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This paper studies the asymptotic properties of a nonstationary partially linear
regression model+ In particular, we allow for covariates to enter the unit root ~or
near unit root! model in a nonparametric fashion, so that our model is an exten-
sion of the semiparametric model analyzed in Robinson ~1988, Econometrica 56,
931–954!+ It is proved that the autoregressive parameter can be estimated at rate
N even though part of the model is estimated nonparametrically+ Unit root tests
based on the semiparametric estimate of the autoregressive parameter have a lim-
iting distribution that is a mixture of a standard normal and the Dickey–Fuller
distribution+ A Monte Carlo experiment is conducted to evaluate the performance
of the tests for various linear and nonlinear specifications+

1. INTRODUCTION

In recent years, statistical models incorporating nonlinearity have received
increased attention in econometrics+ One type of these models is the following
partially linear regression:

yt � g 'zt � g~xt !� et , t � 1, + + + ,N, (1.1)

where g~{! is an unknown real function and g is the vector of unknown param-
eters that we want to estimate+ This type of specification arises when the pri-
mary interest is in the parameter g, whereas the relation of the mean response
to additional variables xt is not easily parameterized+ Such a strategy provides
an intermediate class of models that are more flexible than standard linear regres-
sion, with the potential for greater precision than purely nonparametric models+

There is a large literature in econometrics and statistics on the study of par-
tially linear models+ Wahba ~1986!, Engle, Granger, Rice, and Weiss ~1986!,
and many others studied the penalized least squares method in partially linear
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regression estimation+ Heckman ~1986!, Chen ~1988!, Rice ~1986!, and Speck-
man ~1988! studied MN -consistency of g under different assumptions and
using various methods+ Using higher order Nadaraya–Watson kernel esti-
mates to eliminate the unknown function, Robinson ~1988! introduced a feasi-
ble least squares estimator for g+ Under regularity and smoothness conditions,
MN -consistency and asymptotic normality are obtained+ Robinson also showed
that when the errors are independently and identically distributed ~i+i+d+! nor-
mal, this estimator achieves the semiparametric information bound+ A higher
order asymptotic analysis of the partially linear regression estimators is given
by Linton ~1995!+ Fan, Li, and Stengos ~1995! extended the MN -consistency
and asymptotic normality results for partially linear models with conditionally
heteroskedastic disturbances+ In time series, Fan and Li ~1999! established these
results for models with weakly dependent process xt + For other work on par-
tially linear regression models, see Chen ~1988!, Shiller ~1984!, and Schick
~1986!, among others+ However, all of the previous studies have been focused
on either i+i+d+ or stationary cases, and, to our knowledge, there has been no
study in the existing literature on nonstationary partially linear models+ The
current paper attempts to provide a first step toward investigation of such mod-
els+ In particular, we consider a partially linear model with a unit root+

Unit root models have been an important subject in econometric analysis
and have attracted a large amount of research effort in the last 15 years+ Test-
ing for the presence of unit roots is now a common practice in applied macro-
economics+ Although the unit root hypothesis has been tested in hundreds of
time series, it is well known that the discriminatory power of unit root tests is
generally low+ As a result, increasing power in unit root tests has become an
important research topic+ There has been a branch of unit root literature that
uses various features of the time series data to increase power in recent years+
For example, Hansen ~1995! shows that inclusion of stationary covariates can
generate more precise estimates of the autoregressive parameter, translating into
higher power for unit root tests+ Lucas ~1995! uses M-estimators to take advan-
tage of non-Gaussian errors in unit root tests+ His results show that power gains
are possible, even if the M-estimator does not coincide with the true likelihood+
Elliot, Rothenberg, and Stock ~1996! propose an estimation strategy that focuses
on estimating potential trends under the local alternative hypothesis to effec-
tively reach the Gaussian power envelope for unit root tests+ Using rank-based
tests, Hasan and Koenker ~1997! are also able to realize increased power under
certain error distributions while experiencing a small loss in power if the errors
are actually Gaussian+ Seo ~1999! simultaneously estimates generalized auto-
regressive conditional heteroskedasticity ~GARCH! effects along with the auto-
regressive coefficients to increase power+ Shin and So ~1999! and Beelders ~1999!
use adaptive estimation to nonparametrically estimate the density of errors, and
again obtain large power gains, particularly if the error terms are heavy-tailed+
In the current paper, we propose a partially linear unit root model to improve
the power of unit root tests+
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Although many observed time series seem to display nonstationary charac-
teristics, nonlinearity also seems to be an important feature in a range of appli-
cations+ In fact, a lot of economic models do contain nonlinear elements ~see,
e+g+, among others, Tong, 1990; Granger and Terasvirta, 1993; Granger, 1995!+
For this and other reasons, one of the directions in which the subject is pres-
ently moving is the study of nonstationary models with nonlinearity+ In partic-
ular, to treat potential nonlinearities, Phillips and Park ~1998! studied nonlinear
autoregressive models and showed that the nonparametric estimator of the auto-
regressive function converges at rate N 104 in the unit root case+

In this paper, we consider a partially linear autoregression with nonstationarity:

Dyt � dyt�1 �(
j�1

p

pj Dyt�j � g~xt !� et ,

where d is close to zero and xt is a vector of stationary covariates+ When d is
exactly zero, yt follows a unit root process+ Otherwise, it is characterized as a
near unit root process+ In this model, our primary interest is still the estimation
and test of the parameter d, but we allow for an unknown nonlinear function of
covariates, g~xt !, to influence the time series+ The model can be viewed as a
semiparametric extension of the covariate augmented Dickey-Fuller ~CADF!
regression of Hansen ~1995!+ In allowing such a general structure, we hope to
improve the efficiency in estimating the autoregressive ~AR! parameter and fur-
ther increase the power gains of unit root tests from using covariates, particu-
larly if there is a nonlinear relationship with the chosen covariate+ Because the
form of the nonlinearity is unknown, we estimate this part of the model non-
parametrically while modeling the autoregressive component linearly+ The moti-
vation stems from the fact that we are adding variables to the model with the
hope that they may explain some of the variation in yt + In this exercise, we
have little information about the influence of series xt on yt so it is natural to
refrain from taking a stand on the functional form for g~xt !+ As we illustrate in
the paper, the power loss associated with nonparametrically estimating the func-
tion g~xt ! ~relative to a correct specification! is small, yet the power gain from
nonparametric estimation relative to an incorrect specification is quite large+

The proposed estimation strategy parallels that of Robinson ~1988!+ How-
ever, the technical issues addressed here are different than those treated in the
stationary case+ In particular, we must bound the average of the difference
between an integrated variable and its local average over the x values+ More-
over, we must show that functions of the local average converge to known ~non-
standard! distributions+

There are several findings in this paper+ First, by using the compromise of a
partially linear model, the convergence for the autoregressive component remains
at rate N+ This is an important extension of the result of Robinson ~1988! to the
nonstationary case+ In addition, asymptotic distributions of partially linear esti-
mates of d and its modified t-statistic are derived+ The limiting distribution of
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the resulting unit root test is identical to the distribution found in Hansen ~1995!,
where covariates are used in a linear fashion+ A limited Monte Carlo experi-
ment reveals that there is little loss in using our more general test statistic when
covariates enter the model linearly or not at all, and the power gains from using
our partially linear model when there are nonlinear effects are substantial+ Finally,
in the course of proving our theorem, we show that, in the density-weighted
regression, nonparametrically regressing an I~1! series on an I~0! series is asymp-
totically equivalent to an ordinary least squares ~OLS! regression of the I~1!
series on a constant+

The outline of the paper is as follows+ In Section 2, we develop the model
and provide a brief description of the estimation procedure+ Section 3 provides
the assumptions and asymptotic distribution of the estimator and the test statis-
tic+ Extensions to the case with weakly dependent covariates are discussed in
Section 4+ Section 5 reports some Monte Carlo results, and Section 6 applies
the proposed tests to U+S+ monthly macroeconomic time series+ Notation is stan-
dard with weak convergence denoted by n and convergence in probability by

p
&&+ Hadamard multiplication is indicated by the symbol �+ Integrals with respect

to Lebesgue measure such as *0
1 W~s! ds are usually written as *0

1 W, or simply
*W when there is no ambiguity over limits+ All limits in the paper are taken as
the sample size N r `, except as otherwise noted+

2. THE MODEL AND THE ESTIMATOR

We begin with the following time series model:

Dyt � m� dyt�1 �(
j�1

p

pj Dyt�j � vt (2.1)

and denote the pth order polynomial P~L! � ~1 � p1 L � {{{ � pp L p!+ It is
assumed that all roots of P~L! lie outside the unit circle+ We are interested in
the case where the largest autoregressive root of yt is close to unity+ Thus we
focus our discussion on the case where d is close to zero and assume for sim-
plicity of exposition that y0 � 0+ Our primary interest is the estimation and tests
on d+We consider the model that contains a unit root under the null hypothesis
H0 : d � 0 and allows for local departures from the hypothesis by setting d �
�cP~1!0N as the alternative+

As argued in Hansen ~1995!, utilizing useful information contained in related
time series can bring substantial power gain to the estimation and tests in unit
root models+ We assume that there are q additional stationary covariates, xt ,
that help explain vt , so that

vt � @g~xt !�m#� et , (2.2)
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where g :Rq r R and E~g~xt !!� m+ For identification reasons, we absorb the
“intercept” term into the nonlinear function g~xt !; see the further discussion on
this issue at the end of this section+ Combining ~2+1! and ~2+2! gives

Dyt � dyt�1 �(
j�1

p

pj Dyt�j � g~xt !� et + (2.3)

Regression ~2+3! would be used to test the unit root hypothesis against the alter-
native of stationarity around a fixed mean+

Another important model in the unit root literature is the case where the time
series yt contains a linear time trend t+1 In this case, we add a linear time trend
in the regression and consider

Dyt � dyt�1 � ut �(
j�1

p

pj Dyt�j � g~xt !� et , (2.4)

where t is a simple time trend+ In practice, ~2+4! would be used to test if a
series has a unit root with a drift versus ~linear! trend stationarity+

In this paper, we consider unit root tests based on partial linear regressions
~2+3! and ~2+4!+ We introduce the following notation: let zt be the vector of
~linear! regressors and g be the vector of unknown parameters associated
with these regressors+ Thus, corresponding to regression ~2+3!, zt � ~ yt�1,
Dyt�1, + + + ,Dyt�p!

', g � ~d,p1, + + + ,pp!
� ; and corresponding to regression ~2+4!,

zt � ~ yt�1, t,Dyt�1, + + + ,Dyt�p!
�, g� ~d,u,p1, + + + ,pp!

�+ Consequently, our regres-
sion models can be rewritten in the following general format of a partially
linear regression:

Dyt � g 'zt � g~xt !� et + (2.5)

Conditional on the covariates xt , one gets

E~Dyt 6xt ! � g
'E~zt 6xt !� g~xt !+

Taking the difference of the preceding two equations leads to

Dyt � E~Dyt 6xt ! � g
' @zt � E~zt 6xt !#� et +

If the conditional expectations were known, regressing Dyt � E~Dyt 6xt ! on zt �
E~zt 6xt ! would give us an estimate of g+ However, the quantities E~Dyt 6xt ! and
E~zt 6xt ! are unknown+ Thus, we consider the following procedure that esti-
mates b, and thus d, by two steps+ First, regress Dyt and zt nonparametrically
on xt and denote the nonparametric regression residuals as [edt and [ezt , respec-
tively+ Next, regress the residuals [edt on [ezt by least squares to get an estimate
of g+

The nonparametric estimation uses a Nadaraya–Watson kernel estimator that
we illustrate subsequently+ Let k~u! be the univariate kernel and denote K~u!�

)r�1
q k~ur ! if u is q-dimensional+ In addition, let
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Ktj � K� xt � xj

a
�,

where a is a bandwidth parameter+ Let f ~x! be the density of xt and denote
f ~xt ! as ft ; then we have

Zft �
1

Naq (
j�1, j�t

N

Ktj ; ZE~Dyt 6xt !�
1

Naq

(
j�1, j�t

N

Ktj Dyj

Zft

;

ZE~zt 6xt ! �
1

Naq

(
j�1, j�t

N

Ktj zj

Zft

and the nonparametric regression residuals are

[edt � Dyt � ZE~Dyt 6xt ! and [ezt � zt � ZE~zt 6xt !+

The vector and matrix of these residuals are denoted [ed and [ez, respectively+
Next, we estimate g by regressing [ed on [ez+ The preceding kernel regression

necessarily involves a random denominator, a problem we circumvent by using
a density-weighted estimate as in Powell, Stock, and Stoker ~1989! and Fan
and Li ~1999!+ Thus, we regress [ed on [ez using OLS and incorporating the den-
sity weighting+ Thus, we have

[g � ~~ [ez � Zf !�~ [ez � Zf !!�1~ [ez � Zf !�~ [ed � Zf !, (2.6)

where � denotes the Hadamard product and Zf is the vector of the estimated
density evaluated at each xt +

Notice that by the nature of the semiparametric partially linear regression,
an intercept term is not identified unless the model is further restricted+ Conse-
quently, the estimation of d on the model with no constant term is the same as
with a constant term+ The apparent lack of identification arises because we have
already implicitly estimated an intercept in the nonparametric regression, and
no such effect remains+ As argued by Robinson ~1988!, the fact that one cannot
separate these cases is less a drawback than a consequence of the generality of
the semiparametric model+ Furthermore, in practice one would at least estimate
an intercept even in the simplest unit root test and even if an intercept is not
present under the null hypothesis+2

3. MAIN RESULTS

We derive the asymptotic properties of the proposed partially linear regression
estimation in this section+ Our attention is focused on the case where the auto-
regressive root is close to unity, and we consider statistical tests for the null
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hypothesis of a unit root+ For purposes of determining asymptotic distributions,
we use local to unity asymptotics ~Phillips, 1987; Chan and Wei, 1987! so that
d� �cP~1!0N+ Under the null hypothesis of a unit root, c � 0, whereas under
c � 0, the alternative hypothesis becomes increasingly difficult to detect as the
sample size increases+ We assume that the system is initialized by setting
y0 � 0 ~or, more generally, any random variable with finite variance!+ We fol-
low convention and denote W c~r! as the solution to the stochastic differential
equation

dW c~r! � �cW c~r!� dW~r!,

where W~r! is a continuous stochastic process+ When W~r! is a Brownian
motion, W c~r! is the conventional Ornstein–Uhlenbeck process+

Following Hansen ~1995!, we define

svef � Cov~vt , et ft
2!, sv

2 � Var~vt2!, sef
2 � E~et

2 ft
4!,

and r2 �
svef

2

sv
2sef

2 +

We establish the N-consistency and derive the limiting distribution of the par-
tially linear regression estimator Zd under conditions similar to those used in
Robinson ~1988! and Fan and Li ~1999!+ We will use the definitions for the
class of kernel functions of order l, Kl , and the class of regression functions Gma
as defined in Robinson ~1988, pp+ 937, 939!+ In particular, Kl characterizes the
class of lth order kernels and Gma imposes moment and smoothness conditions
for the nonlinear function and the density of the covariate+We also assume the
following assumptions to facilitate the asymptotic analysis+

Assumptions+ ~A1! $xt % is i+i+d+; ~A2! et is i+i+d+ with mean zero and is
independent with x, E6e 64 � `; ~A3! x has probability density function ~p+d+f+!
f � Gl`, for some l � 0; ~A4! g � Gn4 , for some n � 0; ~A5! as N r `,
N�1a�2q r 0, MN a2 min~l�1,n! r 0; ~A6! k � Kl�n�1 for integers l and n such
that l � 1 � l � l, n � 1 � n � n; ~A7! sv

2 � 0 and r2 � 0; ~A8! d �
�cP~1!0N+

Initially, we assume that $xt % and $«t % are i+i+d+ for simplicity+ We discuss
extensions to more general cases in the following section+ The following lemma
provides an important and interesting result regarding nonparametric regres-
sion of I~1! on I~0! processes+ The proof of Lemma 3+1 also plays an important
role in the proof of our main result+

LEMMA 3+1+ Under Assumptions A1–A8, for any t � 2, + + + ,N,

1

MN
~ [yt�1 � Ty! Zft � op~1! ,
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where Ty � ~10N !(t�1
N yt and

[yt�1 �
1

Naq

(
j�1, j�t

N

Ktj yj�1

Zft

+

The preceding result indicates that, in our density-weighted regression, if one
nonparametrically regresses yt�1 on ~stationary! xt , the predicted value behaves
asymptotically as if we used the sample mean+ The asymptotic distribution of
the semiparametric partially linear regression estimator Zd is summarized in the
following theorem+

THEOREM 3+2+ Under Assumptions A1–A8,

N~ Zd� d!n P~1!
sef

svE~ f 2 ! ��~ uW1
c!2��1

� �r� uW1
c dW1 � M1 � r2� uW1

c dW2�, (3.1)

where W2 and W1 are independent standard Brownian motions, uW1
c � W1

c~r!�
*W1

c~s! ds for model (2.3), and uW1
c � W1

c~r! � ~6r � 4!*W1
c~s! ds �

~12r � 6!*W1
c~s!s ds for model (2.4) (with u � 0).

The limiting distribution given in Theorem 3+2 is similar to Theorem 2 in
Hansen ~1995!+ To test the unit root hypothesis and apply the critical values in
Hansen ~1995!, we construct a modified t-ratio+ To this end, we denote t *~d! as

t *~ Zd! �
Zd
[sef

� ZE~ f 2 !

S 11 ,

where S 11 is the first entry of the matrix

~~ [ez � Zf !�~ [ez � Zf !!�1

and the terms [sef and ZE~ f 2! are consistent estimators for sef and E~ f 2!+ The
consistent estimators are presented later in this section+ The following theorem
provides the limiting distribution of our modified t-ratio+

THEOREM 3+3+ Under Assumptions A1–A7, the t-statistic based on Zd has
limiting distribution

t *~ Zd!n �
cE~ f 2 !sv
sef

��~ uW1
c!2�102

���~ uW1
c!2��102�r� uW1

c dW1�
� M1 � r2N~0,1!, (3.2)
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where the N~0,1! variable is independent of W1 and uW1
c~r! is defined as in

Theorem 3.2. In particular, under the null hypothesis of a unit root,

t *~ Zd!n ��~ uW1!
2��102�r� uW1 dW1�� M1 � r2N~0,1!+

The limiting distribution in Theorem 3+3 is identical to that in Hansen ~1995!
and very similar to other distributions appearing in various related unit root
tests+ In particular, nearly identical limiting distributions arise in Hasan and
Koenker ~1997! for their unmodified statistic ST based on ranks, in Lucas ~1995!
for unit root tests based on M-estimators, and in Seo ~1999! for unit root tests
allowing for GARCH effects+ Beelders ~1999! and Shin and So ~1999! also
obtained the same limiting distribution for unit root tests when adaptive esti-
mation was employed+

The distribution has the disadvantage that r is a remaining nuisance param-
eter+ There have been various approaches for dealing with the nuisance param-
eter r, ranging from simulating critical values for each value of the parameter
to using conservative critical values to cover the range of possible r+ We must
estimate r in addition to the other parameters used to construct the modified
t-ratio+ Consider the following consistent estimate of E~ f 2!:

ZE~ f 2 ! �
1

N (t�1

N

Zft
2 +

We estimate vt by the residual from an OLS regression of Dyt on zt , and we
estimate et ft by Iet Zft where

Iet � [edt � Zb� [ezt +

The estimates [vt and Iet Zft
2 can then be used to obtain a consistent estimate of r

as in Hansen ~1995!+ Finally, with the estimated value of r in hand, we com-
pare t *~ Zd! to the critical values in Table 1 of Hansen ~1995!+

4. EXTENSIONS

In this section, we list several possible extensions to our simple model+ In the
previous section we assumed that the covariates xt are i+i+d+ This assumption
substantially simplifies the proof+ However, xt is not i+i+d+ in most empirical
settings, and it is desirable to extend our results to allow for some dependence
in xt + In stationary partially linear models, Fan and Li ~1999! show that one
can obtain the usual MN convergence rate when the data are absolutely regular+
Using the approach of Fan and Li ~1999! to deal with the correlation in xt , our
analysis can be extended to the case with weakly dependent covariates+

We modify Assumption A1 to A1' to allow for weak dependence in xt +
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Assumption A1'+ $xt % is a stationary absolutely regular process with coeffi-
cient bj satisfying bj

d0~1�d! � O~ j�2�e ! for some 0 � e � 1, 0 � d � 1
2
_ +

Assumption A1' assumes that $xt % is absolutely regular with some restric-
tions on the decay rate of the mixing coefficient so that summations such as

(j�1
` j 2bj

d0~1�d! � `+ Many well-known time series, including stationary auto-
regressive moving average ~ARMA! processes ~Pham and Tran, 1985!, are abso-
lutely regular with geometric decay rates and thus satisfy Assumption A1' + See
Fan and Li ~1999! for more discussion on this type of assumption and related
references+Assuming that the stationary covariate is b-mixing and using results
of Yoshihara ~1976! for b-mixing processes, we can extend the results in Sec-
tion 3 to the case with weakly dependent covariates+

THEOREM 4+1+ Under Assumptions A1' and A2–A7, the partial linear re-
gression estimator Zd has the same limiting distributions as that of (3.1) in
Theorem 3.2.

The preceding extension requires careful treatment of the nonstationarity intro-
duced to the partially linear model framework as we have presented it+ The
mathematical complexity of the proofs is greatly increased in the presence of
nonstationarity and nonparametric characteristics+ For a sketch of a proof for
this extension, the readers are referred to Appendix D ~available from the authors
upon request!+

If one allows for dependence in xt , as would be expected in most applica-
tions, the estimation of r is based on a long-run variance estimator+ That is, we
use the analogue of equation ~17! in Hansen ~1995! given by

� [sv2 [svef
[svef [sef2

� � (
j��T�1

T�1

w� j

bT
�(

t
� [vt
Iet Zft

2�~ [vt�j Iet�j Zft�j
2 !,

where w~{! is a kernel function and bT is a bandwidth parameter+ The param-
eter r is estimated using these long-run variance estimates+

The assumption about the errors may also be relaxed to the case that et is a
martingale difference sequence and allow for conditional heteroskedasticity as
in Fan et al+ ~1995! and Fan and Li ~1999!+ The condition proposed in Fan and
Li ~1999! is E~et 6xt , yt�1,Ft�1!� 0, where Ft�1 is the sigma algebra generated
by all past yt�1 and xt�1+ This condition is much weaker than independence of
xt and et , and it allows for heteroskedasticty in addition to GARCH-type effects+
We conjecture that our results still hold in the presence of this condition, and
we investigate these extensions in Monte Carlo experiments in the next section+

5. MONTE CARLO

In this section, a small simulation study is conducted to examine the finite-
sample performance of the nonstationary partially linear estimation and the
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associated unit root test+We consider several specifications of g~x!, both linear
and nonlinear, to compare the standard Dickey–Fuller test, the CADF test of
Hansen ~1995!, and the new test t *~ Zd! using the partially linear model, which
we denote as partially linear model unit root ~PLMUR!+ The data generating
process is

Dyt � dyt�1 � gj ~xt !� et , j � 1, + + + ,5+

The different functions are listed here:

g1~x! � 0; g2~x!� 2x; g3~x!� 2x1 x2 ;

g4~x! � x 2 � 1; g5~x!� x 3 � x+

The x variables are all standard normal+ When g1~x! is used, we expect the
Dickey–Fuller test to perform the best as there is no x effect to detect+ The
function g2~x! gives the CADF test of Hansen the advantage because the covari-
ates enter linearly+ We include g3~x! for the purpose of checking the ability of
the PLMUR test to use multiple covariates+As shown in the Monte Carlo exper-
iment of Robinson ~1988!, the nonparametric estimates ZDy and [y are likely to
worsen as the dimension of x increases+ In addition, it is easy to check that the
OLS coefficients on x1 and x2 will converge to zero so that the CADF test
should have similar performance to the Dickey–Fuller test for g3~x!+ The other
specifications are also nonlinear, so the PLMUR tests should be more powerful
if the nonlinearity is estimated reasonably+

Given a density associated with x, smaller values of r are indicative of the
effectiveness of covariates in explaining variation in vt � g~xt ! � et + There-
fore, we expect more powerful tests if r is small+ Straightforward calculations
show that

b2r1
2 � 1; b2r2

2 �
1

5
; b2r3

2 �
1

5
; b2r4

2 �
1

3
; b2r5

2 �
1

11
,

where rj
2 is associated with gj~x! and b2 � E~ f 4!0~E~ f 2!!2+

For the PLMUR test, we need to select a kernel and a bandwidth+ In our
experiment, we chose a Gaussian kernel+ The bandwidth is set to N�105 for all
experiments+

The PLMUR test and the CADF test both require estimates of r+ We com-
pute these using the residuals from each of the regressions and then use the
resulting estimate to select a critical value from Table 1 in Hansen ~1995!+ We
explore size and power by changing the value of c in d � �~c0N !+ For each
specification, we generate samples of size 100 and compute 10,000 replica-
tions for models ~2+3! and ~2+4!+3 The numerical results for size appear in Table 1,
and we provide graphs of the power functions in Figures 1–3+ In particular,
Figures 1–3 correspond to g1, g2, and g5+ The results for g3 and g4 are similar
to g5 and are omitted to conserve space+
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For c � 0, we have a unit root, and we compare the size for each of the tests+
All three tests have reasonable size for all of the specifications, with no test
being severely oversized+ The size result for the PLMUR test indicates that the
asymptotic theory provides an accurate approximation for the distribution of
the statistic+ This is remarkable given the choice of the same bandwidth for all
of the widely different choices of g~x!+

For c � 0, the departure from the unit root becomes apparent in the increased
rejection frequencies+ For g1~x! ~Figure 1!, the power of the CADF test is very

Table 1. Size

Model ~2+3! Model ~2+4!

DF CADF PLMUR DF CADF PLMUR

g1 0+05 0+05 0+06 0+06 0+06 0+05
g2 0+05 0+05 0+04 0+05 0+05 0+04

c � 0 g3 0+05 0+05 0+05 0+05 0+05 0+04
g4 0+05 0+05 0+04 0+05 0+05 0+04
g5 0+05 0+05 0+04 0+05 0+05 0+03

Figure 1. g1~x! � 0+
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Figure 2. g2~x! � 2x+

Figure 3. g5~x! � x 3 � x+
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close to the Dickey–Fuller test for the range of local alternatives considered+
However, the PLMUR test is not as powerful as either the Dickey–Fuller or the
CADF test when there is no covariate effect+ For g2 ~Figure 2!, the linear effect,
the PLMUR test competes favorably with the CADF test, suggesting that when
there is a linear effect, the loss in using the more general PLMUR test is small+
The advantage of the PLMUR test becomes apparent when g5 ~Figure 3! is
considered+ As expected, the covariate is successfully used to reduce the vari-
ance of the estimator of d+ Using the cubic function, power is again much higher
than the competing tests+ The CADF test has more power than the Dickey–
Fuller because using x linearly does help explain some of the variance of vt so
that d is estimated with more precision+ Simple calculations show that the esti-
mated linear regression coefficient should converge to 2 so that the estimated
value of r converges to 7

11
_ + In all cases where covariates are correctly chosen,

both the CADF and the PLMUR test dominate the standard Dickey–Fuller tests+
In all cases where there is a nonlinear effect, the PLMUR test is the most pow-
erful, with power increasing as r decreases+

The preceding experiments were all conducted using i+i+d+ xt and et +We relax
these conditions and explore the effects on the PLMUR test+ In all additional
cases, we explore the function g4+ First, we consider the effects of dependence
in xt by employing the data generating process

xt � 0+7xt�1 � et , (5.1)

where et is i+i+d+ N~0,1!+ In addition, we generate heteroskedasticity in et accord-
ing to the following process:

et � ut 6xt 6,

where ut is i+i+d+ N~0,1! and xt is generated according to ~5+1!+ This implies
that E~et

2 6xt !� xt
2 so that there is heteroskedasticity in addition to dependence

in xt + Finally, we combine dependence in xt ~via ~5+1!! with ARCH~1! errors
given by

et � ut ~1 � 0+5et�1
2 !102,

where ut is again i+i+d+ N~0,1! so that E~et
2 6et�1! � 1 � 0+5et�1

2 +
For each of the final three experiments, we allow dependence in xt + As men-

tioned in the previous section, dependence in xt causes dependence in vt so that
we must use a long-run variance to estimate the parameters sv and svef + We
employ a kernel-based estimator using a quadratic spectral kernel and the data-
dependent bandwidth of Andrews ~1991! applied to the series vt + We present
the output in Table 2+We denote the data generating processes as heteroskedas-
ticity ~HET!, dependent ~DEP!, and autoregressive conditional heteroskedastic-
ity ~ARCH!+ We also list the size-adjusted power for each test in Table 2+ We
see that power is still higher for the PLMUR test in all cases+ However, power
for the PLMUR test varies slightly for the different data generating processes+
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The main reason this is true is that given the new data generating processes, the
value of r varies+As noted before, the lower the value of r, the higher the power+

The results of the experiment indicate that power is indeed higher for the
PLMUR test when there are nonlinear effects in the covariates+ Moreover, the
presence of heteroskedasticity, dependence in xt , and ARCH effects do not alter
the size of the tests+

6. EMPIRICAL ILLUSTRATION

In this section, we demonstrate the use of PLMUR tests using monthly data for
the United States from January 1970 to January 2001+ The series of interest are
the unemployment rate and total capacity utilization+4 As a preliminary analy-
sis, we conduct a simple unit root test on the unemployment rate and include a
constant and trend in the regression+ We include four lags of Dyt where the
number of lags was determined by the modified Akaike information criterion
~AIC! criterion of Ng and Perron ~2001!+ The Dickey–Fuller t-statistic is �2+86,
which is not significant at the 10% level+ Hence, we fail to reject the unit root
hypothesis+ Using the preceding notation, the unemployment rate is denoted yt ,
and we take the lag of the first difference of total capacity utilization as xt + The
model of interest is

Dyt � ut � dyt�1 � g1Dyt�1 � g2Dyt�2 � g3Dyt�3 � g4Dyt�4 � g~xt !� et +

For comparison purposes, we also calculate the CADF test of Hansen ~1995!,
which assumes that g~xt ! is a linear function+ The estimated value of r2 for the
CADF is 0+71, so that the appropriate conservative critical values at the 10%
and 5% levels are �2+97 and �3+27, respectively+ The CADF t-statistic for
unemployment using the lag of the first difference of total capacity utilization
as a covariate is �2+39, so we again fail to reject the null hypothesis of a unit
root+ The PLMUR test uses a nonparametric estimate of g~xt !, so the estimate
of d is semiparametric+ We calculate the PLMUR test using three different

Table 2. Size and size-adjusted power for g4

HET DEP ARCH

c DF CADF PLMUR DF CADF PLMUR DF CADF PLMUR

0 0+02 0+03 0+03 0+03 0+03 0+04 0+02 0+03 0+04
3 0+02 0+05 0+96 0+02 0+05 0+84 0+03 0+05 0+68
6 0+02 0+08 1+00 0+02 0+08 0+99 0+03 0+09 0+94
9 0+04 0+16 1+00 0+03 0+14 0+99 0+05 0+16 0+99

12 0+07 0+24 1+00 0+06 0+21 1+00 0+09 0+23 1+00
15 0+13 0+35 1+00 0+10 0+30 1+00 0+15 0+34 1+00
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choices of bandwidth parameter a, with a � dN�105 with d � 1,2,3+ The tests
and estimated r parameters associated with each bandwidth are then indexed
by d+ The corresponding estimates of r are [r1 � 0+23, [r2 � 0+29, and [r3 �
0+38+ These estimates suggest that the parameter d will be estimated with
increased precision, allowing for more powerful testing of the unit root hy-
pothesis+ The test statistics are PLMUR1 � �3+22, PLMUR2 � �3+11, and
PLMUR3 � �3+09+ The 5% critical value associated with [r1 and [r2 is �2+73,
and the 5% critical value for [r3 is �2+87+ We see that in all cases the null
hypothesis of a unit root is rejected+ A graph of the estimated nonlinear func-
tion [g~xt ! using a � 2 � N�105 is shown in Figure 4+ This example illustrates
how using a partially linear model with covariates can lead to a rejection of the
unit root hypothesis when standard tests fail to reject+

NOTES

1+ See, e+g+, Hansen ~1995! for alternative representations and more discussions on unit root
models with a deterministic component+

2+ See Hamilton ~1994, Ch+ 17! for a discussion on inclusion of deterministic terms in tests for
unit roots+ The case with an estimated intercept when no intercept is present corresponds to case 2
in Chapter 17 of Hamilton+

3+ The programs were written in Ox 2+0; see Doornik ~1998!+
4+ The series were extracted from the FRED II database at the St+ Louis Federal Reserve+

Figure 4. Estimated g~xt! for unemployment+
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APPENDIXES

We define E1~{!� E~{6x1! and EXN
~{!� E~{6XN ! where XN � ~x1, x2, + + + , xN !+Without

loss of generality, we also assume that the initial value is y0 � 0 and demonstrate the
proofs for the demeaned case with c � 0 ~unit root!, other cases being similar ~for some
details of proofs and a discussion of the case with a deterministic trend, also see an
early version of this paper, Juhl and Xiao, 2000!+ We give some useful propositions in
Appendix A+Appendix B proves the main result using the results of Appendix A+ Proofs
of Lemma 3+1 and Propositions 1–14 are given in Appendix C+ Appendix D ~available
from the authors upon request! extends the analysis to the weakly dependent covari-
ate xt + We also define the following terms:

ZDyt�s �
1

Naq

(
j�1, j�t

N

Ktj Dyj�s

Zft
,

[et �
1

Naq

(
j�1, j�t

N

Ktj ej

Zft
,

[g~xt ! �
1

Naq

(
j�1, j�t

N

Ktj g~xj !

Zft
+

In addition, let [ev be the vector of ~et � [et � g~xt !� [g~xt !! and [ey and [es be the vectors
of residuals from nonparametrically regressing yt�1 and Dyt�s on xt , respectively+
Let B~L! � P~L!�1 ; we have B~L! � B~1! � B*~L!~1 � L! and yt � yt

* � vt* � v0*

where yt
* � B~1!(l�0

t vl , vt* � B*~L!vt + Finally, define M � I � ~ [es � Zf ! �
@~ [es � Zf !�~ [es � Zf !#�1~ [es � Zf !� +
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APPENDIX A: Useful Propositions

PROPOSITION 1+ For s � 1, + + + , p,

(
t�1

N

~ yt�1 � [yt�1!~Dyt�s � ZDyt�s ! Zft2 � Op~N !+

PROPOSITION 2+

~ [ey � Zf !�~ [es � Zf ! � Op~N !+

PROPOSITION 3+

(
t�1

N

~Dyt�s � ZDyt�s !~Dyt�r � ZDyt�r ! Zft2 � Op~N !+

PROPOSITION 4+

~ [es � Zf !�~ [es � Zf ! � Op~N !+

PROPOSITION 5+

~ [ey � Zf !�~ [es � Zf !@~ [es � Zf !�~ [es � Zf !#�1~ [es � Zf !�~ [ey � Zf ! � op~N
2 !+

PROPOSITION 6+

~ [es � Zf !�~ [ev � Zf ! � op~N !+

PROPOSITION 7+

~ [ey � Zf !�~ [es � Zf !@~ [es � Zf !�~ [es � Zf !#�1~ [es � Zf !�~ [ev � Zf ! � op~N !+

PROPOSITION 8+

1

N (t�1

N

~ yt�1
* � Ty * !et Zft2n

svsef

P~1! �r� uW1
c dW1 �M1 � r2� uW1

c dW2�, (A.1)

where Ty * � N�1(t�1
N yt

* .

PROPOSITION 9+

1

N (t�1

N

~ Ty * � [yt�1
* !et Zft2

p
&& 0+ (A.2)

PROPOSITION 10+

1

N 2 (
t�1

N

~ yt�1
* � Ty * !~ Ty * � [yt�1

* ! Zft2
p
&& 0+

PROPOSITION 11+

1

N 2 (
t�1

N

~ yt�1
* � [yt�1

* !2 Zft2n P~1!�2E~ f 2 !sv
2�~W1 � RW1!

2, (A.3)
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where

[yt�1
* �

1

Naq �(
p�t

N

Ktp yp�1
* �� Zft .

PROPOSITION 12+

1

N (t�1

N

~ yt�1
* � [yt�1

* ! [et Zft2
p
&& 0+

PROPOSITION 13+

1

N (t�1

N

~ yt�1
* � [yt�1

* !~g~xt !� [g~xt !! Zft2
p
&& 0+

APPENDIX B: Proof of Theorem 3+2

By definition

Zd � ~~ [ey � Zf !�M~ [ey � Zf !!�1~~ [ey � Zf !�M~ [ed � Zf !!

� d� ~~ [ey � Zf !�M~ [ey � Zf !!�1~~ [ey � Zf !�M~ [ev � Zf !!+

Notice that

~ [ey � Zf !�M~ [ey � Zf ! � ~ [ey � Zf !�~ [ey � Zf !

� ~ [ey � Zf !�~ [es � Zf !@~ [es � Zf !�~ [es � Zf !#�1~ [es � Zf !�~ [ey � Zf !;

we have, by Proposition 5,

~ [ey � Zf !�M~ [ey � Zf ! � ~ [ey � Zf !�~ [ey � Zf !� op~N
2 !+

Similarly, notice that

~ [ey � Zf !�M~ [ev � Zf ! � ~ [ey � Zf !�~ [ev � Zf !

� ~ [ey � Zf !�~ [es � Zf !@~ [es � Zf !�~ [es � Zf !#�1~ [es � Zf !�~ [ev � Zf !+

We obtain, by Proposition 7,

~ [ey � Zf !�M~ [ev � Zf ! � ~ [ey � Zf !�~ [ev � Zf !� op~N !+

Thus,

N~ Zd� d! � � 1

N 2 ~ [ey � Zf !�~ [ey � Zf !��1� 1

N
~ [ey � Zf !�~ [ev � Zf !�� op~1!+
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Notice that yt � B~1!(l�0
t vl � vi* � v0* � yt

* � vt* � v0*; then

~ [ey � Zf !�~ [ey � Zf !

� (
t�1

N �yt�1
* � [yt�1

* � vt�1
* � v0*�

1

Naq �(
p�t

N

Ktp @vp�1
* � v0*#�� Zft�2

Zft2

� (
t�1

N

~ yt�1
* � [yt�1

* !2 Zft2 �(
t�1

N �~vt�1
* � v0*!�

1

Naq �(
p�t

N

Ktp @vp�1
* � v0*#�� Zft�2

Zft2

� 2(
t�1

N

~ yt�1
* � [yt�1

* !�~vt�1
* � v0*!�

1

Naq �(
p�t

N

Ktp @vp�1
* � v0*#�� Zft� Zft2

and

(
t�1

N �~vt�1
* � v0*!�

1

Naq �(
p�t

N

Ktp @vp�1
* � v0*#�� Zft�2

Zft2 � Op~N !,

(
t�1

N

~ yt�1
* � [yt�1

* !�~vt�1
* � v0*!�

1

Naq �(
p�t

N

Ktp @vp�1
* � v0*#�� Zft� Zft2 � Op~N !;

thus

~ [ey � Zf !�~ [ey � Zf ! � (
t�1

N

~ yt�1
* � [yt�1

* !2 Zft2 � op~N
2 !+

Similarly,

1

N
~ [ey � Zf !�~ [ev � Zf !

�
1

N (t�1

N

~ yt�1 � [yt�1! Zft2~et � [et � g~xt !� [g~xt !!

�
1

N (i�1

N �yt�1
* � [yt�1

* � vt�1
* � v0*�

1

Naq �(
p�t

N

Ktp @vp�1
* � v0*#�� Zft�

� ~et � [et � g~xt !� [g~xt !! Zft2

�
1

N (i�1

N

~ yt�1
* � [yt�1

* !~et � [et � g~xt !� [g~xt !! Zft2

�
1

N (t�1

N �vt�1
* � v0*�

1

Naq �(
p�t

N

Ktp @vp�1
* � v0*#�� Zft�~et � [et � g~xt !� [g~xt !! Zft2

�
1

N (t�1

N

~ yt�1
* � [yt�1

* !~et � [et � g~xt !� [g~xt !! Zft2 � op~1!+
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The theorem holds because

1

N 2 (
t�1

N

~ yt�1
* � [yt�1

* !2 Zft2n E~ f 2 !sv
2�~W1 � RW1!

20P~1!2

by Proposition 11, and

1

N (t�1

N

~ yt�1
* � [yt�1

* !~ [et � g~xt !� [g~xt !! Zft2
p
&& 0,

by Propositions 12 and 13, and

1

N (t�1

N

~ yt�1
* � [yt�1

* !et Zft2n
svsef

P~1! �r� uW1
c dW1 �M1 � r2� uW1

c dW2�
by Proposition 8+ �

APPENDIX C: Proofs of Lemmas
and Propositions

Proof of Lemma 3.1. Using a BN ~Beveridge and Nelson, 1981! decomposition for
B~L! � P~L!�1 we have B~L! � B~1! � B*~L!~1 � L!, where B*~L! has all roots out-
side the unit root circle; then

yt � (
l�0

t

B~L!vl � B~1! (
l�0

t

vl � vt*� v0*

and

1

MN
~ [yt�1 � Ty! Zft �

1

MN
~ [yt�1
* � Ty * ! Zft � op~1!+

We next show that

1

MN
~ [yt�1
* � Ty * ! Zft � op~1!+

Let

A � E� 1

N
~ [yt�1
* � Ty * !2 Zft2�� B~1!2E� 1

N
~ Nd � Nh � Zdt�1 � Zht�1!

2 Zft2�,
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where dt � (l�0
t el and ht � (l�0

t g~xl !, and we verify the order of magnitude of A+
First,

E� 1

N
~ Nd � Zdt�1!

2 Zfi2�
� N�3a�2qE(

p�t

N

Ktp
2 ~ Nd � dp�1!

2

� N�3a�2qE( (
p�p '�t

Ktp Ktp ' ~ Nd � dp�1!~ Nd � dp '�1!

� A1 � A2+

Using Cauchy–Schwarz, A1 � O~N�1a�q! because E~ Nd � dp�1!
2 � O~N ! and E~Ktp!

2 �
O~aq! by a direct verification of moment+ For A2, condition on XN � ~x0, + + +xN ! so that

A2 � N�3a�2qE�Ktp Ktp '( (
p�p '�t

EXN
~ Nd � dp�1!~ Nd � dp '�1!�+

From the identity E~(t
N~dt � Nd !!2[ 0 we find that ((j�m�t E~ Nd � dj�1!~ Nd � dm�1!�

O~N 2!, so A2 � O~N�1! because E~Ktp Ktp ' ! � O~a2q!+
Next,

E� 1

N
~ Nh � Zht�1!

2 Zft2�
� N�3a�2qE(

p�i

N

Kip
2 ~ Nh � hp�1!

2

� N�3a�2qE( (
p�p '�t

Ktp Ktp ' ~ Nh � hp�1!~ Nh � hp '�1!

� A3 � A4 +

Here A3 � O~N�1a�q! by the same argument used for A1+ Now we consider the sum-
mands in A4+ First,

E~Ktp Ktp ' Nh 2 ! � � 1

N 2 (
r�0

N

r 2�E~Ktp Ktp ' g~xs !
2 !�

~N � i !2

N 2 E~Ktp Ktp ' g~xt !
2 !

�
~N � p!2

N 2 E~Ktp Ktp ' g~xp !
2 !�

~N � p ' !2

N 2 E~Ktp Ktp ' g~xp ' !
2 !+

If p ' � p and t � p,

E~Ktp Ktp ' Nhhp�1! � � 1

N (r�0

p�1

~N � r!�E~Ktp Ktp ' g~xs !
2 !�

~N � p ' !

N
E~Ktp Ktp ' g~xp ' !

2 !

�
~N � t !

N
E~Ktp Ktp ' g~xt !

2 !+
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If p ' � p, then the second term is not present in the preceding equation, and if t � p, the
third term is zero+ Similarly, if t � min~ p � 1, p ' � 1!,

E~Ktp Ktp ' hp�1 hp '�1! � min~ p � 1, p ' � 1!E~Ktp Ktp ' g~xs !
2 !� E~Ktp Ktp ' g~xt !

2 !+

Therefore,

6A4 6 � N�3a�2qE~6Ktp Ktp ' 6g~xs !
2 !6A416� C~Naq !�1E~6Ktp Ktp ' 6g~xp !

2 !,

where

A41 �( (
p�p '�i

� 1

N 2 (
r�0

N

r 2 �
1

N (r�0

p�1

~N � r!�
1

N (r�0

p '�1

~N � r!� min~ p � 1, p ' � 1!�+
However, A41 is equivalent to the expectation we find in E((p�p '�t ~ Nh � hp�1! �
~ Nh � hp '�1!, which is O~N 2!+ The expression E~6Ktp Ktp ' 6g~xs !

2 ! � O~a2q! and
E~6Ktp Ktp ' 6g~xp !

2 ! � O~aq!+ Thus, we have 6A46 � O~N�1! � O~N�1a�q!+ Using
Cauchy–Schwarz, we can show that

E� 1

N
~ Nd � Zdt�1!~ Nh � Nht�1! Zft2� � O~N�1a�q !,

so that A � O~N�1a�q! and N�102~ Ty � [yt�1! Zft � Op~N�102a�q02!+ �

Proof of Proposition 1. Notice that

(
t�1

N

~ yt�1 � [yt�1!~Dyt�s � ZDyt�s ! Zft2

� (
t�1

N

~Naq !�2�(
p�t

N

Ktp�(
i�1

t�1

B~L!@g~xi !� ei #� (
i�1

p�1

B~L!@g~xi !� ei #��
� �(

r�t

N

Ktr ~B~L!@g~xt�s !� et�s #� B~L!@g~xr�s !� er�s # !�
� (

t�1

N

~Naq !�2�(
p�t

N

Ktp�(
i�1

t�1

(
l�0

`

bl @g~xi�l !� ei�l #� (
i�1

p�1

(
l�0

`

bl @g~xi�l !� ei�l #��
� �(

r�t

N

Ktr�(
n�0

`

bn @g~xt�s�n!� et�s�n#� (
n�0

`

bn @g~xr�s�n!� er�s�n#��+
For the term

(
t�1

N

~Naq !�2�(
p�t

N

Ktp�(
i�1

t�1

(
l�0

`

bl g~xi�l !���(
r�t

N

Ktr�(
n�0

`

bn g~xt�s�n!��
� (

t�1

N

~Naq !�2 (
p�t

N

(
r�t

N

(
l�0

`

(
n�0

`

(
i�1

t�1

Ktp Ktr bl bn g~xi�l !g~xt�s�n!, (C.1)
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the second moment of ~C+1! is

� 1

Naq�4

(
t�1

N

(
p�t

N

(
r�t

N

(
l�0

`

(
n�0

`

(
i�1

t�1

(
a�1

N

(
j�a

N

(
k�a

N

(
b�0

`

(
m�0

`

(
t�1

a�1

Ktp Ktr Kaj Kak bl bn bb bm g~xi�l !g~xt�s�n!g~xt�b!g~xa�s�m!,

whose leading term ~when i � t � s � l � n and t � a � s � b � m!

� 1

Naq�4

(
t�1

N

(
p�t

N

(
r�t

N

(
l�0

`

(
n�0

`

(
a�1

N

(
j�a

N

(
k�a

N

(
b�0

`

(
m�0

`

bl bn bb bmKtp Ktr Kaj Kak g~xt�s�n!
2g~xa�s�m!

2

is of order O~N 2! because (l�0
` (n�0

` (b�0
` (m�0

` bl bn bb bm � O~1! and

E @Ktp Ktr Kaj Kak g~xt�s�n!
2g~xa�s�m!

2 # � O~a4q !+

Thus, ~C+1! is of order Op~N !+ By similar methods, we can verify that the remaining
terms are Op~N !+ Consequently, (t�1

N ~ yt�1 � [yt�1!~Dyt�s � ZDyt�s ! Zft2 is Op~N !+ �

Proof of Proposition 2. This is a direct result from Proposition 1+ �

Proof of Proposition 3. First we use the BN decomposition to write (i�1
N ~Dyt�s �

ZDyt�s!~Dyt�r � ZDyt�r ! Zft2 into summation of the following terms:

P1 �
1

N 2a2q (
t�1

N

(
l�0

`

bl (
n�0

`

bn (
p�t

N

(
r '�t

N

Ktp Ktr ' @g~xt�s�l !� g~xp�s�l !#

� @g~xt�r�n!� g~xr '�r�n!# ,

P2 �
1

N 2a2q (
t�1

N

(
l�0

`

bl (
n�0

`

bn (
p�t

N

(
r '�t

N

Ktp Ktr ' @g~xt�s�l !� g~xp�s�l !# @et�r�n� er '�r�n# ,

P3 �
1

N 2a2q (
t�1

N

(
l�0

`

bl (
n�0

`

bn (
p�t

N

(
r '�t

N

Ktp Ktr ' @et�s�l � ep�s�l # @g~xt�r�n!� g~xr '�r�n!# ,

P4 �
1

N 2a2q (
t�1

N

(
l�0

`

bl (
n�0

`

bn (
p�t

N

(
r '�t

N

Ktp Ktr ' @et�s�l � ep�s�l # @et�r�n� er '�r�n# +

Then, similarly to the proof of Proposition 1, we verify that all these terms are Op~N !+
�

Proof of Proposition 4. This is a direct result from Proposition 3+ �

Proof of Proposition 5. This can be obtained by using the results of Propositions 2
and 4+ �
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Proof of Proposition 6. Similarly to the proofs of Proposition 3, we write

(
t�1

N

~Dyt�s � ZDyt�s !~et � [et � g~xt !� [g~xt !! Zft2 � (
i�1

6

Qi ,

where Q1 � (t�1
N Zft2 B~L!vt�s et , Q2 � (t�1

N Zft ~10Naq(p�t
N Ktp B~L!vp�s !et , Q3 �

(t�1
N Zft2 B~L!vt�s [et , Q4 � (t�1

N Zft ~10Naq(p�t
N Ktp B~L!vp�s ! [et , Q5 � (t�1

N Zft2 B~L! �
vt�s~g~xt ! � [g~xt !!, Q6 � (t�1

N Zft ~10Naq(p�t
N Ktp B~L!vp�s !~g~xt ! � [g~xt !!+ By

straightforward but tedious moment verification, we can show that all of the preceding
terms are of order op~N !+ �

Proof of Proposition 7. The results can be obtained by the results of Propositions 2,
4, and 6+ �

Proof of Proposition 8. We write N�1(t�1
N ~ yt�1

* � Ty * !et Zft2 into the summation of
C1 � C2 � C3, where C1 � 10N(t�1

N ~ yt�1
* � Ty * !et ft

2 , C2 � 10N(t�1
N ~ yt�1

* � Ty *! �
et~ Zft � ft ! ft , C3 � 10N(i�1

N ~ yt�1
* � Ty *!et~ Zft � ft !2 + Notice that C1 converges to the

expression given in ~A+1! by Lemma 3 of Hansen ~1995!+ We show that the remaining
parts converge to zero in mean square+ First,

EC2
2 �

1

N 2 E(
t�1

N

~ yt�1
* � Ty * !2et2~ Zft � ft !

2 ft
2

�
1

N 2 B~1!2E((
t�j

~dt�1 � Nd !~dj�1 � Nd !et ej ~ Zft � ft !~ Zfj � fj ! ft fj

�
1

N 2 B~1!2E((
t�j

~ht�1 � Nh!~hj�1 � Nh!et ej ~ Zft � ft !~ Zfj � fj ! ft fj

�
1

N 2 B~1!2E((
t�j

~ht�1 � Nh!~dj�1 � Nd !et ej ~ Zft � ft !~ Zfj � fj ! ft fj

�
1

N 2 B~1!2E((
t�j

~dt�1 � Nd !~hj�1 � Nh!et ej ~ Zft � ft !~ Zfj � fj ! ft fj

� C21 � C22 � C23 � C24 � C25

and C21 � O~a2l � N�1a�q! because E~ Zft � ft !2 � O~a2l � N�1a�q! from a direct
calculation of expectation+ The term C23 � 0 because E~et ej ! � 0+ Conditioning on XN

gives

C22 � B~1!2E�~ Zft � ft !~ Zfj � fj ! ft fj
1

N 2 EXN((
t�j

~dt�1 � Nd !~dj�1 � Nd !et ej�+
The inner expectation is O~N 2! and E~~ Zft � ft !~ Zfj � fj ! ft fj ! � O~a2l � N�1a�q! by
Cauchy–Schwarz so that C23 � O~a2l � N�1a�q!+ Next,

C24 � B~1!2E� 1

N 2 ((
t�j

~ht�1 � Nh!~ Zft � ft !~ Zfj � fj ! ft fj EXN
~dj�1 � Nd !et ej�+
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The inner expectation is zero so that C24 � 0 and C25 � 0+ The proof of EC3
2 is similar

except that we use E~ Zf1 � f1!4 � O~a4l � N�2a�2q!+ �

Proof of Proposition 9.

E� 1

N (t�1

N

~ Ty * � [yt�1
* !et Zft2�2

�
1

N 2 E(
t�1

N

~ Ty * � [yt�1
* !2et

2 Zft4

�
1

N 2 B~1!2E((
t�j

~ Nh � Zht�1!~ Nh � Zhj�1! Zft2 Zfj2 et ej

�
1

N 2 B~1!2E((
t�j

~ Nd � Zdt�1!~ Nd � Zdj�1! Zft2 Zfj2 et ej

�
1

N 2 B~1!2E((
t�j

~ Nh � Zht�1!~ Nd � Zdj�1! Zft2 Zfj2 et ej

�
1

N 2 B~1!2E((
t�j

~ Nd � Zdt�1!~ Nh � Zhj�1! Zft2 Zfj2 et ej

� D1 � D2 � D3 � D4 � D5 +

By using a proof similar to the proof of Lemma 3+1, we show that D1 � O~N�1a�q!+
Conditioning on XN , D2 � 0 because E~et ej ! � 0+ Conditioning on XN , D4 � 0 and
D5 � 0 because EXN

~ Nd � Zdt�1!et ej � 0+ For D3,

E~ Nd � Zdt�1!~ Nd � Zdj�1! Zft Zfj et ej

� ~Naq !�2E (
p�t�j

N

Ktp Kjp~ Nd � dp�1!
2et ej

� ~Taq !�2E�Ktp Kjp ' E�( (
p�p '�t�j

~ Nd � dp�1!~ Nd � dp '�1!et ej 6XN��
� a�2qE~Kip Kjp !D31 � a�2qE~Ktp Kjp ' !D32 +

We find that

D32 � 2
~N � t !~N � j !

N 2 � 2
max~t, j !2

N 2 � 2
max~t, j !

N 2 � 2
min~t, j !

N 2

� 2
~N � max~t, j !!~N � min~t, j !!

N 2 � 2
~N � max~t, j !!~N � max~t, j !!

N 2

� 1 �
tj

N 2 +

After algebra, N�2((t�j
N D32 � O~N�1!, and similarly N�2((t�j

N D31 � O~N�1!, so
that D3 � O~N�1!+ �
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Proof of Proposition 10. Notice that

1

N 2 E�(
t�1

N

~ yt�1
* � Ty * !~ Ty * � [yt�1

* ! Zft2�
�

1

N 302 (
t�1

N

ME~ yt�1
* � Ty * !2 Zft2�E

1

N
~ Ty * � [yt

*!2 Zft2

by Cauchy–Schwarz+ Because E~ yt�1
* � Ty *!2 � O~N ! and E~10N !~ Ty * � [yt�1

* !2 Zft2 �
O~N�1a�q!, thus the right term is O~N�102a�q02!+ �

Proof of Proposition 11.

1

N 2 (
t�1

N

~ yt�1
* � [yt�1

* !2 Zft2 �
1

N 2 (
t�1

N

~ yt�1
* � Ty * !2 Zft2 � 2

1

N 2 (
t�1

N

~ yt�1
* � Ty * !~ Ty * � [yt�1

* ! Zft2

�
1

N 2 (
t�1

N

~ Ty * � [yt�1
* !2 Zft2 +

The second and third terms on the right-hand side converge to zero by Propositions 10
and a proof similar to that of Lemma 3+1+ Using the method in the proof of Proposi-
tion 8, the first term converges to the right-hand side of ~A+3!+ �

Proof of Proposition 12.

1

N (t�1

N

~ yt�1
* � [yt�1

* ! [et Zft2 �
1

N (t�1

N

~ yt�1
* � Ty * ! [et Zft2 �

1

N (t�1

N

~ Ty * � [yt�1
* ! [et Zft2 � F1 � F2 +

Note that E~ [et2 Zft2! � O~N�1a�q! so that E~F2
2! � O~N�1a�2q! from Loéve’s

inequality+ Now

E~F1
2! � E� 1

N 2 (
t�1

N

~ yt�1
* � Ty * !2 [et2 Zft4�

� E� 1

N 2 ((
t�j

~ yt�1
* � Ty * !~ yj�1

* � Ty * ! [et [ej Zft2 Zfj2�
� F11 � F12 ;

F11 � O~N�1a�q! because E~ yt�1
* � Ty *! � O~N !+ Consider the summands in F12+ It is

easy to verify that

E~ yt�1
* � Ty * !~ yj�1

* � Ty * ! [et [ej Zft2 Zfj2 � B~1!2E~ [et [ej Zft2 Zfj2vs2!F13

� B~1!2E~ [et [ej Zft2 Zfj2vs ' vj !F14

� B~1!2E~ [et [ej Zft2 Zfj2vi ' vi !F15 � o~1!,
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where s � t � j, s ' � t � j, and i � i ' � t � j+ In addition,

F13 � min~t � 1, j � 1!�
1

N (r�0

t�1

~N � r!�
1

N (r�0

j�1

~N � r!�
1

N 2 (
r�0

N

r 2,

F14 � ~N � t !�1 �
~t � 1!

N
�
~ j � 1!

N
�� ~N � j !�1 �

~ j � 1!

N
�
~t � 1!

N
�

�
N

2
� min~t � 1, j � 1!,

F15 � ~t � 1!~ j � 1!�
~t � 1!~N � 1!

2
�
~ j � 1!~N � 1!

2
�
~N � 1!2

4
� F13 � F14 +

As a result of cancellations, we have

1

N 2 ((
t�j

F13 � O~1!,
1

N 2 ((
t�j

F14 � O~1!,
1

N 2 ((
t�j

F15 � O~N !+

Using Zft � ft � ~ Zft � ft !, it is easy to see that E~ [et [ej Zft2 Zfj2vs2! has the same order
of magnitude as E~ [et [ej Zft Zfj ft fj vs2! ~which has only two summations!, and it can
be verified that E~ [et [ej Zft Zfj ft fj vs2! � O~N�1a�q!+ Similarly, E~ [et [ej Zft2 Zfj2vs ' vj ! and
E~ [et [ej Zft2 Zfj2vi ' vi ! have the same order of magnitudes as E~ [et [ej Zft Zfj ft fj vs ' vj ! and
E~ [et [ej Zft Zfj ft fj vi ' vi !, respectively, and it can be verified that E~ [ei [ej Zft2 Zfj2vs ' vj ! �

O~N�1a�q! and E~ [et [ej Zft2 Zfj2vi ' vi ! � O~N�2a�2q! by Cauchy–Schwarz so that F12 �

O~N�1a�2q!, and thus

1

N (i�1

N

~ yt�1
* � [yt�1

* ! [et Zft2 � Op~N
�102a�q !+

Proof of Proposition 13. Let j � min~l � 1,n!+ The proof follows Proposition 12+

1

N (t�1

N

~ yt�1
* � [yt�1

* !~g~xt !� [g~xt !! Zft2 �
1

N (t�1

N

~ yt�1
* � Ty * !~g~xt !� [g~xt !! Zft2

�
1

N (t�1

N

~ Ty * � [yt�1
* !~g~xt !� [g~xt !! Zft2 +

However, we need to find the order of E~g~xt ! � [g~xt !!
2 Zft2 and

E~~g~xt !� [g~xt !!~g~xj !� [g~xj !! Zft2 Zfj2vi ' vi !+

First, E~g~xt ! � [g~xt !!
2 Zft2 � O~N�1a�q � a2j!, from the proof of Proposition 1 in

Robinson+ Next, we again use Zft � ft � ~ Zft � ft ! and that E~~g~xt ! � [g~xt !!~g~xj ! �
[g~xj !! Zft2 Zfj2vi ' vi ! has the same order of magnitude as
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E~~g~xt !� [g~xt !! Zft ~g~xj !� [g~xj !! Zfj ft fj vi ' vi !,

which is O~N�2a�2q!+ Combining these results and using the proof of Proposition 12,
we find

1

N (t�1

N

~ yt�1
* � [yt�1

* !~g~xt !� [g~xt !! Zft2 � Op~N
�102a�q � aj�~q02! !+
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