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Abstract

Background: Truncating mutations in the tumor suppressor gene APC (Adenomatous Polyposis Coli) are thought to initiate
the majority of colorectal cancers. The 15- and 20-amino acid repeat regions of APC bind b-catenin and have been widely
studied for their role in the negative regulation of canonical Wnt signaling. However, functions of APC in other important
cellular processes, such as cell cycle control or aneuploidy, are only beginning to be studied. Our previous investigation
implicated the 15-amino acid repeat region of APC (M2-APC) in the regulation of the G2/M cell cycle transition through
interaction with topoisomerase IIa (topo IIa).

Methodology/Principal Findings: We now demonstrate that the 20-amino acid repeat region of APC (M3-APC) also
interacts with topo IIa in colonic epithelial cells. Expression of M3-APC in cells with full-length endogenous APC causes cell
accumulation in G2. However, cells with a mutated topo IIa isoform and lacking topo IIb did not arrest, suggesting that the
cellular consequence of M2- or M3-APC expression depends on functional topoisomerase II. Both purified recombinant M2-
and M3-APC significantly enhanced the activity of topo IIa. Of note, although M3-APC can bind b-catenin, the G2 arrest did
not correlate with b-catenin expression or activity, similar to what was seen with M2-APC. More importantly, expression of
either M2- or M3-APC also led to increased aneuploidy in cells with full-length endogenous APC but not in cells with
truncated endogenous APC that includes the M2-APC region.

Conclusions/Significance: Together, our data establish that the 20-amino acid repeat region of APC interacts with topo IIa
to enhance its activity in vitro, and leads to G2 cell cycle accumulation and aneuploidy when expressed in cells containing
full-length APC. These findings provide an additional explanation for the aneuploidy associated with many colon cancers
that possess truncated APC.

Citation: Wang Y, Coffey RJ, Osheroff N, Neufeld KL (2010) Topoisomerase IIa Binding Domains of Adenomatous Polyposis Coli Influence Cell Cycle Progression
and Aneuploidy. PLoS ONE 5(4): e9994. doi:10.1371/journal.pone.0009994

Editor: Kevin G. Hardwick, University of Edinburgh, United Kingdom

Received November 1, 2009; Accepted March 10, 2010; Published April 2, 2010

Copyright: � 2010 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded in part by NIH RO1 CA10922 (Y.W. and K.L.N.), GI Special Program of Research Excellence CA95103 (R.J.C), NCI RO1 CA46413
(R.J.C), GM33944 (N.O.), Higuchi Biosciences Center J.R. & Inez Jay Award (Y.W. and K.L.N.), and the KUCC Pilot Project Award (Y.W. and K.L.N.). The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: klneuf@ku.edu

Introduction

Mutation of the tumor suppressor Adenomatous Polyposis coli (APC)

gene is considered an initiating event in over 80% of all colorectal

cancers [1]. Mutations in APC have also been associated with

chromosomal instability and aneuploidy in early polyps from FAP

(Familial Adenomatous Polyposis) patients [2,3,4]. Although the

ability of APC to suppress canonical Wnt signaling by targeting b-

catenin is critical for APC to suppress tumorigenesis [5,6,7,8,9],

accumulating evidence suggests that APC likely suppresses tumor

development through pathways besides inhibiting canonical Wnt

signaling [see review [10]].

Among the multiple functions of APC identified is cell cycle

regulation [11,12,13,14,15,16,17]. APC involvement in G1/S is

attributed to its recognized role in canonical Wnt signaling. APC

participation in the G2/M transition involves interaction with

topoisomerase IIa (topo IIa) [18]. However, the mechanism by

which APC regulates the G2-M cell cycle transition is poorly

understood.

Besides being an enzyme that catalyzes DNA topology changes

[19,20,21,22], topo IIa is also a critical regulator of one G2/M

checkpoint during cell division, the decatenation checkpoint [23].

Inhibition of topo IIa activity leads to initiation of the G2

decatenation checkpoint, resulting in G2 cell cycle arrest [23].

Topo IIb, a closely related protein, has a similar amino acid

sequence and activity as topo IIa, but is dispensable for cell cycle

control [24,25,26].

Previously, we found full-length endogenous APC interacts with

endogenous topo IIa but not with topo IIb [18]. Expression of a

central fragment of APC that binds topo IIa led to cell cycle
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accumulation in G2, independent of b-catenin [18]. Thus, we

concluded that nuclear APC interacts with topo IIa and thus,

might be involved in the regulation of cell cycle progression. In the

current study, we identify a second domain in the central portion

of APC that specifically binds to topo IIa but not topo IIb. Both

APC central domains dramatically impact the activity of topo IIa
in vitro. Cell lines with full-length endogenous APC that express

either of the APC domains capable of modifying topo IIa activity

accumulate in G2 and display increased aneuploidy. Using a cell

line lacking topo IIb and with a mutant isoform of topo IIa, we

demonstrate that cell cycle arrest triggered by expression of middle

APC fragments requires normal expression of endogenous topo

IIa. Our data implies that full-length APC can participate in the

topo IIa-mediated regulation of the G2-M transition.

Results

Two central regions of APC bind topo IIa
Previously, we identified an interaction between endogenous APC

and topo IIa [18]. Exogenous expression of the 15-amino acid repeat

region of APC (M2-APC) that interacts with topo IIa led to G2 cell

cycle arrest. In the present study, we investigated whether the 20-

amino acid repeat region of APC (M3-APC) also interacts with topo

IIa. Topo IIa specifically co-precipitates with both EGFP-fused M2-

and M3-APC (Figure 1B, top blot). However, topo IIb does not co-

precipitate with either APC fragment under the same experimental

conditions (Figure 1B, second blot). EGFP-M2-APC encompasses

APC amino acids 959–1338 while EGFP-M3-APC contains amino

acids 1211–2075 (Figure 1A). The M3 region contains two mono-

partite nuclear localization signals [27]. Together, these two regions

contain all 15- and 20-amino acid repeats of APC that mediate b-

catenin binding and downregulation. Therefore, b-catenin co-

precipitation with both M2- and M3-APC, served as a positive

control (Figure 1B, third blot).

A functional interaction between purified M2- or M3-APC
and topo IIa

Given that exogenous M2- and M3-APC each interact with

endogenous topo IIa, we tested whether both APC fragments

would also influence two different reactions catalyzed by topo IIa.

Purified non-overlapping recombinant M2- and M3-APC frag-

ments each enhanced the ability of purified topo IIa to resolve

highly catenated kinetoplast DNA into decatenated mini DNA

circles in vitro (Figure 2A and 2B). Neither purified M2- nor M3-

APC showed decatenation activity in the absence of topo IIa
(Figure 2A and 2B). Topo IIa enzyme can also convert supercoiled

DNA into relaxed circular DNA and this relaxation activity was

enhanced by addition of purified M2- or M3-APC (Figure 2C).

Neither purified M2- nor M3-APC relaxed the supercoiled DNA

in the absence of topo IIa (Figure 2C). While it was clear that

purified M2- or M3-APC enhanced both decatenation and

relaxation activities of purified topo IIa, we wanted to eliminate

Figure 1. Both 15aa and 20aa repeat regions of APC interact with topo IIa. (A) Schematic diagram of APC protein showing location of M2
and M3-APC fused to the C-terminus of EGFP and used in all cell studies. (B) A GFP antibody was used to immunoprecipitate (IP) EGFP from
HCT116bw cells expressing either EGFP-M2-APC, EGFP-M3-APC or EGFP. Immunoblots (IB) were probed using antibodies indicated to the left of the
gel. Ten percent input equals 10 mg total protein. Topo IIa co-precipitates with both M2-APC and M3-APC, but not with EGFP. Topo IIb does not co-
precipitate with M2- or M3-APC, but b-catenin does co-precipitate with both. Blots probed for a-tubulin served as a loading control for the input
samples and a negative control for the immunoprecipitations. (*) marks migration of antibody heavy chain. Representative blots from three
independent experiments are shown.
doi:10.1371/journal.pone.0009994.g001
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the possibility that these effects were due to increased total protein

concentration in the reactions and were instead specific properties

of M2 and M3-APC. Purified BSA did not enhance topo IIa
activities (Figures 2B and 2D). In contrast, when reactions

performed such that the purified topo IIa alone displayed

moderate activity, the addition of purified BSA protein slightly

inhibited both decatenation and relaxation activities of topo IIa
(Figure 2B and 2D). These in vitro assays provide additional

support for a functional interaction between APC and topo IIa.

Furthermore, purified M2- and M3-APC had no area of overlap,

and yet each interacted with purified topo IIa. We conclude that

although the EGFP-M3-APC used for cell studies overlaps slightly

with the EGFP-M2-APC, this area of overlap is not solely

responsible for the topo IIa interaction and M2- and M3-APC can

each interact with and affect topo IIa independently.

Expression of M2- or M3-APC results in G2 cell cycle
arrest

M2- and M3-APC each bind endogenous topo IIa in cells

(Figure 1B) and purified topo IIa in vitro (Figure 2). Thus, we

expressed M3-APC in HCT116bw cells (HCT116 cells that

contain only a wild-type allele of b-catenin) to determine whether

this expression altered cell cycle progression. Cell cycle distribution

was determined by FACS analysis of living cells labeled with

propidium iodide. Similar to what was previously seen using M2-

APC [18], cells expressing M3-APC progressively accumulated in

the G2/M phases of the cell cycle, while cells expressing EGFP did

not (Figure 3A and B, Table S1). When compared to cells

expressing EGFP alone, cells expressing M3-APC for 72 hours

showed a 2-fold increase in G2/M distribution and a 31%

decrease in S phase distribution; cells expressing M2-APC showed

a 2.4-fold increase in G2/M distribution and a 77% decrease in S

phase distribution. We conclude that expression of M2- or M3-

APC leads to cell cycle accumulation in G2/M. Of note, the

reduction in S phase cells seen upon expression of M2- or M3-

APC, suggested a second cell cycle delay prior to S phase, likely in

G1. This apparent delay in G1 is consistent with a previous

observation that APC regulates the G1-S transition [13].

M2-APC expression elicits cell accumulation in the G2 phase

rather than in mitosis [18]. FACS analysis does not distinguish

between the G2 and M cell cycle populations. Thus, to determine

whether expression of M3-APC also resulted in G2 accumulation,

we determined the mitotic indices in living or fixed M3-APC-

expressing cells at 24 and 48 hours post-transfection. We found no

significant expansion of the mitotic population in M3-APC

expressing cells by either counting phospho-histone H3 positive

cells (data not shown) or by estimating the percentage of living cells

displaying mitotic figures as visualized with Hoechst stain

Figure 2. Recombinant M2- and M3-APC each enhance topo IIa activity in vitro. (A) Purified recombinant human topo IIa (0.12 mM) could
slightly decatenate catenated DNA (catDNA) (lane 4). Addition of increasing amounts (0.12, 0.24, and 0.6 mM) of purified recombinant M2-APC (amino
acid 1000–1326, lanes 5–7) or non-overlapping M3-APC (amino acid 1330–2058, lanes 8–10) resulted in progressively enhanced topo IIa DNA
decatenation activity. M2-, or M3-APC (0.6 mM) alone did not display decatenation activity in the absence of topo IIa(lanes 2 and 3, respectively). (B)
Using a higher concentration of topo IIa (0.18 mM) that displays slightly more activity in the absence of other proteins, the addition of M2- and M3-
APC (0.18 mM) enhances topo IIa activity (lanes 7 and 8, respectively). In contrast, BSA (0.18 mM) did not enhance the DNA decatenation activity of
topo IIa (lane 6). cat DNA, catenated kinetoplast DNA (kDNA); decat DNA, decatenated kDNA. (C) Purified recombinant human topo IIa (0.35 mM)
could slightly relax supercoiled pBR322 plasmid DNA (lane 4). Addition of increasing amounts (0.35, 0.70, and 1.35 mM) of purified recombinant M2-
APC (lanes 5–7) or M3-APC (lanes 8–10) resulted in progressively relaxed plasmids as indicated by slower migrating bands. M2-, or M3-APC (0.70 mM)
did not display relaxation activity in the absence of topo IIa (lanes 2 and 3, respectively). (D) Under conditions where topo IIa displayed moderate
plasmid relaxation activity, even in the absence of other proteins (lane 2), addition of BSA (0.35 mM) did not enhance this activity (lane 3), whereas
addition of either M2- or M3-APC did (note reduction in faster migrating, highly supercoiled forms of DNA in lanes 5 and 7 compared to lane 2). (A–D)
Representative assays from at least four independent experiments are shown.
doi:10.1371/journal.pone.0009994.g002
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(Figure 3C and Table S2). Therefore, as previously reported for

M2-APC, the expanded G2/M population of M3-APC-expressing

cells determined by FACS analysis represents an accumulation in

G2, not in M. Together, these results demonstrate that M3-APC

and M2-APC each induce G2 cell cycle arrest when expressed in a

colon epithelial cell line with full-length APC.

Figure 3. Cells expressing M2- or M3-APC progressively accumulate in G2. (A) Histograms showing representative FACS displays of cell
cycle distribution assessed by Hoechst blue staining at 24, 48, and 72 hours post-transfection with expression constructs for EGFP fused M2- or M3-
APC, or EGFP alone. Only EGFP-positive cells are displayed. (B) Bar graphs show FACS-based cell cycle distribution at 24, 48, and 72 hours post-
transfection as the average of three independent experiments. Error bars represent standard deviation. When compared to cells expressing only
EGFP, by 72 hours post-transfection, the fraction of M2-APC expressing cells in G2/M increased by 2.4-fold, and the S phase decreased by 77%; the
fraction of M3-APC expressing cells in G2/M increased by 2-fold, and the S phase decreased by 31%. (C) Live cell scoring for mitotic indices of 100
EGFP-positive cells 24 hours and 48 hours post-transfection. Three independent experiments revealed no change in the mitotic population when
cells expressed M2 (24 hours, 261, p = 0.74; 48 hours, 363, p = 0.19) or M3-APC (24 hrs, 663, p = 0.67; 48 hrs, 161, p = 0.29), as compared to cells
expressing EGFP alone (24 hours, 363; 48 hours 462).
doi:10.1371/journal.pone.0009994.g003
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G2 arrest triggered by M2- and M3-APC is not dependent
on p53

Tumor suppressor p53 participates in various pathways that

regulate the G2/M transition (reviewed in [28]). To determine if

p53 is required for the M2- and M3-APC-mediated G2 arrest, we

determined the consequences of M2- or M3-APC expression in

the promyelocytic leukemia cell line, HL-60. HL-60 cells express

full-length APC protein (data not shown) but are null for p53 [29].

When either M2- or M3-APC was expressed in HL-60 cells, the

G2/M population increased significantly (Figure 4A and Table

S3). M2-APC expression resulted in a near doubling of the G2/M

population, while M3-APC expression resulted in a tripling of the

G2/M population. The G2 arrest in HL-60 cells indicates that the

impact of M2- and M3-APC on the cell cycle is not restricted to

colon epithelial cell lines. Moreover, the G2 cell cycle arrest

triggered by expression of either M2- or M3-APC is not dependent

on p53.

Cells deficient in topo II do not arrest in G2 following
expression of either M2- or M3-APC

Based on our data, we hypothesize that exogenous M2- and

M3-APC each interact with endogenous topo IIa, resulting in a

p53-independent cell cycle arrest in G2. Ideally, to demonstrate

that this APC-mediated cell cycle regulation is dependent upon

topo IIa, we would eliminate topo IIa from the analyzed cells.

Unfortunately, topo IIa is an essential protein and its perturbation

typically results in cell cycle delay followed by cell death [30].

Although no cultured mammalian cell line completely lacks topo

IIa, there are cell line variants such as HL-60/MX2 cells with

compromised topo IIa activity. HL-60/MX2 cells were originally

generated by selecting for resistance to the topo II inhibitor

mitoxantrone [31]. Thus, compared to parental HL-60 cells, they

are 195-fold less sensitive to drugs that target topo II [32,33,34].

This resistance has been attributed to the observation that HL-60/

MX2 cells express no topo IIb, only a low level of topo IIa, and a

truncated topo IIa with reduced activity and aberrant subcellular

localization [32,33,34]. In contrast to the parental HL-60 cells, we

observed that HL-60/MX2 cells expressing M2- or M3-APC

showed no increase in the G2/M population (Figure 4 and Table

S3). Rather, the slight decrease in G2/M and increase in the S

population of M2- and M3-APC-expressing cells were not

significantly different from the EGFP-expressing HL-60/MX2

cells. Taken together with our observation that M2- and M3-APC

interact preferentially with topo IIa rather than topo IIb
(Figure 1B), we conclude that topo IIa is required for M2- or

M3-APC-triggered cell cycle arrest in G2.

Cells with truncated APC do not arrest in G2 following
expression of M2- or M3-APC

The majority of somatic APC mutations in colon cancers result

in overexpression of a truncated protein that includes all of the

M2-APC region and part of M3-APC (Table 1). We examined the

cell cycle profile of SW480 cells which express an endogenous

APC protein truncated at amino acid 1368. In SW480 cells,

expression of either M2- or M3-APC did not lead to G2 arrest, or

any other alterations in the cell cycle phases (Figure 5 and Table

S4).

G2 accumulation in M2- and M3-APC-expressing cells
does not depend on b-catenin regulation

A major function of the central region of tumor suppressor

APC is to target, b-catenin for proteasome-mediated destruc-

tion. We have previously reported that expression of M2-APC

does not alter b-catenin localization, level or activity and

concluded that the G2 arrest triggered by M2-APC is not likely

mediated by b-catenin [18]. Although both M2 and M3-APC

bind b-catenin, only the M3-APC region is capable of targeting

b-catenin for cytoplasmic destruction. To test if the G2 arrest

triggered by M3-APC involves b-catenin regulation, we

expressed M3-APC in HCT116bm cells which produce only

stabilized b-catenin that can not be targeted for degradation

[35]. HCT116bm cells expressing either M2 or M3-APC

displayed a near doubling of the G2/M population with an

accompanying decrease in the G0/G1 population when

compared to HCT116bm cells expressing EGFP alone

(Figure 6A and B and Table S5). Moreover, using a reporter

construct to determine b-catenin activity as a transcription co-

activator of LEF-1, it was demonstrated that expression of M3-

APC led to increased b-catenin activity in HCT116bm cells, but

slightly decreased b-catenin activity in HCT116bw cells

(Figure 6C). This opposing effect of M3-APC on b-catenin

activities in the two cell lines supports our conclusion that a

decrease in b-catenin activity is not required for M3-APC-

triggered G2/M cell cycle delay. Furthermore, expression of

APC amino acids 1379–2080 in SW480 resulted in decreased b-

catenin activity [36]. Thus, our finding that SW480 cells

expressing M3-APC do not arrest in G2 (Figure 5) indicates that

decreasing b-catenin activity is not sufficient to trigger a G2/M

cell cycle delay.

G2 arrest triggered by M2- and M3-APC is accompanied
by increased aneuploidy

Although derived from human colon cancer tissue, the HCT116

cell line retains a stable diploid karyotype. Not only did HCT116

cells expressing either M2- or M3-APC show progressive G2

arrest, but they displayed a significant increase in aneuploidy

(Figure 7 and Table S1). In contrast, SW480 cells are originally

aneuploid [Table 1]. Expression of either M2- or M3-APC in

SW480 cells did not lead to a significant increase in aneuploidy

(Figure 7 and Table S4).

Figure 4. Expression of M2- or M3-APC results in G2/M
accumulation in HL60 but not HL60/MX2 cells. Graph shows the
G2/M population from HL-60 and HL-60/MX2 cells expressing EGFP-M2-
or M3-APC for 48 hours. Parental HL60 cells exhibit a 2-fold increase in G2/
M when expressing M2-APC and a 4-fold increase when expressing M3-
APC. A student’s t-test demonstrated that these increases in G2/M were
significant for M2 (* p = 0.02) and M3 (** p = 0.03), compared to cells
expressing only EGFP. HL60/MX2 cells exhibit a decrease in G2/M when
expressing M2- or M3-APC. However, these differences were not
significant: M2 (p = 0.06) and M3 (p = 0.48), compared to cells expressing
only EGFP. For both cell lines, 10,000 EGFP-positive cells were analyzed
from three independent experiments.
doi:10.1371/journal.pone.0009994.g004
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Discussion

In this study, we identified a novel topo IIa binding domain (M3)

in the central region of APC that enhances both decatenation and

relaxation activities of purified topo IIa. Cells expressing M2- or

M3-APC accumulated in the G2 phase of the cell cycle and showed

increased aneuploidy; however, this result was not observed in cells

with endogenous truncated APC missing part of the M3 domain.

The G2 arrest was also independent of p53 but was dependent on

topo IIa. Our data indicate the central region of APC interacts with

topo IIa and thereby regulates G2-M cell cycle progression.

M2 and M3-APC each trigger G2 cell cycle arrest
independent of topo IIb

Topo IIa and topo IIb are 75% identical in protein sequence

and share some functional similarity in promoting DNA topology

changes. However, successful generation of cell lines and mouse

models completely lacking topo IIb [24,25,26] indicates that topo

IIb is dispensable for cell cycle progression. In contrast, topo IIa is

essential for cell cycle control. Our finding that M2- and M3-APC

interact with endogenous topo IIa but not topo IIb (Fig. 1B) is

consistent with our previous observation that full-length endoge-

nous APC interacts with endogenous topo IIa but not topo IIb
[18]. Based on this information, we conclude that APC-mediated

G2 cell cycle arrest is not dependent on topo IIb.

Abnormal nuclear morphology is not associated with G2
arrest

We previously reported that expression of M2-APC in

HCT116bw cells leads to abnormal nuclear morphology and G2

cell cycle arrest [18]. In contrast, although expression of M3-APC

in HCT116bw cells also resulted in G2 arrest, the abnormal

nuclear morphology was not observed until 72 hours post-

transfection (data not shown). Since both M2 and M3-APC

Table 1. Correlation of karyotype with APC status and presence of M2 and M3-APC in some commonly used colorectal cancer cell
lines.

Cell Line APC mutation 1a APC mutation 2a Inclusion of M2/M3 in APC truncation Karyotype Reference

C106 1238 1490 M2 79 [47]

C70 1309 LOH M2 115–130 [47,48]

C84 1451 2843 M2 56 [47]

C99 1367 LOH M2 52 [47]

CaCo/Caco2/TC7 1367 LOH M2 96 [47]

CoLo205 1554 2843 M2 68–75 [47]

COLO320 810 LOH None 45–58, 53 [47,49]

DLD-1/HCT15 1417 LOH M2 44–47 [47,49,50,51]

GP2D 1444 LOH M2 45–47 [47,48,50]

HT29 853 1555 M2 69–73 [47,48,49]

HT55 1131 1308 M2 80 [47]

LoVo 1114 1429 M2 47–57 [47,48,49,50]

LS1034 1309 LOH most of M2 77 [47]

LS411 789 1556 M2 70–76 [47,48]

SKCO1 1317 1443 M2 70–80 [50]

SW1417 1450 LOH M2 66–71 [47,48]

SW403 1197 1278 most of M2 60–65; 68 [47,48]

SW480 1368 LOH M2 54–58 [47,48,49]

SW620 1338 N/D M2 45–57 [47,48,50]

SW837 1450 LOH M2 38–40 [47,48]

SW948 1114 1429 M2 67 [47]

T84 1488 LOH M2 47–57 [50]

VACO4A 1354 LOH M2 60–65 [47,48]

VACO5 1419 1554 M2 43–47 [47,48]

HCA7 2843 2843 N/A 42–43 [47,48]

HCT116 2843 2843 N/A 43–46 [47,48,49,51]

LS174T 2843 2843 N/A 47,45, 46–47 [47,48,49]

RKOb 2843 2843 N/A 45–47 [49,51]

SW48 2843 2843 N/A 46–47 [47,49]

LS180 2843 2843 N/A 45 [47]

aAPC status from [52].
bAPC status from [53] LOH = Loss of heterozygosity.
N/D = Not detected N/A = Not applicable.
doi:10.1371/journal.pone.0009994.t001
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interact with and affect topo IIa, it seems most likely that the

altered nuclear morphology observed shortly after M2-APC

expression is topo IIa-independent. Furthermore, the abnormal

nuclear morphology was also seen in SW480 cells [18] which do

not undergo a G2 arrest following expression of either M2- or M3-

APC (Figure 5). Thus, the abnormal nuclear morphology is not

associated with G2 arrest.

M2- and M3-APC are not identical in their interaction
with topo IIa

Although both M2- and M3-APC bind topo IIa and trigger G2

cell cycle arrest when expressed in HCT116bw, HCT116bm, or

HL60 cells, the cellular response to the two fragments is not

identical. Altered nuclear morphology was observed 24 hours after

expression of M2-APC [18]. In contrast, nuclear morphological

alterations were not observed until 72 hours after expression of

M3-APC (data not shown). In HCT116bw cells, expression of M2-

APC for 72 hours resulted in a more robust G2 cell cycle

accumulation than did expression of M3-APC (Figure 3B). In

HL60 cells, expression of M3-APC resulted in a more robust G2

cell cycle accumulation than did expression of M2-APC (Figure 4).

In transfected HCT116bw cells, M2-APC protein levels were

approximately 3-fold higher than that of full-length endogenous

APC and 2.7-fold higher than M3-APC levels (data not shown).

However, M2- and M3-APC appeared able to co-precipitate

equivalent amounts of endogenous topo IIa (Figure 1B). In

general, it appeared that transfected HCT116bw cells expressed

more M2-APC than M3-APC, but M3-APC was better able to

bind endogenous topo IIa than M2-APC. Experiments using

purified non-overlapping recombinant M2- and M3-APC frag-

ments revealed that M3-APC enhanced the decatenation activity

of purified topo IIa at a lower molar concentration than M2-APC

(Fig. 2A). The opposite was observed in in vitro relaxation assays,

where M2-APC appeared to enhance the ability of topo IIa to

relax supercoiled DNA more effectively than M3-APC (Fig. 2C).

Together, these observations are consistent with M2- and M3-

APC binding to different regions of topo IIa and thus modifying

topo IIa activity by slightly different mechanisms. Further

investigation is required to identify the specific topo IIa binding

sites and delineate the underlying mechanisms.

Potential molecular mechanism and physiological
relevance

Over 60% of FAP polyps display aneuploidy [2,3,4]. It has been

proposed that APC mutations contribute to chromosomal

instability (CIN) through loss of spindle-kinetochore attachment

or misregulation of the cytoskeleton [for review, see [37]]. More

recently, an association of truncated APC fragments with mitotic

checkpoint protein Mad2 was reported to inactivate the mitotic

checkpoint, thus providing another potential mechanism for CIN

[38]. We propose a novel mechanism that might contribute to

increased aneuploidy following mutation of APC. Our model is

based on evidence that middle fragments of APC bind to topo IIa,

affect topo IIa activity, and result in G2 cell cycle accumulation

and increased aneuploidy when expressed exogenously.

We propose that expression of M2- or M3-APC causes altered

topo IIa activity, thus activating the G2 decatenation checkpoint,

which leads to G2 arrest. Aneuploid cells would result from altered

topo IIa activity in the small percentage of mitotic cells that escape

the G2 decatenation checkpoint. The G2 decatenation checkpoint

is vital for cell cycle control and genomic integrity. Cells lacking

the G2 decatenation checkpoint become aneuploid [39,40]. A

Figure 5. Expression of M2- or M3-APC does not affect cell cycle progression of colon cancer cells with endogenous truncated APC.
(A) SW480 cells with endogenous truncated APC and expressing M2-, M3-APC or EGFP alone have similar cell cycle distributions. Histograms showing
FACS analysis of EGFP-positive cells at 48 hours post-transfection. (B) Bar graphs show the average cell cycle distribution of SW480 cells expressing
EGFP, M2 or M3-APC from three independent experiments. Error bars represent standard deviation.
doi:10.1371/journal.pone.0009994.g005
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variety of topo II inhibitors have been shown to arrest cells in G2

by activating the G2 decatenation checkpoint [23]. It is possible

that only cells with an intact G2 decatenation checkpoint can be

arrested in G2 by expression of middle regions of APC. Consistent

with this hypothesis, all cell lines we observed to undergo G2 arrest

upon M2 or M3-APC expression possessed an intact decatenation

checkpoint [41,42]. HL60-MX2 cells have no decatenation

checkpoint [32,33,34] and did not arrest in G2 (Fig. 4). In our

study, the display of aneuploidy in cells expressing M2- or M3-

APC increased steadily over time (Figure 7). We suggest that the

basis for this aneuploid accumulation is compromised topo IIa
activity in cells that escape the G2 decatenation checkpoint. We

further predict that in FAP patients, truncated APC fragments

which contain the M2 region would similarly interact with topo

IIa and this might result in aneuploidy. In support of this

prediction, a literature review of colorectal cancer cell lines reveals

a general trend that cells with full-length APC are diploid with

stable karyotypes (Table 1). In contrast, cell lines that express a

truncated APC that includes M2-APC are mostly aneuploid, with

very few exceptions. Our results provide a potential explanation

for the presence of aneuploidy in early FAP adenomas. Further

experiments comparing topo IIa activity in colon cancer cell lines

harboring various truncating APC mutations are needed to

establish a direct link between topo IIa activity and aneuploidy.

The current study expands the repertoire of molecular factors

implicated in the pathogenesis of colorectal cancer, illuminating

new areas for future development of treatment strategies.

Materials and Methods

Cell culture and DNA constructs
HCT116bw (containing one wild-type allele of b-catenin) and

HCT116bm (containing one mutant allele of b-catenin) cells (a gift

from Dr. Bert Vogelstein) and SW480 (ATCC) were grown in

McCoy’s 5A medium (Gibco) supplemented with 10% FBS

(Hyclone). HL60 cells (ATCC) were grown in Iscove’s Modified

Dulbecco’s Medium (ATCC) supplemented with 20% FBS

(Hyclone). HL60/MX2 (ATCC) were grown in RPMI 1640

medium (Cellgro) supplemented with 10% FBS. Expression

constructs for APC fragments fused to EGFP were kindly provided

by Dr. Naoki Watanabe and have been described previously [43].

His and S dual-tag fused M2-APC was made as described [18]. To

generate recombinant N-terminal His and S dual-tag fused APC

fragment M3, the corresponding cDNA for APC (amino acid

1330–2058) was amplified using PCR and subcloned into a pET-

30a(+) vector.

Immunoprecipitation and immunoblots
HCT116bw cells were transfected using Lipofectamine2000

reagent according to the manufacturer’s protocol (Invitrogen).

Figure 6. Mutant b-catenin does not compromise the ability of M2- or M3-APC to trigger G2 cell cycle arrest. (A) HCT116bm cells that
express only stabilized b-catenin show accumulation in G2/M when expressing M2- or M3-APC. Histograms showing representative FACS displays of
cell cycle distribution assessed by Hoechst blue staining at 48 hours post-transfection. Only EGFP-positive cells are displayed. (B) Bar graphs show
FACS-based cell cycle distribution from three independent experiments. Error bars represent standard deviation. When compared to cells expressing
only EGFP, by 48 hours post-transfection, the fraction of M2 or M3-APC expressing cells in G2/M increased by 1.7-and 1.6-fold, respectively. (C)
Expression of M2-APC does not alter b-catenin activity in HCT116bw (b-cat wt) or HCT116bm (b-cat mut) cells; however, expression of M3-APC leads
to distinct changes of b-catenin activity in the two cell lines. Luciferase activities were determined 48 hours post-transfection and activity of the b-
catenin reporter construct (TOP-flash) was normalized against both pRL-TK Renilla activity and FOP-flash reporter activity. p values for HCT116bm (b-
cat mut) cells are p = 0.50 (M2) and p = 0.03 (M3); and for HCT116bw (b-cat wt) cells are p = 0.49 (M2) and p = 0.39 (M3). Values are presented as
average 6 standard deviation for triplicate samples from three independent experiments.
doi:10.1371/journal.pone.0009994.g006

Topo IIa, APC and Cell Cycle

PLoS ONE | www.plosone.org 8 April 2010 | Volume 5 | Issue 4 | e9994



Transfection efficiencies estimated by FACs analysis were, on

average, 48% for EGFP-M2-APC and 62% for EGFP-M3-APC.

Estimated relative levels of M2-APC, M3-APC and full-length

endogenous APC in whole cell lysates were 1.6:0.7:1. Immuno-

precipitation (IP) and immunoblots (IB) were performed using

anti-GFP pAb (Invitrogen) as described [18]. Immunoblots were

probed with the following antibodies: anti-b-catenin (1:2000,

Sigma); anti-topo IIa (1:1000, Research Diagnostics, Inc.); anti-

topo IIb (1:1000, Santa Cruz); anti-GFP pAb (1:1000, Invitrogen);

and anti-a-tubulin (1:2000, Oncogene).

Electroporation and FACS analysis
Cells grown on plastic were treated with trypsin to obtain a

single cell suspension. A total of 2 mg of EGFP, EGFP fused M2-,

or M3-APC expression plasmid were electroporated using

Nucleofector I (Amaxa) according to the manufacturer’s protocol.

Electroporation programs used were: HCT116bw (program D-

32), HCT116bm (program D-32), HL60 (program T-19), and

HL60/MX2 (program X-03). SW480 cells were transfected with

Metafectine (Scientifix, Australia). Forty-eight hours post-transfec-

tion, single cells in suspension were stained with 0.5 mg/ml

Hoechst 33342 (Invitrogen) for 30 minutes at 37uC. FACS analysis

was performed using both UV and 488 nm lasers on a 5-laser BD

LSRII flow cytometry (BD Bioscience). Ten thousand EGFP-

positive cells were collected for each sample. Data were analyzed

using BD FACSDiva Software (BD Bioscience) and plotted using

WinMDI 2.9.

Recombinant proteins and topo IIa relaxation and
decatenation assays

Recombinant S-tag fused M2-APC (amino acid 1000–1326)

and M3-APC (amino acid 1330–2058) were generated as

described [18]. BSA (Sigma) was diluted in S-tagged APC protein

dilution buffer (20 mM Hepes pH 7.8, 100 mM NaCl). Recom-

binant human topo IIa and topo IIb were made as described

[44,45]. In vitro topo IIa relaxation and decatenation assays were

performed as described [20].

Antibodies and immunofluorescence
Cells transfected with EGFP or EGFP-fused M3-APC were

fixed with 4% paraformaldehyde, and immunostaining was

performed using anti-phospho-histone H3 (1:500, Upstate) as

described [46]. One hundred EGFP-positive cells were randomly

chosen, and only cells also positive for phospho-histone-H3 were

counted. As a second method to determine mitotic indices, living

cells were stained with 0.5 mg/ml Hoechst 33342 at 24 and

48 hours post-transfection and mitotic figures were counted for

100 cells in each category. The mitotic indices are presented as an

average 6 s.d. of three independent experiments.

Reporter gene assay
HCT116bw and HCT116bm cells grown in 24-well plates

were co-transfected using Metafectine reagent (Scientifix, Aus-

tralia) with 2 mg of the EGFP-M2-APC, EGFP-M3-APC or

EGFP expression construct, 100 ng of the TCF-reporter

construct SuperTOP-flash or FOPflash (Upstate Biotechnology,

Lake Placid, NY), and 50 ng of the pRL-TK Renilla luciferase

construct (Promega, WI) as a control to normalize for transfection

efficiency. After 48 hours, cells were harvested and luciferase

activities were determined using the Dual-LuciferaseH assay

system (Promega) and a Turner Designs TD-20/20 luminometer.

SuperTOP-flash and FOPflash luciferase activities were first

normalized by pRL-TK Renilla luciferase, and then the

normalized SuperTOP-flash luciferase activity was divided by

normalized FOPflash luciferase activity to calculate relative

b-catenin activity.

Supporting Information

Table S1 Cell cycle distribution in HCT116 bw cells expressing

GFP, M2-APC, or M3-APC. Transfected cells were stained with

Hoechst blue, and the cell cycle distribution G0/G1 (2N), S

(between 2N and 4N), and G2/M (4N) was determined by FACS

at three time points post-transfection. For each transfection,

10,000 GFP-positive cells were analyzed. Table shows the average

from three independent experiments.

Found at: doi:10.1371/journal.pone.0009994.s001 (0.04 MB

DOC)

Table S2 Mitotic indices of HCT116bw cells expressing GFP,

M2-APC, or M3-APC. Live GFP, M2-APC, and M3-APC

expressing cells at 48 hours post-transfection were stained with

Hochest blue. Mitotic cells were counted according to DNA

morphology from 100 randomly selected GFP positive cells. Table

shows the average from three independent experiments. p values

were calculated by comparing M2 or M3-APC expressing cells to

GFP expressing cells using student t test.

Found at: doi:10.1371/journal.pone.0009994.s002 (0.03 MB

DOC)

Table S3 Cell cycle distribution of parental HL60 and HL60/

MX2 cells expressing GFP, M2-APC, or M3-APC. Cell cycle

distributions of GFP, M2-APC, and M3-APC expressing cells at

48 hours post-transfection. For each transfection, 10,000 GFP-

positive cells were analyzed. Table shows the average from three

independent experiments.

Found at: doi:10.1371/journal.pone.0009994.s003 (0.03 MB

DOC)

Figure 7. Expression of M2- or M3-APC results in increased
aneuploidy in cells possessing full-length APC, but not in cells
with truncated APC. Aneuploid cells were quantified by FACS
analysis as shown in Figure 3 and Figure 5. The number of aneuploid
HCT116bw cells steadily increased following expression of M2- or M3-
APC. At 48 hours, there was a significant increase in aneuploidy
(p = 0.0070 for M2 and p = 0.013 for M3) compared to cells expressing
EGFP alone. There was not a significant increase in aneuploidy in SW480
cells transfected with M2- (p = 0.16) or M3-APC (p = 0.09).
doi:10.1371/journal.pone.0009994.g007

Topo IIa, APC and Cell Cycle

PLoS ONE | www.plosone.org 9 April 2010 | Volume 5 | Issue 4 | e9994



Table S4 Cell cycle distribution of SW480 cells expressing GFP,

M2-APC, or M3-APC. Cell cycle distributions of GFP, M2-APC,

and M3-APC expressing cells at 48 hours post-transfection. For

each transfection, 10,000 GFP-positive cells were analyzed. Table

shows the average from three independent experiments. For

aneupoid cells, p values for M2-APC is 0.16, and for M3-APC is

0.09.

Found at: doi:10.1371/journal.pone.0009994.s004 (0.03 MB

DOC)

Table S5 Cell cycle distribution of HCT116bm cells expressing

GFP, M2-APC, or M3-APC. Cell cycle distributions of GFP, M2-

APC, and M3-APC expressing cells at 48 hours post-transfection.

For each transfection, 10,000 GFP-positive cells were analyzed.

Table shows the average from three independent experiments.

Found at: doi:10.1371/journal.pone.0009994.s005 (0.03 MB

DOC)
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