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Abstract

Monkeypox is a major public health concern in the Congo Basin area, with changing patterns of human case occurrences
reported in recent years. Whether this trend results from better surveillance and detection methods, reduced proportions of
vaccinated vs. non-vaccinated human populations, or changing environmental conditions remains unclear. Our objective is
to examine potential correlations between environment and transmission of monkeypox events in the Congo Basin. We
created ecological niche models based on human cases reported in the Congo Basin by the World Health Organization at
the end of the smallpox eradication campaign, in relation to remotely-sensed Normalized Difference Vegetation Index
datasets from the same time period. These models predicted independent spatial subsets of monkeypox occurrences with
high confidence; models were then projected onto parallel environmental datasets for the 2000s to create present-day
monkeypox suitability maps. Recent trends in human monkeypox infection are associated with broad environmental
changes across the Congo Basin. Our results demonstrate that ecological niche models provide useful tools for
identification of areas suitable for transmission, even for poorly-known diseases like monkeypox.
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Introduction

Monkeypox virus (MPXV) was first isolated from captive

cynomolgus monkeys (Macaca fascicularis) in Denmark in 1959 [1];

in subsequent years, additional monkeypox (MPX) cases were

reported in captive non-human primates from research facilities

and zoos [2]. In 1970, the first human MPX case was described

from Basankusu, Democratic Republic of Congo (DRC) [3]. In

humans, the symptoms and progress of this disease are very similar

to those presented by smallpox, albeit with lower fatality rates.

MPXV belongs to the genus Orthopoxvirus, and as such shares cross-

immunological protection with other members of the genus,

including vaccinia virus, the agent used in the smallpox vaccine.

Since worldwide eradication of smallpox, routine smallpox

vaccination programs were terminated, increasing over time the

portion of the human population potentially at risk for MPXV

infection. As a result, monkeypox has recently been identified as

an important emerging disease, raising public health concerns

[4,5,6].

Increased numbers of human MPX cases reported in recent

years compared to those reported at the close of the smallpox era

may stem from environmental, anthropogenic, or technological

factors. MPX transmission to humans has been shown to be

associated with particular environmental conditions [7], so

environmental changes could alter the locations of areas suitable

for transmission, and new cases of the disease could appear in

areas where it did not previously occur; other areas formerly

suitable for transmission may see reduced transmission. Human

population growth and human activities may be associated with

increasing human contact with possible wildlife reservoirs of

MPXV, facilitating transmission of the virus to people [8,9].

Finally, concentrating efforts and resources for the study of MPX

in smaller geographic areas, in conjunction with the use of

streamlined diagnostic techniques, such as real time-PCR [10],

may complicate comparisons of MPX prevalence between the

present and the past, compromising the reliability of inferences

derived from such comparisons.

Ecological niche modeling (ENM) approaches have been used

amply in biogeography, ecology, and macroecology in the last 15

years [11,12,13,14], and increasingly have been used to charac-

terize the geography of disease transmission [15,16,17,18,19,20,

21,22,23]. In the case of monkeypox, previous analyses [7,24,25]

have used ENM algorithms to produce maps of monkeypox
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transmission potential in central and western Africa. These models

attempt to delimit potential suitable areas for human monkeypox

transmission based on correlations between recorded localities of

human cases and particular environmental conditions [7],

although the details of transmission of MPXV in wildlife remain

poorly understood [4,26].

Here, we explore further and in greater detail the association

between environmental conditions and human MPX cases, with

the specific purpose of mapping changing areas suitable for

transmission across the Congo Basin. Specifically, we (1) build

environmental datasets that match closely the temporal charac-

teristics of reported cases, (2) create and test rigorously ENMs

based on these improved datasets, and (3) project the models onto

more recent environmental conditions to evaluate their capacity to

anticipate future transmission areas. The result is an improved

picture of spatial variation in suitable areas for MPXV transmis-

sion across the Congo Basin through time.

Methods

Human case data
Human MPX case information is almost completely based on

passive surveillance with heterogeneous case report efforts across

the region; as a result, we must assume that some degree of bias

will be inherent in our dataset. We used the original human case

reports from the WHO surveillance efforts in the DRC in 1970–

1986, which were the object of extensive and intensive analyses by

our research group [7,27]. Confirmed human cases were

georeferenced at the patient’s residence location (representing

the place where infection most likely occurred) using digital

versions of 1:250,000 Joint Operational Graphic (JOG) topo-

graphic maps for the DRC, and GEOnet Names Server (GNS;

http://earth-info.nga.mil/gns.html/), in tandem with detailed

case information from the original reports, and following the

georeferencing procedures from MaNIS [28]; a detailed analysis of

implications of different georeferencing protocols for MPX

geography is provided in a separate publication [27]. Given our

interest in modeling environmental conditions required for the

disease to be transmitted from its wildlife reservoir to humans,

cases most likely to have resulted from secondary transmission (i.e.,

the disease reported as acquired by contact with a sick person in

the WHO case records) were eliminated from the study. In all, 100

unique localities from DRC with human cases were used (Figure 1).

We assume that all of these cases correspond to the central African

clade of MPXV, based on the fact that only that clade has been

found in the Congo Basin to date [29,30,31,32].

Recent human case data were georeferenced to provide an

independent test for projections of the ENMs at a more recent

time period. We followed the same methodology explained above

to obtain geographic coordinates, resulting in a total of 18 unique

localities where the disease was reported between 2001 and 2010

in the study area; data were drawn from the literature [33,34] and

the Institut National de Recherche Biomedicale (INRB) in DRC.

The majority of localities (present and past) had a spatial

uncertainty of #4.0 km; only 11 localities presented broader

uncertainties, as high as 6.5 km. This known accuracy of

georeferenced localities permitted the use of high-resolution

satellite imagery (see below) in developing ENM predictions.

Monkeypox surveillance in Sankuru District in 2006–2007 [5]

could not be associated with precise geographic coordinates and,

therefore, was not used for model evaluation; similarly, recent case

reports from Central African Republic [35] were not accompanied

by specific geographic references, and cases reported recently from

Sudan [36,37] likely represent central African strains exported by

human activities [24,38], such that none of these cases was

included in our occurrence data sets. Although we strove for

highest geographic precision for human case data, all localities

used in this study (present and past) are represented by geographic

coordinates for villages and a measure of uncertainty; thus, patient

privacy and anonymity is not compromised since cases cannot be

linked to individuals.

Satellite imagery
To provide environmental information that covers the same

time span as the human case records, we selected a dataset from

Global Inventory Modelling and Mapping Studies (GIMMS;

http://www.landcover.org/data/gimms) that consists of a series of

biweekly maximum-value composites of Normalized Difference

Vegetation Indices (NDVI) from 1982–2006 with a nominal

spatial resolution of 8 km[39], which is adequate for the level of

precision of the MPX dataset. NDVI is calculated based on the

reflectance values of the red (l,0.6 mm) and near infrared

(l,0.8 mm) bands of multispectral imagery; reflectivity in these

two bands depend on the type of land cover (e.g., barren ground,

cities, forest, agriculture fields, etc.) and it has been correlated with

more specific characteristics of the vegetation canopy (e.g.,

vegetation condition, biomass, leaf area index, etc.) at the time

of data collection [40], thus it is possible to track the status of the

vegetation through time by analyzing the variation of this index

throughout the year [41]. For these reasons, this vegetation index

has been amply used for a great variety of applications including

the production of global land cover classifications [42] and in

many previous studies of disease distribution [43,44] among

others.

We calculated average NDVI for each month during between

1982 and 1986 (representing the earliest composites from the

GIMMS dataset); then, based on these monthly data, we extracted

maximum, minimum, mean, and range values for NDVI across

the 12 months of each year. A similar dataset was built for 2002–

2006, covering a similar time frame of 5 years, to include the most

recent GIMMS composites for projections to the present.

Although the environmental data for the early period do not

coincide exactly in time with the earliest occurrences, satellite

imagery simply does not exist prior to the period that we analyzed;

however, the majority of cases come from the period covered by

the imagery, which we do not believe will bias results significantly.

This study focused on the Congo Basin (Figure 1, dashed-line

rectangle), so all environmental layers were trimmed to this area

for analysis, the area corresponding to the Atlantic Ocean is not

included as part of the modeling process.

Ecological niche models
We used the two algorithms most often applied to disease

transmission questions to build ENMs for MPX transmission: a

genetic algorithm (GARP) [14,45] and a maximum entropy

algorithm (Maxent) [13,46]. These algorithms were chosen

because our dataset consists of reports of human monkeypox

cases that resulted from surveillance efforts that likely were not

homogeneous through time across the study area; thus, although

this dataset is the most complete representation of the distribution

of the disease, we expect some of the bias from disease reports to

remain in the dataset. Both ecological niche algorithms have been

found to perform well using datasets with varying degrees of

completeness [47,48,49]; they require presence data only, and aim

to find non-random associations of disease case occurrences with

the environmental conditions they present. These algorithms have

been used widely by biologists and ecologists to predict species’

distributions [50,51,52,53]. Model transferability (i.e., prediction

Mapping Monkeypox Risk in the Congo Basin
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of distributional phenomena in other places or at other times) has

been identified as an aspect of ENM that varies according to the

algorithm used, and that could be the source of misleading

interpretation of such models; it has been a topic for ongoing

discussion in the field [48,54]. Performance of these two

algorithms (GARP and Maxent) has been tested and compared

repeatedly in the last few years, with somewhat variable results, in

a variety of scenarios [11,47,48,55,56,57,58]; hence, we used both

algorithms in the present study to examine potential discrepancies

and agreements of the two methodologies.

GARP builds sets of rules that describe environmental

conditions associated with localities at which disease transmission

events have been recorded [14,45]. The model is developed

through an iterative process of creation, evaluation, modification,

and inclusion/exclusion of rules of four basic forms (bioclimatic,

atomic, negated, and logistic regression rules); the algorithm stops

when the optimization parameter changes by less than 1% from

one iteration to the next, or when the maximum number of

iterations is reached (1000). We specified that 50% of occurrence

points be used by GARP for training models and the rest for

internal model evaluation; we ran 100 replicate models relating

human MPX cases to NDVI composites for 1982–1986. Of the

initial 100 models, we selected those with the best internal

performance (i.e., evaluated during the model building process)

based on the ‘best subset’ consensus approach: we retained the

20% of the distribution showing lowest omission error and then

the central 50% of the remaining models in terms of commission

error [59]. This process resulted in selection of 10 models that

were summed to identify areas of highest agreement between

predictions of different replicate models.

The Maxent algorithm fits a probability distribution based on

the environmental conditions at the locations where disease

transmission has been recorded, in comparison with the broader

set of conditions across the landscape. This algorithm estimates a

model in the form of a probability distribution that is constrained

to the environmental conditions present at the given locations;

thus, the mean values for the environmental variables in the model

will be very similar to the averages from the empirical data, the

degree of similarity between the model and the data is determined

by the regularization parameter (b). The maximum entropy

estimate of the probability distribution is considered to be the least

biased of all distributions that meet these constrains, making the

model more robust regarding missing information [13,46]. We

used default settings in Maxent 3.2.1 (i.e., regularization multiplier

= 1.0, 1500 maximum iterations, 10,000 background points,

convergence limit = 1025), but with a random selection of 50%

of points for testing and refining the model.

First, we subjected both algorithms to the challenge of

predicting human MPX in areas from which no occurrences were

available for model training (spatial challenge). We divided the

georeferenced WHO human cases spatially into four quadrants

based on the median longitude and latitude of all cases [58] to

produce two subsets (on-diagonal = NW + SE quadrats and off-

diagonal = NE + SW quadrats) to break up patterns of spatial

autocorrelation that could emerge from environmental variables

(i.e., closer localities have similar environmental conditions). To

Figure 1. Human MPX case localities between 1982 and 1986 used for training ecological niche models. Georeferenced localities in the
Democratic Republic of Congo of human MPX cases reported by WHO (n = 100), divided into two groups by median latitude and median longitude
(white circles = on-diagonal, blue squares = off-diagonal). The dashed line delimits the area of interest for the present work.
doi:10.1371/journal.pone.0074816.g001

Mapping Monkeypox Risk in the Congo Basin
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test the ability of ENMs to capture the environmental character-

istics common to MPX localities and predict other MPX localities

in a different geographic area, we trained models based on each of

these subsets; representing a more rigorous test than using random

subsets in which localities of the testing dataset are allowed to be

geographically close to a training locality [58].

We, then, performed a second challenge in which the ability of

the models to predict cases in a different period of time was tested.

For this second challenge, we built ENMs using all localities from

1970–1986 and environmental conditions in 1980–1986; these

models were projected onto environmental conditions for 2002–

2006 to be compared with the distribution of recent MPX cases.

For all models, we converted continuous model outputs into

binary predictions using a modification of the Least Training

Presence Threshold approach of Pearson et al. [57] which consists

on the use of the lowest suitability value (logistic output in Maxent

and model agreement in GARP) at any of the training points as

the threshold value to discriminate between suitable (greater than

or equal to threshold value) and unsuitable (lower than threshold

value). Considering that some occurrence data may include errors

since the exact locality of exposure to MPXV is not known and it

could be outside of the village of residence of the reported case

[58] (here estimated as E = 10% in light of considerable human

movements from infection sites to residences), we chose as a

criterion for prediction of presence the suitability value that

included (1002E )% of the training data (i.e., we allowed the

model to omit up to 10% of the training localities).

Model evaluation
We explored the area under the curve (AUC) of the Receiver

Operating Characteristic (ROC) plot as used by Elith et al. [11],

which has been accepted broadly as the standard method to assess

performance of such models. However, because the standard

ROC AUC method has several weaknesses when it is applied to

predictions of potential distributions [60], we also performed a

variation of the original ROC method (called ‘‘modified ROC’’

from now on) proposed by Peterson et al. [58] that addresses most

of these problems. The modified ROC approach has the

Table 1. Traditional and modified ROC AUC values for ENMs built on GARP and Maxent algorithms.

MODEL TRAINING MODEL TESTING PARAMETER GARP Maxent

On-Diagonal Off-Diagonal Minimum 1.0914 1.2605

Maximum 1.6151 1.7410

Mean 1.4528 1.4403

Standard deviation 0.0884 0.0876

# replicates#1 0 0

P ,0.001 ,0.001

Traditional ROC AUC 0.8376 0.886

Off-Diagonal On-Diagonal Minimum 1.0171 1.2317

Maximum 1.6569 1.8229

Mean 1.3137 1.3439

Standard deviation 0.2075 0.1637

# replicates#1 0 0

P ,0.001 ,0.001

Traditional ROC AUC 0.8377 0.8770

1980s 2000s Minimum 1.0014 1.1259

Maximum 1.504 1.5011

Mean 1.1025 1.1541

Standard deviation 0.0992 0.0609

# replicates#1 0 0

P ,0.001 ,0.001

Traditional ROC AUC 0.7306 0.7483

1980s projected onto 2000s
conditions

2000s Minimum 1.4170 1.4348

Maximum 1.5431 1.7221

Mean 1.4377 1.4449

Standard deviation 0.2 0.326

# replicates#1 0 0

P ,0.001 ,0.001

Traditional ROC AUC 0.7964 0.8622

Traditional and modified ROC AUC values for GARP and Maxent models trained and tested with independent spatial subsets of WHO occurrence data subsets (first two
sections). Performance of models trained with data from WHO (1980s) and applied directly to recent occurrence data, or projected onto environmental conditions of the
2000s is shown in the succeeding sections. Modified ROC AUC values are reported as minimum, maximum, mean, and standard deviation of 1000 random replicates;
also provided is the number of bootstrap replicates falling at or below 1.
doi:10.1371/journal.pone.0074816.t001

Mapping Monkeypox Risk in the Congo Basin
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advantage of prioritizing omission error considerations over

commission error [58] and consists of selection of the domain

within which the AUC is calculated via specification of an

admissible omission error value (E again) that meets the

researcher’s expectations for predictive ability of the model; this

step allows the method to focus on those sections of the ROC

curve that are relevant to predictive performance. The AUC is

calculated via the trapezoid method, and divided by the AUC

value of the null expectation (i.e., the area under the line

connecting 0,0 and 1,1; which represents the expected value from

a random guess) over the same interval; thus, the modified ROC

value departs upward from unity as the model has better predictive

ability with respect to random expectations; statistical significance

of this approach is calculated via bootstrapping [58], in which

1000 replicate subsamples of 50% of testing data are developed.

For the spatial challenge, the ability of ENMs to predict MPX

cases in a different geographic region was evaluated by determin-

ing how well a model predicts an independent set of cases that

were not used to train the model; specifically, models built with the

on-diagonal subset of cases were evaluated with the off-diagonal

subset and vice versa. Evaluation of the predictive potential of the

models for ‘future’ disease transmission events was achieved by

assessing whether the model built using environmental conditions

and reported cases from the 1980s could anticipate the spatial

position of monkeypox cases reported in 2001–2010. One

possibility is that environmental conditions and their dynamics

have no effect on monkeypox transmission, resulting in no change

in its geographic distribution over time; thus, we compared the

predictive ability of both the 1980s model per se regarding 2001–

2010 cases against its projection onto environmental conditions

from the 2000s for prediction of the human cases in 2001–2010.

We performed a Mann-Whitney U test based on the AUC ratio

values of the respective modified ROC bootstrap analyses [58] to

assess which projection predicts the distribution of recent cases

better–this latter step allows us to assess whether environmental

changes between the two time periods have significant explanatory

power as regards monkeypox distributional patterns.

Results

ENMs produced by the two algorithms (GARP and Maxent)

had very similar performance in our spatial testing, with that of

Maxent slightly better with traditional ROC AUCs (Maxent:

0.886 and 0.877; GARP: 0.8376 and 0.8377; Table 1), but

modified ROC AUCs showing mixed results (Maxent: 1.4403 and

1.3439; GARP: 1.4528 and 1.3137); both identified roughly the

same areas in the central part of the Congo Basin (red areas in

Figure 2), therefore, we only show results from one of them

(Maxent). Via the geographic partition of the human case

localities, modified ROC tests show that ENMs based on each

spatial subset predicted the localities of the other subset

significantly better than random, regardless of the algorithm used

(all P,0.001; Figure 2 and Table 1). Maxent models presented

higher AUC ratios than GARP models in all cases, using both

traditional and modified ROC approaches (Table 1). Hence,

overall, the ability of the ENMs to predict the potential

distribution of MPX in broad, unsampled areas is amply

confirmed.

Projection of models based on monkeypox occurrence data

from WHO (1980s; triangles in Figure 3) onto environmental

conditions for 2002–2006 (Figure 3, middle) anticipated the spatial

distribution of recently reported MPX cases (stars in Figure 3) with

high modified ROC values under both algorithms (GARP average

AUC ratio = 1.30 and Maxent AUC ratio = 1.39; all P,0.001). In

general, areas predicted as environmentally suitable for MPX

transmission were broader in the projection to the 2000s than in

Figure 2. Environmentally suitable areas identified by Maxent
based on independent subsets of occurrences from 1982–
1986. Ecological niche model projections based on the MPX case
localities of the on-diagonal (left) and the off-diagonal (right) regional
subsets using environmental conditions from 1982–1986. The red area
represents the suitable area identified for MPX transmission based on
Maxent model; white circles = on-diagonal occurrences, blue squares
= off-diagonal occurrences. Statistics associated with these tests are in
Table 1.
doi:10.1371/journal.pone.0074816.g002

Figure 3. Environmentally suitable areas for MPX transmission in 1982–1986 and 2002–2006 identified by Maxent. Ecological niche
model projections using human MPX case reports and environmental conditions during 1982–1986 (left) and projections onto conditions in 2002–
2006 (middle; white stars = recent human cases); dark red represents areas with suitable environmental conditions identified by Maxent. The blue
polygon in the middle map represents Sankuru District, where monkeypox surveillance was performed betweeen 2006–2007 [5]. Change in suitability
for MPX transmission (i.e., difference in model-based suitability) between the 1980s and 2000s is shown in the third map (right): red = expansion,
blue = reduction, and gray = suitable areas in both periods. Statistics associated with these tests are in Table 1.
doi:10.1371/journal.pone.0074816.g003

Mapping Monkeypox Risk in the Congo Basin
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the 1980s, with notable expansion into more northern and eastern

portions of the Congo Basin. Figure 3 (right) shows ‘new’ suitable

areas for MPX transmission in the 2000s (red) based on the model

of 1980s and areas no longer identified as suitable when the model

was projected into recent environmental conditions (blue).

Testing the hypothesis of no environmental effect on the

temporal shift in the distribution of MPX cases was conducted

using cases reported between 2001 and 2010. In effect, we tested

whether projecting the 1980s model onto the environmental

conditions of the 2000s improved the predictive ability over its

projection onto 1980s conditions, with regard to recent MPX case

distributions. Both algorithms predicted recent data better than

random expectations (P,0.001) (Table 1, bottom). Statistical

comparisons of bootstrap replicates from the two modified ROC

analyses showed significant statistical differences between the

accuracy of predicting the recent monkeypox occurrences using

environmental data from the 2000s as opposed to the 1980s

(Mann-Whitney U tests; GARP: U = 4335, P,0.001; Maxent:

U = 3824, P,0.001), thereby supporting the view that ecologic

and environmental changes during the last 30 yr have impacted

the spatial distribution of monkeypox cases.

The variables showing the highest relative contributions to the

Maxent model were minimum NDVI (50%) and NDVI range

(45.7%). Six localities from our testing dataset (2000s) fall in areas

not identified as suitable during the 1980s but suitable in the 2000s

(i.e., stars that fall in the red area of Figure 3, right); when

comparing the values of our environmental variables at these

localities in the 1980s with those in the 2000s, we find lower values

of NDVI range and higher minimum NDVI values in the later

period (Figure 4). A similar tendency for these two variables was

found in Sankuru District: average minimum NDVI increased

from 508.7 to 524.0, while the range decreased from 249.8 to

225.6; more of the area of this district was predicted as suitable for

MPX transmission in the 2000s (98.0%) than in the 1980s (87.1%).

Hence, overall, ‘suitable’ areas appear to be those presenting the

least seasonal environments across the region. The percentage of

area ‘‘at risk’’ within each time period and the change between the

two time periods for each administrative unit within Congo Basin

countries are shown in Appendix S1; Figure 5 shows the

distribution of predicted transmission risk areas with respect to

these administrative units.

Discussion

We developed ENMs produced with the GARP and Maxent

algorithms based on spatial subsets of monkeypox occurrence data

from the 1980s, and demonstrated that ecological signatures in the

ENMs are consistent and highly predictive of patterns of MPX

transmission across space, regardless of whether data were

available during model calibration. That is, models can be built

based on occurrences restricted to one or more region, and used to

anticipate transmission localities in other subsets. This predictive

ability suggests that MPX transmission has consistent environ-

mental correlates that can be recovered by ENM algorithms and

applied in other contexts, including those that may be non-

contiguous in space. This finding is consistent with results of

previous studies [7,24]. However, in the present analyses, we have

extended the spatial resolution to a finer scale and to include

environments at two time points, whereas earlier studies relied on

climatic variables that describe broader and more static charac-

teristics of the environment; the result of our analysis is a

temporally explicit view that suggests macrogeographic shifts in

transmission areas.

ENMs developed based on 1980s occurrences and projected

onto environmental conditions in the 2000s predicted recent

human cases significantly better than random expectations.

Predictions of these time-specific projections were also significantly

better than the null hypothesis of no environmental influences on

shifting patterns of MPX distribution, owing to a rather dramatic

northward shift in transmission areas across the Congo Basin. This

evidence supports the idea that spatial shifts in transmission

suitability are linked to particular environmental conditions that

affect elements of the natural transmission cycle directly (e.g.,

distribution of the natural reservoir, transmission rate, or exposure

of humans to reservoirs).

The variables with the highest contribution to the Maxent

model (minimum NDVI and range) suggest that environments

with low variation through the year and that maintain certain level

of greenness are necessary for MPX transmission (i.e., rainforest);

although this association is not novel [4,26], it is important to note

that suitable environments cover a broader area in the 2000s than

20 years before, suggesting an increase of the spatial footprint of

the MPX risk area. This increase is particularly marked in the

eastern and northern parts of the study area, while the tendency in

the southern part is toward reduction of suitable areas (blue in

Figure 3, right). Shifts in the geographic position of the suitable

area, suggest new areas where disease surveillance would be useful

owing to possible new exposure of human populations to MPXV

transmission in such areas.

Details of how is MPXV maintained in nature and transmitted

from wildlife to humans are currently unknown; however,

although several mammal species (e.g., rodents, marsupials,

primates, etc.) have been identified to be susceptible to experi-

mental or natural infection with this virus, the host(s) involved in

its natural cycle reminds undetermined [61]. Rodents have been

identified as potential reservoirs of monkeypox because they have

rapid population turnover that could facilitate perpetuation of the

virus; other members of the genus Orthopoxvirus are associated with

Figure 4. Environmental values of localities in suitable areas in
2000s but not in 1980s. Environmental conditions during the 1980s
(gray diamonds) and 2000s (black crosses) at the six localities from our
test dataset (2000s) that were identified as unsuitable for MPX
transmission by the niche models based on occurrences in the first
period (1980s) and suitable during the second period (2000s). These
localities correspond to the stars in the red area of the third map (right)
in Figure 3.
doi:10.1371/journal.pone.0074816.g004
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species of rodents [62,63]; and the only MPXV isolate from a wild

animal was obtained from a squirrel of the genus Funisciurus [64].

Additionally, some species of rodents susceptible to MPXV

infection (e.g., species of the genera Funisciurus, Heliosciurus and

Cricetomys) can be found at the margins between human

communities and rainforest in DRC [8,9]. Studies on the rodent

hosts of other zoonoses have shown that products from satellite

imagery such as NDVI are associated with their population

densities and virus prevalence in them [65,66]. Similarly, the

host(s) of MPXV could be responding to changes in environmental

variables associated with NDVI (vegetation health, phenology,

biomass, etc.) with variations in their geographic distributions

and/or populations. These variations in the host could directly

affect MPXV prevalence in their populations and, therefore, the

possibility of human infection.

A recent paper reported increasing numbers of human MPX

cases associated with increasing proportions of the population that

have not received the smallpox vaccine and that are, therefore,

more susceptible to MPX infection [4,6], a conclusion with which

we do not necessarily disagree. However, the proportion of

vaccinated vs. unvaccinated human populations is not the only

factor that has changed in the last 30–40 years; for example, land

use has changed dramatically in several areas in DRC from

natural vegetation cover to urban areas, grazed areas, or

Figure 5. Geographic distribution of environmentally suitable areas for MPX transmission over political boundaries of the region.
Environmentally suitable areas for MPX transmission based on the projection of ENMs to environmental conditions in 2000s (pink), overlaid on a
political map of the study region (see Appendix for further detail). Roads are represented by orange lines and within-country administrative divisions
by dashed lines.
doi:10.1371/journal.pone.0074816.g005
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agricultural fields [67]. These changes and the patterns of

interaction between humans and nature could favor human

contact with MPXV reservoirs or hosts, which could increase the

probability of transmission of the virus. Our study identified a

higher proportion of Sankuru District’s area as suitable for

monkeypox transmission in the second period; this could represent

higher suitability for MPXV or its reservoir(s) and a higher chance

of exposure of people to them. Because of the limited information

about the natural history of MPXV, it is very difficult to estimate

people’s level of exposure to the virus in the past or if it has

changed since 1980’s, but it is equally hard to assume that the level

of exposure has remained the same throughout the years and the

only variable that has changed is the proportion of the susceptible

people in the population via waning vaccination protection.

Transmission of zoonotic diseases depends on interactions

between reservoir, pathogen, and human, but several factors also

play important roles on determining whether such interactions can

result in disease transmission: environmental conditions (as shown

here), susceptibility of humans to infection [4], prevalence of the

pathogen, level of interaction between humans and reservoirs (e.g.,

wildlife vs. domesticated animals; forest species vs. peridomestic

species), and route of transmission (i.e., direct or indirect contact,

aerosol, vector-borne). In the case of MPX many of these factors

are been currently studied at the appropriate scales (e.g.,

landscape, community), but the association of shifting suitable

MPX transmission areas with human MPX cases over the past few

decades is perhaps indicative of a broader-scale causation, beyond

the changing proportion of immunologically naı̈ve individuals in

the population; thus, environmental dimensions should not be

neglected.

Supporting Information

Appendix S1 Coverage of suitable environments for MPX

transmission per administrative unit. Area identified in this study

as at risk for MPX transmission for each administrative unit of the

Democratic Republic of Congo, the Republic of the Congo,

Central African Republic, Gabon, and Cameroon. The percent-

age of that area identified as suitable for monkeypox transmission

by each algorithm in each time period and the percent change in

suitable area from the 1980s to the 2000s are both provided.
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20. Peterson AT, Benz BW, Papeş M (2007) Highly pathogenic H5N1 avian

influenza: entry pathways into North America via bird migration. PLoS ONE 2:

e261.

21. Williams RAJ, Peterson AT (2009) Ecology and geography of avian influenza

(HPAI H5N1) transmission in the Middle East and northeastern Africa.

Int J Health Geogr 8: 47.

22. Holt AC, Sealkeld DJ, Fritz CL, Tucker JR, Gong P (2009) Spatial analysis of

plague in California: niche modeling predictions of the current distribution and

potential response to climate change. Int J Health Geogr 8: 38.
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