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Abstract 

Theoretical constraints on economic model parameters often are in the form of inequality restrictions. For example, 
many theoretical results are in the form of monotonicity or nonnegativity restrictions. Inequality constraints can 
truncate sampling distributions of parameter estimators, so that asymptotic normality no longer is possible. Sampling 
theoretic asymptotic inference is thereby greatly complicated or compromised. In Barnett and Seck (2009), which will 
be appear in volume 1 number 1 of the new journal, Journal of Statistics: Advances in Theory and Applications, we 
use numerical methods to investigate the resulting sampling properties of estimation with inequality constraints, with 
particular emphasis on the method of squaring, which is the most widely used method in applied literature on 
estimating integrable neoclassical systems of equations. In this note, we make our most important results more widely 
and easily available.

 
Citation: William Barnett and Ousmane Seck, (2010) ''A note on nonidentification in truncated sampling distribution estimation'', Economics 
Bulletin, Vol. 30 no.2 pp. 1670-1679. 
Submitted: Sep 26 2009.   Published: June 19, 2010. 

 

     



1.  Introduction 

Using Monte Carlo experiments, we investigate the possible bias in the asymptotic 

standard errors of estimators of inequality constrained estimators, when the constraint is imposed 

by the popular method of squaring.  That approach is known to violate a regularity condition in 

the available asymptotic proofs regarding the unconstrained estimator, since the sign of the 

unconstrained estimator, prior to squaring, is nonidentified.  Most existing theoretical results on 

asymptotics subject to inequality constraints condition upon linearity of the model, while most 

integrable neoclassical demand and supply system models are nonlinear. See Barnett and Binner 

(2004).  But even in the case of linear models, the regularity conditions used in the existing 

asymptotic proofs are violated by the nonidentification of the sign of the transformed parameter 

in the method of squaring.  See. e.g., Gourieroux and Monfort (1982), Gourieroux and Monfort 

(1995, p. 247), Rothenberg (1971), and Silvapulle and Sen (2005, section 4.9). 

 

Consider the following transformation approach, widely used to impose inequality 

constraints in econometrics.  If g  is a continuous function of  , and   is the constrained 

parameter, each approach acquires point estimates of   from the transformation )( g , 

where g is chosen such that ( )g  satisfies the relevant inequality constraint for all unconstrained 

values of  .  The constrained parameter   is replaced within the regression by )( g , and 

the parameter   is estimated without constraints.  The unconstrained parameter can be estimated 

by maximum likelihood, and the constrained parameter estimate can be recovered from the 

invariance property of maximum likelihood estimator.
1
  No compromise in the approach to point 

estimation is implied by truncation of the sampling distribution, but computation of the standard 

error of the constrained estimator presents problems. We focus on the delta method, the 

Jackknife, and the Bootstrap, among the most popular sampling theoretic approaches used to 

address problems stemming from truncation of sampling distributions.   

The most widely used method for imposing nonnegativity constraints is the method of 

squaring.  However the non-identification of the sign of the unconstrained parameter inherent to 

the method of squaring is a major potential problem, when the delta method approach is 

employed to estimate the standard errors of the constrained parameter. When using the method 

of squaring to impose nonnegativity on βi = gi(θi), the estimation of ˆ( )i ig   cannot distinguish 

between ˆ
i  and ˆ

i .  Hence, one of the regularity conditions is violated in the asymptotic 

proof with the delta method. We investigate the extent of the damage by using the delta method, 

when the sign of θi is nonidentified. 

Our primary objective is to determine whether  has a limiting 

distribution providing accurate measures of its standard deviation.  Other properties of the 

limiting distribution are not relevant to this study, and limiting normality is impossible for Y with 

the distribution of ˆ( )g   being truncated at the origin. Nevertheless, it is possible that enough 

properties of the limiting distribution may be undamaged so that limiting normality of Y cannot 

be rejected empirically.  Since we are only concerned with the first two moments, the 

unavoidable errors in the higher order moments (that do not exist with the normal distribution) 

need not concern us.  In fact our objective is focused solely on convergence of the standard 

                                                 
1
 The maximum likelihood estimator of )( g is )ˆ( MLg  . 
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deviation, which remains possible, even if the distribution cannot converge to a limiting normal.  

We provide the most important results from Barnett and Seck (2009).    

It should be observed that the delta method usually is often used, with θ̂  assumed to be 

asymptotically normal and the stronger conclusion than we use is that ˆ ˆ( )β g θ  is asymptotically 

normal.  But since we are exploring the implications of truncation of the distribution of ˆ ˆ( )β g θ , 

asymptotic normality is not possible.  Our concern is only with the first two moments of the 

limiting distribution.
2
 

 

2. Monte Carlo Experiment 

In this section, we describe the process that led to the generation of data with known 

characteristics. In particular, we want the true value of our parameter of interest to satisfy the 

nonnegativity constraint which we investigate. The two-good Constant Elasticity of Substitution 

(CES) utility function is a typical model having the ability to estimate the elasticity of 

substitution (σ > 0) between two goods, and is suitable choice for our illustration. It is globally 

flexible and globally regular. That model will be used to provide parameter values used as a 

“norm” for illustration. But results with only one vector of parameter values are of limited value, 

without confirmation that the results are robust to the parameter value choices. In fact, we ran 

our Monte Carlo simulations with different values of the parameters. Since we found our results 

to be robust to different parameter settings, we reported the results only for our one (admittedly 

arbitrary, but currently interesting) calibrated “norm” settings of model parameters.
3
   

In producing our parameter setting norm, we started with real world data by looking at 

the relationship between two monetary assets . We then simulated two goods  assumed to be 

substitutable to some degree, so that they are subject to the inequality constraint 0   (perhaps 

monetary assets, but only used as an illustration in the one calibrated case). With the simulated 

data described below, we estimate the demand model with the simulated data subject to that 

inequality constraint, using the method of squaring by applying the reparameterization, 
220 01.010    , while alternatively the exponential transformation approach is implemented 

by applying the reparameterization, 0.00001e  .  

 The next section describes the data generation process and the estimation results.  There 

are two objectives of our Monte Carlo experiment:  (1) assess the potential damage to the 

asymptotic standard errors of , resulting from the indeterminacy of the sign of the 

squared parameter   in the method of squaring
4
  and (2) determine the asymptotic properties of 

the constrained parameter , when the jackknife and the bootstrap are used to calculate the finite 

sample standard errors, with sample sizes permitted to increase to large values. 

In our simulations, the model parameters σ, and γ are set at various values, but since our results 

were robust to the setting of those parameters, we provided illustrative figures only for the case 

calibrated to have (σ,γ) = (0.37,2.8) (see footnote 6 for the definition of γ). 

 

2.1. Data Generation Process 

                                                 
2
 As we discuss below, problems with higher order moments are unavoidable. 

3
 The SAS code and outputs with other parameter settings are available upon request. 

4
 In this context,

220 01.010)(   g  
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The data generation process proceeds in six steps as shown in figure 1, following the 

setting of the values of the parameters. Our data set will consist of three variables: the user costs 

of the two assets and the expenditure share of one of the asset (w1).  

 

Step 1: Generate three series of 100,000 random numbers that will be the seeds for generating 

two user costs series and the white noise errors.  

Step 2: Generate two stationary series containing S observations and representing the user costs 

of two categories of assets { (1)
t  and (2)

t :  t = 1, 2, 3,…, S].  We generated that data from the 

following simple stationary specifications:  (1)
12 6t v    and (2)

22 6t v   , where v1 and v2 are 

uniformly distributed between 0 and 1.
5
      

Step 3: Use the demand function in expenditure share 
6
 to generate a series of expenditure shares 

of asset 1, (1)
tw , with the true values of the parameters set at 37.0 , 8.2 . The expenditure 

share of  asset 2 are then derived from (1) (2) 1t tw w  . 

Step 4: Generate a white noise error term series with mean zero and standard deviation equal to 

0.04. 

Step 5: Add the errors created in step 4 to the series of expenditure shares of asset 1 from step 3.  

The resulting realized stochastic shares are designated by fw1.  

Step 6: The set of increasing sample sizes are chosen to be S ∈ {30, 45, 60, 100, 200, 400, 800, 

1000, 2000, 3000, 4000 ,..., 100000}. 

 

2.2. Estimation Results 

We employ maximum likelihood to estimate the demand function in footnote 6 with 1
tw  

replaced by the noise augmented data generated in section 2.1. By construction, the true value of 

our parameter of interest, σ, is positive, and it is estimated by imposing the positivity constraint 

using the method of squaring with 
20 210 0.01    and alternatively by using the exponential 

transformation, 0.00001e  .   

For every generated sample of size S, we estimate the model using the method of squaring first 

and then by using the exponential transformation.  If the parameter estimation converges as S 

increases with the method of squaring, we consider the trial to be successful.  This procedure is 

repeated 1000 times and the parameter estimates from the first 220 successful experiments are 

                                                 
5
 We considered using simulated autogressive price data, but the nature of those stochastic processes seems 

unrelated to the truncation and sign-identification issues that are our focus.   

6
 The demand function for asset 1 in expenditure share form is as follows:  

where the elasticity of substitution between the two goods is  , with )1/(1   . The constraint 1  on the 

parameter of the CES utility function implies 0 .  The subscript t represents time,  and 
(1)
t  and 

(2)
t  are the 

user costs of assets 1 and 2  respectively. With the parameter 


 2
 normalized to be 1, we change the notation for 


1

 to γ, leaving two parameters to be estimated: γ and σ. 



4 

 

collected to compute ˆ ˆ( ) ( )N g Eg  
 

, with N being the sample size, set at the increasing 

values of S.
7
 

The reported results pertain to the asymptotic properties of ˆ ˆ( ) ( )N g Eg  
 

. The 

method of squaring was implemented by defining 220 01.010)(   g  and the exponential 

transformation by defining )exp(.00001.0)(  g .
8
  We plotted the estimated standard 

deviation of the limiting distribution of ˆ ˆ( ) ( )N g Eg  
 

 with the two reparameterizations 

(method of squaring and exponential transformation).  These results were acquired from the delta 

method’s asymptotic distribution theory, but with increasing simulated sample sizes.  The results 

were almost identical, which demonstrates that the estimated asymptotic standard errors do not 

depend on the transformation used to impose the inequality constraint, or the nonidentification of 

the sign of the unconstrained parameter with the method of squaring. The exponential 

transformation and the method of squaring perform equally well. As the sample size increases, 

the estimated standard deviation of ˆ ˆ( ) ( )N g Eg  
 

 converges to approximately 0.42 in both 

cases.  This convergence tends to support the use of the asymptotic theory. 

These results are consistent with the directly computed finite sample estimated standard 

deviation of ˆ ˆ( ) ( )N g Eg  
 

 from the Monte Carlo simulation results.  The standard error 

again converges to approximately 0.42 as the sample size increases.  We view 0.42 thereby as 

being the correct limiting standard deviation against which all other computations should be 

compared.   

The second objective of our research was pursued by analyzing the evolution of the finite 

sample estimated standard deviation of ˆ ˆ( ) ( )N g Eg  
 

 for increasing sample size, when the 

bootstrap and the jackknife are utilized. The jackknifed standard deviation appears to be 

stationary around 0.22, which is almost half the standard deviation of the limiting distribution. 

The bootstrap performs better than the jackknife, since the bootstrapped standard 

deviation does converge to the estimated standard deviation of the limiting distribution of Y, as 

the sample size increases, while the jackknifed standard deviations are consistently lower than 

the bootstrapped standard deviation.  Figure 2 shows that this result is a consequence of the 

relatively small proportion, k, of jackknife observations deleted.  After almost 90 percent of the 

sample is deleted, the jackknifed finite-sample standard deviation of Y does converge to the 

estimated standard deviation of the limiting distribution of Y.  These results strongly argue 

against the jackknife, in such applications as consumer demand modeling, where very large 

sample size is the exception rather than the rule. 

The bootstrap standard deviation of Y performs very similarly to the estimated standard 

deviation from the theoretical limiting distribution, as figure 3 shows.  Not only are the two very 

similar to each other at all sample sizes, but converge to each other as sample size grows. 

                                                 
7
 This number of replications, 1000, is arbitrary but its only importance is to guarantee that each sample of 

parameter estimates will have 220 observations. 
8
 As mentioned in a prior footnote above, we also ran our model with different values of the constrained parameter 

(elasticities of substitution), and those results are available upon request. 
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While we know that limiting normality is impossible for a truncated distribution, our 

normality tests failed to reject normality. However, we cannot take seriously limiting normality 

with truncation, since the normal distribution has no moments higher than the second moment, 

while a truncated distribution does.  Nevertheless, empirical inability to reject limiting normality 

could strengthen our ability to use the first two moments from the limiting distribution in 

producing asymptotic inferences, since the first two moments have particularly heavy influence 

on normality tests. 

We were only concerned in this paper about whether or not the asymptotic theory is 

adequate for certain properties --- in particular standard errors.  Our numerical experiments 

demonstrate that the asymptotic theory, using the delta method, is undamaged by the sign of the 

unconstrained parameter being nonidentified. Our results with tests of limiting normality suggest 

that there are properties of the limiting distribution that also are undamaged, at least 

approximately, but we do not pursue the implications for other properties of the limiting 

distribution. Clearly higher order limiting moments cannot be used, since the normal distribution 

has no moments higher than the second moment, while the truncated distribution caused by 

inequality constraint on the parameters displays existence of higher order moments, such as 

skewness towards the right.   

 

3. Conclusion 

In this paper, our goal is to investigate the empirical implication of inequality constraints 

imposed on the parameters of a regression.  In particular, we are interested in knowing the 

asymptotic implications of the nonidentified sign of the unconstrained parameter in the method 

of squaring.  While that nonidentified sign violates the regularity conditions of the currently 

available asymptotic proofs with the delta method, we cannot rule out the possibility that the 

usual asymptotic properties of the constrained parameter still apply, despite the unavailability of 

a theoretical proof.  As a result, we explore that issue using numerical Monte Carlo methods.  

Results with the popular method of squaring were compared to results with the exponential 

transformation, which violates different regularity conditions of available theoretical asymptotic 

proofs.
9
 

We find that the theoretical regularity conditions violations do not affect the usefulness of 

existing asymptotic theory in determining standard errors of the constrained parameter estimates 

by the delta method.  In addition, the results were not sensitive to the functional form used to 

impose the inequality constraint. We have not attempted to weaken the existing asymptotic 

proofs for the delta method to permit the nonidentified sign of the unconstrained parameter 

estimates. But our Monte Carlo results demonstrate that the nonidentified sign does not 

compromise the asymptotic standard errors.  It should be emphasized that the regularity 

assumptions in the existing proofs are sufficient but not necessary for the results on the variance 

of the limiting distribution. 

 

Our second result compares the estimated standard errors from the jackknife and the 

bootstrap.  We find that the finite sample bootstrapped standard errors and the estimated standard 

errors from the limiting distribution of the constrained parameter estimate converge to each 

other.  However, the finite sample jackknifed standard errors is an increasing function of the 

                                                 
9
 Any transformation that produces truncated sampling distribution for the transformed parameters inherently must 

violate the existing proofs, which produce the excessively strong result of asymptotic normality. 
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proportion of the sample deleted within that procedure.  For that reason, the bootstrap dominates 

the jackknife, even though the finite sample jackknifed standard errors are lower than the finite 

sample bootstrapped standard errors. 
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Figure 1: Data generation steps 

 
 

 

Figure 2: Finite sample estimated standard deviation of  where 

N=800, as the percentage of the sample deleted, k, increases (Jackknife) 
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Figure 3: Bootstrapped versus asymptotic standard deviation of the limiting distribution 

of , as N increases to 2000 
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