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COMPACT BILINEAR OPERATORS AND COMMUTATORS

ÁRPÁD BÉNYI AND RODOLFO H. TORRES

(Communicated by Michael T. Lacey)

Abstract. A notion of compactness in the bilinear setting is explored. More-
over, commutators of bilinear Calderón-Zygmund operators and multiplication
by functions in a certain subspace of the space of functions of bounded mean
oscillations are shown to be compact.

1. Introduction

What is a compact bilinear operator, and what is a good non-trivial example
of it? This article originates from these simple and natural questions. Natural,
because we understand rather completely the notion of continuity (or boundedness)
of bilinear operators, and the notions of continuity and compactness are tightly
connected in the linear setting.

Interestingly, the notion of compactness in the multilinear setting can be traced
back to the foundational article of Calderón [3]. The natural definition given in
[3, p. 119] can easily be seen to be equivalent to the one we will present. But,
to the best of our knowledge, the notion of compactness in this setting has only
been considered within the context of interpolation; see also the recent work by
Fernandez and da Silva [6] for more on the relation between interpolation and
compact multilinear operators.

Naturally appearing concrete examples of compact bilinear operators seem to
be absent in the literature until now. However, the experience in several different
contexts tells that commutators operators with special symbols tend to be “bet-
ter” than just bounded. In fact, a second motivation for this article is to extend
to the bilinear setting a theorem of Uchiyama [18] about linear commutators of
Calderón-Zygmund operators and pointwise multiplication. Uchiyama improved
the boundedness result of Coifman, Rochberg and Weiss [4] to compactness when
the symbol is in an appropriate subspace of the John-Nirenberg space BMO.

In order to draw an analogy between the notions of continuity and compactness
in the bilinear setting, we briefly recall the two basic notions of separate and joint
continuity for a bilinear operator. Therefore let X,Y, Z be normed spaces, and let
‖·‖X , ‖·‖Y , ‖·‖Z denote their corresponding norms; we will drop the corresponding
indices if the space in question is clear from the context. A bilinear operator
T : X × Y → Z is defined through its section operators: Tx = T (x, ·) : Y → Z and
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3610 ÁRPÁD BÉNYI AND RODOLFO H. TORRES

Ty = T (·, y) : X → Z are required to be linear for all (fixed) x ∈ X, y ∈ Y . The
two definitions we have in mind are the following:

(1) (Separate continuity) T is separately continuous if Tx and Ty are continuous
for all x ∈ X, y ∈ Y .

(2) (Joint continuity) T is (jointly) continuous if it is continuous from X × Y
to Z; the product space is normed, say, via ‖(x, y)‖ = ‖x‖ + ‖y‖, x ∈ X,
y ∈ Y .

As usual, the norm of the bilinear operator T is defined to be

‖T‖ = inf{M > 0 : ‖T (x, y)‖ ≤ M‖x‖‖y‖, for all (x, y) ∈ X × Y },
and we say that T is bounded if ‖T‖ < ∞. It is a well-known simple exercise to
show that the notions of continuity and boundedness are equivalent. Also trivially,
continuity implies separate continuity. Moreover, somewhat surprisingly, the two
notions are equivalent if either of the spaces X or Y is assumed to be Banach. This
known fact is proved in Rudin’s book [13, Theorem 2.17] under the more general
assumption that X is an F -space and Y is metrizable. The proof relies on the
Banach-Steinhaus principle. Under the stronger hypothesis that both X and Y are
Banach, it is stated as an exercise in Schechter’s book [15, Exercise 24, p. 74]. It
is worth pointing out that the completeness of either one of the spaces X or Y is
crucial. For example, it is straightforward to check that if we let X = Y = Z =
C(0, 1), the space of continuous functions on [0, 1], and we endow it with the L1

norm (hence, making X incomplete), then T (f, g) = f · g is separately continuous
but not continuous.

Taking into consideration the brief discussion above, we are naturally led to
consider the two notions of (joint) compactness and separate compactness for a
bilinear operator. The next section is devoted to the definitions and basic properties
of such operators, many of which are proved in the Appendix. The extension to the
bilinear setting of the result of Uchiyama mentioned before is presented in Section 3.

2. Compact and separately compact bilinear operators

In what follows, we write Br,X = {x ∈ X : ‖x‖ ≤ r} to denote the closed ball of
radius r centered at the origin in the normed space X. Again, when the context is
clear, we will drop the index X and simply write Br.

Definition 1. A bilinear operator T : X × Y → Z is called (jointly) compact if
T (B1,X ×B1,Y ) is precompact in Z.

Proposition 1. Let T : X × Y → Z be a bilinear operator. Then the following
statements are equivalent:

(c1) T is compact.
(c2) T (B1, X×Y ) is precompact.
(c3) For all r > 0, T (Br, X×Y ) is precompact.
(c4) For all r1, r2 > 0, T (Br1,X ×Br2,Y ) is precompact.
(c5) For all bounded B ⊂ X × Y , T (B) is precompact.
(c6) For all bounded B1 ⊂ X,B2 ⊂ Y , T (B1 ×B2) is precompact.
(c7) For all bounded sequences {(xn, yn)} ⊂ X × Y , the sequence {T (xn, yn)}

has a convergent subsequence.
Furthermore, if Z is Banach, then (c1) is also equivalent to:

(c8) For all bounded B ⊂ X × Y , T (B) is totally bounded.
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COMPACT BILINEAR OPERATORS 3611

The collection of all bounded bilinear operators T : X × Y → Z is denoted by
B(X × Y, Z). The collection of all compact bilinear operators T : X × Y → Z is
denoted by K(X × Y, Z). With this notation, we have the following.

Proposition 2. If T1, T2 ∈ K(X × Y, Z) and α, β ∈ C, then T = αT1 + βT2 ∈
K(X × Y, Z).

The proofs of Propositions 1 and 2 are straightforward, and we include them for
the convenience of the reader in the Appendix. In particular, (c8) is how compact
bilinear operators are defined in [3].

An immediate consequence of Proposition 2 is given next.

Corollary 1. K(X × Y, Z) is a linear subspace of B(X × Y, Z).

Proof. The fact that K(X×Y, Z) is a vector space follows directly from Proposition
2. For the inclusion K(X ×Y, Z) ⊂ B(X ×Y, Z), assume that the compact bilinear
operator T is not bounded. Then, for some r > 0, there exists a sequence (xn, yn) ∈
Br,X×Y , and ‖T (xn, yn)‖ → ∞. Thus, {T (xn, yn)} could not have a convergent
subsequence, so T (Br,X×Y ) would not be precompact, contradicting (c3). �

The statement of the following result, which will be used in the next section, can
also be found in [3]. For completeness, we provide a succinct proof.

Proposition 3. If Z is Banach, then K(X × Y, Z) is closed in B(X × Y, Z).

Proof. Let Tn ∈ K(X ×Y, Z) and T ∈ B(X×Y, Z) be such that Tn → T . We want
to show that T ∈ K(X × Y, Z). To this end, let {(xn, yn)} be a bounded sequence
in X × Y . Since T1 is compact, there exists a subsequence {(xn1

k
, yn1

k
)} such that

{T1(xn1
k
, yn1

k
)} is convergent. Since T2 is compact, we can extract {(xn2

k
, yn2

k
)} as

a subsequence of {(xn1
k
, yn1

k
)} such that {T2(xn2

k
, yn2

k
)} is convergent. If we let

xj = xnj
j
, yj = ynj

j
, then {Tn(xj , yj)}j≥1 is convergent for all n ≥ 1. We have

‖T (xi, yi)−T (xj , yj)‖ ≤ ‖T −Tn‖(‖xi‖‖yi‖+‖xj‖‖yj‖)+‖Tn(xi, yi)−Tn(xj , yj)‖.

Since (xj) and (yj) are bounded sequences, for some M > 0 we have ‖xj‖‖yj‖ ≤ M
for all j ≥ 1. Let ε > 0. Because Tn → T , there exists some N ∈ N such that for
all n ≥ N , ‖T − Tn‖ < ε/(4M). Since {TN (xj , yj)}j≥1 is Cauchy, there exists a
J ∈ N such that for all i, j ≥ J , ‖TN (xi, yi)−TN (xj , yj)‖ < ε/2. Thus, ‖T (xi, yi)−
T (xj , yj)‖ < ε for all i, j ≥ J , which proves that {T (xi, yi)} is Cauchy and, since
Z is Banach, also convergent. By (c7), we get that T must be compact. �

As in the linear case, compact bilinear operators interact nicely with bounded
ones via composition. Since this property plays no role in Section 3, we refer
the interested reader to the Appendix for a brief discussion of this topic. After
this introduction to the notion of compactness, we seek out the notion of separate
compactness.

Definition 2. A bilinear operator T : X × Y → Z is called compact in the first
variable if Ty : X → Z is compact for all y ∈ Y . T is called compact in the second
variable if Tx : Y → Z is compact for all x ∈ Y . T is called separately compact if
T is compact in both the first and second variables.
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3612 ÁRPÁD BÉNYI AND RODOLFO H. TORRES

As expected, the immediate observation now is that the notion of separate com-
pactness is weaker than that of compactness. Indeed, for a fixed x ∈ X, let r > 0
be such that ‖x‖ < r, that is, x ∈ Br,X . Then

Tx(B1,Y ) ⊂ T (B1+r,X×Y ),

and then use the fact that a closed subset of a compact set is necessarily compact;
see Proposition 1. A similar reasoning applies to Ty.

As above, we also see that a separately compact bilinear operator T must be
separately continuous. But recall that this does not necessarily mean T is contin-
uous; in fact, we will show an example of a separately compact operator which is
not bounded. Nevertheless, the assumption that T is bounded could be added in
both Definitions 1 and 2 as long as at least one of the spaces X or Y is Banach. A
few elementary examples illustrating the two notions of compactness are detailed
in the Appendix. However, our main interest in the notion of compactness stems
from some important objects in harmonic analysis: the bilinear commutators.

3. Bilinear commutators

Let T be a bilinear Calderón-Zygmund operator as defined in [7] and assume
(for simplicity) that the kernels K and ∇K satisfy the usual conditions in such a
theory. Let b, b1, b2 ∈ BMO(Rn). We are interested in the following three bilinear
commutators:

[T, b]1(f, g)(x) = (T (bf, g)− bT (f, g))(x),

[T, b]2(f, g)(x) = (T (f, bg)− bT (f, g))(x),

[[T, b1]1 , b2]2(f, g)(x) = ([T, b1]1(f, b2g)− b2[T, b1]1(f, g))(x).

Formally, they take the form

[T, b]1(f, g)(x) =

∫
Rn

∫
Rn

K(x, y, z)(b(y)− b(x))f(y)g(z) dydz,

[T, b]2(f, g)(x) =

∫
Rn

∫
Rn

K(x, y, z)(b(z)− b(x))f(y)g(z) dydz,

[[T, b1]1 , b2]2(f, g)(x)=

∫
Rn

∫
Rn

K(x, y, z)(b1(y)−b1(x))(b2(z)−b2(x))f(y)g(z) dydz.

By the results in [12], [17], [9], and [11], these operators map Lp × Lq → Lr with
1/p+ 1/q = 1/r for all 1 < p, q < ∞, with estimates of the form

(1) ‖[T, b]1(f, g)‖Lr , ‖[T, b]2(f, g)‖Lr � ‖b‖BMO‖f‖Lp‖g‖Lq ,

(2) ‖[[T, b1]1 , b2]2(f, g)‖Lr � ‖b1‖BMO‖b2‖BMO‖f‖Lp‖g‖Lq .

We will show their compactness properties when the symbols b, b1, b2 are in
CMO. In this article, CMO denotes the closure of C∞

c in the BMO topology.
As pointed out by Bourdaud et al. in [2], this space coincides with VMO (the
space of functions of vanishing mean oscillation) as studied by Coifman and Weiss
in [5], but differs from other versions of VMO found in the literature. In particular,
the original VMO space of Sarason [14] is the closure of the uniformly continuous
functions in BMO, which coincides with CMO in the the case of the torus but not in
Rn. The notation CMO (also used by Uchiyama) seems to go back to Neri [10]; see
the historical comments in Bourdaud [1]. See also Stein’s book [16, Chapter IV] for
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COMPACT BILINEAR OPERATORS 3613

further related properties of BMO. We will only need the fact that, by definition
then, C∞

c is dense in CMO.
The results we shall prove should be viewed as the bilinear counterparts of Theo-

rem 2 of Uchiyama [18]. As in [18], we will rely on the Fréchet-Kolmogorov Theorem
characterizing the precompactness of a set in Lr. More precisely (see Yosida’s book
[19, p. 275]), a set H is precompact in Lr, 1 ≤ r < ∞, if and only if

(3) sup
h∈H

‖h‖Lr < ∞,

(4) lim
A→∞

‖h‖Lr({|x|>A} = 0 uniformly in h ∈ H,

and

(5) lim
t→0

‖h(·+ t)− h(·)‖Lr = 0 uniformly in h ∈ H.

Theorem 1. If b ∈ CMO, 1/p + 1/q = 1/r, 1 < p, q < ∞ and 1 ≤ r < ∞, then
[T, b]1 : Lp×Lq → Lr is compact. Similarly, if b1, b2 are also in CMO, then [T, b2]2
and [T, b1]1 , b2]2 are compact for the same range of exponents.

Proof. By (1) and Proposition 3, it is enough to show the result for b ∈ C∞
c .

Moreover, given the boundedness of the operator and a density argument, to apply
(3)–(5) in our situation it will be enough to prove that for all f, g ∈ C∞

c the following
two conditions hold:

a) Given ε > 0, there exists an A > 0 (A = A(ε) but independent of f and g)
with the property that

(6)

(∫
|x|>A

∣∣[T, b]1(f, g)(x)∣∣r dx
)1/r

� ε‖f‖Lp‖g‖Lq .

b) Given ε ∈ (0, 1) there exists a sufficiently small t0 (t0 = t0(ε) but independent
of f and g) such that for all 0 < |t| < t0,

(7) ‖[T, b]1(f, g)(·)− [T, b]1(f, g)(·+ t)‖Lr � ε‖f‖Lp‖g‖Lq .

We pick A > 1 sufficiently large so that |x| > A implies x 
∈ supp b; in particular,
we will pick A > 2max{|y| : y ∈ supp b}. We have the following sequence of
inequalities:∣∣[T, b]1(f, g)(x)∣∣≤

∫ ∫
y∈supp b

|K(x, y, z)||b(y)||f(y)||g(z)| dydz

≤ ‖b‖L∞

∫ ∫
y∈supp b

|f(y)||g(z)|
(|x− y|+ |x− z|)2n dydz

≤
∫
y∈supp b

|f(y)|
|x− y|n

∫ |g(z)|
(|x− y|+ |x− z|)n dz dy

≤ 2n|x|−n

∫
y∈supp b

|f(y)|
(∫

(|x− y|+ |x− z|)−nq′ dz
)1/q′

dy ‖g‖Lq

≤ 2n|x|−n|supp b|1/p′‖f‖Lp

(∫
(1/2 + |z|−nq′) dz

)1/q′

‖g‖Lq

� |x|−n|supp b|1/p′‖f‖Lp‖g‖Lq .

The previous inequality now allows us to integrate
∣∣[T, b]1(f, g)(x)∣∣r over the set

{x : |x| > A} and to obtain (6).
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3614 ÁRPÁD BÉNYI AND RODOLFO H. TORRES

To prove (7) we first decompose the expression inside the Lr norm on the left
hand side as follows:

[T, b]1(f, g)(x)− [T, b]1(f, g)(x+ t) = A(x) +B(x) + C(x) +D(x),

where, for a convenient choice of δ > 0 to be specified later,

A(x) =

∫ ∫
|x−y|+|x−z|>δ

K(x, y, z)(b(x+ t)− b(x))f(y)g(z) dydz,

B(x) =

∫ ∫
|x−y|+|x−z|>δ

(K(x, y, z)−K(x+ t, y, z))(b(y)− b(x+ t))f(y)g(z) dydz,

C(x) =

∫ ∫
|x−y|+|x−z|<δ

K(x, y, z)(b(y)− b(x))f(y)g(z) dydz,

D(x) =

∫ ∫
|x−y|+|x−z|<δ

K(x+ t, y, z)(b(x+ t)− b(y))f(y)g(z) dydz.

If we now let T∗(f, g) denote the maximal truncated bilinear singular integral op-
erator

T∗(f, g)(x) = sup
δ>0

∣∣∣∣∣
∫ ∫

|x−y|+|x−z|>δ

K(x, y, z)f(y)g(z) dydz

∣∣∣∣∣ ,
then

|A(x)| ≤ |b(x+ t)− b(x)||T∗(f, g)(x)|.
By a result of Grafakos-Torres [8] (see the arguments on p. 1264 therein), we obtain

(8) ‖A‖Lr ≤ |t|‖∇b‖L∞‖f‖Lp‖g‖Lq .

In order to estimate B(x), we use the smoothness estimate on the kernel K and get

|B(x)| � |t|‖b‖L∞

(∫
|x−y|>δ/2

∫ |f(y)||g(z)|
(|x− y|+ |x− z|)2n+1

dydz

+

∫
|x−z|>δ/2

∫ |f(y)||g(z)|
(|x− y|+ |x− z|)2n+1

dydz
)
,

provided |t| < δ/4. The two terms inside the parentheses are symmetric in y, z;
thus we estimate them the same way. For example, we have∫
|x−z|>δ/2

∫ |f(y)||g(z)|
(|x− y|+ |x− z|)2n+1

dydz =

∫
|x−z|>δ/2

|g(z)|
|x− z|n+1

(φ|x−z|∗|f |)(x) dz,

where we denote by φs(x) = s−nφ(s−1x), with φ(x) = (|x|+1)−2n−1, an integrable,
radial, decreasing function. We can bound pointwise each of the terms above as
follows:

(φ|x−z| ∗ |f |)(x) ≤ M(|f |)(x) and

∫
|x−z|>δ/2

|g(z)|
|x− z|n+1

� 1

δ
M(|g|)(x),

where M(f)(x) denotes the Hardy-Littlewood maximal function. Therefore, we
conclude that

|B(x)| � |t|
δ
‖b‖L∞M(|f |)(x)M(|g|)(x).

The Lp boundedness of the maximal operator then gives

(9) ‖B‖Lr � |t|
δ
‖b‖L∞‖f‖Lp‖g‖Lq .
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To estimate the third term, we use the size estimate of the Calderón-Zygmund
kernel K. We have

|C(x)| ≤ ‖∇b‖L∞

∫ ∫
|x−y|+|x−z|<δ

|x− y|
(|x− y|+ |x− z|)2n |f(y)||g(z)| dydz

≤ ‖∇b‖L∞

∫ ∫
|x−y|+|x−z|<δ

|f(y)||g(z)|
(|x− y|+ |x− z|)2n−1

dydz

≤ ‖∇b‖L∞δ
(
δ−1/2

∫
|x−y|<δ

|f(y)|
|x−y|n−1/2

dy
)(

δ−1/2

∫
|x−z|<δ

|g(z)|
|x− z|n−1/2

dz
)

� δ‖∇b‖L∞M(|f |)(x)M(|g|)(x).

Hence,

(10) ‖C‖Lr � δ‖∇b‖L∞‖f‖Lp‖g‖Lq .

Finally, for the last term we proceed in an analogous manner by replacing x with
x + t and the region of integration {y : |x − y| < δ} with the larger one {y :
|(x+ t)− y| < δ + |t|}. Thus

|D(x)| ≤ ‖∇b‖L∞(δ+|t|)1/2δ1/2
(
(δ + |t|)−1/2

∫
|(x+t)−y|<δ+|t|

|f(y)|
|(x+ t)− y|n−1/2

dy
)

×
(
δ−1/2

∫
|x−z|<δ

|g(z)|
|x− z|n−1/2

dz
)

≤ (δ + |t|)1/2δ1/2‖∇b‖L∞M(|f |)(x+ t)M(|g|)(x).

This now leads to

(11) ‖D‖Lr � δ1/2(δ + |t|)1/2‖∇b‖L∞‖f‖Lp‖g‖Lq .

Let us now define t0 = ε2

8(1+‖b‖L∞+‖∇b‖L∞ ) , and for each 0 < |t| < t0, select

δ = |t|/ε. Inequalities (8)-(11) imply (7). Combining this with the inequalities (1)
and (6), we conclude that [T, b]1 is compact. In a completely analogous way, if
b2 ∈ CMO, then [T, b2]2 is compact.

Moreover, although for general symbols in BMO the second order commutator
is harder to study, for symbols in CMO it turns out to be easy to handle because of
the extra cancellation, so we only sketch the arguments needed. As before, we may
assume that b1, b2 ∈ C∞

c , and we need to check two conditions, a) and b), similar
to the ones before.

The first condition that we need is in fact easier to check compared to the argu-
ment we gave for (6). Let us select a sufficiently large A such that A > 2max{|x| :
x ∈ supp b1 ∪ supp b2}, and so that for |x| > A we have x 
∈ supp b1 ∩ supp b2. The
size estimate on the kernel K yields the following sequence of inequalities:

∣∣[[T, b1]1 , b2]2(f, g)(x)∣∣ ≤ ‖b1‖L∞‖b2‖L∞

∫
y∈supp b1

∫
z∈supp b2

|f(y)||g(z)| dydz
(|x− y|+ |x− z|)2n

≤ ‖b1‖L∞‖b2‖L∞

∫
y∈supp b1

|f(y)|
|x− y|n dy

∫
z∈supp b2

|g(z)|
|x− z|n dz

� ‖b1‖L∞‖b2‖L∞‖f‖Lp‖g‖Lq |supp b1|1/p
′ |supp b2|1/q

′ |x|−2n.
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3616 ÁRPÁD BÉNYI AND RODOLFO H. TORRES

The transition to the last inequality used the fact that if |x| > A, then min(|x −
y|, |x− z|) ≥ |x|/2. In particular, we easily obtain

(12)

(∫
|x|>A

∣∣[[T, b1]1 , b2]2(f, g)(x)∣∣r dx
)1/r

� ε‖f‖Lp‖g‖Lq .

Our final task is to prove an Lr estimate on

[[T, b1]1, b2]2(f, g)(x)− [[T, b1]1, b2]2(f, g)(x+ t).

In analogy to the decomposition done for (7), we break this into a sum of four
terms,

E(x) + F (x) +G(x) +H(x),

where

E(x) =

∫ ∫
|x−y|+|x−z|>δ

K(x, y, z)(b1(x+ t)− b1(x))(b2(z)− b2(x))f(y)g(z) dydz,

F (x) =

∫ ∫
|x−y|+|x−z|>δ

(K(x, y, z)(b2(z)−b2(x))−K(x+ t, y, z)(b2(z)−b2(x+t)))

× (b1(y)− b1(x+ t))f(y)g(z) dydz,

G(x) =

∫ ∫
|x−y|+|x−z|<δ

K(x, y, z)(b1(y)− b1(x))(b2(z)− b2(x))f(y)g(z) dydz,

H(x) =

∫ ∫
|x−y|+|x−z|<δ

K(x+ t, y, z)(b1(y)− b1(x+ t))

× (b2(x+ t)− b2(z))f(y)g(z) dydz.

The terms E,G,H are estimated, with slight changes, using the same tools as in
the proof for [T, b]1. For example, if we consider the E term, we can write, similarly
to the A term before,

|E(x)| ≤ |b1(x+ t)− b1(x)|(|T∗(f, b2g)(x)|+ |b2(x)||T∗(f, g)(x)|).
Thus, we get

‖E‖Lr ≤ |t|‖∇b1‖L∞(‖f‖Lp‖b2g‖Lq + ‖b2‖L∞‖f‖Lp‖g‖Lq )

≤ 2|t|‖∇b1‖L∞‖b2‖L∞‖f‖Lp‖g‖Lq .

To deal with the F term, we slightly rearrange the term inside the integral and
write F as a sum of two terms, F1 + F2, where

F1(x) =

∫ ∫
(K(x, y, z)−K(x+ t, y, z))(b1(y)− b1(x+ t))

× (b2(z)− b2(x+ t))f(y)g(z) dydz,

F2(x) =

∫ ∫
K(x, y, z)(b1(y)− b1(x+ t))(b1(x+ t)− b1(x))f(y)g(z) dydz;

the integration is, of course, over the set {(y, z) : |x− y|+ |x− z| > δ}.
Now, the F1 term corresponds to having two B terms as before:∫ ∫

(K(x, y, z)−K(x+ t, y, z))(b1(y)− b1(x+ t))f(y)(b2g)(z) dydz and

b2(x+ t)

∫ ∫
(K(x, y, z)−K(x+ t, y, z))(b1(y)− b1(x))f(y)g(z) dydz.
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Thus, the only difference in their estimate, compared to what we have done for the
B term, is an extra multiplying ‖b2‖L∞ term. This, of course, has no effect on the
outcome.

For the F2 term we do something similar, except that this behaves more like two
A terms as before. First, we factor out the b1(x+ t)− b1(x), which will contribute
a multiple t‖∇b1‖L∞ . The remaining part is∫ ∫

K(x, y, z)(b1f)(y)g(z) dydz − b1(x+ t)

∫ ∫
K(x, y, z)f(y)g(z) dydz,

which we estimate as the term E above. The b1 is now absorbed in the maximal
function T∗ by the function f , while in E it was absorbed by g.

Combining all the estimates for the terms E,F,G,H, we end up with the desired
control

(13) ‖[[T, b1]1, b2]2(f, g)(x)− [[T, b1]1, b2]2(f, g)(x+ t)‖Lr � ε‖f‖Lp‖g‖Lq ,

when |t| is chosen sufficiently small depending on ε. Estimates (2), (12) and (13)
guarantee, via (3)–(5), the compactness of the second order commutator. �

4. Appendix

4.1. Proof of Proposition 1. (c1) ⇒ (c2) Recall that we endowed X × Y with
the norm ‖(x, y)‖ = ‖x‖+ ‖y‖. It is clear that

B1,X×Y ⊂ B1,X ×B1,Y ⊂ B2,X×Y = 2B1,X×Y ,

and therefore

T (B1,X×Y ) ⊂ T (B1,X × B1,Y ) ⊂ T (B2,X×Y ) ⊂ 4T (B1,X×Y ).

Since any closed subset of a compact set is compact, our assertion follows.
(c2) ⇒ (c3) We simply need to notice that

T (Br,X×Y ) = r2T (B1,X×Y ).

(c3) ⇒ (c4) Assuming 0 < r1 ≤ r2,

T (Br1,X×Y ) ⊂ T (Br1,X ×Br2,Y ) ⊂ T (Br1+r2,X×Y ).

Again, since any closed subset of a compact set is compact, the assertion follows.
(c4), c(6) ⇒ (c1) and (c5) ⇒ (c2) are trivially true.
(c2) ⇒ (c5) and (c3) ⇒ (c6) follow from the definition of boundedness.
(c1) ⇔ (c7) follows from the fact that in any metric space, precompactness is

equivalent to sequential compactness.
(c1) ⇔ (c8) is similar. Under the additional assumption that Z is Banach, we

know that T (B) is precompact if and only if T (B) is totally bounded, which is the
same as having T (B) totally bounded.

4.2. Proof of Proposition 2. Let U ⊂ X × Y be bounded and {T (xn, yn)} be
a sequence in T (U). Let zn = T (xn, yn), z

′
n = T1(xn, yn), and z′′n = T2(xn, yn) so

that zn = αz′n +βz′′n. Since T1 and T2 are compact, there exist subsequences {z′nk
}

and {znkj
} that are convergent in Z. Let znkj

= αz′nkj
+ βz′′nkj

. Then {znkj
} is

convergent, so T (U) is precompact. The result follows from (c5).
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4.3. Composition with compact bilinear operators. Assume that T ∈ B(X×
Y, Z) and S1 : X → X,S2 : Y → Y, S3 : Z → Z are three linear operators. We
define the concept of composition between linear and bilinear operators as follows.

Definition 3. Left composition:

S3T : X × Y → Z, S3T (x, y) = S3(T (x, y)).

Right composition:

T (S1, S2) : X × Y → Z, T (S1, S2)(x, y) = T (S1(x), S2(y)).

We have the following straightforward result.

Proposition 4. If T ∈ K(X × Y, Z) and S1, S2, S3 are bounded, then S3T ∈
K(X × Y, Z) and T (S1, S2) ∈ K(X × Y, Z).

4.4. Some elementary examples. Here are a few more illustrations of the con-
cepts of compactness in bilinear setting. Some of the examples below are modifica-
tions of classical ones used in other topics in functional analysis.

Example 1. Let X = Y = Z = C(0, 1) be the space of continuous functions on
[0, 1] now endowed with the supremum norm. Again define T : X × Y → Z by
T (f, g) = f · g. If we fix f = 1 (the constant function 1), we get that Tf = IdX
(the identity operator). Since X is infinitely dimensional, by Riesz’s theorem we
get that Tf is not compact. So T is compact in neither the first nor the second
variable.

Example 2. To wit, with the notation in the previous example, if S : X → X
is compact, then T1(f, g) = S(f)g is compact in the first variable but not in the
second, while T2(f, g) = fS(g) is compact in the second variable but not the first.
Clearly then, neither of the Ti’s are separately compact, and thus these Ti’s are not
compact either.

Example 3. We again let X = Y = Z = C(0, 1) be endowed with the supremum
norm, but now

T (f, g)(x) =

∫ x

0

f(t)g(t) dt.

Clearly, T is a well defined bilinear operator. Let

K = T (B1 ×B1).

Note that if h = T (f, g) ∈ K, then

‖h‖∞ ≤ ‖f‖∞‖g‖∞ < 1;

that is, K is a bounded set in the supremum norm of Z.
Furthermore, if x, y ∈ [0, 1] and h = T (f, g) ∈ K, we have

|h(x)− h(y)| = |
∫ y

x

f(t)g(t) dt| ≤ |x− y|,

which proves that K is a uniformly equicontinuous subset of Z.
Therefore, using the Arzelà-Ascoli theorem, we conclude that K is precompact

in Z, and hence T is a bilinear compact operator.
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Example 4. Consider yet again X = Y = Z = C(0, 1), but now X and Y are
endowed with the L1 norm while Z is endowed with the supremum norm. The
bilinear operator T is the one defined in Example 3.

Let us fix f 
= 0 ∈ X and write Kf = Tf (B1). Then, if h = Tf (g) ∈ Kf , g ∈ Y
(with the modified topology induced by L1), we have

‖h‖∞ ≤ ‖f‖∞‖g‖1 < ‖f‖∞;

that is, Kf is a bounded set in the supremum norm of Z.
Furthermore, similarly as above, we get that

|h(x)− h(y)| ≤ ‖f‖∞|x− y|,
which shows that Kf is a uniformly equicontinuous subset of Z. Consequently,
Arzelà-Ascoli’s theorem shows that Kf is precompact in Z. If f = 0 (the constant
function 0), then Tf (B1) = {0}, which is obviously precompact. Analogously,
Tg(B1) is precompact for all g ∈ Y ; hence T is separately compact.

However, consider the sequence (fn) of continuous functions defined as follows:

fn(t) =

⎧⎪⎪⎨
⎪⎪⎩

4n3t if 0 ≤ t < 1/(4n2),
n if 1/(4n2) ≤ t < 3/(4n2),

−4n3t+ 4n if 3/(4n2) ≤ t < 1/n2,
0 if 1/n2 ≤ t ≤ 1.

Then fn → 0 in X (and Y ). Now, for any x ∈ (0, 1], let N ∈ N be such that
x > 1/N2. For all n > N , we can write

T (fn, fn)(x) =

∫ x

0

f2
n(t) dt =

∫ 1

0

f2
n(t) dt =

2

3
,

which proves that

‖T (fn, fn)‖∞ 
→ 0

or T is not bounded. Consequently, T is not compact.

Example 5. Let (αijk)
∞
i,j,k=1 ∈ l1, that is,

∞∑
i,j,k=1

|αijk| < ∞.

Define T : l2 × l2 → l1 as follows: for x = (xn), y = (yn), z = (zn),

T (x, y) = z ⇔ zi =

∞∑
j,k=1

αijkxjyk.

Note that the operator is well defined, since by the Cauchy-Schwarz inequality we
have ∑

i

|zi| ≤
(∑

i,j,k

|αijk|
)
‖x‖l2‖y‖l2 .

Obviously, T is bilinear. Furthermore, if we let z = (zn) be as before, we can define

Tn : l2 × l2 → l1, Tn(x, y) = (z1, z2, . . . , zn, 0, 0, . . . ).

Since Tn(l
2 × l2) is contained in an n-dimensional subspace of l1, and since clearly

for any bounded subset U of l2 × l2 we have that Tn(U) is a bounded subset of an
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n-dimensional subspace of l1, we conclude that necessarily Tn(U) is precompact.
Thus, Tn is a compact bilinear operator. Now, for all x, y ∈ B1,l2 , we have

‖Tn(x, y)− T (x, y)‖ = ‖(0, . . . , 0, zn+1, . . . )‖l1 ≤
∞∑

i=n+1

∞∑
j,k=1

|αijk|,

which in turn implies that ‖Tn −T‖ → 0 as n → ∞. By Proposition 3 we conclude
that T is a compact bilinear operator.

Example 6. Consider a kernel K ∈ C([0, 1]3), and define T : L2(0, 1)×L2(0, 1) →
C(0, 1) by

T (f, g)(s) =

∫ 1

0

∫ 1

0

K(s, t, u)f(t)g(u) dtdu.

Then, clearly, T is well defined and bilinear. Moreover, the family {T (f, g) : f, g ∈
B1,L2} is equicontinuous, since

|T (f, g)(s1)− T (f, g)(s2)| ≤ max
t,u∈[0,1]

|K(s1, t, u)−K(s2, t, u)|.

Moreover, for all s ∈ [0, 1] and for all f, g ∈ B1, we have

|T (f, g)(s)| ≤ M = max
s,t,v∈[0,1]

|K(s, t, u)|.

In other words, T (B1×B1) is equibounded and equicontinuous, that is, precompact.
This proves that T is compact.

Example 7. Finally, let K ∈ L2((0, 1)3) and define T : L2(0, 1) × L2(0, 1) →
L1(0, 1) by

T (f, g)(s) =

∫ 1

0

∫ 1

0

K(s, t, u)f(t)g(u) dtdu.

Let Kn ∈ C([0, 1]3) be such that Kn → K in the L2 norm and define the operator
Tn as in Example 6, with K replaced by the kernel Kn. By Cauchy-Schwarz we
immediately get that, for all f, g ∈ B1,L2 ,

‖Tn(f, g)− T (f, g)‖L1 ≤ ‖Kn −K‖L2 → 0,

as n → ∞. We appeal again to Proposition 3 and conclude that, since Tn are
compact (see Example 6), T must be compact as well.
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