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SIGNS IN THE cd-INDEX
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Abstract. A graded partially ordered set is Eulerian if every interval has the
same number of elements of even rank and of odd rank. Face lattices of convex
polytopes are Eulerian. For Eulerian partially ordered sets, the flag vector can
be encoded efficiently in the cd-index. The cd-index of a polytope has all
positive entries. An important open problem is to give the broadest natural
class of Eulerian posets having nonnegative cd-index. This paper completely
determines which entries of the cd-index are nonnegative for all Eulerian posets.
It also shows that there are no other lower or upper bounds on cd-coefficients
(except for the coefficient of cn).

1. Introduction

In the past thirty years or more, there has been much interest in combinatorial
questions about polytopes and other geometric complexes and partial orders. Of
central importance is the flag vector of a partially ordered set (poset) and various
combinatorial parameters derived from it. One of these parameters is the cd-index,
defined for Eulerian posets, a class that contains face lattices of polytopes. The cd-
index was discovered by Fine and introduced in the literature by Bayer and Klapper
([4]). It has captured the imagination, both for what is known and for what is not
known about it. It embodies in an elegant way the linear relations of flag vectors of
Eulerian posets (the generalized Dehn-Sommerville relations of Bayer and Billera
[1]); the number of coefficients in the cd-index is a Fibonacci number. It is known
to be nonnegative for polytopes (see Stanley [12]), but it is not known what it
counts, except in special cases (see Purtill [11]). Among polytopes, the cd-index
is minimized by the simplices (see Billera and Ehrenborg [5]). Novik ([10]) gives
lower bounds for cd-coefficients of odd-dimensional simplicial manifolds (or, more
generally, Eulerian Buchsbaum complexes).

Stanley ([12]) proved the nonnegativity of the cd-index for “S-shellable” reg-
ular CW-spheres (including polytopes). In [13] he proposes the following as the
main open problem concerning the cd-index: Is the cd-index nonnegative for all
Gorenstein∗ posets? (These are the Cohen-Macaulay Eulerian posets.) In fact,
some parts of the cd-index are nonnegative for all Eulerian posets. In this paper
we determine which cd-words have nonnegative coefficients for all Eulerian posets.
For all other cd-words, we show how to construct Eulerian posets with arbitrarily
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large negative coefficients. The proofs grow out of the ideas of [2], which studies
the cone of flag vectors of Eulerian posets.

2. Definitions

An Eulerian poset is a graded partially ordered set P in which every interval has
the same number of elements of even and of odd rank. For P an Eulerian poset, the
dual poset, obtained by reversing the order relation, is also Eulerian. The cd-index
of an Eulerian poset is an invariant based on the numbers of chains in the poset.
For P an Eulerian poset of rank n+1 and S ⊆ [1, n], fS(P ) is the number of chains
in P of the form 0̂ ≺ x1 ≺ x2 ≺ · · · ≺ xk ≺ 1̂, where {rank(xi) : 1 ≤ i ≤ k} = S.
The 2n-tuple of flag numbers fS(P ) (as S ranges over all subsets of [1, n]) is called
the flag vector of P . The flag h-vector is obtained by performing inclusion-exclusion
on the flag vector. Thus hS =

∑
T⊆S(−1)|S\T |fT or, equivalently, fS =

∑
T⊆S hT .

Write a generating function in noncommuting variables, Ψ(a, b) =
∑
hSuS , where

uS = u1u2 · · ·un with ui = a if i 6∈ S and ui = b if i ∈ S. For every Eulerian
poset, there is a polynomial Φ(c, d) in noncommuting variables c and d for which
Ψ(a, b) = Φ(a + b, ab + ba). The polynomial Φ(c, d) (or ΦP (c, d) when we need to
specify the poset P ) is called the cd-index of the poset. The cd-index of the dual
of the Eulerian poset P is obtained by reversing every cd-word in the cd-index of
P . The coefficient of a cd-word w is written as [w] (or [w]P ). We think of each d
as occupying two positions in a cd-word, namely, the positions of ab or ba in the
corresponding ab-words. Let supp(w) be the set of positions of d in w.

Stanley ([12]) notes a useful variation of the cd-index. The ce-index is obtained
by replacing every d in Φ(c, d) by (cc− ee)/2. Alternatively, one gets the ce-index
from Ψ(a, b)—even for non-Eulerian posets—by letting c = a + b and e = a − b.
The ce-index is thus a polynomial in the noncommuting variables c and e, where
for Eulerian posets the e’s occur only in pairs. Write LQ for the coefficient of the
word vQ = v1v2 · · · vn, where vi = c if i 6∈ Q and vi = e if i ∈ Q. The vector of
coefficients of the ce-index, (LQ(P )), is also known as the L-vector of P .

For an Eulerian poset P , LQ(P ) = 0 unless Q is an even set, that is, Q is the
union of disjoint intervals of even cardinality. We say Q evenly contains S, written
S ⊆e Q, if S and Q are even sets, S ⊆ Q, and the difference set Q \ S is also an
even set. An “Eulerian” ce-word vQ is converted to a sum of cd-words by replacing
consecutive pairs of e’s in vQ by cc − 2d so that no e’s remain. This means that
a cd-word w occurs in the expansion of a ce-word vQ if and only if supp(w) ⊆e Q.
Thus the coefficient in the cd-index of a cd-word w in which d occurs r times is

[w] = (−2)r
∑

supp(w)⊆eQ
LQ.(1)

(See [2] for more information on L-vectors.)
In determining the cone of flag vectors of all graded posets ([6]), Billera and

Hetyei construct sequences of posets with convergent (normalized) flag vectors.
Bayer and Hetyei apply a doubling operation to some of these to get sequences of
Eulerian posets. Given an interval I = [i, j] ⊆ [1, n], a rank n + 1 poset P and a
positive integer N , let DN

I (P ) be the rank n + 1 poset obtained by replacing PI ,
the subposet of P consisting of elements with ranks in I, by N copies of itself. The
(horizontal) double DP of a poset P is the result of starting with P and successively
applying the operators D2

{i}, for 1 ≤ i ≤ n. (In the Hasse diagram of P every edge
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is replaced by on.) For I a set of subintervals of [1, n], I is an even interval system
if (1) no interval of I is contained in another, (2) every interval of I is of even
cardinality, and (3) the intersection of any two intervals of I is of even cardinality.
For each even interval system I over [1, n], there exists a sequence of Eulerian
posets, DP (n, I, N), whose normalized flag vectors (and hence, normalized cd-
indices and ce-indices) converge. These are obtained by starting with a rank n+ 1
chain, successively applying the operators DN

I for the intervals I ∈ I, and finally
taking the horizontal double.

For I an interval system of k intervals, write

LS(DP (n, I)) = lim
N→∞

LS(DP (n, I, N))/Nk.

(Here 2nNk is the number of maximal chains inDP (n, I, N).) The symbolDP (n, I)
is referred to as a limit poset. These ce-index coefficients are given by the formula

LS(DP (n, I)) =
k∑
j=0

(−1)j
∣∣{1 ≤ i1 < · · · < ij ≤ k : Ii1 ∪ · · · ∪ Iij = S

}∣∣ ,(2)

where I = {I1, I2, . . . , Ik}. See [2] for details. The formula applies for non-Eulerian
limit posets as well; in that case it can give nonzero LQ for noneven sets Q.

We use one other result stated and proved in [2] (but implicit in [7]).

Proposition (Inequality Lemma). Let T and V be subsets of [1, n] with T ⊆ V ,
such that for every maximal interval I of V , |I ∩ T | ≤ 1. Write S = [1, n] \ V . For
P any rank n+ 1 Eulerian poset,∑

R⊆T
(−2)|T\R|fS∪R(P ) ≥ 0.

Equivalently,

(−1)|T |
∑

T⊆Q⊆V
LQ(P ) ≥ 0.

3. The main result

Theorem. 1. For the following cd-words w, the coefficient of w as a function
of Eulerian posets has greatest lower bound 0 and has no upper bound:
(a) cidcj, with min{i, j} ≤ 1,
(b) cidcd · · · cdcj (at least two d’s alternating with c’s, i and j unrestricted).

2. The coefficient of cn in the cd-index of every Eulerian poset is 1.
3. For all other cd-words w, the coefficient of w as a function of Eulerian posets

has neither lower nor upper bound.

Note. For n ≥ 5, there are b
(
n−2

2

)
/3c + 4 cd-words of the types described in

part 1. This is a small portion of the cd words for large n.

Proof. The fact that the coefficient of cn is 1 is immediate from the definition and
is included only for completeness.

Let w be any cd-word containing r copies of d, with r ≥ 1. Let I be the set of
two-element intervals of the positions of d in w. Compute the coefficient of w in
the cd-index of DP (n, I). If Q properly contains supp(w), then by equation (2),
LQ(DP (n, I)) = 0. So by equations (1) and (2), for DP (n, I), the coefficient of w
is [w] = (−2)rLsupp(w)(DP (N, I)) = (−2)r(−1)r = 2r. This is the limit as N goes
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to infinity of 1/N r times [w] for DP (n, I, N). So (DP (n, I, N)) is a sequence of
Eulerian posets with cd-coefficients [w] not bounded above. (Earlier Stanley ([12])
showed this using a different sequence of posets.)

To show nonnegativity in part 1, we use equation (1) and the Inequality Lemma.
If w = dcj , let S = ∅ (so V = [1, n]) and T = {1}. Then the coefficient of w is
[w] = 2(−1)

∑
T⊆Q⊆V LQ ≥ 0. If w = cdcj let S = {1} (so V = [2, n]) and T = {2}.

Then the coefficient of w is [w] = (−2)
∑
{2,3}⊆eQ LQ = 2(−1)

∑
T⊆Q⊆V LQ ≥ 0,

because LQ is zero unless Q is an even set. The cases of w = cid and w = cidc
follow by duality.

Let w = cidcd · · · cdcj , with d occurring r times, r ≥ 2; thus

supp(w) = {i+ 1, i+ 2, i+ 4, i+ 5, . . . , i+ 3r − 2, i+ 3r − 1}.

Let

S = {i+ 3, i+ 6, . . . , i+ 3r − 3},
V = [1, n] \ S

and

T = {i+ 2, i+ 4, i+ 7, . . . , i+ 3r − 5, i+ 3r − 2}.

Here S is the set of positions of the c’s between d’s and T is a set of one position
for each d, adjacent to the positions of the interior c’s. The coefficient of w is
[w] = (−2)r

∑
supp(w)⊆eQ LQ. The set Q evenly contains supp(w) if and only

if Q is an even set and T ⊆ Q ⊆ V . Since LQ = 0 unless Q is an even set,
[w] = 2r(−1)r

∑
T⊆Q⊆V LQ ≥ 0.

The double of the chain, DCn+1, has cd-index cn, so for the cd-coefficients in
part 1, the lower bound of 0 is actually attained.

It remains to show that the coefficients of the cd words in part 3 can be arbitrarily
negative. We use several lemmas.

Lemma 1. For every even n ≥ 4 the coefficient of dcn−4d as a function of Eulerian
posets has no lower bound.

Proof. Let I = {[1, n]}. By equation (2) the only nonzero entries in the L-vector
of DP (n, I) are L∅ = 1 and L[1,n] = −1. By (1) the coefficient of dcn−4d in
the cd-index of DP (n, I) is (−2)2(−1) = −4. This is the limit as N goes to
infinity of 1/N2 times [dcn−4d] for DP (n, I, N). So (DP (n, I, N)) is a sequence
of Eulerian posets with cd-coefficients [dcn−4d] not bounded below. (A formula
of Ehrenborg and Readdy ([8]) gives directly that the cd-index of DP (n, I, N) is
(N + 1)cn −N(cc− 2d)n/2.)

In [3] Bayer and Hetyei discuss constructions of Eulerian posets whose normalized
L-vectors converge to sums of L-vectors of non-Eulerian Billera-Hetyei limit posets.
(A few examples are found in [2, Appendix A].)

Lemma 2. For every odd n ≥ 7 the coefficient of dcn−4d as a function of Eulerian
posets has no lower bound.

Proof. Write Cn+1 for the chain of rank n+ 1. Let

P I(N) = DN+1
[1,2] D

N+1
[3,n−3]D

N+1
[4,n−2]D

N+1
[n−1,n](C

n+1);
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let

P II(N) = DN+1
[1,n−3]D

N2

[3,n−2]D
N+1
[4,n] (Cn+1);

and let

P III(N) = DN4

[1,n](C
n+1).

Create a poset P (N) from these three posets by identifying the elements of P II(N)
with the elements of P I(N) at ranks 0, 1, 2, n − 1, n, and n + 1, and then
identifying the elements of P III(N) with the elements of P I(N) and P II(N)
only at ranks 0 and n + 1. The doubles DP (N) of these posets are Eulerian,
and the normalized L-vectors converge as N goes to infinity. Write LQ(DP ) =
limN→∞ LQ(DP (N))/f[1,n](DP (N)). Then

LQ(DP ) = LQ(DP (n, I1)) + LQ(DP (n, I2)) + LQ(DP (n, I3)),

where I1 = {[1, 2], [3, n− 3], [4, n− 2], [n− 1, n]}, I2 = {[1, n− 3], [3, n− 2], [4, n]},
and I3 = {[1, n]}. The only nonzero LQ for which {1, 2, n − 1, n} ⊆e Q are
L{1,2,n−1,n}(DP ) = 1, L[1,n]\{3}(DP ) = −1 and L[1,n]\{n−2}(DP ) = −1, so by
equation (1) the coefficient of dcn−4d in the cd-index of DP is −4. This is the limit
as N goes to infinity of 1/f[1,n](DP (N)) times [dcn−4d] for DP (N). So (DP (N))
is a sequence of Eulerian posets with cd-coefficients [dcn−4d] not bounded below.
(In fact, a flag vector calculation gives the coefficient of dcn−4d for DP (N) as
4(N2 −N4).)

The proof of Lemma 2 asserts that DP (N) is Eulerian. It is easy to check by
equation (2) that LQ(DP (n, I1)) + LQ(DP (n, I2)) + LQ(DP (n, I3)) = 0 if Q is
not an even set. This condition must hold if every DP (N) is an Eulerian poset.
But to prove that DP (N) is Eulerian requires us to show that every interval of the
poset has the same number of elements of even rank and of odd rank. We show
the details in one case. Let [x, y] be an interval of P (N) with x of rank 2 and y of
rank n−1. For the Eulerian condition to hold on corresponding intervals in DP (N),
the interval [x, y] of P (N) must have one more element of even rank than of odd
rank. If x and y are in the subposet P III(N), then [x, y] has exactly one element
of each rank, so the condition is met. Suppose x and y are identified elements of
P I(N) and P II(N). In the open interval (x, y) in P I(N), ranks 3 and n − 2 each
haveN+1 elements and each other rank has (N+1)2 elements. In the open interval
(x, y) in P II(N), each rank has N2 elements. So the number of even-rank elements
in [x, y] is 2 + ((N + 1)2 +N2)(n − 5)/2, and the number of odd-rank elements in
[x, y] is 2(N + 1) + 2N2 + ((N + 1)2 +N2)(n− 7)/2. The difference is 1. Note that
neither P I(N) nor P II(N) satisfies the Eulerian condition for [x, y] by itself. The
two subposets balance each other to achieve the Eulerian property. This works for
all intervals.

Lemma 3. The coefficient of ccdcc as a function of rank 7 Eulerian posets has no
lower bound.

Proof. The following limit poset is given in Appendix A of [2]. Let P I(N) =
DN

[1,2]D
N
[2,6](C

7) and P II(N) = DN
[1,5]D

N
[5,6](C

7). Let P (N) be formed from these
two posets by identifying the elements at ranks 0, 1, 6, and 7. The double DP (N) of
this poset is Eulerian. In the limit, the normalized L-vector includes the following
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values: L34 = L1234 = L3456 = 0, and L123456 = 1. These are the LQ that
contribute to the coefficient of ccdcc in the cd-index,

[ccdcc] = −2(L34 + L1234 + L3456 + L123456) = −2.

As argued before, this gives a sequence of Eulerian posets with cd-coefficients [ccdcc]
not bounded below. (In fact, for DP (N), [ccdcc] = −2(N − 1)2.)

Lemma 4. Let u and v be cd-words. If the coefficient of u as a function of Euler-
ian posets has no lower bound, then the coefficients of uv and vu as functions of
Eulerian posets have no lower bounds.

Proof. In [12] Stanley considers a “join” operation, which produces an Eulerian
poset P ∗ Q from two Eulerian posets P and Q. He shows that the cd-indices
satisfy ΦP∗Q(c, d) = ΦP (c, d)ΦQ(c, d). Let u be a cd-word of length m and v a
cd-word of length n. Let B be the rank n + 1 Boolean algebra. Every cd-word of
length n has a positive coefficient in the cd-index of B. (This is proved most easily
from the Ehrenborg-Readdy formula for the cd-index of a pyramid in [8].) Let PN
be a sequence of rank m+ 1 Eulerian posets for which limN→∞[u]PN = −∞. Then
limN→∞[uv]PN∗B = limN→∞[vu]B∗PN = −∞.

We now complete the proof of the theorem. Every cd-word not included in parts 1
and 2 of the Theorem contains the subword ccdcc or a subword of the form dcn−4d
for n− 4 6= 1. Thus, by Lemmas 1 through 4, the coefficients of these cd-words as
functions of Eulerian posets have no lower bounds.
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