hath1- transfected hWJCs expressed critical markers associated with 

hair cells and neural epithelium. We compared math1 and hath1 gene delivery in human cells 

and demonstrated for the first time that hath1 expression differed from math1 expression in cells 

from human tissue.  

The results of the current study have suggested that there might be a functional difference 

between math1 and hath1 in human tissues, as math1 has been predominantly used for most 

studies focusing on mammalian hair cell regeneration. In hWJCs, treatment with hath1 displayed 

significant immediate increases in mRNA and protein expression of key hair cell markers, as 

compared to cells treated with math1, which displayed limited increases in gene expression and 

protein expression 1 d after transfection. The positive identity of GFAP in cells co-transfected 

with hath1 and siRNA against hes1 and hes5 suggested an initial differentiation toward a neural-

like phenotype. Myosin VIIa expression is expected if cells are differentiating toward a hair cell 

lineage, but hes5 expression is surprising, because hes5 encourages support cell differentiation 
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by negatively regulating atoh1. The positive expression of hes5 both at the gene and protein level 

suggested that hWJCs may be differentiating into both hair cells and supporting cells 

concurrently. The significant up-regulations gfi1 gene expression in cells co-transfected with 

hath1 and siRNA against hes1 and hes5 suggested that presentation of a hair cell phenotype had 

started within at least a sub-population of treated cells. The gene expression and protein 

expression findings combined with the visual morphological changes in hath1-transfected cells 

implied that some level of neuronal differentiation had taken place outside of the body, with 

limited stimulation by hath1 and intercellular mediators of the notch pathway. Based on the 

findings by Wang et al.254, the presumption that atonal homologues are interchangeable between 

species has been maintained for over a decade.109, 113 While this may be the case, the current 

study found that hWJCs showed increased gene, protein, and morphological features as well as 

increased viability when transfected with hath1. In addition, transduction channels characteristic 

of hair cells and active neurons were implicated in the cell membranes of hath1-transfected cells 

and cells co-transfected with hath1 and siRNA against hes1 and hes5 based on the superior 

infiltration of FM® 1-43 dye into hWJCs  

Now that measureable and observable differences have been established in hWJCs 

transfected with hath1 and hWJCs transfected with math1, there is motivation and a strong 

rationale for future investigation of functional testing such as full electrophysiological testing 

and full AMPA receptor staining. Mechanistic analyses such as microarray analysis will help 

illuminate which biochemical pathways are active after hWJCs are transfected, which may help 

determine the terminal lineages hWJCs are moving toward (i.e. hair cells, cerebellar neurons, 

goblet cells) outside the body. Culturing of treated cells in a three-dimensional environment may 

further enhance the atonal effect and potential display of hair cell characteristics. Conversely, 
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transfecting hath1 and math1 into mouse Wharton’s jelly cells should yield interesting results 

that provide more evidence on whether hath1 and math1 are truly able to be used 

interchangeably between species or not. Furthermore, evaluation of gene knockdown of hes1 and 

hes5 via miRNA may increase or decrease the atonal effect in hWJCs.  

 

CONCLUSION 

In summary, the data revealed that hWJCs transfected with hath1 displayed far superior 

expression of key hair cell markers in relation to presentation of mRNA transcripts, proteins, and 

morphological features in contrast to hWJCs transfected with math1. The development and 

presentation of hair cell markers were further enhanced when hath1-transfected hWJCs were co-

transfected with siRNA against hes1 and hes5. The current study demonstrated that hWJCs can 

be manipulated outside of a target tissue to produce a rare and complex phenotype that may aid 

in illuminating how hair cells develop in the human body and potentially allow for a way to 

screen new drugs for ototoxicity. For the first time, the atoh1 homologues hath1 and math1 were 

compared in cells from human tissue, and human cells conclusively responded differently to 

hath1 and math1, which suggests that the two homologues may not be interchangeable among 

species.    
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CHAPTER 6: Conclusion 

Tissue engineering has traditionally focused on regenerating tissues through an “outside-

in” approach examining sources of stem cells and progenitor cells, extracellular signals both 

chemical and mechanical, and the design of biomaterials to aid in tissue repair or regeneration. 

However, the relationship between tissues and organs is complex, and even more sophisticated 

between cells. While tissue engineering classically examines how a cell can be externally 

stimulated to induce a desired behavior, the underlying hypothesis driving the work presented in 

the current thesis is that if gene expression within a cell is reprogrammed to mimic a desired cell 

phenotype, the cell will modulate the gene expression and protein production accordingly to 

move toward the desired cell phenotype. Hence, the “inside-out” approach presented in the 

current thesis (Fig. 6.1).   

While the inside-out approach is fascinating, there are many challenges that prevented the 

inside-out approach form being widely followed. Viral gene delivery strategies are effective, but 

researchers must continuously convince regulatory agencies that the safety concerns associated 

with viral gene delivery have been mitigated. Physical non-viral gene delivery approaches are 

effective, but invasive, especially electroporation. Thus, the work presented in the current thesis 

focused on improving the integration of gene delivery into tissue engineering for regenerating a 

target tissue, namely, inner ear hair cells.  

Electroporation causes high cytotoxicity because adherent cells must be lifted from a 

surface, followed by a brief disruption of the cellular membrane facilitated by exposure to a 

current, thus a consequence in many cells is the activation of the RhoA GTP signaling pathway 

associated with apoptosis. Inhibiting Rho associated coiled-coil kinase (ROCK) improved 

transfection efficiency by over four fold, and cell viability by over three fold in cells treated with 
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Y-27632 ROCK Inhibitor versus untreated cells. Thus, inhibition of ROCK is an effective 

strategy for mitigating some of the negative effects associated with electroporation and 

increasing transfection efficiency.  

In the photo-convertible study, hWJCs transfected with pDendra2 robustly photo-

converted in two minutes with gentle exposure to UV light. Furthermore, the sensitivity of 

pDendra2 demonstrated that individual cells could be targeted for photo-conversion without 

inducing photo-conversion in surrounding cells within the field of view, allowing for cell 

tracking over an extended period of time. The utility of photo-convertible reporter genes was 

demonstrated for the first time in vitro in hWJCs, and verified the potential to use photo-

convertible reporter genes in low expression systems to track cells, which presents the 

opportunity to monitor in real-time how cells migrate, differentiate, and integrate into tissues.  

 hWJCs transfected with hath1 outperformed hWJCs transfected with math1 as compared 

against untreated hWJCs. Cells transfected with hath1 displayed clear increases gene expression 

of key markers found on inner ear hair cells within a seven day period. Furthermore, the 

development of transduction channels was implied by the infiltration of FM 1-43 lipophilic dye 

into hath1-trasnfected hWJCs, where infiltration of FM 1-43 was limited in math1-transfected 

hWJCs. Hath1-transfected hWJCS exhibited morphological changes compared to math1-

trasnfected hWJCs, which was observed by microscopy. Atonal effects were enhanced by 

inhibition of hes1 and hes5, especially in hath1-trasnfected hWJCs. Interestingly, lower cell 

viabilities and densities were recorded with cells transfected with math1 as opposed to hath1-

transfected cells, which suggest the mouse homolog of atoh1 may not be compatible with human 

tissues. Thus, atonal homologues may not be interchangeable as previously thought.  
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 The work presented in the current thesis serves as a starting point for a new approach to 

tissue engineering. hWJCs are a promising source of stem cells that are highly attractive for 

tissue engineering, because of their wide abundance, lack of donor site morbidity, high 

proliferation potential, and similarity to bone marrow stem cells (BMSCs), which are regarded as 

the “gold standard” of tissue engineering. For the first time, hWJCs were transfected with atoh1 

pDNA and siRNA against hes1 and hes5. The work presented in the current thesis clearly 

demonstrates that hWJCs are susceptible to being guided toward a terminal cellular phenotype 

not within the differentiation potential of hWJCs naturally. However, while the work presented is 

an exciting starting point, there are many questions left unanswered that need further 

investigation, such as the design of a cuvette used in the electroporation technique, 

Nucleofection™. The current design suspends cells and genetic material randomly between two 

electrodes, which leads to varying transfection efficiencies and cell viabilities. However, 

activation of ROCK signaling pathways could be minimized if adherent cells were plated on one 

electrode, and the other electrode was pre-coated with genetic material or creating a mock 

extracellular matrix environment that could anchor cells on a material that could act as an 

electrode could improve transfection efficiency without requiring removal of adherent cells from 

a surface. Such a design could significantly reduce the negative effects of cellular membrane 

disruption that occur during electroporation, and allow for uniform delivery of genetic material 

to cells, maximizing transfection potential. Combining an updated design with ROCK Inhibitor 

treatment could greatly improve cell transfection efficiencies and viabilities for tissue 

engineering studies. 

 Fusing photo-convertible reporter genes with target genes will allow for clear 

identification of genetic material within the cell against high background. However, caution must 
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be exercised when Dendra2 is photo-converted via UV lights as UV light exposure can cross-

link thymine nucleotides, which may damage DNA and lead to apoptosis or oncogenesis, if not 

repaired. The use of photo-converting proteins may be limited to in vitro applications for the 

foreseeable future and basic cell tracking applications as photo-convertible fluorophores may 

interfere with detailed mechanistic analyses that rely of fluorescence, such as microarrays and 

mitochondria staining. The value of photo-convertible proteins may be further enhanced by 

follow-up studies that evaluate the fluorescence lifetime of both the green fluorescence and red 

fluorescence of Dendra2. Thus, photo-conversion of select cells that are positively transfected 

with a photo-convertible reporter gene will enable the tracking of cell migration and observation 

of real-time morphological changes in treated cells, and provide detailed insights into changes 

the treated cells undergo with high precision and accuracy.   

 While hath1 induced a superior atonal effect in human tissues, the atonal effect requires 

investigation in mouse tissues to confirm that the two homologues are not interchangeable. Will 

math1 outperform hath1 in mouse tissues? Additionally, mechanistic and functional analyses are 

still required to further evaluate the atonal response in human tissues that are transfected with the 

atonal homologues. Microarray analysis will elucidate which signals are active in the notch-

signaling pathway when cells are transfected with either hath1 or math1. The electrophysiology 

functionality must still be confirmed, even though the development of transduction channels has 

been implied through FM 1-43 infiltration. Pilot studies yielded encouraging results, and further 

analysis is required to determine if calcium permeable ion channels are indeed developing on 

hath1 treated hWJCs. Also in question is whether expression of the atonal effect is actually 

guiding cells toward a hair cell phenotype, a cerebellar neuron phenotype, or a goblet cell 

phenotype. Co-culture of hath1-transfected cells with native inner ear hair cells or support cells 
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may further induce hair cell characteristics in hath1 treated cells as contact with native cells may 

provide intercellular signaling and expression of functional traits found in inner ear hair cells. In 

addition culturing hath1-trasnfected cells in a mock extracellular matrix environment, such as a 

decellularized cochlea or environment that mimics the endolymp of the inner ear may improve 

hair cell differentiation. Further investigation of the dosing of hath1 and math1 will reveal more 

insights to the biochemical signals being activated within the transfected cells, as well as 

evaluation of gene knockdown through miRNA delivery instead of siRNA delivery. 

Improvement and refinement of differentiating hWJCs toward inner ear hair cells could be 

beneficial in translational studies for inducing hair cell phenotypes outside of the body that could 

be used to screen ototoxic drugs and study human hair cell morphology, which could aid in the 

development of therapies for hair cell regeneration.   

 In addition, tissue engineering studies could be further enhanced by developing better 

ways to isolate mesenchymal stem cells from Wharton’s jelly and preserve the stem cell 

character. hWJCs may be losing self-renewal abilities and differentiation potential once removed 

from the extracellular matrix of Wharton’s jelly. Thus, further characterization of the 

extracellular matrix merits investigation to determine if the extracellular matrix influences or 

maintains stem cells character.    

 With the evidence presented in this current thesis, it is apparent that hWJCs are capable 

of differentiating toward neuronal lineages with artificial guidance, and that physical non-viral 

gene delivery can be improved and applied to difficult-to-transfect cells for tissue engineering 

studies. The work presented in the current thesis provides preliminary evidence that supports an 

inside-out approach for tissue engineering that may be combined with current outside-in 

approaches, which may yield more information about cellular behavior and development. There 
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is much left to be explored and investigated regarding cellular reprogramming within tissue 

engineering, but the work presented here combines a promising stem cell source with an unlikely 

delivery system to manipulate key biochemical signals within a cell to induce a complex 

phenotype outside of the body. A hypothesis that was only an idea has been translated in a short 

amount of time to a viable approach for tissue engineering, which has produced exciting results 

for treatment of sensorineural hearing loss, and challenged established paradigms regarding 

genetic homologues in biochemical signaling. Perhaps, most importantly, the work presented 

here has shown a way to bridge physical non-viral gene delivery with stem cell therapy that may 

generate new questions and ideas to consider to develop innovative ways to overcome exciting 

challenges in regenerative medicine. 
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Figure 2.1: Gene delivery barriers. 

 
 DNA must overcome several barriers during the delivery process to successfully produce 
desired gene expression. The green arrows are the pathway DNA must follow to induce gene 
expression, while the red arrows indicate potential barriers and threats that prevent gene 
expression. 1) DNA must avoid extracellular nucleases and 2) DNA must associate with the 
cellular membrane in some form to gain access to the cell via penetration, electrostatic 
interactions, adsorption, or ligand mediated receptor binding. DNA that enters through 
endocytosis must escape the endosome before the endosome 3) is recycled back to the cell 
membrane or 4) the endosome and DNA are degraded in a lysosome. In the cytoplasmic 
compartment, DNA must traffic toward the nuclear envelope and 5) avoid degradation by 
intracellular nucleases. Finally, to produce gene expression, 6) DNA must cross the nuclear 
envelope by transport through a nuclear pore (non-dividing cells) or passively re-locate into the 
nucleus between the disassembly and reformation of the nuclear envelope during mitosis 
(dividing cells). Gene expression is produced when enough intact DNA is transcribed in the 
nucleus into mRNA, and then translated into an amino acid in the cytoplasm.    
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Figure 2.2: Microinjection. 

 
 Microinjection strategies utilize microneedles to deliver DNA directly to cell nuclei. A) 
In traditional microinjection, an individual cell is held in place by the tip of a pipette while a 
technician uses a microscope to pierce the cell membrane and nuclear envelope with a 
microneedle to deliver genetic material to the cell nucleus. B) Microneedles can be fabricated so 
that the shaft is hollow and able to carry a suspension of genetic material for injection, or 
microneedles can be fabricated so that the shaft is solid and the tip is dipped in a suspension of 
genetic material for application to tissues via coating or scratching. C) Microneedles can be 
arranged in arrays on patches that can be applied directly to the skin. The microneedle patches 
are capable of penetrating the stratum corneum and delivering drugs or genetic material to the 
epidermal tissues.  
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Figure 2.3: Ballistic gene delivery. 

 
 Plasmid DNA is mixed with gold or tungsten particles ranging in size from nanometers to 
micrometers. An electric or plasma discharge is used to propel the DNA/particle complexes into 
tissues or cell cultures. 



 

 

130 

 

 
Figure 2.4: Electroporation. 

 
 Electroporation strategies apply a current across cells or tissues to make cell membranes 
more permeable to exogenous DNA. A) Traditional electroporators have a pulse generator and a 
pair of electrodes that can be applied directly to tissues or cells. A cuvette utilizes plate 
electrodes to apply a voltage potential across cells in suspension. Since resistance is constant, the 
current is proportional to the voltage potential. As voltage reaches a critical threshold, 
hydrophilic pores form in the cell membrane and make it permeable to plasmid DNA. The 
negatively charged DNA is mobile in the electrical field (toward the positive electrode) so DNA 
transport into permeabilized cells is greater than by diffusion alone. B) Needle electrodes have 
been used for in vivo applications where needles are inserted directly into primary tissues such as 
skin or skeletal muscle fibers after DNA has been injected. A current is applied across a very 
small area of tissue to facilitate the same process as in a cuvette. 
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Figure 2.5: Sonoporation. 

 
 Ultrasonic frequencies are used to induce the cavitation of microbubbles for creating 
pores in cells contained in culture or tissue. The acoustic waves cause microbubbles to expand 
and then collapse. When the microbubbles collapse, a microshockwave is emitted that can 
rupture a cell membrane if the collapsing microbubble is in close proximity to the cell 
membrane. The ruptured cell membrane forms a pore, which allows cells to be temporarily more 
permeable to plasmid DNA. 
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Figure 2.6: Laser induced pore formation. 

 
 Pulsed lasers have been shown to perforate cell membranes similar to microinjection 
strategies, but without the use of a needle. Investigators have shown a variety of laser beams of 
varying wavelengths are capable of making precise “holes” in cell membranes when beam 
energy, pulse frequency, and exposure duration are manipulated. Investigators can precisely 
target individual cells in culture or in tissue with aid of a microscope to target specific sites on 
cells for perforation to allow DNA to enter cells. A second laser with an uninterrupted beam can 
be used to immobilize individual cells in suspension while a pulsed laser is used to perforate 
cells. 
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Figure 3.1: Flow cytometry gating parameters. 

 

Flow cytometry gating parameters used to quantify cell numbers. The set of histograms 
displayed are an arbitrary selection of a single replicate for each treatment from one umbilical 
cord out of five tested. Nuc (+/-) (Nucleofection™) designates whether cells were 
Nucleofected™ or not. DNA (+/-) designates whether cells received 5 µg of pmaxGFP or not. 
RFU, Relative Fluorescent Units. RI, ROCK Inhibitor. 
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Figure 3.2: Cell density and GFP expression 24 h post-transfection. 

 

A) Intensity maps of cell density with corresponding flow cytometry histograms of 
Hoechst signal distribution 24 h after transfection. B) Intensity maps of GFP expression with 
corresponding flow cytometry histograms of GFP expression 24 h after transfection. The set of 
images and corresponding histograms are an arbitrary selection from one cord out of five tested. 
Nuc (+/-) (Nucleofection™) designates whether cells were Nucleofected™ or not. DNA (+/-) 
designates whether cells received 5 µg of pmaxGFP or not. Scale bar, 500 µm. RFU, Relative 
Fluorescent Units. GFP, Green Fluorescent Protein. RI, ROCK Inhibitor. 
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Figure 3.3: Cell density and GFP expression 48 h post-transfection. 

 

A) Intensity maps of cell density with corresponding flow cytometry histograms of 
Hoechst signal distribution 48 h after transfection. B) Intensity maps of GFP expression with 
corresponding flow cytometry histograms of GFP expression 48 h after transfection. The set of 
images and corresponding histograms are an arbitrary selection from one cord out of five tested. 
Nuc (+/-) (Nucleofection™) designates whether cells were Nucleofected™ or not. DNA (+/-) 
designates whether cells received 5 µg of pmaxGFP or not. Scale bar, 500 µm. RFU, Relative 
Fluorescent Units. GFP, Green Fluorescent Protein. RI, ROCK Inhibitor. 
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Figure 3.4: Cell viability and transfection efficiency. 

 
Live/Dead and transfection efficiency collected via flow cytometry 24 h and 48 h after 

transfection. Groups that did not express GFP were not plotted in the bar chart. * = statistically 
significant difference (p < 0.05) from hWJCs that underwent Nucleofection™ without RI 
supplement. . # = statistically significant difference (p < 0.01) from hWJCs that underwent 
Nucleofection™ without RI supplement. The results are representative of cells collected from 
five different umbilical cords (n = 5), and are reported as statistical means. All experiments were 
repeated three times. Error bars represent standard deviations. Nuc (+/-) (Nucleofection™) 
designates whether cells were Nucleofected™ or not. DNA (+/-) designates whether cells 
received 5 µg of pmaxGFP or not. RI, ROCK Inhibitor.  
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Figure 4.1: Schematic diagram of hWJC transfection and photo-conversion. 

 

 Photo-convertible reporter genes such as Dendra2 enable cells that express extremely 
low levels of a reporter gene to be identified against background fluorescence by photo-
converting green fluorescence to red fluorescence so that there is a very high signal-to-noise 
ratio. hWJCs were transfected via the electroporative method, Nucleofection™, with pDendra2. 
Cells were transfected at a density of 5x105 cells per cuvette. After transfection, cells were 
imaged for green fluorescence, then converted to red fluorescence by exposure to UV light, and 
imaged for red fluorescence. 



 

 

138 

 

 
Figure 4. 2: Full photo-conversion of hWJCs. 

 

Photo-conversion of hWJCs from green fluorescence to red fluorescence was very robust. 
hWJCs were gently exposed to UV light at 100 mW every 10 s at a frequency of 1 Hz for 300 s. 
Green fluorescence intensity and red fluorescence intensity were measured in real-time as 
hWJCs were photo-converted. There was a rapid decrease in green fluorescence intensity as red 
fluorescence intensity increased. The critical moment where red fluorescence eclipsed green 
fluorescence occurred at 125 ± 60 s. Please refer to Supplementary Figure 4.6 to view the full 
time-lapse video of a single recording of the photo-conversion that is representative of all 
attempts. The results displayed were fully consistent with nine attempts to photo-convert cells 
from three different umbilical cords. AU = Arbitrary Unit; Scale Bar = 100 µm. 
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Figure 4.3: Isolated photo-conversion of a single hWJC. 

 
The UV light beam was confined to a 15 – 20 µm diameter to restrict UV light exposure 

to a single hWJC. Changes in fluorescent intensity for both green and red fluorescence were 
measured in two adjacent cells over the course of 720 s. The cell designated “Target 1” is labeled 
with a white triangle and was exposed directly to the UV light beam, whereas the cell designated 
“Target 2” is labeled with a blue circle. Target 1 was exposed to UV light at 20 mW every 20 
seconds at a frequency of 1 Hz. Over the course of 720 s, the green fluorescence rapidly 
decreased while the red fluorescence steadily increased in Target 1. Green fluorescence 
decreased slightly, and red fluorescence increased slightly in Target 2, but photo conversion did 
not occur demonstrating that it is possible to only photo-convert a single cell in a culture. Please 
refer to Supplementary Figure 4.7 to view the full time-lapse video a single recording 
representative of all attempts to demonstrate isolated photo-conversion. The results displayed 
were fully consistent with nine attempts to photo-convert individual cells from three different 
umbilical cords. AU = Arbitrary Unit; Scale Bar = 100 µm.  
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Figure 4.4: Schematic diagram of cell tracking in tissue culture. 

 
The diagram illustrates how cell tracking could work in a tissue culture if a single 

transfected cell is photo-converted. The photo-converted cell would appear red against cells that 
are green, which would allow for precise tracking of cell movement and observation of 
morphological changes in tissue culture.  
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Figure 4.5: Cell tracking of a single photo-converted hWJCs over the course of 36 h. 

 
One hWJC was photo-converted with UV light at an intensity of 100 mW for 10 s at a 

frequency of 1 Hz. The single cell was tracked for a total of 48 h. The panels show the 
movement and changes in the photo-converted cell every 6 h for 36 h. Please refer to 
Supplementary Figure 4.8 to view the full 48 h time-lapse video of the movement of the single 
photo-converted hWJC. The experiment was run twice, showing the same results both times. 
Scale Bar = 100 µm. 
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Supplemental Figure 4.6: Time-lapse video of full photo-conversion of hWJCs. 

 
All hWJCs converted from green to red fluorescence with gentle exposure to UV light. 

Duration = 00:58. Scale Bar = 100 µm.  
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Supplemental Figure 4.7: Time-lapse video of isolated photo-conversion of hWJC. 

 

A single hWJC was photo-converted from green to red fluorescence with targeted UV 

light exposure, while surrounding cells did not photo-convert. Duration = 01:41. Scale Bar = 100 

µm. 
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Supplemental Figure 4. 8: 48 h time-lapse video of the movement of the single photo-converted 
hWJC. 

 
A single hWJC was photo-converted, and was tracked over the course of 48 h. No cells 

that came into contact with the photo-converted cell displayed any signs of photo-conversion. 
Duration = 00:30. Scale Bar = 100 µm.   
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Figure 5.1: Cell density and proliferation. 

 

Cells transfected with hath1 or hath1 and siRNA against hes1 and hes5 displayed more 
intact nuclei than math1 at 1, 3, and 7 d after transfection. Cells co-transfected with math1 and 
siRNA against hes1 and hes5 displayed few intact nuclei at 1, 3, and 7 d after transfection. Cells 
from each group were stained with Hoechst and imaged via an inverted epifluorescent 
microscope. Images are shown as intensity maps of fluorescence, where green fluorescence 
represents low fluorescence and red represents high fluorescence. Untreated control populations 
had the greatest cell density at each time point. Cells treated with math1 had the lowest cell 
densities across all three time points, whereas cells treated with only siRNA against hes1 and 
hes5 had the greatest cell densities behind untreated control cells. Images are representative of 
cells from each treatment group across five umbilical cords (n = 5) at each time point. H1/H5 
represents cells transfected with hes1 and hes5 siRNA. Math1/H1/H5 represents cells co-
transfected with math1 pDNA, hes1 siRNA, and hes5 siRNA Hath1/H1/H5 represents cells co-
transfected with hath1 pDNA, hes1 siRNA, and hes5 siRNA. Scale Bar = 500 µm. 
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Figure 5.2: Live/Dead analysis of transfected hWJCs. 

 

Transfection with hath1 led to a greater cell viability than transfection with math1. A 
minimum of 20,000 events were analyzed via flow cytometry to determine the viability of 
treatments 1 d after transfection. The top row shows the distribution of cells. The middle row 
displays cells with an intact nucleus positively identified by Hoechst staining. The bottom row 
displays the distribution of cells identified as live or dead based on Sytox Red (Dead Cell Stain) 
staining. The histograms shown are an arbitrary selection from one umbilical cord out of five 
tested. H1/H5 represents cells transfected with hes1 and hes5 siRNA. Math1/H1/H5 represents 
cells co-transfected with math1 pDNA, hes1 siRNA, and hes5 siRNA Hath1/H1/H5 represents 
cells co-transfected with hath1 pDNA, hes1 siRNA, and hes5 siRNA. 
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Figure 5.3: Phase contrast images of transfected hWJCs. 

 

The images were taken at a 10X magnification 4 d after cells were transfected. Untreated 
control cells displayed fibroblastic phenotype, while cells treated with both hath1 and siRNA 
against hes1 and hes5 displayed an elongated body and bipolar phenotype with projections at the 
terminal ends of the cell. The images shown are an arbitrary selection from one umbilical cord 
out of five tested. H1/H5 represents cells transfected with hes1 and hes5 siRNA. Math1/H1/H5 
represents cells co-transfected with math1 pDNA, hes1 siRNA, and hes5 siRNA Hath1/H1/H5 
represents cells co-transfected with hath1 pDNA, hes1 siRNA, and hes5 siRNA. Scale Bar = 50 
µm. 
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Figure 5.4: Transfected hWJCs stained with FM® 1-43. 

 

Transfected cells were imaged with an epifluorescent microscope 7 d after transfection. 
Cells transfected with hath1 and Hath1/H1/H5 displayed far superior infiltration of FM® 1-43 
than cells transfected with math1. Images are composite image montages composed of 25 
neighboring fields of view stitched together into a 5 x 5 image. FM® 1-43 (Red) intensely 
stained hWJCs transfected Hath1/H1/H5. The montage images shown are an arbitrary selection 
from one umbilical cord out of five tested. Cell nuclei are represented by DAPI staining (Blue). 
A single field of view from a C57BL mouse utricle is shown as a positive control for FM® 1-43 
staining. H1/H5 represents cells transfected with hes1 and hes5 siRNA. Math1/H1/H5 represents 
cells co-transfected with math1 pDNA, hes1 siRNA, and hes5 siRNA Hath1/H1/H5 represents 
cells co-transfected with hath1 pDNA, hes1 siRNA, and hes5 siRNA. Utricle Scale Bar = 20 µm. 
Scale Bar = 500 µm. 
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Corresponding Figure 5.5 Legend is on the following page. 
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Figure 5.5: Gene Expression of transfected hWJCs. 

 
Hath1/H1/H5-transfected cells showed significant increases in gene expression across 

most genes compared to untreated control cells 1 d after transfection, whereas math1-transfected 
cells only showed significant increases in gene express in jagged2, hes1, and hes5. Treated 
hWJCs were assessed for gene expression using RT-qPCR at 1, 3, and 7 d after transfection. (*) 
Statistically significant difference from untreated hWJCs (p < 0.05). Atoh1, hes1, and hes5 are 
genes pertaining to pDNA and siRNA used for different treatments. Jagged2 is a notch ligand 
that initiates the notch pathway. Myosin VIIa, gfi1, pou4f3, and sox2 are key hair cell markers. 
Myosin VIIa is a critical marker that was significantly expressed in hWJCs treated with 
Hath1/H1/H5 at 1 and 3 d after transfection. The results are representative of cells collected from 
five different umbilical cords (n = 5) and are reported as statistical means. All experiments were 
performed in triplicate. Error bars represent standard deviations. H1/H5 represents cells 
transfected with hes1 and hes5 siRNA. Math1/H1/H5 represents cells co-transfected with math1 
pDNA, hes1 siRNA, and hes5 siRNA Hath1/H1/H5 represents cells co-transfected with hath1 
pDNA, hes1 siRNA, and hes5 siRNA. 
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Corresponding Figure 5.6 Legend is on the following page. 
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Figure 5.6: Immunostaining of transfected hWJCs. 

 

Hath1/H1/H5-transfected cells showed increased expression of myosin VIIa and hes5 
from 1 d to 7 d after transfection, whereas math1-transfected cells showed a decrease in myosin 
VIIa and hes5 expression. Treated hWJCs were assessed for protein expression by 
immunostaining at 1 and 7 d after transfection. Primary antibodies were pre-conjugated to 
quantum dots. Cell nuclei are represented by Syto 9 staining (Blue). Atoh1 (Green) and hes1 
(Orange) were not positively identified. Hes5 (Yellow) and myosin VIIa (Red) were positively 
identified in all treated groups. Cells transfected with Hath1/H1/H5 displayed positive 
identification of GFAP (Pink) 1 d after transfection. H1/H5 represents cells transfected with hes1 
and hes5 siRNA. Math1/H1/H5 represents cells co-transfected with math1 pDNA, hes1 siRNA, 
and hes5 siRNA Hath1/H1/H5 represents cells co-transfected with hath1 pDNA, hes1 siRNA, 
and hes5 siRNA. Scale Bar = 20 µm. 
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Supplemental Figure 5.7: Differentiation biochemical pathway behind development of hair 

cells and supporting cells. 

 

The notch pathway is heavily involved in the differentiation of hair cells and supporting 
cells in the inner ear. Sox2 initiates expression of atoh1. Atoh1 expression enters a positive 
feedback loop and leads to the expression of the surface ligand, jagged2 (JAG2). JAG2 binds to 
a transmembrane notch receptor, which initiates lateral inhibition through the cleavage of the 
notch intercellular domain (NICD). The NICD travels to the nucleus and initiates expression of 
hes1 and hes5, which negatively regulate atoh1. Thus, the cell expressing atoh1 differentiates 
into a hair cell, and initiates expression of pou4f3, followed by gfi1. Pou4f3 and gfi1 expression 
are required for hair cell maintenance and survival. Myosin VIIa is a motor protein involved in 
the maintenance of stereocilia that develop on the apical surface of hair cells. The expression of 
hes1 and hes5 in the adjacent cell allow for support cell differentiation. However, sox2 is down 
regulated in support cells, but is still present to activate atoh1 if needed to transdifferentiate the 
support cell into a hair cell. NP = Neuroprogenitor, HC = Hair Cell, SC = Support Cell, AF = 
Afferent Neuron.   
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Corresponding Supplemental Figure 5.8 Legend is on the following page.   
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Supplemental Figure 5.8: Microarray heat map of gene expression across human genome. 

 
Hath1-transfected cells significantly up-regulated/down-regulated half as many genes 

tested in the human genome as math1. Gene expression of all groups of treated hWJCs were 
assessed across the human genome. Three replicates from each treatment group were compared 
against the untreated control cells. The heat map ranges from Blue to Red. Blue represents a full 
2-fold decrease in gene expression compared against the control. Yellow represents a net zero 
change in gene expression. Red represents a 2-fold increase in gene expression compared against 
the control. Fold changes are significant at (p < 0.05) as assessed via a one-way ANOVA. The 
heat map is representative of all treatment groups collected from one umbilical cord 7 d after 
transfection.  
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Corresponding Supplemental Figure 5.9 Legend is on the following page. 
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Supplemental Figure 5.9: AMPA receptor staining. 

 

hWJCs transfected with hath1, siRNA against hes1 and hes5, or a combination of both 
displayed strong staining for AMPA receptors found on live neurons. Untreated controls 
displayed no presentation of AMPA receptors. Math1-transfected cells and cells co-transfected 
with math1 and siRNA against hes1 and hes5 showed very minor AMPA receptor staining. 
Nuclei are represented by Hoechst staining (Blue). NP1 (Green) is a fluorescent probe that binds 
to active AMPA receptors that have been forced open by exposure to glutamine. NP1 stands for 
Nano-probe 1. H1/H5 represents cells transfected with hes1 and hes5 siRNA. Math1/H1/H5 
represents cells co-transfected with math1 pDNA, hes1 siRNA, and hes5 siRNA Hath1/H1/H5 
represents cells co-transfected with hath1 pDNA, hes1 siRNA, and hes5 siRNA. Scale Bar = 500 
µm. 
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Figure 6.1: Outside-In and Inside-Out Approaches to Tissue Engineering. 

 
 Tissue engineering classically approaches problems through an outside-in approach 
where cells, extracellular signals (chemical and mechanical), and scaffolds are used in concert to 
solve regenerative medicine problems. Inside-out approaches used in gene therapy rely on 
changing the intracelluar gene expression and protein production to reorganize the cells. This is 
accomplished through intracellular cross-talk and can influences the modualtion and distribution 
of intracellular signals, which affect cellular differentiation and maintenance. 
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APPENDIX B: Tables 

 

CHAPTER 1: No tables. 
CHAPTER 2: Tables 2.1 – 2.5 
CHAPTER 3: Table 3.1 
CHAPTER 4: Table 4.1 
CHAPTER 5: Table 5.1 – 5.2 
CHAPTER 6: No tables. 
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Table 2.1: Transfection studies of stem cells, progenitor cells, and connective tissues using 

Nucleofection™ 
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Table 2.1 (continued) 
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Table 2.1 (continued) 
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Table 2.1 (continued) 
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Table 2.1 (continued) 
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Table 2.1 (continued) 
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Table 2.1 (continued) 
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Table 2.2: Transfection studies of blood cells and blood vessel tissues using Nucleofection™ 
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Table 2.2 (continued) 
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Table 2.3: Transfection studies of cancer cells using Nucleofection™ 
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Table 2.3 (continued) 
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Table 2.4: Transfection studies of neuronal cells using Nucleofection™ 
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Table 2.5: RNA studies using Nucleofection™ 
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Table 2.5 (continued) 
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Table 3.1: Gating Statistics 
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Table 4.1: Cell Characterization of Stem Cell Markers at Passage 2 
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Table 5.1: TaqMan Primers used for RT-qPCR 
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Supplemental Table 5.2: Cell Characterization 

 
 
 
 


