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In this chapter we discuss two related issues relevant to traditional methods
of comparing alternative covariance structure models (CSM) in the context of
ecological research. Use of the traditional test of parametrically nested models
in applications of CSM (the χ2 difference or likelihood ratio [LR] test) suffers
from several limitations, as discussed by numerous methodologists (MacCallum,
Browne, & Cai, 2005). Our primary objection is that the traditional approach
to comparing models is predicated on the assumption that it is possible for
two models to have identical fit in the population. We argue instead that any
method of model comparison which assumes that a point hypothesis of equal fit
can hold exactly in the population (e.g., the LR test) is fundamentally flawed.
We discuss two alternative approaches to the LR test which avoid the necessity
of hypothesizing that two models share identical fit in the population. One
approach concerns framing the hypothesis of interest differently, which naturally
leads to questions of how to assess statistical power and appropriate sample size.
The other approach concerns a radical realignment of how researchers approach
model evaluation, avoiding traditional null hypothesis testing altogether in favor
of identifying the model that maximizes generalizability.

Power presents a recurrent problem to those familiar with null hypothesis
significance testing (NHST). How large should a sample be in order to have
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34 PREACHER, CAI, AND MACCALLUM

adequate probability of rejecting a false null hypothesis? What is the probability
of rejecting a false null if our sample is of size N? These questions present
special challenges in the context of CSM because the relative status of null and
alternative hypotheses are interchanged from their familiar positions — the null
hypothesis in CSM represents the theory under scrutiny, and power is framed in
terms of the sample size necessary to reject a false model. Traditional goodness-
of-fit tests deal with the null hypothesis under which the model fits exactly in
the population (exact fit test). Point hypotheses tested by the exact fit test
are likely never true in practice, so how should power be conceptualized? We
present an alternative strategy extending earlier work on power for tests of close
fit (rather than exact fit) of single models to tests of small difference (rather
than no difference) in comparisons of nested models. The null hypothesis in
a test of small difference states that the model fits nearly as well, but not the
same, as a less constrained model.

Another alternative to traditional methods of model assessment is to avoid
the hypothesis-testing framework altogether, instead adopting a model selec-
tion approach that uses comparative replicability as the criterion for selecting
a model as superior to its rivals (Weakliem, 2004). Specifically, we argue that
the evaluation of models against arbitrary benchmarks of fit gets the researcher
nowhere — only in the context of model comparison can science advance mean-
ingfully (Burnham & Anderson, 2004). Maximizing generalizability involves
ranking competing models against one another in terms of their ability to fit
present and future data. Adopting this model selection strategy, however, ne-
cessitates proper quantification of model complexity — the average ability of a
model to fit any given data. Most model fit indices include an adjustment for
complexity that is a simple function of the number of free model parameters.
We argue that this adjustment is insufficient; the average ability of a model to
fit data is not completely governed by the number of parameters. Consequently,
we present and illustrate the use of a new information-theoretic selection crite-
rion that quantifies complexity in a more appropriate manner. This, in turn,
permits the adoption of an appropriate model selection strategy that avoids
pitfalls associated with LR tests.

We begin by providing a review of the traditional representation of the
covariance structure model (with mean structure), with an emphasis on its ap-
plication to multiple groups. We then describe advantages granted by adopting
a model comparison perspective in CSM. One way around the problems with
traditional approaches is to change the hypothesis under scrutiny to a more re-
alistic one. In describing this alternative approach, we describe an approach to
power analysis in CSM involving an extension of recently introduced methods
to nested model scenarios. Following our discussion of power, we further explore
the potential value of adopting a model selection approach that avoids hypoth-
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esis testing — and thus most problems associated with LR tests—altogether.
In the process, we introduce the topic of model complexity, suggesting and il-
lustrating the use of a new selection criterion that permits appropriate model
comparison even for nonnested models.

COVARIANCE STRUCTURE MODELING

Covariance structure modeling (CSM) is an application of the general linear
model combining aspects of factor analysis and path analysis. In CSM, the
model expresses a pattern of relationships among a collection of observed (man-
ifest) and unobserved (latent) variables. These relationships are expressed as
free parameters representing path coefficients, variances, and covariances, as
well as other parameters constrained to specific, theory-implied values or to
functions of other parameters. For simplicity, we restrict attention to the all-
y model (LISREL Submodel 3B; Jöreskog & Sörbom, 1996), which involves
only four parameter matrices, although the points we discuss later apply more
broadly.

Model Specification

Model specification in CSM involves a data model, representing the relationship
between manifest indicators and latent variables, as well as mean and covariance
structures implied by the data model. The data model can be specified as:

y = Λyη + ε (1)

where y denotes a vector of response scores, Λy denotes a matrix of factor
loadings regressing the p items on the m latent variables in the vector η, and ε

denotes a vector of unique factors. The covariance structure obtained by taking
the expectation of the square of (1) is:

Σyy(θ) = ΛyΨΛ′
y + Θεε, (2)

where Σyy(θ) denotes the population covariance matrix of y, with parameters
(θ) in Λy, Ψ, and Θεε, The covariance matrix of the latent variables is denoted
Ψ, and Θεε denotes the (usually diagonal) covariance matrix of the unique
factors.

A mean structure may also be derived by taking the expectation of (1):

μy = Λyα (3)

where μy is a vector of population means of measured variables and α is a vector
of latent means.
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Ecological modeling often involves comparison of key model parameters
across two or more groups hypothesized to differ in some important way. Ex-
tending these models to the multiple group case is straightforward. For example,
Equations 2 and 3 may be extended for multiple groups as:

Σ(g)
yy (θ) = Λ(g)

y Ψ(g)Λ(g)
y + Θ(g)

εε , (4)

μ
(g)
y = Λ(g)

y α(g), (5)

where the addition of a superscripted “g” denotes group membership. Equality
constraints may be placed on corresponding parameters across groups.

Free parameters are estimated by employing one of a number of discrepancy
minimization techniques, most often maximum likelihood (ML) or weighted
least squares (WLS). The value assumed by the discrepancy function at con-
vergence can be used to gauge the model’s degree of fit to data. For example,
the ML discrepancy function is:

FML(S,Σ) = ln |Σ| − ln |S| + tr[SΣ−1] − p (6)

When the model is “correct” and if N is large enough, (N−1)F̂ML is distributed
as χ2 with df = p(p + 1)/2 – q, where q is the effective number of free param-
eters. The χ2 statistic can be used to determine if the degree of model misfit
is within chance levels, and serves as the basis for a variety of model fit indices
and selection criteria.

The Importance of CSM to Ecological Research

There are several advantages associated with CSM that make it especially ap-
propriate for addressing hypotheses in the context of ecological models. First,
CSM permits the specification and testing of complex causal and correlational
hypotheses. Sets of hypotheses can be tested simultaneously by constraining
model parameters to particular values, or equal to one another within or across
multiple groups or occasions of measurement, in ways consistent with theoretical
predictions. Second, by permitting several measured variables to serve as indi-
cators of unobserved latent variables, CSM separates meaningful variance from
variance specific to items, allowing researchers to test structural hypotheses re-
lating constructs that are not directly observed. Third, CSM is appropriate for
testing correlational or causal hypotheses using either (or both) experimental or
observational data. One of the central ideas behind ecological modeling is that
there is much knowledge to be gained by collecting data observed in context
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that would be difficult or impossible to learn under artificial conditions. Finally,
CSM is a flexible modeling approach that can easily accommodate many novel
modeling problems.

The Importance of Adopting a Model Comparison Perspective

In practice, CSMs are typically evaluated against benchmark criteria of good
fit. Based on how well a model fits data relative to these criteria, the model is
usually said to fit well or poorly in an absolute sense. The reasoning underly-
ing this strategy of gauging a model’s potential usefulness is predicated on an
approach to science termed falsificationism (e.g., Popper, 1959), which holds
that evidence accumulates for theories when their predictions are subjected to,
and pass, realistic “risky” tests. If a model passes such a test under conditions
where it would be expected to fail if false (i.e., if it shows good fit), evidence
accumulates in favor of the theory whose predictions the model represents. If
it fails, the model is either rejected or modified, with implications for the revi-
sion or abandonment of the theory. Ideally, a model is subjected to repeated
risky tests to give a better idea of its long-term performance, but replication is
unfortunately rare in the social sciences.

An alternative philosophical perspective maintains that the evaluation of
models in isolation tells us very little, and that the fit of a model to a particular
data set is nearly uninformative. Rather, science progresses more rapidly if
competing theories are compared to one another in terms of their abilities to
fit existing data and, as we will discuss, their abilities to fit future data arising
from the same latent process (Lakatos, 1970; MacCallum, 2003). This approach
is sometimes termed strong inference (Platt, 1964), and involves model com-
parison as a signature feature. We know from the outset that no model can
be literally true in all of its particulars, unless one is extraordinarily lucky or
possesses divinely inspired theory-designing skills. But it stands to reason that,
given a set of alternative models, one of those models probably represents the
objectively true data-generating process better than other models do. It is the
researcher’s task to identify this model and use it as the best working hypothesis
until an even more appropriate model is identified (which, by design, inevitably
happens). Every time a model is selected as the optimal one from a pool of
rivals, evidence accumulates in its favor. This process of rejecting alternative
explanations and modifying and re-testing models against new data continues
ad infinitum, permitting scientists to constantly update their best working hy-
potheses about the unobserved processes underlying human behavior.

Because no model is literally true, there is an obvious logical problem in
testing the null hypothesis that a model fits data perfectly in the population.
Yet, this is precisely the hypothesis tested by the popular LR test of model
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fit. Moreover, most fit indices require the researcher to choose arbitrary values
to represent benchmarks of good fit. A model comparison approach goes far
in avoiding these problems, although it cannot avoid them altogether. Most
damning, it is possible to assert apriori that the hypothesis tested with the χ2

statistic — that a model fits exactly in the population or that two models share
exactly the same fit — is false in virtually every setting (Bentler & Bonett,
1980; Tucker & Lewis, 1973). A model selection approach avoids the pitfalls
inherent in hypothesis testing by avoiding such tests altogether.

In addition to adhering more closely to scientific ideals and circumventing
logical problems inherent in testing isolated models, the practice of model com-
parison avoids some problems associated with confirmation bias. Confirmation
bias reflects the tendency for scientists unconsciously to increase the odds of
supporting a preferred hypothesis (Greenwald, Pratkanis, Leippe, & Baum-
gardner, 1986). Regardless of why or how much the deck is stacked in favor
of the researcher’s preferred model in terms of absolute fit, one model is virtu-
ally guaranteed to outperform its rivals. Model comparison does not entirely
eliminate confirmation bias, but it certainly has the potential to improve the
researcher’s objectivity.

In the foregoing we have explained that the popular LR test is fundamen-
tally flawed in that the hypothesis it tests is rarely or never true in practice;
thus, persistent and frequent use of the LR test is of questionable utility. We
have also explained that adopting a model selection approach, in which at least
two theory-inspired models are compared, has potentially greater scientific po-
tential. In the following two broad sections, we outline some practical solutions
to logical problems imposed by use of the traditional LR tests of model fit
in ecological research. The first suggested approach emphasizes the utility of
avoiding the hypothesis that two models have identical fit in favor of a hy-
pothesis that the difference is within tolerable limits. This approach recognizes
that no model can realistically fit perfectly in the population, and points out
that shifting the focus to a less stringent hypothesis is more logical, yet has
consequences for statistical power and identifying the necessary sample size.
We describe and discuss methods that can be used to address these problems.
The second section focuses more closely on the model selection perspective just
outlined, emphasizing that model fit is overrated as a criterion for the success
or usefulness of a theory. Rather, more attention should be paid to a model’s
ability to cross-validate, or generalize, relative to competing models. Special
attention is devoted to a new model selection criterion that considers aspects
of model complexity beyond simply the number of free parameters.
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POWER ANALYSES FOR TESTS OF DIFFERENCE
BETWEEN MODELS

Researchers often conduct tests of the difference between competing models.
Such difference tests are commonly performed, for example, when one is in-
terested in determining the level of factorial invariance characterizing a scale
administered to two samples from different populations (Steenkamp & Baum-
gartner, 1998; Vandenberg & Lance, 2000). In principle, this strategy involves
specifying at least two models, with one model nested within the other, and
the test of difference draws upon the general theory of LR tests to construct
decision rules. To formalize, suppose that we are given two models, Model A
nested in Model B, with degrees of freedom dA and dB for A and B, respec-
tively. We assume dA > dB, and we denote the population ML discrepancy
function values for the two models as FA and FB. When the two models are
fitted to the sample covariance matrix, the sample discrepancy function values
are minimized, and we denote them as F̂A and F̂B . The difference between the
two sample discrepancy function values, when scaled by a factor of (N – 1),
is commonly referred to as the chi-square difference, or Δχ2. In this chapter,
we denote this well-known likelihood ratio (LR) test statistic for the difference
between models as:

T = (N − 1)(F̂A − F̂B). (7)

The No-Difference Hypothesis

In applications, the most frequently encountered test of difference involves the
specification of the null hypothesis H0 : (FA – FB) = 0, i.e., the two models yield
the same population discrepancy function values, against the general alternative
of no restrictions, using T as the test statistic. We refer to this test as the test
of no-difference. Under the null hypothesis, the asymptotic distribution of T

is that of a central χ2 variable with d = (dA – dB) degrees of freedom. By
fixing an α-level, a critical value c can be obtained from a table of the reference
chi-square distribution such that

α = 1 − G(c; d), (8)

where G(c;d) is the cumulative distribution function (CDF) of a central χ2

random variable with d degrees of freedom, and 1 – G(c;d) gives the tail-area
probability of this χ2 variable to the right of c. If T exceeds c, the null hypothesis
is rejected. In practice, rejecting the null hypothesis leads to the conclusion that
there is a statistically significant difference in the fit of the two models, with B
fitting better than A.
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Contemplation of the null hypothesis tested in the no-difference test reveals
that it is actually rather uninteresting from a substantive perspective, for the
very same reason why the null hypothesis in the χ2 test of goodness of fit for a
single model is like a “straw man.” We do not expect that two nested models
would ever yield exactly the same discrepancy function values in the popula-
tion, and whether or not the null hypothesis is rejected is primarily a function
of the sample size (Bentler & Bonett, 1980; Tucker & Lewis, 1973). Therefore,
the usual no-difference test, if applied blindly, can have serious consequences
for model selection. That being said, a pressing issue in applications of the no-
difference test is the lack of a simple procedure to perform power analysis, so
that researchers can have at least some sense of the power of the test given the
size of the existing sample, or can plan ahead in study designs to ensure that
N is large enough to achieve an adequate level of power to detect the difference.

Power Analysis for the No-Difference Test

Conducting power analysis requires knowledge of the distribution of the test
statistic under the alternative hypothesis. The power analysis procedure out-
lined here is an extension of the results in MacCallum, Browne, and Sugawara
(1996), and hence follows their general principle. To begin, we state a well-
known distributional result given in Steiger, Shapiro, and Browne (1985). When
H0 is false, an alternative hypothesis of the form H1 : (FA – FB) = δ must be
true, where δ > 0. Under the assumption of population drift, the distribution
of T under H1 is approximately noncentral χ2 with d degrees of freedom and
noncentrality parameter

λ = (N − 1)(FA − FB) = (N − 1)δ. (9)

The population drift assumption basically stipulates that neither Model A nor
B be badly misspecified (for details, see Steiger et al., 1985, p. 256).

Given both the null and alternative distributions of the test statistic T ,
computation of power of the no-difference test requires specification of the non-
centrality parameter, δ, but this proves difficult if one attempts to somehow
compute it directly using the ML discrepancy function defined in Equation
6, because the scale of the maximum Wishart likelihood is not directly inter-
pretable. We need a sensible way to establish δ, preferably in terms of a measure
of effect size that is easily interpretable and on a more standardized scale. We
note that the specification of the noncentrality parameter is a common theme
in all power analysis procedures, and once it is specified, computation of power
becomes straightforward.

One viable option is to establish δ by using a measure of goodness of fit that
is a function of the population discrepancy function value. More specifically,
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we propose using the RMSEA measure (Browne & Cudeck, 1993; Steiger &
Lind, 1980) because the scale of this measure is somewhat better understood
in comparison with alternative measures such as the GFI and AGFI (Jöreskog
& Sörbom, 1996), especially when it is applied in the context of power analysis
for covariance structure models (see, e.g., MacCallum & Hong, 1997). There
already exist guidelines for interpreting this measure (Browne & Cudeck, 1993)
and it has been studied in large-scale simulations (e.g., Curran, Bollen, Paxton,
Kirby, & Chen, 2002; Hu & Bentler, 1999). Although there are no rigid decision
rules regarding the interpretation of RMSEA values, it is relatively common in
applications to view RMSEA values in the range of .05 or lower as indicating
close fit, values in the range of .07 – .08 as fair fit, and values greater than
.10 as poor fit. Note that there is also simulation evidence that these cutoff
values may change as model characteristics change (Curran et al., 2002). It has
also been shown that the magnitude of error variances may impact RMSEA
values (Browne, MacCallum, Kim, Andersen, & Glaser, 2002). Although not
infallible, we feel that in general RMSEA serves the purpose of specifying the
noncentrality parameter reasonably well.

We designate the two population RMSEA values as εA =
√

FA/dA and
εB =

√
FB/dB, for Model A and Model B, respectively. By simple algebra, we

find that δ can be expressed in terms of the pair of RMSEA values as

δ = (FA − FB) = (dAε2
A − dBε2

B). (10)

Therefore, the researcher may simply choose RMSEA values for each model in
such a way as to represent the smallest difference in model fit that would be
desirable to detect. Then δ and λ can be computed immediately from Equations
9 and 10. Note that one would normally choose εA > εB because Model A is
more constrained than model B and would tend to have poorer fit. Once this
pair of RMSEA values is chosen, and λ determined, the distribution of T under
the alternative hypothesis is completely specified, and computation of power
becomes routine. Let π be the power of the test under consideration, then

π = 1 − G(c; d, λ), (11)

where G(c;d,λ) is the cumulative distribution function of a noncentral χ2 vari-
able with d degrees of freedom and noncentrality parameter λ, and 1 – G(c;d,λ)
gives the tail-area probability of this noncentral χ2 variable to the right of the
critical value c. Distributions and relevant areas for a typical case are illus-
trated in Figure 3.1. A SAS program for the computation of power is provided
in MacCallum et al. (2005).

As an illustration, we apply the foregoing procedure to an empirical study.
Shorey, Snyder, Yang, and Lewin (2003) compared a series of structural equa-
tion models using the no-difference test (pp. 700-701, esp. Table 2), and we
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demonstrate how power can be computed for the test of the difference between
what they called Model 1 and Model 5, where Model 5 is nested in Model 1.

FIGURE 3.1

Null and alternative distributions of the test statistic for determining statistical Power.

                           Chi - square

Adapting their numbering system, their Model 1 corresponds to Model B in our
notation, and their Model 5 is our Model A. Their sample size was N = 196.
To compute power, we need to specify a pair of RMSEA values. Some general
guidelines for choosing the RMSEA values can be found in MacCallum et al.
(2006). There is no doubt that a better choice can be made by incorporating
substantive knowledge, but here we simply choose εA = .06 and εB = .04 for
illustrative purposes. Using these values, we obtain δ = .2144 from Equation
10, so the noncentrality parameter is λ = (N – 1)d = 41.808 using Equation 9.
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From Equation 11, we compute the tail-area probability to the right of c under
the noncentral χ2 distribution with 4 degrees of freedom and noncentrality λ,
and this probability is equal to .99. Thus, for Models A and B as described
earlier, if the true difference in fit is represented by εA = .06 and εB = .04, and
if we conduct a test of the null hypothesis of no difference in fit using N = 196
and α = .05, the probability of rejecting that null hypothesis is approximately
.99.

The result of the test conducted by Shorey et al. (2003) can be summarized
as follows. With a sample size of N = 196, Model A yielded a minimum
discrepancy function χ2 of 191.64 with d = 104 degrees of freedom, and for
Model B, χ2 = 190.11 with d = 100 degrees of freedom. Consequently, T =
1.53. Referring T to the CDF of a central χ2 distribution with d = 4 degrees of
freedom, we find the p-value for the null hypothesis, H0 : (FA – FB) = 0, to be
0.82, so there is not enough evidence to reject the null. Because the probability
of rejecting the null hypothesis of no difference was about .99, the authors’
finding of a nonsignificant difference between the two models in question cannot
be attributed to low statistical power (at least under the conditions of the power
analysis just presented).

A related question is the determination of the sample size N necessary to
achieve a desired level of power given Models A and B and a specified effect size.
The capability to address questions of this form would be valuable in research
design. A simple procedure has been developed and is described along with
corresponding SAS code in MacCallum et al. (2005).

It is also of interest to see whether the method we described can be adapted
to the case of multisample models. Extension of the developments in this article
to the multisample case requires consideration of whether or how to modify the
definition of RMSEA for that case. Steiger (1998) proposes a modification of
this definition wherein RMSEA is expressed as ε =

√
G

√
F/df , where G is the

number of groups, but this new definition alters the original interpretation of
RMSEA as the square root of discrepancy per degrees of freedom. We choose to
retain the original definition of RMSEA, i.e., ε =

√
F/df , and thus the devel-

opments in Equations (10) and (11) are left unaltered even in the multisample
case. Researchers wishing to adopt Steiger’s (1998) definition may simply di-
vide the right-hand side of Equation (10) by

√
G, and from there everything

else remains the same.

Alternative Power Analysis Procedures for the No-Difference Test

The critical feature of the method for power analysis described earlier is the use
of the RMSEA fit measure as the basis for establishing an effect size, and in
turn a value of the noncentrality parameter of the distribution of T under the
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alternative hypothesis. This RMSEA-based approach follows directly from pre-
vious work by MacCallum et al. (1996), but it is not the only possible method
for establishing the noncentrality parameter. A more complete account of al-
ternative procedures is given in MacCallum et al. (2006), so here we mention
only one method that is quite different from our procedure.

This alternative procedure is essentially an extension of Satorra and Saris’
(1985) power analysis procedure for testing the fit of a single model. Adapting
their method to the case of two competing models, with A nested in B, the
first step is to establish numerical values for all parameters in Model B. Given
such a set of parameter values for Model B, the implied covariance matrix ΣB

can be easily computed, for instance, by simply fixing all parameter values in
a structural equation modeling software application and taking the implied co-
variance matrix from the output as ΣB. Model A is then fit to ΣB, yielding
a discrepancy function value designated FA. The noncentrality parameter for
the distribution of T under the alternative hypothesis is λ = (N – 1)FA. (Note
that in general λ = (N – 1)(FA – FB), but that FB ≡ 0 in the Satorra-Saris
formulation.) From this point on, the computation of power proceeds exactly
as defined earlier in Equation 11. Therefore, the alternative procedure due to
Satorra and Saris simply uses a different approach for specifying λ. However,
there are important conceptual differences between the two power analysis pro-
cedures. The method based on the work of Satorra and Saris treats Model B as
correctly specified in the population, hence FB ≡ 0, and Model A as misspeci-
fied in a way defined by the difference in specification of the two models. The
parameters that differentiate the models are assigned numerical values that are
treated as if they were true population values. By contrast, the RMSEA-based
procedure that we proposed earlier does not treat either model as if it were cor-
rect in the population. Rather, both models can be viewed as being incorrect
in the population (via specification of nonzero RMSEA values), a feature that
is undoubtedly more consistent with the nature of models in the real world.
In addition, in the procedure we propose, there is no need to assign numerical
values to parameters that the models have in common, and the outcome of
the power computation will not depend on which parameters differentiate the
models.

A Null Hypothesis of Small-Difference

As we have argued earlier, the null hypothesis of no difference between two
competing models is of limited practical value, and we also mentioned that the
same issue is present in the context of testing the fit of a single model. The null
hypothesis in a conventional LR test is that the model under scrutiny is exactly
correct in the population, which is always false in practice for any parsimonious
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model. To deal with this problem, Browne and Cudeck (1993) proposed a test
of the null hypothesis of close fit rather than exact fit. Using RMSEA as a
basis for their approach, they suggested testing H0 : ε ≤ .05, meaning that
the model fits closely in the population. This null hypothesis may well be true
and is certainly of more empirical interest, and a test of this hypothesis is not
compromised by having a very large N . Browne and Cudeck’s (1993) approach
can be viewed as a direct application of The Good-Enough Principle (Serlin
& Lapsley, 1985), which, when applied to the present context, basically holds
that a range hypothesis of acceptable fit is preferable to a point hypothesis of
perfect fit.

We suggest that in the context of model comparisons, the Good-Enough
Principle can be applied constructively again, by considering a null hypothesis
of small difference in population discrepancy function values. Given Models A
and B, we propose to test a null hypothesis of the form H0 : (FA – FB) ≤ δ∗,
where δ∗ is some specified small number. Building on Browne and Cudeck’s
(1993) work, we make use of the RMSEA as a basis for establishing δ∗. By the
Good-Enough Principle, one could specify values of ε∗A and ε∗B so as to represent
a small difference in fit between the models (e.g., ε∗A = .06 and ε∗B = .05).
Once this pair of RMSEA values is determined, δ∗ can be computed from the
relationship between fit function values and the RMSEA laid out in Equation
(10), i.e., δ∗ = (dAε∗2A − dBε∗2B ). We still use T as the test statistic, but under
this null hypothesis, T has a noncentral χ2 distribution with d = (dA – dB)
degrees of freedom, and noncentrality parameter λ* = (N – 1)d∗. Then the
decision as to whether H0 is rejected at level α becomes a matter of finding a
critical value c∗ from the aforementioned noncentral χ2 distribution, such that

α = 1 − G(c∗; d, λ∗), (12)

where G(c∗;d,λ∗) is the CDF of a noncentral χ2 variable with d degrees of
freedom, and noncentrality parameter λ∗. Rejection of the null hypothesis of
small difference implies that the observed difference between the models is too
large for us to believe that the true difference is small. Failure to reject will
imply that the observed difference is small enough for us to believe that the true
difference is small. Such an approach will also alleviate the sample size problem
associated with the no-difference hypothesis test. SAS code for carrying out the
necessary computations is provided in MacCallum et al. (2006).

To illustrate the potential utility of this approach in evaluating differences
between models, we test a null hypothesis of a small difference in fit in an
empirical example that utilizes multi-sample CSM analysis in a cross-cultural
context. Kang, Shaver, Sue, Min, and Jing’s (2003) study involved respondents
from four countries, and total N = 639. On page 1603 the authors tested a
series of nested models to determine whether a particular coefficient should be
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constrained to be equal across groups. The χ2 difference is T = 9.05 with d = dA

– dB = 761 – 758 = 3. For the test of no difference, the critical value from a
central χ2 distribution is c∗ = 7.81, so the decision is to reject the constraints
imposed in Model A, meaning that the groups differ significantly with respect
to this particular path coefficient. It would be interesting to look at the result
of a test of small difference, say, ε∗A = .06 and ε∗B = .05, so δ∗ = [(761)(.06)2

– (758)(.05)2] = .8446 by Equation 10. We can then define the null hypothesis
as H0 : (F ∗

A − F ∗
B) ≤ .8446. The reference distribution for T under this null

hypothesis is noncentral χ2 with d = 3 degrees of freedom and noncentrality
parameter λ∗ = (639 – 1)(.8446) = 538.85. At α = .05, the critical value is
c∗ = 619.99, indicating clear failure to reject the null hypothesis of the small
difference as represented by ε∗A = .06 and ε∗B = .05. Therefore the constraint
in question may well be plausible (according to the Good-Enough Principle)
and perhaps should not have been rejected based on the result of the test of
no-difference alone.

Power Analysis for the Small-Difference Test

Given the preceding developments, it is straightforward to combine our power
analysis procedure with the specification of the null hypothesis of small differ-
ence into a more general power analysis procedure in which the null hypothesis
specifies a small difference in fit and the alternative hypothesis specifies a larger
difference, with those differences defined in terms of specified RMSEA values
for the models.

We give a brief account of this procedure here; a more complete discussion
can be found in MacCallum et al. (2006). The null hypothesis is that of a small
difference in fit, that is, H0 : (F ∗

A −F ∗
B) ≤ δ∗0 . The alternative hypothesis speci-

fies that the difference (F ∗
A −F ∗

B) be greater than δ∗0 , i.e., H1 : (F ∗
A −F ∗

B) = δ∗1 ,
where δ∗1 > δ∗0 . As before, we suggest establishing useful values of δ∗0 and δ∗1
by selecting two pairs of RMSEA values and obtaining δ∗0 and δ∗1 using Equa-
tion 10. To establish a value for δ∗0 one would select a pair of RMSEA values,
denoted now as ε0A and ε0B, to represent the small difference in fit that de-
fines H0. To establish a value for δ∗1 , one chooses RMSEA values ε1A and ε1B

to represent a larger difference in fit under H1. From then on, the procedure
follows the same general template as the method described earlier, with the
simple modification that now both the null and the alternative distributions
(as shown in Figure 3.1) are noncentral χ2. Specifically, the distribution of the
test statistic T under H0 will be noncentral χ2, with d = (dA – dB) degrees of
freedom and noncentrality parameter λ0 = (N − 1)δ∗0 . The distribution under
H1 will be noncentral χ2 with the same degrees of freedom and noncentrality
parameter λ1 = (N − 1)δ∗1 . Given a specified level of α, a critical value can be
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determined from the null distribution, and power is computed as the area under
the alternative distribution to the right of that critical value, just as shown in
Figure 3.1 earlier. Again, SAS code for carrying out the necessary computa-
tions is provided in MacCallum et al. (2006).

Concluding Remarks

There are two broad issues that we wish to emphasize to close this section on
power analysis and specification of the null hypothesis when performing compar-
isons of nested models. The first issue is the choice of pairs of RMSEA values.
Essentially the results of any application of any of the methods we described are
contingent on the particular RMSEA values that the user selects. Here we can
offer only some general principles. For a more thorough discussion of this issue
we refer the reader to MacCallum et al. (2006). For specifying RMSEA values
for testing a null hypothesis of a small difference in fit, the user should regard
the Good-Enough Principle (Serlin & Lapsley, 1985) as the objective, and pick
RMSEA values for Models A and B that represent a difference so small that
the user is willing to ignore it. In the context of power analysis, the relevant
general principle would be to choose values that represent a difference that the
investigator would wish to have a high probability of detecting. In practice,
users will need to rely on guidelines for the use of RMSEA as mentioned earlier
(Browne & Cudeck, 1993; Steiger, 1994), as well as the characteristics of the
models under comparison.

The second issue has to do with the assumptions involved in our develop-
ments. All of the methodological developments presented thus far rely on well
known distribution theory and its assumptions. Specifically, we make extensive
use of the assumptions that ensure the chi-squaredness of the LR test statis-
tic T , for both the central and noncentral cases. These include multivariate
normality, the standard set of regularity conditions on the likelihood to carry
out asymptotic expansions, and the population drift assumption (Steiger et al.,
1985). As always, however, such assumptions never hold exactly in the real
world, so the user should always be cautious in the application of these meth-
ods in data analysis and should watch for potential pitfalls due to assumption
violations. MacCallum et al. (2006) discuss the consequences of such violations.

MODEL SELECTION AND MODEL COMPLEXITY

Model Selection and Generalizability

In the preceding section we provide and illustrate methods for comparing rival
models in terms of a noncentrality-based fit index, RMSEA. We suggest that
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this strategy is appropriate for statistically comparing the fit of rival, paramet-
rically nested models, but the procedure depends in part on the researcher’s
judgment of appropriate choices for ε∗A and ε∗B, or what, in the researcher’s
judgment, constitutes the smallest difference in fit that it would be interesting
to detect. In practice, a model can demonstrate good fit for any number of
reasons, including a theory’s proximity to the objective truth (or verisimili-
tude; Meehl, 1990), random chance, simply having many free parameters, or
by possessing a structure allowing parameters to assume values which lead to
good model fit for many different data patterns—even those generated by other
processes not considered by the researcher. In other words, models can demon-
strate close fit to data for reasons other than being “correct,” even if one grants
that true models are possible to specify (we do not), so good fit should represent
only one criterion by which we judge a model’s usefulness or quality.

Another criterion of model success that has found much support in mathe-
matical psychology and the cognitive modeling literature is generalizability (or
replicability). The idea here is that it is not sufficient for a model to show good
fit to the data in hand. If a model is to be useful, it should predict other data
generated by the same latent process, or capture the regularities underlying
data consisting of signal and noise. If a model is highly complex, refitting the
model to new data from scratch will not advance our knowledge by much; if a
model’s structure is complex enough to show good fit to one data set, it may be
complex enough to show good fit to many other data sets simply by adjusting
its parameters. In other words, pure goodness of fit represents fit to signal plus
fit to noise. However, if model parameters are fixed to values estimated in one
setting, and the model still demonstrates good fit in a second sample (i.e., if
the model cross-validates well), the model has gained considerable support. A
model’s potential to cross-validate well is its generalizability, and it is possi-
ble to quantify generalizability based only on knowledge of the model’s form
and of its fit to a given data set. By quantifying a model’s potential to cross-
validate, generalizability avoids problems associated with good fit arising from
fitting error or from a model’s flexibility. It also does not rely on unsupportable
assumptions regarding a model’s absolute truth or falsity. Therefore, general-
izability is arguably a better criterion for model retention than is goodness of
fit per se (Pitt & Myung, 2002).

Earlier we stated that adopting a model selection perspective requires a
fundamental shift in how researchers approach model evaluation. Traditional
hypothesis testing based on LR tests results in a dichotomous accept–reject
decision without quantifying how much confidence one should place in a model,
or how much relative confidence one should place in each member of a set of rival
models. In model comparison, on the other hand, no null hypothesis is tested
(Burnham & Anderson, 2004). The appropriate sample size is not selected



�
“Chapter3˙Preacher” — 2007/2/12 — 15:47 — page 49 — #17

�

�

�

�

�

COMPARING COVARIANCE STRUCTURES 49

based on power to reject hypotheses of exact or close fit (obviously, since no
such hypotheses are tested), but rather to attain acceptable levels of precision
of parameter estimates. Rather than retaining or discarding models on a strict
accept–reject basis, models are ranked in terms of their generalizability, a notion
that combines fit with parsimony, both of which are hallmark characteristics of
a good model.

The model selection approach does not require that any of the rival models
be correct, or even (counterintuitively) that any of the models fit well in an
absolute sense. The process is designed in such a way that researchers will
gravitate toward successively better models after repeated model comparisons.
The more such comparisons a particular model survives, the better its track
record becomes, and the more support it accrues. Therefore, it is incumbent
upon scientists to devise models that are not only superior to competing models,
but also perform well in an absolute sense. Such models will, in the long run,
possess higher probabilities of surviving risky tests, facilitate substantive expla-
nation, predict future data, and lead to the formulation of novel hypotheses.
But, again, the model selection strategy we advocate does not require that any
of the competing models be correct or even close to correct in the absolute sense.

Adjusting Fit for Complexity

With rare exceptions, traditional fit indices in CSM are based on the LR test
statistic described earlier in Equation (7). In recognition of the limitations of
the raw χ2, most indices employ some correction for model complexity. For
example, the Δ2 index proposed by Bollen (1989) subtracts df from the de-
nominator as an adjustment for complexity:

Δ2 =
χ2

b − χ2
m

χ2
b − dfm

(13)

where χ2
b is the fit associated with a baseline model and χ2

m and df m are
associated with the hypothesized model. The adjustment has the effect of
penalizing fit for the number of free parameters. Many fit indices contain similar
adjustments. For example, RMSEA divides by df as a way of distributing lack
of fit across all parameter constraints. In this way, RMSEA penalizes fit due to
unnecessary free parameters.

However, complexity is not governed completely by the number of free pa-
rameters (MacCallum, 2003; Pitt, Myung, & Zhang, 2002; Preacher, 2003, in
press). The corrections employed in most indices carry the implicit assumption
that all free parameters contribute equally to a model’s ability to fit data (or,
that all model constraints contribute equally to lack of fit). Yet it is easy to
see how, in a loose sense, some parameters may be more important than others
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in a given model. For example, constraining a covariance parameter linking
otherwise disparate sections of a model to zero would probably limit a model’s
potential to fit data more than would constraining, say, a factor loading to
zero. More generally, parameters that appear in many equations for implied
covariances likely influence complexity more so than do parameters that appear
in fewer equations. Fortunately, information theory offers some alternatives to
traditional fit indices that avoid quantifying complexity as if it were a strict
linear function of the number of parameters.

Information-Theoretic Criteria

In contrast to model selection methods rooted in Bayesian or frequentist tra-
ditions, much research points to information theory as a likely source for the
optimal model selection criterion. Selection criteria based on information the-
ory seek to locate the one model, out of a pool of rival models, which shows the
optimal fidelity, or signal-to-noise ratio; this is the model that demonstrates the
best balance between fit and parsimony. This balance was termed generalizabil-
ity earlier. Several popular model selection criteria were either derived from, or
are closely related to, information theory. The most popular such criteria are
the Akaike information criterion (AIC; Akaike, 1973) and the Bayesian infor-
mation criterion (BIC; Schwartz, 1978). Excellent treatments of AIC and BIC
can be found elsewhere (e.g., Burnham & Anderson, 2002, 2004; Kuha, 2004).

Many information-based criteria may be construed as attempts to estimate
the Kullback–Leibler (K–L) distance. The K-L distance is the (unknown) in-
formation lost by representing the true latent process with an approximating
model (Burnham & Anderson, 2004). Even though we cannot compute the
K–L distance directly because there is one term in the K–L distance definition
that is not possible to estimate, we can approximate relative K–L distance in
various ways by combining knowledge of the data with knowledge of the mod-
els under scrutiny. Of great importance for model comparison, the ability to
approximate relative K–L distance permits the ranking of models in terms of
their estimated verisimilitude, tempered by our uncertainty about the degree
of approximation. In other words, using information-based criteria, models can
be ranked in terms of estimated generalizability.

Minimum Description Length and the Normalized
Maximum Likelihood

Information-based criteria such as AIC and BIC are used with great frequency
in model comparisons and with increasing frequency in applications of CSM.
However, they suffer from at least two major drawbacks. First, they employ
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complexity adjustments that are functions only of the number of free model
parameters. Second, they implicitly require the strong assumption that a cor-
rect model exists. We focus instead on a newer criterion that remains relatively
unknown in the social sciences, yet we feel has great promise for application
in model selection. This is the principle of minimum description length (MDL:
Grünwald, 2000; Myung, Navarro, & Pitt, 2005; Rissanen, 1996, 2001; Stine,
2004). The MDL principle involves construing data as compressible strings,
and conceiving of models as compression codes. If models are viewed as data
compression codes, the optimal code would be one that compresses (or simply
represents) the data with the greatest fidelity. With relevance to the limitations
of criteria such as AIC and BIC, the MDL principle involves no assumption that
a true model exists. If one accepts that a model’s proximity to the truth is ei-
ther undefined (i.e., that the notion of a true model is merely a convenience and
bears no direct relation to reality) or is at any rate impossible to determine,
then the MDL principle offers a viable alternative to traditional methods of
model selection. Excellent discussions of the MDL principle can be found in
Grünwald (2000), Grünwald, Myung, and Pitt (2005), Hansen and Yu (2001),
and Markon and Krueger (2004). Three quantifications of the MDL principle
are normalized maximum likelihood (NML), Fisher information approximation
(FIA), and stochastic information complexity (SIC). NML is quantified as:

NML =
L(y|θ̂)

∫

S

L(z|θ̂(z))dz
, (14)

or the likelihood of the data given the model divided by the sum of all such
likelihoods. FIA is quantified as:

FIA = − ln L
(
y|θ̂

)
+

q

2
ln

(
N

2π

)
+ ln

∫

Θ

√
|I (θ)|dθ, (15)

an approximation to the negative logarithm of NML that makes use of the
number of free parameters (q) and the determinant of the Fisher information
matrix, I(θ). SIC, an approximation to FIA that is typically more tractable in
practice, is quantified as:

SIC = − lnL
(
y|θ̂

)
+

1
2

ln |nI (θ)| . (16)

The Appendix (see Quant.KU.edu) contains more detailed discussion of these
criteria. NML, FIA, and SIC all represent model fit penalized by the model’s
average ability to fit any given data.
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NML is similar in spirit to selection criteria such as AIC and BIC in sev-
eral respects, save that preferable models are associated with higher values of
NML but with lower values of AIC or BIC.1 All of these criteria can be framed
as functions of the likelihood value adjusted for model complexity, although
the complexity correction assumes different forms for different criteria. NML
differs from criteria like AIC and BIC mainly in that not every parameter is
penalized to the same extent. NML imposes an adjustment commensurate with
the degree to which each free parameter increases complexity, as reflected in
the model’s general data-fitting capacity. Consequently, NML does not assume
(as do AIC and BIC) that each parameter contributes equally to goodness of
fit. Therefore, both parametric and structural components of complexity are
considered. A major additional advantage of NML (which it shares with AIC
and BIC) is that it does not require rival models to be nested. Thus, if two
competing theories posit different patterns of constraints, such models can be
directly compared using criteria derived from information theory.

Applying MDL in Practice

To illustrate how the MDL principle may be employed in practice, we present
two brief examples from the applied literature. In both examples we compute
NML; in the second, we supplement NML with computation of SIC because
original data were available with which to compute the |nI(θ)| term. Neither
the denominator term in NML (see Equation [A1]) nor the structural complex-
ity term in FIA (see Equation [A2]) can be computed directly in the context
of CSM. Numerical integration techniques are typically applied instead. To fa-
cilitate computation of NML, we simulated the data space by generating large
numbers of random uniform correlation matrices (R) using Markov chain Monte
Carlo (MCMC) methods.2 These matrices were uniform in the sense that all
possible R matrices had equal apriori probabilities of being generated. All
models were fit to all simulated matrices, and the likelihoods were averaged to
form the denominator of the NML formula.3 The numerators were supplied by
simply noting the likelihood value associated with the converged solution for
each model applied to real data.

Example 1. Our first demonstration makes use of models provided by In-
1In fact, BIC may be obtained as a special case of MDL if structural complexity is neglected

(Myung et al., 2005).
2Fortran 90 code is available from the first author upon request. See Preacher (2003) for

details.
3An average was used rather than a sum because (a) computation of NML is more man-

ageable and intuitive using the mean likelihood rather than a sum of likelihoods and (b) the

rank ordering of models is not affected. Solutions with estimation errors were omitted from

this averaging.
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gram, Betz, Mindes, Schmitt, and Smith (2001) in a study of the effects and
correlates of unsupportive social interactions.
Part of their study involved comparison of five rival confirmatory factor mod-
els, depicted in Figure 3.2, which we denote Models I1 – I5. The four primary
factors in each model represent dimensions of the Unsupportive Social Interac-
tions Inventory (USII). Each factor was measured by three 2-item parcels, for
a total of p = 12 variables. After removing one outlier, the five models were fit
to data from N = 221 introductory psychology students. Based on LR tests,
the authors selected Model I5 as superior to its rivals.

NML was computed for each model. The empirical likelihoods were ob-
tained by employing the following formula using the χ2 statistics reported in
Ingram et al. (2001, Table 4):

L(y|θ̂) = e
χ2

−2(N−1) (17)

The complexity estimates were obtained by fitting each model to 10,000 ran-
dom R matrices and computing the mean obtained likelihood. Computation
of complexity was based only on proper solutions with no convergence errors.
The resulting NML, along with the number of solutions on which computation
was based, can be found in Table 3.1.

Whereas the authors chose Model I5 as the preferred model based on LR
tests (I5 showed significantly better fit in terms of χ2 than did the next-worst
fitting model), application of NML indicates a preference for Model I2. The
higher order factor model was characterized by the highest NML in the set
of models compared, implying that I2 has greater potential for replicating in
future samples than its rivals. Although Model I5 demonstrated the best ab-
solute fit, it did so at the price of having a more complex structure and more
free parameters.

TABLE 3.1

NML Estimates for the Five Factor Models Compared by Ingram et al. (2001)

Model Empirical χ2 df NML Solutions without
Estimation Errors

I1 One Factor 325.34 54 2.867 9,999

I2 Higher Order 155.38 50 3.528 9,870

I3 Four Factor 152.45 48 3.223 9,848

I4 Higher Order with One 145.83 49 3.003 9,699

Cross-Loading

I5 Four Factor with One 131.42 47 3.188 9,716
Cross-Loading
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TABLE 3.2

NML and SIC Estimates for the Three Models Compared by Larose et al. (2002)

Model Empirical χ2 df NML SIC Solutions without
estimation Errors

L1 Cognitive Bias 17.07 8 1.759 66.294 9,319

L2 Social Networks 24.57 7 1.520 71.088 9,221

L3 Cognitive-Network 4.94 6 1.404 76.448 9,225

Note. Because the x2 values obtained through reanalysis differed slightly from those reported

by Larose et al. (2002), we report the values we obtained. These differences are likely to due

rounding error in Larose et al.’s reported correlations.

This finding has implications for the conclusions drawn by Ingram et al. (2001).
Because the authors used a model selection approach that does not consider the
relaive complexities of rival models, the model that showed the best absolute fit
was also the one with the highest complexity, or the best apriori expected fit.
In essence, the chosen model capitalized on an unfair advantage. In contrast, a
selection criterion that appropriately adjusts fit for complexity selected a model
with a better balance of fit and parsimony.

Example 2. Our second example draws on three covariance structure models
compared by Larose, Guay, and Boivin (2002). The authors were primarily in-
terested in comparing the Cognitive Bias Model and Social Network Model, two
models proposed to explain variability in a Loneliness latent variable using At-
tachment Security, Emotional Support, and Social Support. These two models
(which we denote L1 and L2) are presented in the first two panels of Figure 3.3.
Based on results indicating that both models fit the data well and were thus
viable explanations for the observed pattern of effects, the authors devised a
third model combining features of the first two, dubbed the Cognitive-Network
Model (L3 in Figure 3.3).

All three models were found to fit the data well using self-report measures
(N = 125), and to fit even better using friend-report measures. In both cases,
the Cognitive-Network Model was found to fit the data significantly better
than either the Cognitive Bias Model or the Social Network Model. Following
procedures already described, we reevaluated Larose et al.’s models (fit to self-
report data) using NML. Results are reported in Table 3.2. Because raw data
were available in their article, we are also able to provide estimates of SIC.

Contrary to the authors’ findings, both NML and SIC indicate that the
Cognitive Bias Model performs better than either the Social Networks Model
or the proposed Cognitive-Network Model in terms of generalizability. Com-
bining features of two already well-fitting models does not necessarily grant a
scientific advantage when the resulting model is more complex than either of its
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FIGURE 3.2

Rival models investigated by Ingram et al. (2001).
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FIGURE 3.3

Rival models investigated by Larose et al. (2002).
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competitors. In this instance, as in the previous example, the chosen model was
selected primarily because it showed better absolute fit; this better fit was due
in part to the fact that the Cognitive-Network Model was more complex than
its competitors. An implication of this finding is that, whereas the Cognitive-
Network Model may fit the given data set better than the Cognitive Bias Model
and the Social Networks Model in absolute terms, it has a lower likelihood of
generalizing well to future data.

Summary

Like other information-theoretic selection criteria, MDL does not require rival
models to be parametrically nested. Nor does its use require the assumption
that a true model exists. Furthermore, MDL considers more sources of com-
plexity than simply a model’s number of parameters. In sum, we feel that the
MDL principle has great potential for use in model comparisons in CSM.

Limitations

Of course, NML is not a panacea. Three limitations of NML are that it is
difficult to compute, it relies on the assumptions of maximum likelihood, and
it involves often arbitrary bounds on the data space. The first limitation will
be overcome as processor speeds increase and as NML becomes included in
standard model estimation packages. In the meantime, the more tractable MDL
approximation, SIC (Rissanen, 1989), can be used if the numerical integration
necessary for NML proves too time-intensive. As for the second limitation, it is
unknown how robust MDL methods are to violations of ML assumptions. This
would be a fruitful avenue for future research.

The third limitation is more challenging because it requires the researcher
to make a subjective decision regarding boundaries on the data space. We
restricted attention to correlation matrices for simplicity. We recognize that
many modeling applications require covariance matrices rather than correla-
tion matrices (and sometimes also mean vectors). For example, virtually any
application in which models are fit to multiple groups simultaneously, such as
in factorial invariance studies, requires the use of covariance matrices. Growth
curve modeling requires covariance matrices and mean vectors. Lower and up-
per boundaries must be imposed on generated means and variances if such data
are required, and these choices constitute even more subjective input. It is
generally agreed that data generated for the purpose of quantifying model com-
plexity should be uniformly representative of the data space (Dunn, 2000), yet
choices regarding the range of data generation may exert great influence on the
ranking of competing models. It is thus important that reasonable bounds be
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investigated to ensure reasonable and stable model rankings. A discussion of the
implications for arbitrary integration ranges can be found in Lanterman (2005).

DISCUSSION

We have proposed two alternatives to traditional methods of comparing co-
variance structure models. Both alternatives were suggested in response to
limitations of the popular LR test; the most severe limitation is that the hy-
pothesis tested by the LR test (that two models have identical fit) is never true
in practice, so investigating its truth or falsity would seem to be a questionable
undertaking (MacCallum et al., 2006). The first alternative procedure posits
a modified null hypothesis such that the difference in fit between two nested
models is within tolerable limits. The second alternative we discuss is to com-
pare rival (not necessarily nested) models in terms of relative generalizability
using selection indices based on the MDL principle. Both methods encourage
a model comparison approach to science that is likely to move the field in the
direction of successively better models.

There are interesting parallels between the strategies proposed here and a
framework for model assessment proposed by Linhart and Zucchini (1986) and
elaborated upon by Cudeck and Henly (1991) in the context of CSM. Because
it relies on RMSEA to specify null and alternative hypotheses, the first ap-
proach (using RMSEA to specify hypotheses of close fit) can be seen as way
to compare nested models in terms of their approximation discrepancy, or lack
of fit in the population. In other words, this method is a way to gauge mod-
els’ relative nearness to the objectively true data-generating process, or their
relative verisimilitudes. The second method of model comparison makes use of
the MDL principle to facilitate comparison of models in terms of their relative
generalizabilities, or abilities to predict future data arising from the same gener-
ating process. This strategy can be seen as a way to compare models (nested or
non-nested) in terms of their overall discrepancy, tempering information about
lack of fit with lack of confidence due to sampling error. When N is large,
enough information is available to support highly complex models if such mod-
els are appropriate. When N is small, uncertainty obliges us to conservatively
select less complex models until more information becomes available (Cudeck
& Henly, 1991). Thus, NML and similar criteria are direct applications of the
parsimony principle, or Occam’s razor.

The parallels between the measures of verisimilitude and generalizability
on one hand, and the Linhart–Zucchini and Cudeck–Henly frameworks on the
other, perhaps deserve more attention in future research. High verisimilitude
and high generalizability are both desirable characteristics for models to pos-
sess, but selecting the most generalizable model does not necessarily imply that
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the selected model is also closest to the objective truth. Therefore we do not ad-
vocate choosing one approach or the other, or even limiting attention to these
two strategies. Rather, we suggest combining these strategies with existing
model evaluation and selection techniques so that judgments may be based on
as much information as possible. Regardless of what strategy the researcher
chooses, the strongest recommendation we can make is that researchers should,
whenever circumstances permit it, adopt a model selection strategy rather than
to evaluate single models in isolation. The methods illustrated here are viable
alternatives to the standard approach, and can be applied easily in many mod-
eling settings involving longitudinal and/or ecological data.
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