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SUMMARY

Many unicellular tubes such as capillaries form lumens intracellularly, a process that is not well

understood. Here we show that the cortical membrane organizer ERM-1 is required to expand the

intracellular apical/lumenal membrane and its actin undercoat during single-cell C.elegans

excretory canal morphogenesis. We characterize AQP-8, identified in an ERM-1 overexpression

(ERM-1[++]) suppressor screen, as a canalicular aquaporin that interacts with ERM-1 in lumen

extension in a mercury-sensitive manner, implicating water-channel activity. AQP-8 is transiently

recruited to the lumen by ERM-1, co-localizing in peri-lumenal cuffs interspaced along expanding

canals. An ERM-1[++]-mediated increase in the number of lumen-associated canaliculi is reversed

by AQP-8 depletion. We propose that the ERM-1-AQP-8 interaction propels lumen extension by

translumenal flux, suggesting a direct morphogenetic effect of water-channel-regulated fluid

pressure.

INTRODUCTION

Epithelial tubes are polarized and form a lumenal surface by their apical membranes.

Multicellular tubes build the lumen at the interface of several cells, whereas unicellular

tubes of the capillary type generate the lumen within the cell1,2. The C.elegans excretory

cell extends four canals along the length of the animal from a single cell3,4. This unique in

vivo model for intracellular lumen morphogenesis permits the separation of apical from
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basal membrane biogenesis and junction assembly (see below)5,6,7. It is not known how the

canal lumen is built. A number of genes, mostly identified by their cyst-forming mutant

canal phenotypes, are implicated in preserving stability of the lumenal membrane and its

submembraneous cytoskeleton4,8-12.

We previously found that ERM-1, the single C.elegans orthologue of the ezrin-radixin-

moesin (ERM) family of membrane-actin linkers, is enriched at lumenal membranes and

required for tubular organ lumen morphogenesis, a function conserved in vertebrates13,14.

ERMs are ubiquitous cortical membrane organizers with presumed structural as well as

signaling functions, and they can initiate the formation of apical membrane characteristics

such as microvilli in polarized cells15-17. It is still unclear, however, whether ERMs organize

membranes via mechanical scaffolding or dynamic modeling, and whether they affect

epithelial morphogenesis via junctions. ERMs’ role in multicellular tubulogenesis, also

conserved in invertebrates, has been difficult to dissect: Drosophila Dmoesin and zebrafish

moesin1 were implicated in both tube elongation and restriction, in both a junction-

dependent and -independent manner18-20.

We took advantage of the simplicity of the single-cell C.elegans excretory canal to

investigate ERMs’ role in apical membrane modeling and lumen morphogenesis. We

searched for genetic modifiers of the ERM-1 overexpression (ERM-1[++]) cystic-canal

phenotype13 and identified aqp-8 (aquaporin), a member of the highly conserved family of

membrane water channels.21 While aquaporin channel structure, permeability properties,

and inhibition by mercury are well characterized in vitro, aquaporins’ in vivo roles are less

clear22,23, since knockouts revealed non-essential roles for most. Given their tissue and

organelle-specific localization, this finding is not explained by redundancies alone.

Moreover, multiple knockouts have yielded few phenotypes: for instance, C.elegans

aqp-2;aqp-3;aqp-4;aqp-8 quadruple null mutants are viable and superficially wild-type24.

Here we report a cooperative function of ERM-1 and AQP-8 in intracellular lumen and tube

extension. Our findings suggest that ERM-1 extends intracellular lumens by: (1) expansion

of the apical/lumenal membrane and its submembraneous cytoskeleton; (2) transient

lumenal recruitment of AQP-8-associated canaliculi promoting translumenal flux.

RESULTS

ERM-1 is required for intracellular lumenal membrane and actin coat expansion

During late embryogenesis, the C.elegans excretory cell laterally extends two canal arms,

each of which bifurcates and completes anterior-posterior extension in first-stage larvae (L1-

larvae). Canals subsequently expand synchronously with the animal’s growth25 (Fig. 1a).

The thin tubular canal arms (‘canal-tubes’, tube cytoplasm pseudocolored blue throughout)

are surrounded by basal membranes and pierced by ultra-thin tubular lumens that are lined

by lumenal membranes and a submembranous cytoskeleton of apical character10,13 (‘canal-

lumens; lumenal membranes shown in green to avoid confusion with ‘canal-tubes’ that also

appear as single or double lines by fluorescence microcsopy; Fig. 1b, S1A-H). One junction

connects the excretory cell to the duct, a connection essential for outflow and survival, but

no junctions form along the length of the canal arms5,6.
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To assess ERM-1’s role in canal morphogenesis, we examined its development under

conditions of decreased and increased ERM-1. ERM-1::GFP appearance coincided with

lumen initiation (1.5-fold embryo), was located at the lumenal membrane (Fig. S1I-J”, 5a-

i”’), and led its expansion (Fig. 1c-h’). Cytoplasmic ERM-1::GFP puncta were never

observed, suggesting that lumenal membranes do not expand from vacuole membranes with

full apical character.

Canal extension, visualized with vha-1p- or sulp-5p-driven cytoplasmic excretory-canal

GFP, was dependent on ERM-1 dosage: (1) progeny of erm-1(tm677) deletion mutants

failed to extend canals and accumulated fluid in canal cell bodies of L1-arrested larvae

(penetrance 100%, N>200; Fig. 1i-i”); (2) homozygous progeny of tm677/+ animals also

failed to extend canals and exhibited canal cell bodies that stretched laterally and

posteriorward (penetrance 100%, N>200; Fig. 1j-j”), suggestive of intact external guidance

cues; (3) erm-1(tm677)/+ animals extended canals to ½-wild-type length (penetrance 100%;

N>200; Fig. 1k-k”); (4) erm-1(RNAi) animals displayed a dose-dependent range from no to

almost full-length canal extension (Fig. 1m-x). In all cases, the canal-to-duct junction

remained intact, as indicated by proper localization of the junction component AJM-16,26

and by the ability of moderately ERM-1-depleted animals with short canals to survive to

adulthood, suggesting that erm-1 did not affect canal extension via junction assembly (Fig.

S2A-C).

In ERM-1-depleted animals, the canal cytoplasm contained either vacuoles and no lumen,

aligned discontiguous vacuoles, or vacuolar-shaped shortened lumens (Fig. 1m-r, S2D-I).

Where vacuoles were misaligned, at canal tips (Fig. 1p, S2G) or in the cell body (Fig. 1n,

S2E), lumens did not extend or deviated from their course, suggestive of a link between

vacuole alignment and directional extension. To examine lumenal membrane expansion,

canals were labeled with ACT-5::GFP, a tube-specific actin that, like ERM-1, was found to

reside at lumenal membranes13,27. Vacuole alignment correlated with lumenal actin

assembly (Fig. 1s-x, S2J-O): isolated vacuoles lacked ACT-5::GFP (Fig. 1s, S2J); aligned

vacuoles were partially coated (Fig. 1t, S2K); and vacuolar-shaped lumenal membranes

were fully coated with ACT-5::GFP (Fig. 1v,w, S2M,N).

ERM-1 overexpression (ERM-1[++]) from a transgenic erm-1 allele

(fgIs2[erm-1p::erm-1])13 and several fgEx(erm-1p:::erm-1::gfp) lines resulted in widened

and deformed canal lumens (100%, N>1000; Fig. 2a-f, S3A-F). fgIs2(erm-1p::erm-1),

previously shown to fully rescue tm67713, raised erm-1 mRNA ~8fold and ERM-1 protein

(detected by distinct monoclonal and polyclonal antibodies) ~9fold, and was suppressed by

erm-1 RNAi (100%, N>500; Fig. 2g-h; S3G-J, not shown), all data indicating that higher

amounts of functional ERM-1 caused the defect. erm-1(RNAi) only suppressed ERM-1[++]-

induced cysts when initiated before or during active lumen extension (Fig. 2o).

Nomarski and confocal analysis of GFP-labeled ERM-1[++] canals revealed cystic fluid

buildup in short canals that extended lumenless cytoplasmic islets beyond tip cysts (Fig.

2b,c). An ACT-5::GFP coat characterized the fluid buildup as intralumenal cysts

(intralumenal spheres, bounded by apical membranes, are denoted as cysts; small and large

cytoplasmic spheres, not fully bounded by such membranes, are denoted as ‘vesicles’ and

Khan et al. Page 3

Nat Cell Biol. Author manuscript; available in PMC 2014 July 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



‘vacuoles’, respectively). Unlike wild-type ACT-5 coats, ERM-1[++] ACT-5 coats extended

beyond the lumen and were thicker (Fig. 2d-f, S3K-O). Thus, ERM-1[++] canals display

excess/aberrant lumenal actin coating and form intralumenal cysts, whereas ERM-1-

depleted canals display no or incomplete lumenal membrane expansion with discontiguous

actin coating and accumulate cytoplasmic vacuoles.

We conclude that ERM-1 dose-dependently expands the junctionless C.elegans excretory

canal lumenal membrane and its actin cytoskeleton. ERM-1 depletion phenotypes are

compatible with a vacuole-coalescence model of canal lumen extension and suggest that

lumen-forming vesicle membranes concomitantly align, coalesce, and acquire apical

characteristics and a submembraneous actin track that directionally extends an intracellular

lumen.

An RNAi modifier screen reveals a requirement of AQP-8/aquaporin for the ERM-1[++]
excretory canal phenotype

To determine the molecular basis of ERM-1’s role in intracellular lumen extension, we

performed a targeted RNAi ERM-1[++] modifier screen. An RNAi library was built from

experimentally identified ERM/ezrin-radixin-moesin interactors from all species, and eight

classes of candidates were generated and extended by mining available databases (Fig. 2i).

Corresponding C.elegans orthologues (N=1300) were knocked down via feeding RNAi

bacteria to an ERM-1[++] strain with vha-1p::GFP-labeled canals. Enhancement was

defined as increased cyst size or canal shortening, and suppression as reduced cyst size and

canal re-extension (Fig. 2j-m). aqp-8 was one of several genes identified as a strong

suppressor of the ERM-1[++] cystic-canal phenotype (Tab. S1).

aqp-8(RNAi) suppression was confirmed in aqp-8(ok2800), a likely null allele deleting part

of the gene and introducing a frameshift and stop codon (Fig. S5A). Over 40% of

aqp-8(ok2800); fgIs(erm-1p::erm-1) double mutants had thinner and re-extended canals,

without cysts, as compared to animals containing only fgIs2(erm-1p::erm-1) (Fig. 2n, S4A-

B’). This aqp-8 mutation, or aqp-8 RNAi, also suppressed overexpression phenotypes of

erm-1::gfp transgenic strains (not shown). Suppression was specific to ERM-1[++] cysts, as

exc-5(rh232), exc-4(rh133), and exc-2(rh90) cysts4,10 were not suppressed (Fig. S4C-E).

Feeding animals aqp-8 double-stranded RNA after completion of embryogenesis, sufficient

to abolish AQP-8::GFP, suppressed ERM-1[++] cysts only when introduced at the L1-L2-

stage (Fig. 2o, Fig S4F-G’).

We conclude that AQP-8 interacts with ERM-1 in canal development and exerts its effect

during the phase of active lumen and canal extension.

AQP-8 contributes to lumen and canal extension and is expressed on canalicular vesicles

To investigate AQP-8’s role in excretory canal morphogenesis we examined canal

development after modulating AQP-8 levels and analyzed AQP-8’s subcellular localization.

Viable mutants in two different likely null alleles, aqp-8(ok2800) and aqp-8(tm1919),

labeled with either cytoplasmic- or lumenal-GFP, exhibited moderately shortened canals and

lumen defects at ~40% penetrance, including: canal-tip vacuoles; extension of cytoplasmic
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islets beyond prematurely-ending lumens; and reduced lumen diameters (Fig. 3a-e, S1D-H,

S5B, not shown). aqp-8 knockdowns generated a range of mild to moderate canal defects of

similar character, with strong RNAi phenocopying the germline deletion mutants. Mutant

canal phenotypes were rescued by transformation with either aqp-8p-aqp-8::gfp or aqp-8p-

aqp-8::mCherry plasmids (Fig. 3f, S5B).

AQP-8 overexpression (AQP-8[++]) from several independent lines caused widened canals

(penetrance ~90%, N>500) or round intralumenal cell-body-close cysts, without canal

extension, and lethality (penetrance ~10%, N>500; Fig. 3g-h, S5C-E’). Increased copies of

aqp-8p::aqp-8::gfp (the aqp-8(ok2800) rescuing plasmid) raised aqp-8 mRNA levels and

progressively widened canals, and AQP-8[++] defects were suppressed by aqp-8 RNAi (Fig.

3i, S5F, not shown). These data indicate that, similar to ERM-1, higher levels of functional

AQP-8 also affect canal morphogenesis.

To examine possible redundancies of AQP-8 with other water channels in canal

development, we inspected GFP-labeled canals in animals depleted of other C.elegans

aquaporins (Fig. S6). aqp-2, aqp-3 and aqp-8 are the three C.elegans aquaporins shown to

be expressed in the excretory canal24,28. An aqp-2(ok2159) presumed null allele failed to

generate obvious canal defects, as did the aqp-2(ok2159);aqp-3(RNAi) double deletion/

knockdown that also failed to enhance the aqp-8(RNAi) phenotype (Fig. S6A). None of the

other tested aquaporin knockdowns generated discernible defects, and among them only

aqp-8 suppressed the ERM-1[++] phenotype (Fig. S6B-C).

We generated aqp-8p::aqp-8::gfp and:mCherry plasmids that confirmed AQP-8’s

expression in the excretory system24,28 and revealed it as an endo-rather than plasma-

membrane-associated channel that localized to dense cytoplasmic, mostly lumen-distant

puncta/patches (Fig. 3j-v’, 5f,i-i’”, S5G,H; Fig. S7 for additional AQP-8 localization). This

expression pattern suggested that AQP-8 resides on canaliculi that fill the canal cytoplasm as

small vesicles whose inter-connection and lumen-connection may be dynamically regulated

(Fig. 3w-x,7h)5. AQP-8::GFP did not overlap with

mCherry::RAB-11,:RAB-5,:RME-1,:CHC-1, identifying larger, sparser, and basally aligned

endosomal vesicles29(Fig. 3m-p’, 7h-k). We generated GFP-fusions with VHA-1, a vacuolar

ATPase subunit likely located on canaliculi, that copied the AQP-8 expression pattern and

partially colocalized (Fig. 3q-s’). AQP-8 was also partially collocated with GFP and

mCherry fusions to VHA-5, another component of the vacuolar ATPase, shown via

immuno-electronmicroscopy to be located at canaliculi7 (Fig. 3t-v’).

We conclude that AQP-8 is a canalicular-vesicle-rather than plasma-membrane-associated

aquaporin in the C.elegans excretory canal and likely the sole aquaporin to function in

lumen and canal extension. AQP-8, like ERM-1, dose-dependently extends canal lumens,

but, unlike ERM-1, seems to expand lumen diameters rather than membranes.

Genetic interactions between AQP-8 and ERM-1

To further investigate the nature of the AQP-8/ERM-1 interaction, we examined canal

extension and cyst formation in different combinations of erm-1 and aqp-8 loss- and gain-

of-function conditions. aqp-8(ok2800) enhanced the partial loss-of-function erm-1(RNAi)
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canal defects, supporting a coordinate function of these genes in canal extension (Fig. 4a).

Since homozygous erm-1(tm677) mutants extend no canals, further reduction of length

cannot be measured. However, erm-1(tm677);aqp-8(ok2800) double-mutant canal-cell

bodies contained fewer vacuoles, suggesting an ERM-1-independent function of AQP-8 in

intracellular vesicle swelling (Fig. 4b).

ERM-1[++] enhanced the AQP-8[++] cystic-canal phenotype, also supporting their common

function in canal lumen morphogenesis (Fig. 4c). Unexpectedly, however, erm-1 RNAi

suppressed AQP-8[++]-induced cyst formation, indicating that it requires ERM-1 (Fig. 4d).

Loss of ERM-1, a lumenal scaffold component, would be predicted to enhance canal cysts,

as indeed observed for RNAi with sma-1/βH-spectrin, encoding another canal-lumen-

scaffold constituent4, that enhanced AQP-8[++] cysts (Fig. 4e).

We conclude that erm-1 and aqp-8 genetically interact in excretory canal lumen extension,

and that they are mutually required to generate their overexpression cystic canal phenotypes,

a scenario compatible with a direct, possibly physical, ERM-1/AQP-8 interaction in this

process. aqp-8 appears to have an additional erm-1-independent function in excretory-canal-

vesicle swelling.

AQP-8 and ERM-1 colocalize in peri-lumenal cuffs during canal lumen extension and
interact in yeast-two-hybrid assays

Given AQP-8 and ERM-1’s distinct location at endo-versus plasma membranes, a direct in

vivo AQP-8/ERM-1 interaction seemed unlikely. To explore the possibility of a spatially or

temporally restricted interaction, we examined co-expressed AQP-8::mCherry and

ERM-1::GFP throughout canal development. AQP-8::mCherry appeared only after

completion of lateral canal extension, lagging behind lumenal ERM-1::GFP, indicating that

AQP-8, unlike ERM-1, is not strictly required for lumen extension (Fig. 5a-b’).

AQP-8::mCherry then rapidly spread along canal arms, overtaking ERM-1 at canal tips by

the time of anterior-posterior canal extension (Fig. 5c-d’). AQP-8 expression dramatically

increased in canal varicosities, excess canal tissue that forms along actively growing

canals30 and during an osmotic challenge7 (Fig. 5e). AQP-8::mCherry/ERM-1::GFP

lumenal overlap was restricted to this growth phase and condensed into peri-lumenal cuffs

through enrichment in varicosities (Fig. 5g-h’”). Both AQP-8 expression and ERM-1

overlap sharply declined with the flattening of varicosities, when AQP-8 assumed its adult

lumen-distant vesicular expression pattern (Fig. 5f,i-i’”). Varicosities and AQP-8::mCherry/

ERM-1::GFP overlap persisted at adult posterior canal tips, suggesting their role in lumen

tip maintenance (Fig. S8A-C’).

To examine a possible physical interaction of ERM-1 and AQP-8 we performed yeast two-

hybrid assays. ERM-1 interacted with AQP-8, as well as with ACT-5/actin, but not with

UNC-54/myosin (Fig. 5j-m, S8D-D’). Mapping of ERM-1 domains suggested that AQP-8

binds to the C-terminal ERM-1 domain.

We conclude that a putative physical ERM-1/AQP-8 interaction is temporally and spatially

regulated in vivo and largely confined to the short period of active canal extension and to

peri-lumenal cuffs at canal varicosities interspaced along extending canals.
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Mercury inhibits AQP-8’s effects on excretory canal morphogenesis and the ERM-1[++]
phenotype

As a water channel, AQP-8 might extend the canal lumen by translumenal flux. However,

not all aquaporins transport water31 and AQP-8 fails to do so under isotonic conditions in

Xenopus oocytes24. We reasoned that it might nevertheless transport water into acidified

vesicles or intracellular lumens. To test this, we first assayed osmotic behavior in aqp-8

mutants. To target the efferent arm of osmoregulation, worms were directly placed into non-

isotonic solutions, rather than allowing adjustment to different plate osmolalities24. Under

these conditions, aqp-8(ok2800) mutants were sensitive to hypotonic stress (Fig. 6a-c).

Next, we examined the effect of mercury that specifically inhibits aquaporin water-channel

activity32. Mercury at non-toxic doses mildly inhibited excretory canal extension in

otherwise wild-type-appearing animals (Fig. 6d). This effect was largely mediated by

AQP-8, since mercury failed to enhance aqp-8(ok2800)-induced excretory-canal shortening

(Fig. 6e). Moreover, non-toxic mercury doses substantially suppressed AQP-8[++]-induced

cyst formation and partially suppressed AQP-8[++]-induced canal shortening (Fig. 6f,g,h,k).

These data indicate that AQP-8 acts as a water channel in canal morphogenesis, and suggest

that excess flux during canal extension expands lumen diameter at the expense of forward

extension.

ERM-1[++]-induced cysts and canal shortening were likewise suppressed by mercury, albeit

only partially (Fig. 6i-k), indicating that water flux contributes to ERM-1[++] cysts, that

ERM-1 affects such flux, and that AQP-8 depletion might suppress ERM-1[++] cysts via the

reduction of flux. In support of this idea, mercury reduced AQP-8[++]’s ability to enhance

ERM-1[++] cysts (16% cyst reduction, N=70). Mercury specifically affected AQP-8[++]

and ERM-1[++] cysts, as exc-5(rh232) cysts could not be suppressed (Fig. 6k). Cysts were

suppressed only when mercury was present during active canal extension (Fig. 6l).

To further determine AQP-8’s morphogenetic function as a water channel, we mutated

conserved residues in the channel region required for water transport, including a mutation

that induces diabetes insipidus in humans33, and examined their effects on canal extension.

aqp-8p::aqp-8A81D::gfp and aqp-8p::aqp-8A81D,R213H::gfp were correctly expressed at

canaliculi, but less able than aqp-8p::aqp-8::gfp to reverse aqp-8(ok2800)-induced

excretory-canal defects and the aqp-8(ok2800)-induced suppression of ERM-1[++] cysts

(Fig. 6m-o).

We conclude that water flux has a direct morphogenetic effect on unicellular tubes and that

AQP-8 extends intracellular lumens by its ability to transport water, which also mediates its

interaction with ERM-1.

ERM-1 recruits AQP-8 to the lumen and increases the canaliculi-lumen connection

AQP-8-mediated flux could directly extend lumens by influx either into the lumen or into

subsequently lumen-connecting vesicles. Alternatively, vesicular influx might extend

lumens secondarily, through effects on the vesicular delivery of lumenal membrane

components. To explore these possibilities in relation to an ERM-1/AQP-8 interaction, we

examined whether AQP-8 was required for lumenal recruitment of ERM-1 or vice versa.
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aqp-8(ok2800) mutants recruited both ERM-1::GFP and ACT-5::GFP to the expanding

lumenal membrane (Fig. 7a,b). In contrast, AQP-8::GFP, AQP-8::mCherry and

VHA-1::GFP tubulovesicles remained dispersed away from extending lumens of

erm-1(tm677)/+ and erm-1(RNAi) animals, but not from sma-1(RNAi) lumens, which also

exhibit lumen morphogenesis defects (Fig. 7c-e, S8E,F).

In addition, surplus ERM-1 recruited AQP-8::mCherry puncta to the lumen of mature

canals, where they accumulated in bright patches, and, in contrast to wild-type, overlapped

with lumenal ACT-5::GFP (Fig. 7f-g”, Fig. S8I, Tab. S2). The AQP-8/ACT-5 accretion was

not caused by physical constraint of the cysts, as indicated by the unaltered homogenous

distribution of cytoplasmic sulp-5p::GFP (Fig. S8G-I).

Comparisons of high-pressure-freezing-transmission-electron-microsocopic cross sections of

ERM-1[++] versus wild-type canals revealed cystic lumens with undulating membranes

framing cytoplasmic bulges. In these bulges, the tubovesicluar membrane system was

shifted towards the lumen, with an increase in the fraction of lumen-connected vesicles

(from 10-40%), in vesicle interconnections and vesicle density, and with the appearance of

dramatically elongated lumen-connected tubules (Fig. 7h,i; 8a,c; S8J, Tab. S3).

Tomographic analysis confirmed the increase in lumen-connected canaliculi in ERM-1[++]

canals (Fig. 8a-d). This increase was alleviated in aqp-8(ok2800); ERM-1[++] canals (Fig.

7k, S8J, Tab. S3). In contrast, aqp-8(ok2800) canal cross sections displayed a decreased

fraction of interconnected canalicular vesicles (from 14 to 3%) and a moderate reduction in

lumen diameter (Fig. 7j, S8K, Tab. S3).

We conclude that ERM-1 recruits AQP-8 to the excretory canal lumen and excess ERM-1

increases the canalicular-lumenal interface in an AQP-8-dependent manner.

DISCUSSION

Two models for intracellular lumen extension by lumenal membrane expansion have been

proposed. Zebrafish intracellular and intercellular vascular lumens extend by coalescing

vacuolar membranes of presumed apical character, elaborating the in vitro capillarogenesis

model20,34-36. It is unclear how this process acquires intracellular directionality. Moesin1

promotes lumen extension, but is thought to exert its effect secondarily via intercellular

junctions and junction-dependent polarization20. In contrast, in Drosophila terminal-

tracheal-branch morphogenesis, an intracellular lumen extends through inward growth of the

apical membrane along a pre-established actin track, without apparent vacuolar fusions19.

The actin track contains Dmoesin, but its function is unclear.

The single-cell C.elegans excretory canal permits the observation of a direct ERM-1 role in

the expansion of an intracellular lumenal membrane and its actin undercoat, and furthermore

suggests that it occurs through coalescence of vesicle membranes that acquire apical

character and a directional actin track during, not before, coalescence. This could propose a

unifying model for intracellular lumenal membrane expansion: the coalescence of different

vesicle membranes, not necessarily of apical character (and thus not detected by apical

labels in Drosophila and C.elegans), with concomitant actin track construction (perhaps also
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present in zebrafish). Indeed, vesicle trafficking is also required for Drosophila terminal-

tracheal-branch morphogenesis37.

ERM-1’s ability to expand a junctionless apical/lumenal membrane now demonstrates a

direct ERM requirement for de novo apical membrane and lumen biogenesis and reveals its

junction-independent function in this process. ERM-1’s function instead consists of the

recruitment and actin-coating of membrane-forming vesicles, raising the possibility that

ERMs regulate cortical membrane dynamics by negotiating vesicle-to-plasma-membrane

contacts (perhaps via actin) rather than by membrane-scaffolding15, consistent with recent

reports on ERMs’ role in vesicle dynamics38-41.

In support of an ERM role at the vesicle-to-membrane interface, we also find that ERM-1

recruits AQP-8-associated canalicular vesicles to the lumenal membrane. However, lumenal

membranes do not incorporate AQP-8, suggesting that these vesicles only transiently

connect, a scenario compatible with an AQP-8 function in lumen extension via flux.

Nonetheless, even a transient canaliculi-membrane connection modifies the lumenal cortex.

This may explain dual ERM functions on membrane channels/pumps previously observed in

other systems, such as effects on both the pump function of membrane-associated Na/H

exchangers (NHE3) and on the structural, pump-independent function on cortex

organization by NHE1, as well as its effect on increasing gastric acid secretion via both H

+/K+-ATPase-activation and the expansion of a microvillar-canalicular interface42-46.

Most ERM interactors associate with ERMs’ membrane-directed N-terminus15. An AQP-8

interaction with ERM-1’s actin-binding C-terminus might generate a canaliculi-membrane

bridge akin to its actin-membrane link. Intriguingly, a C-terminal Moesin peptide promotes

apical membrane recruitment of AQP2 in mammalian cell lines47. This was interpreted as an

inhibitory peptide effect, but perhaps reflects a peptide-dependent recruitment of aquaporin

to the membrane. It is tempting to speculate that AQP-8 competes with actin for ERM-1’s

C-terminus during canal extension, resulting in transient canaliculi-membrane contacts at the

expense of actin-membrane coating. ERM-1 might thus orchestrate lumenal membrane

expansion with lumen diameter expansion (Fig. 8e,f).

A direct, regulated and active morphogenetic force of hydrostatic pressure in metazoan

development has long been proposed, but not yet demonstrated.48 However, hydrostatic

pressure was recently shown to shape cells in vitro49, and to indirectly shape developing

zebrafish tissues, such as nephrons, via cell migration, and vessels via lumen stabilization

and anastomosis.20,36,50 It can also passively expand preformed developing structures, for

instance, the zebrafish gut via CFTR-channel-mediated flux or, as paracellular flux, single

lumens in Xenopus multicellular tubes51-53. In contrast, hydrostatic pressure is a

documented direct, active and, moreover, aquaporin-regulated tissue-shaping force in plants

(that harbor a greater variety of vesicular aquaporins)54. No such role has yet been shown

for metazoan aquaporins, although their function in development is accumulating: AQP11-

deficient mice develop polycystic kidneys for unknown reasons55; mouse AQP1 and AQP2

support tumor angiogenesis and renal tubulogenesis, respectively, via cell migration56,57;

and aquaporins affect morphogenesis flux-independently, via adhesion, for instance lens
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AQP0 (functioning as a junction in its closed configuration) and the Drosophila AQP4

homolog big brain31,58-60.

The present analysis now suggests that water-channel-regulated translumenal flux can also

act as a direct tissue-shaping force in metazoan development, specifically in intracellular

lumen extension. Aquaporins are known to shuttle between vesicular and plasma

membranes, or move onto secretory vesicles, with or without incorporation into the plasma

membrane61-64. If the AQP-8-mediated translumenal flux results from water flow into

subsequently lumen-connecting canalicular vesicles, vesicular ions may contribute to its

morphogenetic effect, consistent with the prior implication of ion channels in tubulogenesis

and supported by the accompanying paper7,10,65. The tight temporal and spatial regulation of

the ERM-1-AQP-8 interaction fits with a morphogenetic purpose of this flux. The

provocative restriction of this interaction to peri-lumenal cuffs, spaced in periodic intervals

along expanding canals, could suggest that localized fluid pulses aid in propelling active

lumen extension (Fig. 8g).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ERM-1 is required to expand the excretory-canal lumenal membrane and its actin
undercoat
(a-b) Schematics of the C. elegans single excretory cell with canals (compare Fig. S1A-H).

The C. elegans excretory system consists of five cells (excretory-, duct-, pore- and two

gland cells)3, only the excretory cell is shown. The whole animal is shown in (a), and the

outlined area is magnified in (b). Here and below, canal cytoplasm is displayed in blue,

lumenal membrane/cytoskeleton in green, canalicular and endosomal vesicles in red

(fluorophores are pseudo-colored accordingly, exceptions are indicated).
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(c-h’) ERM-1 tracks lumenal membrane extension during canal morphogenesis (1.5-fold

embryo to L1-larva, from c-h; compare Fig. 5a-d’, S1I-J”). For clarity, intestinal

ERM-1::GFP is changed to gray in lower panel. Nascent canal lumen (arrows), direction of

canal extension (bi-directional arrows) and canal tips (arrowheads) are indicated. Scale bars

25μm, (for c-g in c’ and h-h’ in h).

(i-l”) ERM-1 dose-dependently restricts canal extension. (i-i”) Homozygous L1-larva

(without maternal RNA): no canal extension and fluid in cell body (arrow). (j-j”)

Homozygous adult (maternal RNA present): no canal extension; note extended cell body

(arrow) with lateral and anterior-posterior cusps (arrowheads) and cytoplasmic vacuoles

(compare Fig. 1s for absence of actin lining). (k-k”) Heterozygous adult: ½ posterior canal

length; lumen is not contiguous (k’, compare to m-x). (l-l”) Wild-type adult: contiguous

lumen (color-excluded stripe; l’). Scale bars 100 μm (i-l), 15 μm (i’-l’).

(m-x) erm-1(RNAi) disrupts the formation of a contiguous lumen (m-r) and actin coat (s-x;

compare Fig. S2D-O). Decreasing phenotypic severity from (m) through (q) and (s) through

(w): (m) stretched cell body with few vacuoles, no canals; (n) accumulating unaligned

vacuoles, no canals; (o) ¼-extended canal with aligning vacuoles; (p) canal extended

between ¼ and ½-length with partially-fused vacuoles; note directional deviation where

vacuoles are unaligned; (q) ½-extended canal with vacuolar outline of mostly contiguous

lumen; (r) fully-extended canal and contiguous lumen; (s) cytoplasmic actin in cell body,

vacuoles lack actin coat, no canal; (t) actin fragments (light grey in schematic inset) decorate

single-standing vacuoles, partially-extended canal; (u) uniform actin-coating of unaligned

but contacting vacuoles, partially-extended canal; (v) cytoplasmically-lined actin-coat (light

grey in schematic inset) in aligning vacuoles; (w) increase of lumenal and decrease of

cytoplasmic actin; (x) full actin recruitment to contiguous lumenal membrane and loss of

cytoplasmic actin. Representative confocal sections of cell bodies (m,n,s) and single arms of

posterior canals (p-r, o includes part of anterior canal) and anterior canals (t-x; intestinal

actin visible on right sides of images) of L4-stage-larvae or young-adults are shown. Scale

bars 25 μm.

In all panels, anterior is left, posterior right, dorsal up, ventral down; boxed areas enlarged in

(i’,k’,l’) and schematics in (i”,k”,l”). sulp-5p::GFP shown in (i-r), pseudo-colored to blue.
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Figure 2. The ERM-1[++] cystic canal phenotype is suppressed by loss of AQP-8
Note that ERM-1 overexpression (shown here in Fig. 2) results in widened canals in adults,

whereas ERM-1 depletion (shown in Fig. 1) results in “no-canals” or thin canals in L1-

larvae (Fig. 1, 2 images appear deceptively similar due to partial views of enlarged canal

sections). (a-f) ERM-1[++] canal (compare Fig. S3A-F for different ERM-1[++] lines and

dose-dependent increase in canal diameters). (a) Wild-type (wt) adult canal; lumen diameter

is bracketed by arrowheads. (b) ERM-1[++] L3 cystic canal with wide lumen diameter

(arrowheads) and crimped perimeter; an occasional occlusive septum is indicated by arrow.
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(c) ERM-1[++] lumen pockets framed by typical non-occlusive membrane septum (arrow)

and leading cytoplasm without lumen (arrowhead). (d) Wild-type adult lumenal actin coat

(single coat of posterior dorsal membrane sleeve bracketed by arrowheads). (e) ERM-1[++]

thickened lumenal actin coat (arrowheads); canal septum is indicated by arrow (see Fig.

S3K-O for ACT-5 quantification). (f) Excess actin beyond cyst tips (arrowheads; note that

this is lumenal membrane undercoat, not cytoplasm (as shown in c). Scale bars 25 μm.

Nomarski (a), Nomarski/confocal overlays (b,c) and confocal (c,d,f) images are shown.

sulp-5p::GFP is pseudo-colored to blue.

(g) RT-PCR and (h) western blot, showing increased erm-1 mRNA and ERM-1 protein

levels in ERM-1[++] (compare Fig. S3G,H).

(i) Broad categories of molecules targeted in the ERM-1[++] modifier screen. Protein

classes were expanded from published in vivo and in vitro data of ezrin-radixin-moesin-

interacting molecules of all species. Corresponding C.elegans orthologs were targeted

(Methods).

(j-m) ERM-1[++] modifier screen. Dissecting fluorescence microscopic images of

vha-1p::gfp; rol-6p::rol-6(su1006) live animals are shown, as screened. Posterior canal tips

are indicated by arrows, tail tip by arrowhead in wild-type (wt). Scale bar 100 μm.

(n) ERM-1[++] cystic and shortened canals are suppressed by a loss-of-function mutation in

AQP-8 (compare Fig. S4A-B’).

(o) Stage-specific suppression of the ERM-1[++] canal phenotype by post-embryonic aqp-8

and erm-1 RNAi, restricted to the L1-L2 early larval stage (full reversion to wild-type of

ERM-1[++] by standard erm-1 RNAi is shown in Fig. S3I-J). A = adult.

Data in (n, o) presented as mean ± SD (n=3, *p< 0.05, **p< 0.01, two-tailed t-test).
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Figure 3. AQP-8 promotes excretory canal lumen expansion and localizes to canalicular vesicles
(a-f) aqp-8(ok2800) canal phenotype. (a) Canal shortened to ½ body length (arrow). (b)

Vacuole accumulation at shortened canal tip (arrow). (c) Fully extended canal with

premature lumen stop (arrow) and leading cytoplasm (arrowhead) with typical cytoplasmic

islets. (d) Missing lumen in L4-larval canal (compare to wild-type, e). (f) Reversion to wild-

type (canal extension to the tail, arrow) in aqp-8(ok2800); aqp-8p::aqp-8::gfp animal

(ventral bent of canal is due to rol-6 background; GFP pseudo-colored to red; compare Fig.

S5B). Scale bars 100 μm in a, 25 μm in b-f.
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(g,h) Higher copy numbers of a rescuing aqp-8p::aqp-8::gfp transgene (AQP-8[++],

pseudo-colored to red, h) cause round cell-body-close cysts and widened canals (arrowheads

at canal lumen boundaries; compare to wild-type [wt], g, and Fig. S5C-E’). P, pharynx.

Scale bar 25 μm.

Nomarski/confocal overlays (a,f-h), confocal projections (c,d,e) and confocal section (b) are

shown. sulp-5p::GFP in (a-e,g), pseudo-colored to blue.

(i) RT-PCR showing increased aqp-8 mRNA levels in AQP-8[++] animals (compare Fig.

S5F).

(j-v’) AQP-8 subcellular location in wild-type adult canals (only sulp-5p::GFP (j,l) and

AQP-8::mCherry in (l) are pseudo-colored). Cytoplasmic canal GFP (j) is uniformly

distributed throughout canal, whereas AQP-8 (k) labels dense but distinct and partially

interconnected cytoplasmic puncta that are predominantly lumen distant (compare Fig. 5i-

i”’; double-labeled image shown in l is enlarged in l’). Endosomal vesicles (m-p’) do not

overlay AQP-8::GFP puncta (identical vesicles indicated by arrows in single, top, and

merged images, bottom), are larger, sparse, ovoid and not connected (see model in w,x). In

contrast, VHA-1::GFP (q-s) and VHA-5::GFP (t-v) mimic the AQP-8 expression pattern and

partially overlap AQP-8::mCherry puncta (yellow in merged images in s and v, enlarged in

s’ and v’). Confocal projections (j-l’) and sections (m-v’) of single canal arms are shown.

Scale bar 25 μm, except enlarged views: (12 μm in l’, 7.5 μm in s’ and 12 μm in v’).

(w-x) Angled (w) and end-on (x) views of a 3D excretory canal model with canalicular and

endosomal vesicles shown (based on TEM and tomography, compare Fig. 7h-k, 8a-d). Small

canalicular vesicles (white arrow) partially interconnect (arrowhead) and connect to the

main lumen (black arrow) via tubular extensions. Endosomal vesicles are large, ovoid,

isolated, and collect at the basal membrane (grey arrow).
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Figure 4. erm-1 and aqp-8 genetically interact in intracellular lumen morphogenesis
(a) aqp-8(ok2800) enhances canal extension defects in erm-1(RNAi) animals. Left:

aqp-8(ok2800) wild-type canal bifurcation at the cell body (top) and

aqp-8(ok2800);erm-1(RNAi) ‘no-canal’ phenotype (cell body outlined by dotted line;

bottom). Right: penetrance of ‘no-canal’ phenotype in single and double mutant/RNAi

animals.

(b) aqp-8(ok2800) suppresses the formation of canal cell body vacuoles in erm-1(tm677).

Left: vacuolated stretched erm-1(tm677) cell body (top), versus
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aqp-8(ok2800);erm-1(tm677) stretched cell body without vacuoles (bottom). Right:

penetrance of canal cell bodies that have no vacuoles, in single and double mutants.

(c) ERM-1[++] enhances AQP-8 [++]-induced canal cysts. Left: ERM-1[++] cystic canal

(top), and ERM-1[++];AQP-8[++] double transgenic cysts (bottom; cyst induced solely by

AQP-8[++] shown in d). Right: penetrance of large cysts (>½ body width, as shown in lower

image on the left) in single and double transgenic animals.

(d) erm-1(RNAi) suppresses AQP-8[++]-induced cyst formation. Left: AQP-8[++] round

cyst at the cell body (arrowheads, top), and AQP-8[++];erm-1(RNAi) cyst at the cell body

(arrow, bottom). Right: penetrance of large cysts (>½ body width) in single and double

transgenic/RNAi animals (erm-1(RNAi) cysts [first column] are derived from accumulating

cytoplasmic vacuoles).

(e) sma1-(RNAi) enhances AQP-8[++]-induced cysts. Left: sma-1(RNAi) moderately wide

(arrowheads) and short canal (~½ body length; top, arrow at canal tip)4 and AQP-8[+

+];sma-1(RNAi) cyst (bottom, arrowheads; AQP-8[++]-induced cyst shown in d). Right:

penetrance of large cysts (>½ body width, as shown in lower image on the left) in single and

double transgenic/RNAi animals.

Canals are labeled with vha-1p::GFP (pseudo-colored to blue), except ERM-[++];AQP-8[+

+] animal in (c), labeled with AQP-8::GFP, pseudo-colored to red. P, pharynx. Nomarski

images (d,e), Nomarski/confocal overlays (a,c) and confocal images (b) are shown. Scale

bars 25 μm. Data presented as mean ± SD (n=5 in a,e; n=3 in b-d, *p< 0.05, **p<0.001,

two-tailed t-test).
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Figure 5. AQP-8 and ERM-1 transiently colocalize during excretory canal development and
physically interact in yeast-two-hybrid assays
(a-d’) Wild-type ERM-1 and AQP-8 expression during embryonic canal extension. (a,a’)

ERM-1::GFP appears coincident with the canal cell lumen in the 1.5-fold embryo (arrows).

(b,b’) AQP-8::mCherry appears later, in the canal cell cytoplasm of the 2.5-fold embryo

(arrows). (c-d’) Cytoplasmic AQP-8::mCherry moves to canal tips to the front of lumenal

ERM-1::GFP in the 3-fold embryo (c,c’), and just-hatched L1 larva (d,d’,arrows).

(e,f) AQP-8 expression peaks in varicosities spaced at intervals along the canal during its

active growth phase in L1-L2 larvae. Note bright AQP-8::mCherry expression in L1-larva
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(e) versus dim expression in L4-larva (f; image brightness is increased; actual AQP-8 levels

in L4 and adult animals are undetectable with equivalent laser settings).

(g-i”’) ERM-1 and AQP-8 expression during larval canal extension. (g-g”’) ERM-1 and

AQP-8 expression overlap at puncta (arrow) along L1 larval canal lumens. The outlined area

in (g”) is enlarged in (g’”). (h-h”’) Lumenal ERM-1/AQP-8 overlap (arrow) is increased in,

and largely restricted to, varicosities in L2 larval canals. The outlined area in (h”) is enlarged

in (h’”). (i-i’”) Sparse AQP-8/ERM-1 overlap in L4 (images in i” and I”’ are overexposed to

reveal the absence of overlap). The outlined area in (i”) is enlarged in (i’”). Single yellow

spot (arrow) is a rare colocalizing punctum.

Confocal images with corresponding Nomarski/confocal overlays (a’-c’) are shown, single

canal arm sections in (g-i”’). Scale bars 25 μm.

(j-m) ERM-1 physically interacts with AQP-8 and ACT-5 in yeast-two-hybrid assays. (j,k)

Interactions of full-length ERM-1 with indicated AQP-8 fragments and ACT-5. (l,m)

Interactions of full-length AQP-8 with indicated ERM-1 fragments. Negative control is

derived from a 1kb unc-54/myosin genomic DNA (exon 5). (k,m) White colony indicates

physical interaction; purple colony indicates no interaction. See Fig. S8D,D’ for beta-

galactosidase assays. F = full-length protein, N = N-terminal fragment, C = C-terminal

fragment, X and 1-4 = other fragments.
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Figure 6. AQP-8 functions as a water-channel in canal morphogenesis
(a-c) aqp-8(ok2800) animals are sensitive to hypotonic stress. (a) Wild-type and

aqp-8(ok2800) animals were soaked in water, 0.5 M salt solution or M9 (C. elegans growth

medium; Methods) for 8 hours. (b) Percentage of animals recovering motility upon removal

onto OP50 plates. (c) Percentage of animals bursting at the vulva secondary to fluid

accumulation after incubation in water.

(d-l) Mercury affects canal extension and suppresses AQP-8[++] and ERM-1[++] canal

cysts. (d,e) Penetrance of canal extension defects in wild-type (d) and aqp-8(ok2800) (e)

after mercury treatment. (f) AQP-8[++] cysts (see Fig. 4d) are almost completely suppressed

by mercury. (g-k) Suppression of AQP-8[++] and ERM-1[++] but not exc-5(rh232) canal

extension defects by mercury. (k) Percentage of animals with canal re-extension. (l) Stage-

specific suppression of the ERM-1[++] canal phenotype by post-embryonic mercury

treatment.

Mercuric chloride was added to worm plates as described in Methods. Nomarski/confocal

overlays and corresponding schematics shown in g-j’, AQP-8::GFP pseudo-colored to red,

sulp-5p::GFP in (i,j) pseudo-colored to blue. P = pharynx, T = tail. Data presented as mean

± SD (n=3, *p < 0.05, **p<0.001, two-tailed t-test).

(m-o) Mutations in the channel region suppress the ability of AQP-8::GFP to revert

aqp-8(ok2800) shortened canals to wild-type and ERM-1[++] aqp-8(ok2800) re-extended

canals back to cystic canals. (m) AQP-8 channel structure with predicted transmembrane
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domains 1-6 (amino acids 23-45, 55-77, 97-119, 152-174, 181-203 and 234-256, created by

SMART, http://smart.embl-heidelberg.de/) and signature NPA channel motif. Locations of

mutated residues A81D and R213H are indicated by orange and blue colors, respectively.

(n-o) Percentage of animals with reversion of their respective phenotypes after

transformation with wild-type versus mutated aqp-8-gfp transgenes. Data presented as mean

± SD (n=3, **p<0.001, two-tailed t-test).
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Figure 7. ERM-1 recruits AQP-8 to the lumen and increases the canalicular-lumenal membrane
connection
(a-e) erm-1(RNAi) interferes with lumenal AQP-8 recruitment during larval canal extension.

Lumenal ERM-1::GFP localization (wild-type [wt], a) is unchanged in aqp-8(ok2800) larvae

(b). Canalicular AQP-8::GFP (pseudo-colored to red, c) disintegrates and recedes from the

lumen in erm-1(RNAi) larvae (d), but not in sma-1(RNAi) larvae (e).

(f-g”) ERM-1 overexpression recruits both AQP-8 and ACT-5 to the larval and adult canal

lumen. Lumenal ACT-5::GFP (wild-type in f, arrowheads) is thickened in ERM-1[++]

canals (g, arrow; compare Fig. 2d-f). Low-level wild-type canalicular AQP-8::mCherry

expression (f’, arrow) is increased in ERM-1[++] canals and accumulates between cysts (g’,

arrow; compare Fig. S8G-H”). ACT-5::GFP and AQP-8::mCherry overlap at the lumen in

ERM-1[++] (yellow in g”, arrows) but not wild-type canals (f”, arrows). Insets show higher

magnification of lumenal area (inset in f” is from a different animal). Compare Tab. S2 for

quantification of ACT-5/AQP-8 overlap.

Single canal arm confocal projections are shown in (a-e), sections in f-g”, partially obscured

by intestinal ACT-5::GFP staining in (f,f”). Scale bars 25μm.

(h-k) HPF-TEM cross sections of wild-type (wt), fgIs2(erm-1p::erm-1) (ERM-1[++]),

aqp-8(ok2800), and ERM-1[++];aqp-8(ok2800)) excretory canal arms (compare Fig. 8a-d).

(h) Wild-type canal section with dense, mostly single-standing canalicular vesicles. (i)

ERM-1[++] canal section with deformed lumen, undulating lumenal membrane and

cytoplasmic cushions with an increase in total number of lumen-connected vesicles. Shift of
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canalicular membrane system towards the lumen is indicated by arrows; dotted line

separates canaliculi-rich lumenal-, from canaliculi-poor basal, area [arrowheads]). Inset:

higher magnification image of ERM-1[++] canaliculi extending long tubules (arrowheads)

towards the lumen that are not seen in wild-type (compare inset in h and Fig. 8a-d). (j)

aqp-8(ok2800) canal with smaller lumen diameter and a reduced number of interconnected

canalicular vesicles. (k) ERM-1[++] aqp-8(ok2800) canal exhibits features similar to wild-

type.

Examples of isolated endosomes at typical basal locations are indicated by black

arrowheads. L, lumen. Scale bars 1.0 μm.
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Figure 8. Tomographic analysis of the ERM-1[++] effect on the canalicular-lumenal interface
and a model of the ERM-1/AQP-8 function in excretory canal lumen extension
(a,c) High-magnification images of HPF-TEM sections of the lumenal surface of wild-type

(wt, a) and ERM[++] canals (c). Note increase in canaliculi-lumen connection (black

arrows, also see Fig. S8I,J), length of canaliculi-lumen tubules, canalicular vesicle-vesicle

connections (arrowheads) and density of canalicular vesicles (white arrows) in (c). L, lumen.

Scale bars 0.25 μm.

(b,d) Tomographs showing canalicular vesicles connected to the lumen (blue),

interconnected vesicles not connected to the lumen (green), and isolated vesicles, not

connected to the lumen nor to each other (red). Note the increase in the number of lumen-

connected canalicular vesicles in ERM-1[++] animals (d, corresponding to boxed area in

Fig. 7i), as compared to wild-type (b, compare to Fig. 7h).

(e-g) Model. (e) High-magnification view. ERM-1 connects the lumenal membrane (black)

to submembranous and perhaps vesicular actin (grey rods) via its respective globular N-

terminus (green circles) and C-terminus (green squares), thereby recruiting, incorporating,

and coating lumenal-membrane-forming vesicles (bluegreen circles) with consequent

membrane expansion (arrow) and lumen extension (arrowhead). (f) ERM-1 also connects

the lumenal membrane (black) through its C-terminus (green squares) to the integral

vesicular-membrane channel AQP-8 (red squares), thereby recruiting, but not integrating,

canalicular vesicles (blue ovals) into the expanding lumenal membrane. This interaction

(directly or indirectly) promotes translumenal flux with consequent diameter expansion
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(vertical arrow) and subsequent lumen extension (arrowhead). ACT-5 (shown in e) and

AQP-8 (shown in f) may compete for the C terminus of ERM-1. (g) Low magnification

view. During the active phase of canal extension AQP-8 expression peaks in canal

varicosities that successively arise along the extending canal, thereby shaping its overlap

with ERM-1 into peri-lumenal cuffs. This temporal and spatial restriction of the ERM-1-

AQP-8 interaction could result in fluid pulses (from the cytoplasm into the developing

lumen) that propel directional lumen and canal extension (arrowhead).
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