Engineering Management
Field Project

Project Schedule Optimization in a
Telecommunications Environment

By
Chris Taliaferro

Fall Semester, 2013

An EMGT Field Project report submitted to the Engineering Management Program
and the Faculty of the Graduate School of The University of Kansas
in partial fulfillment of the requirements for the degree of
Master’s of Science

7’(_)‘:\ /'/ 736*‘«)29:\

Tom Bowlin
Committee Chairperson

,//tul. ;

MikE Kelly

l(evm Buie i_)

Committee Member

nfie/is

Date accepted:

Acknowledgements

| would like to first thank the KU faculty for their guidance, wisdom, and
support throughout my journey in the Master's of Engineering Management
program. Specifically, | would like to recognize Tom Bowlin and Mike Kelly for
the hours they spent as committee members on this Field Project.

| would be negligent to not also acknowledge my employer. They
provided me the tuition assistance that made even the notion of pursuing
graduate education possible. Also, they put in my path the quality of managers
that | have found myself fortunate to learn and study from. Specifically, | would
like to thank Kevin Buie who has been a mentor, friend, and committee member.

To my wife and daughter, | believe yours was the greater sacrifice while |
pursued this degree. Thank you for the love and support through many busy
nights and lost weekends over the last four years.

Finally, to my God who blesses beyond measure, thank you for the

opportunity and the endurance to have that opportunity realized.

Executive Summary

Veritas Corporation is a thriving company in the fast-paced
telecommunications industry. To keep up with the dynamic industry, a significant
quantity of projects must be scheduled in a short time period without impacting
each other. While Veritas succeeds in this, they do so at the cost of a significant
number of management hours.

The objective of this research is to produce a quantitative method to
quickly and accurately produce an optimized schedule for the vast number of
projects that Veritas implements.

This was accomplished by making iterative binary integer linear
programming models. The first model was to serve as a proof of concept and
was conducted on a small market. After successful completion, the model was
expanded to a larger market and verified.

Outstanding results were seen in both iterations. By using historical data,
it is evident that the optimized model outperformed traditional manual scheduling.
The larger and more complicated the situation became the greater the

improvement provided by the optimized model.

Table of Contents

CHaDtor] . INErOTIICT O cciiniasssisisasmsus s cnnseass s TR S AP AN e PR s HEas S dns yoiemn 5
RS BT PO . it i i T s A SR A T A S A VS S s e o SR AN P 5
RS aroh A O 08 i T A R R s S i s aaisasis 9

Chapter2: Literature ReVIBWcooviiiiiiiiiiiiciiiiccie it 11
Cumrent Scheduling MRS ... uissicmsssissimmsssismssiisemsssriansissvsrmaasmisisasss 1
Linear Programming: TOchNIQUBS ...iauiiiiiaiatniiiainiin s iisariisanisidsesas 12
T OIS FOr SO I i e v N o A o G S s SN S s 14

Chantioid: RoNeaiCH PIOCHHNG . oo rreevoriensrsmonrssssasssserstasssoramnssprassansasmsnsaganasnssns 16
VAR PUNDOSE: (iucuissvivivtinssisnsissaisarssivin sssdssssus sismammi g S h s s T T aEY I RAE S NANF S PR Hes 16
Collect Necessary Information ... iciiiinisianinaimnidmiitu sz 16
FOrmmMlatS MO ... ciioiinisirisvsnrissib e o oo s R R 17
X e IR, - o v ie A A I i et S im0 S M VA S A S WA SR NANN LR VR 17
s T A | T L e — 18

ORI RS i e R R o S ek AR S S wh ek SN 19
Morle) DOVEIODIMANLE... cusserosesss sisasisssississonioosreasisasgesssssbato st sacAa b s sassaaoshn b sosia 19
RAGTIE) FRBBIMIR i corncsnniss o m s A A AN st o R s wuwsA w wu smrt ORI 24

Chapter5: Suggestions for Additional Workccoiiiiiiiiiiniiniiiiiiiisie s 30

R O BN GO i i e B S G R R A S B S A R B e R i 32

ADDGHICEEocsnensosssmmwmansssioneass i RIS A PAAIRSS o ST CAa oAb S DS S a A spsscbaaey s abns 33

Chapter 1 — Introduction

Veritas Corporation is a wireless telecommunications company. The
telecommunications industry has a dynamic environment that has evolved and
grown at a staggering rate in the last several years. Because of its inherent
nature of change, there is a rapid, constant flow of projects conducted at its
switching centers throughout the United States.

Each switching center handles numerous services through its various
network elements. These services range from the different technologies that
customers are provided by a wireless carrier to Veritas' internal services that
enable it to monitor the network and operate more efficiently. The distinct
technologies that a wireless carrier typically provides are the different
generations of wireless technology. 4G relates to internet via LTE or WiMax; 3G
relates to internet via EVDO or UMTS; 2G relates to voice calls via CMDA or
TDMA.

In Veritas, there are different levels of switching centers. Two of such
centers are an Access Switch (AS) and a Core Switch (CS). Both centers
provide the same type of service to its customers and for internal use. However,
a CS is also an aggregation point for surrounding AS’s. These AS's funnel their
traffic to a CS. This CS is then connected to other CS's around the United
States, which allows Veritas traffic to traverse the nation or beyond.

Because wireless customers expect services to be available 24x7, the
network must always be functioning. To achieve this, two measures are taken.

The first is that projects that could affect the customer's ability to use the network

are only done from 12:00 AM to 5:00 AM. This is referred to as the maintenance
window and is when any outage will have the least impact on its customers since
this is when the fewest number of customers are on the network. Also, to
achieve a high resiliency even when implementing these projects,
telecommunication companies utilize a high level of equipment and service
redundancy. By doing so, they increase the reliability of the network.

To illustrate, Figure 1 depicts a network of three switching centers. A CS
in Kansas City is a hub for an AS in Wichita and an AS in Omaha. For

redundancy, each office has two of the same type of equipment to provide

service.
K1 KC2
w1 w2 OoM1 OM2

> i ™ TN 7z O
{ A / \ , \ / \
| voke Lo | Voke | e |
\ / \ // \ / \ /

> ___ __ o .‘___7 84

Figure 1 - Multiple Switch Redundancy Design Example

However, many projects cannot be implemented on a network element
without temporarily disrupting a function of the wireless service that is running

across it. When this device's functionality is disrupted, services are redirected to

6

its redundant pair so that network functionality is still maintained. These projects,
by themselves, are always designed to maintain service. The potential issue that
one must continuously be wary of is how projects will impact each other if done
simultaneously.

During a certain maintenance window, Kansas City is doing a project that
impacts both Voice service and LTE service to its market and all of the AS’s that
it serves. During that same maintenance window, Wichita is implementing a
project that impacts Voice service and Omaha is doing a project that impacts
LTE service.

If these projects are not coordinated or spread out, Kansas City could first
impair device KC1 while Wichita and Omaha could impair W2 and OM2. The
result would be a loss of Voice service in Wichita and LTE service in Omaha.

The example described is shown in Figure 2. It portrays how the lack of
coordination could lead to multiple service outages in the three switching center

network design.

KC1 KC2

Figure 2 — Multiple Switch Project Impact Example

The fast-paced industry demands that these projects be completed on a
rigorous timeline to keep up with customer needs. However, the requirement of
reliability necessitates that customers never lose service. Therefore, a significant
number of hours are put into planning the implementation of these projects so

that no two projects that could affect each other are done simultaneously.

Research Purpose

The purpose of this research is to investigate modeling as a potential
means of simplifying the task of scheduling the numerous and complex projects
that are needed in a switching center or set of switching centers. While it's an
essential business task, scheduling is also a daily routine that could be

automated and should be optimized. By decreasing the amount of management

hours spent on this process, those hours could be reallocated to focus on other
business critical tasks or planning.

To meet the purpose of this research, an attempt will be made to develop
a linear programming model that will take all the projects occurring within a
switching center or set of switching centers and provide an optimized schedule
for project implementation. For the model to be successful, it must be able to be
executed in under five minutes, produce the same or better results than a
manually-produced schedule, schedule three weeks out, and handle at least 40

projects.

Research Challenges

One of the main challenges to this research will be obtaining accurate,
quantified project data to develop a model. Veritas does well in their scheduling,
but they do a poor job in documenting what is involved in a project, what its
impact will be, how long the duration of the project lasts, and how many
resources will be required. Therefore, for this research to be successful, a
significant amount of effort will be required to transform the existing project
information into a useable form.

After the model is developed and proven, there could be resistance to its
acceptance. Scheduling is a key component to the job function of many
employees, including managers. Diminishing that role could be seen as a threat

to their purpose. To avoid this, buy-in must be obtained from upper

management, and a plan to reallocate their energies must be ready before

merging it into day-to-day activities.

10

Chapter 2 - Literature Review

Schedule optimization has taken on many forms in various industries. A
literature review was conducted to gain a better understanding of this problem, its
solutions, and how these solutions can be applied to Veritas. This research
focused on:

e current scheduling methods
e linear programming techniques

e tools used in scheduling

Current Scheduling Methods

In-depth research was conducted on how and why linear programming
should be pursued in scheduling. Traditional methods of manual scheduling are
effective in many organizations for most purposes. However, when fast-paced
organizations grow and their dependencies multiply, the scheduling process
becomes more complex.

Accounting for this complexity through manual methods has resulted in
the frequent rescheduling of activities. As a consequence, more employee
hours, overtime, and company resources are consumed by these activities.
Therefore, in these scenarios, traditional methods prove to be time intensive,
expensive, and inefficient (Taylor, 1996, 218).

Quantitative techniques are the solution to handling an ever shifting

schedule that requires numerous variables to be considered. Amongst the

11

quantitative techniques, linear programming is one of the more effective tools
that can be used to solve this problem.

In a study to determine the most efficient method to schedule computer
processing cycles, Nahir and Ziv considered linear programming as opposed to
CSP (Constraint Satisfaction Problems). In their research, both techniques were
used over various computer processing scenarios. They found that using the
linear programming model was significantly larger than its CSP counterpart with
more variables and constraints. However, it outperformed CSP in both accuracy
and efficiency. In all tests, the linear programming model produced the optimal
schedule successfully while CSP was only able to do so in 25% of the tests.
Also, the linear programming model ran an average of six times faster than the
CSP model (Djamel, et al. 2006, 70).

Similar accuracies were also found in the research that Fuller performed
to develop methods to assist in production scheduling for building medium-sized
trucks. Using a linear programming model, the production schedule was always
improved over the traditional, manual scheduling methods that had been used.
Also, the plans produced by the model provided the company an average cost

savings of 9.6% (Fuller, 1975, 135).

Linear Programming Technigues

Linear programming is a quantitative problem-solving technique that was
developed to help make decisions. It uses a mathematical model of linear

constraint limitations to find a minimized or maximized solution of a linear

12

function. (Anderson, et al. 2008, 16) The components of this model are the
objective function, constraints, and variables.

The objective function is the linear equation that is to be minimized or
maximized by the mathematical model to produce the optimal result. In a linear
programming model, the constraints are mathematical functions that enforce
boundaries for how large or small the solution to the objective function can be.

Variables consist of the values that are used in both the constraints and
objective functions. They are broken down into two categories: uncontrollable
inputs and decision variables. Uncontrollable inputs (also referred to as
constants) are factors that cannot be changed by the decision maker. Decision
variables, though, are the factors that the decision maker can influence to obtain
an optimal solution. (Anderson, et al. 2008, 8)

Decision variables can be further broken down into non-integer, integer,
and binary variables. Non-integer variables can be standard decimal numbers
and will provide the most optimal solution. In some scenarios, though, decision
variables cannot be broken into decimal units. In these cases, integer variables
should be specified in the model. In situations where decisions need to be made,
binary variables can provide an option to enable or disable a factor. This is done
by constraining the variable to be eithera 1 ora 0.

The common linear programming technique applied to scheduling
problems is Mixed Integer Linear Programming (MILP). This adaptation of linear

programming has both integer and non-integer variables. This form creates soft

13

constraints by relaxing the model while still improving the quality of the solution.
(Djamel, et al. 2006, 65)

However, when dealing with problems of significant magnitude, binary
variables should be incorporated into the model. They can be used as decision
points to account for the numerous potential outcomes of large systems. This
provides enhanced flexibility and applicability to linear programming models. It
should be noted, though, that while this technique allows for every variable to be
accounted for, it will also be taxing on the linear programming software and

system running that software (Matsuoka, et al., 2007, 239).

Tools for Scheduling

In order to validate the effectiveness of any model developed, linear
programming software will need to be utilized to run the mathematical model
created to solve the scheduling problem. For this research, two software

packages were chosen.

Microsoft Excel Solver

Microsoft Excel Solver tool is a very effective tool for developing small
models. It does have size limitations, though, that can be easily surpassed. In
fact, it can only handle a maximum of 200 decision variables (Frontline Systems,
Inc., 2013). For the purposes of scheduling, this can significantly hinder the
ability for a model to be effective. For a model scheduling projects for a day in a

five-day work week, Solver could only handle a maximum of 40 projects during

14

that week. Therefore, for problems requiring a substantially sized model, Excel
Solver can be best utilized as a proof of concept tool for early, smaller versions of
the final product.

To solve the scheduling problem for a Core Switch in Veritas, a model of

approximately 2,000 variables will be required.

LINDO Systems

LINDO Systems has a variety of linear programming suites that can best
fit most programming purposes. In Taylor's research, he found LINDO to be the
best software for his model of truck production scheduling (Taylor, 1996, 225).

LINDO also has licenses up to an unlimited number of variables and
constraints. Therefore, this software tool has the ability to solve a large optimal
scheduling model using binary variables. The capabilities of LINDO, then,
remove the potential software limitation that might be encountered when solving
the problem that Veritas is facing (LINDO SYSTEMS., 2013).

LINDO also supports software trial periods and educational licenses that

can provide short term functionality and proof of concept opportunities.

15

Chapter 3 — Research Procedure

The process used to develop the optimal project scheduling model for

Veritas Corporation followed Bowlin's 7-Staged Modeling Process that was

presented in an Engineering Management course at the University of Kansas

(Bowlin, 2011):

; I

2.

6.

7.

Identify Purpose/Functional Need
Collect Necessary Information
Formulate Model

Validate Model

Exercise Model

Report Results

Implement Model

For the purposes of this research, stages 5 and 7 will not be executed. All

results will be discussed in Chapter 4.

Identify Purpose/Functional Need

The purpose of this research is to develop a method to optimally schedule

projects for Veritas Corporation. Many hours are currently spent to manually

schedule impending projects. The result of this research will be a method that

can determine the optimal schedule while still meeting all of the restrictions for

each project.

Collect Necessary Information

16

A literature review was first conducted to determine the methods that have
been used to implement optimal scheduling. Best practices from the various
industries were then compiled and utilized to solve the scheduling problems at
Veritas Corporation.

For the development of the optimal scheduling model, Veritas data was
collected from a variety of sources. Company-wide project information was
gathered from a headquarters online directive tracker. Contracted projects were
obtained from separate vendor reports. Local project information was collected
from the work-order queues and shift reports of each local team.

For each of these types of information, the datum had to be molded into a

quantified form that could be used by a linear programming model.

Formulate Model

After reviewing the material in the literature review, it was determined that
the best approach for meeting the needs of Veritas Corporation was by creating
an algebraic formulation of a binary integer model.

The objective of this model would be to minimize the number of
maintenance windows needed to complete all of the projects assigned to the
given market(s). This minimization would be done while maintaining the need to
have no project impact overlap and respecting the market resources available in

the given maintenance window.

Validate Model

17

The binary integer model was validated using Microsoft Excel Solver. To
stay within the quantity of variables capabilities of Solver, the model was
implemented on the smallest market, which had the least number of projects.
This validation was first done by obtaining all of the assigned dates, due dates,
completion dates, and technology/device impacts of each project that occurred
during a three week span of the second quarter of the 2013. That data was then
applied to the created algebraic formulation.

The model was then executed with the gathered data. All formulas were
manually verified to be accurate. The produced schedule was also checked to
confirm it stayed within the constraints necessary for Veritas Corporation. During
each execution, the model run duration was observed and recorded.

After successfully verifying the model was running according to design, a
comparison was done to determine if the model produced a schedule that was an

improvement over the historical schedule.

Report Results

All results and conclusions are presented in Chapter 4.

18

Chapter 4 — Results

The model developed as a result of this research was successfully applied
to the separate scenarios of an Access Switch and a Core Switch. The results of
these two “proof of concept” demonstrations are provided in three sections. The
first lays the foundation by providing the details of the formula development for
the schedule optimization model. The second section differentiates the
optimization model from the manually-produced model by displaying the results
derived from the successful application of each scenario of the model. The final
section provides a summary of the results of this research and illustrates the

benefits this research can provide to Veritas.

Model Development

This section specifies the assumptions, variables, constants, objective
function, and constraints of the model developed for an Access Switch and Core
Switch. While the model is the same for each scenario, the magnitude and
complexity of the Core Switch is far greater.

Assumptions

Before delving into the model, it is important to first list model
assumptions, as follows:

Teams outside of the influence of a given market may be required for
some projects. It is assumed that these teams will be available to implement the

given project on the date that the model suggests.

19

On certain key projects, the implementation schedule is governed by
headquarters. In such cases, the given switch has limited control on what date
the project will be completed. This model assumes that there are no such
projects being scheduled.

In most offices, project implementation only occurs during the
maintenance windows of weekday mornings. Therefore Saturday morning and
Sunday morning are only utilized in case of emergency. This model assumes
that no emergency scheduling will be needed for the provided projects.
Variable Definitions

M;; = whether project i/ will be performed on maintenance window j

<binary>
Wherei=1, 2, ..., DL
2% 2Pl
Constant Definitions

Let Tn; = whether or not project i will impact Technology n <binary>

Let Dn; = whether or not project / will impact Device n <binary>

Let H; = the number of hours needed to complete project i

Let R, = the number of market resources needed to complete project /
<integer>

Let A, = the number of market resources scheduled maintenance window j
<integer>

Let Wy = the number of hours in week k needed for small projects and
maintenance <integer>

Let C; = the number of maintenance windows before project / is due

<integer>

Objective Function

The purpose of the objective function is to dictate the model to schedule
the projects in the earliest maintenance window possible. The first step in this

optimization is to minimize the sum of all the binary variables that indicate if a

20

project will be completed on a given night. To encourage the scheduling of the
projects in the earliest possible maintenance window, though, weights had to be
added to the calculations. This weighting was applied by multiplying the
summation of the number of projects being conducted in a given maintenance
window by the index of that maintenance window. Therefore, the objective
function is a minimization of the summation of the weighted products across all

maintenance windows.

DL PL

MINIMIZE Z Z M,) *

j=1i=1

Constraint #1

One of the leading factors to the number of management hours needed in
current manual scheduling is the determination of whether projects will impact
the same technology as another project. Therefore, this constraint provides the
rules to prevent the scheduling of two similar impacting projects. Quantified
binary data is provided from Veritas for each project as constants. These inputs
specify whether a project impacts a given technology.

PL
Z M(i,j)*Tn(i) <1 for all Maintenance Windows, j
i=1

Constraint #2

Similar to Constraint #1, this constraint prevents the simultaneous
scheduling of two projects that impact the same device. Quantified binary data is
provided from Veritas for each project as constants. These inputs specify which

21

devices are impacted by the project. The number of devices in this constraint is

dependent on which switch the model will be implemented on.

PL
Z M(i,j)*Dn(i) <1 for all Maintenance Windows, j
=1

Constraint #3

To prevent overloading a given night with too many projects, this
constraint limits the number of projects that can be performed with the number of
scheduled resources for a given night. Quantified data is provided by Veritas for
each project as constants. These inputs are the hours needed to complete a
project, the integer number of market resources that are required to be actively
working the project, and the integer quantity of market resources scheduled for a

given night.

PL
Z M(i,j)*H(i)=R(i) <Aj*5 for all Maintenance Windows, j
i=1

Constraint #4
This constraint is a model relaxation constraint. When the model was first
developed, the smallest market produced over 1,000 variables. A large portion
of these variables were the result of small projects that had minimal technology
impact and required no more than two hours of a maintenance window.
Therefore, instead of using the model to schedule even the smallest of
projects, this relaxation technique was introduced. This technique implements a

constraint that provides a set number of hours in a week to small projects or

22

maintenance instead of scheduling each of these separately. Then the small
projects can be removed from the list of projects to be scheduled.
After applying this technique to the model, the number of projects
decreased drastically, resulting in a 75% reduction in variables.
5 PL
Aj+5— (Z M(i,) + H(i)) >Wk forall Weeks, k
=1 =1

J

Constraint #5
This constraint was developed to ensure that each project is completed by
its set due date. Veritas provided constant integer inputs that specify the number

of maintenance windows that can transpire before a project will hit its due date.

ci
z M(i,j)=1 forall Projects,i
=1

Constraint #6
In instances where one project is dependent on another project’s
completion, this constraint limits the former projects i potential completion dates

to after the latter project h is finished.
DL
Z M(i,j—1) |=M(h,j) =1 for all Maintenance Windows, |
J=1

Constraint #7
In instances where one project must be done immediately after another

project, this constraint forces the projects to be done back-to-back.

23

M(i,j)—M(h,j+1)=0 forall Maintenance Windows, j

Model Results

The constraints, variables, and objective function were combined in linear
models for both an Access Switch and Core Switch. The Access Switch model
was first developed using Excel Solver. Due to Excel's functional limitations, the
scope was limited. Once proven, the same model was developed using LINDO's
LINGO 14.0 software package. The models in both software packages produced
the same minimized objective function results.

The model for the Access Switch used attributes of eight projects that
were implemented at the Access Switch. These projects occurred during three
weeks, or 15 maintenance windows, of the second quarter of 2013.

After the model was run, the results were compared to the actual schedule
that was manually produced over those three weeks. This schedule is shown

below in Table 1.

Maintenance Window
1| 2| 3| 4| s| e 7| 8| 9| 10 11| 12| 13| 14| 15
Pijl |- |- |- |- |- ol- |- - I I |- |- |aD
Pri2 |- |- |- |- |1a |- |- 1o |- b |- |- |- |-
Pri3 |Jo |- |Ip |- |- - - a5 - 1 F |-)
Prid |- |- 1A |- |- - o |- |- |- |- [p |- |-
Pri5 |- |~ |- |0 |- S S O O S O e e A
Pi6 |- |lo |- |- Ip |- |- |- |- |A
Pi7 o |- |- |- laD |- |- - |- - |- |- [
Pri8 |» |- |0 |D

Table 1~ Actual, Optimized, and Due Dates for Access Switch

The key for Table 1is as follows:
e “A" — Actual date that was manually scheduled
o “O" — Optimized date produced by model

24

“D" — Due date

“A-D" — Actual date occurred on Due date

“A-O" — Actual and Optimized date are the same
“A-O-D" — Actual, Optimized, and Due date are the same
“O-D" — Optimized and Optimized date are the same

While the Access Switch scenario was small in scope, it produced an
improved schedule. The weighted cost objective function for the manually-
produced schedule was 59. The optimized model produced a weighted cost of
32 — a 40.68% reduction from the manually-produced schedule. This reduction
translates into two less maintenance windows being used and all projects being
completed 7 maintenance windows earlier.

While this validated the model, it didn’t adequately reflect the substantial
value the model has for Veritas. The reason is attributed to the limited size and
relative simplicity of the projects. However, by transitioning the Access Switch
model to LINGO, the research was able to expand to a Core Switch model.
LINGO's advanced modeling capabilities enabled the model to account for all 42
projects that occurred in 65 maintenance windows during the second quarter of
2013, which can be seen in Table 2. While the same constraint categories were
used in both models, the Core Switch added nearly 20 times the number of

variables and 10 times the number of constraints.

25

u &

P EEE

B

i

EEEERFE

O CON OO OO

sl

81

_)

— - - —4-—

26

Table 2 - Actual, Optimized, and Due Dates for Core Switch

The results from the use of the Core Switch model showed significant
improvements over the project implementation schedule that actually took place.
That schedule produced a weighted cost objective function value of 1,189 while
the optimized schedule generated a schedule with a value of 567 — a 52.31%
reduction from the manually-produced schedule. The outcome was that the
optimized schedule completed all projects 28 work days earlier and utilized 17
less maintenance windows. The actual schedule also missed three project
deadlines and completed 45% of the projects within two days of the due date.
The optimized schedule, though, did not miss any deadlines and was within two
dates of being due only 21% of the time.

All LINGO model optimized results were carefully inspected to ensure that
no constraints were violated. LINGO was also able to complete the linear
programming calculations in an average elapsed time of 0.3 seconds.

Further result details can be found in the Appendix section. Data includes
the project specifications provided by Veritas, the LINGO model developed in this

research, and the LINGO results obtained from that model.

Summary

The task of scheduling and implementing projects in Veritas can be
considerably improved by the integration of linear programming models into day-
to-day activities. Through the model developed in this research, Veritas can

decrease the time required to develop a model, reduce the risk of scheduling

27

overlapping projects that could damage the network, and improve project
implementation efficiency.

The task of scheduling projects at Veritas switching centers can become a
drastically simpler task. Instead of significant employee hours being consumed
by manually creating a project schedule that protects network integrity, this
research developed a model that can produce a schedule in remarkably short
time.

The significance of the time reduction improvement can be illustrated
through an example. In this example, a manager spends an average of five
hours a week on creating a manually-produced schedule and has a salary of
$100,000.00 a year. By incorporating the model developed in this research into
day-to-day activities, the time needed to invest into scheduling becomes
negligible. The five hours a week saved through the transition from manual
scheduling will alleviate 260 hours, or 32.5 days, and $12,500.00 in
administrative energies a year per manager that could be repurposed.

Another critical benefit of this research is its inherent ability to reduce risk.
The purpose behind the hours spent by managers manually scheduling project
activities is to protect network reliability and ensure customer experience is never
impaired. By utilizing each project's specific requirements and impacts, the
model achieves the necessary protection every time.

Finally, the model developed through this research produces superior
scheduling efficiencies than the traditional manual scheduling methods. In both

an Access Switch and Core Switch situation, the model produced drastic

28

reductions in days required to complete all projects. The greater improvement,
though, was found in the larger, more complicated Core Switch. Therefore, the
implementation of this model into day-to-day activities will provide benefits to all
Switch types, but it will provide the greatest benefits as the project scheduling

situation becomes larger and more complex.

29

Chapter 5 — Suggestions for Further Work

While this research produced measurable improvements in both Access
Switch and Core Switch models, there are several aspects of model development
that merit attention. This chapter focused on three of those areas: improved user

interface, additional project options, and expanded scope for multiple markets.

User Interface

In its current format, the linear programming model developed can only be
easily modified by someone who is familiar with both linear programming
concepts and the LINGO programming language. This must change to become
a tool used in day-to-day operations by multiple departments.

The problem can be remedied through one of the capabilities provided by
LINGO. It offers the ability to pull specific data out of a database or Excel
spreadsheet. This data can then be used in the model calculations and output
the produced results to another program. Since Excel is used almost universally
in businesses, it would be a natural transition to modify the LINGO model to use
data from a specific Excel spreadsheet to build the model and then output the

result to the same or another spreadsheet.

Project Options

As a scheduling tool, another beneficial course of improvement would be

to add more options for each project instead of only looking for the most

30

compressed timeline possible. This would allow Veritas to better customize their
project schedule.

One avenue that could be pursued is the option of prioritizing projects.
Certain milestones or projects may be more critical to the business than others.
Such an option would allow accounting for prioritization of objectives.

Also, some projects may have dependencies beyond those incorporated
in the model in this research. There can also be slack or lag time between those
projects. Accounting for these relationships could provide a better fit for some
schedules.

Finally, this model assumes that other teams required for the project will
be available on the date the model produces. This will not always be the case.
As such, a useful addition to the model would be the ability to account for the

resource availabilities of other teams.

Multiple Markets

The model developed through this research successfully optimizes a
project schedule for a market. As described in the introduction, multiple markets
can have an impact on each other. Therefore, additional constraints could be
added to the model to account for the inter-relationships between markets and

their related projects.

31

References

Anderson, David R., Dennis J. Sweeney, Thomas A. Williams, and Kipp Martin.
An Introduction to Management Science: Quantitative Approaches to
Decision Making. Twelfth Edition. Mason, Ohio: Thomason South-
Western, 2008.

Bowlin, Tom. “Applications of Quantitative Analysis in Decision Making.”
Engineering Management. University of Kansas, Fall 2011.

Bulbiil, Kerem, and Philip Kaminsky. "A Linear Programming-Based Method for
Job Shop Scheduling." Journal of Scheduling 16.2 (2013): 161-83.
ProQuest. Web. 15 Aug. 2013.

Djamel, Nait Tahar, et al. "A Linear Programming Approach for Identical Parallel
Machine Scheduling with Job Splitting and Sequence-Dependent Setup
Times." International Journal of Production Economics 99.1 (2006): 63-73.
ProQuest. Web. 15 Aug. 2013.

Frontline Systems, Inc. "Standard Excel Solver - Dealing with Problem Size
Limits." Excel Solver, Optimization Software, Monte Carlo Simulation,
Data Mining. N.p., n.d. Web. 27 Sept. 2013.
<http://www.solver.com/standard-excel-solver-dealing-problem-size-limits
>

Fuller, Jack A. "Linear Programming Approach to Aggregate Scheduling."
Academy of Management Journal (pre-1986) 18.1 (1975): 129. ProQuest.
Web. 15 Aug. 2013.

LINDO SYSTEMS. "LINDO Systems - Optimization Software: Integer
Programming, Linear Programming, Nonlinear Programming, Stochastic
Programming, Global Optimization." LINDO Systems - Optimization
Software: Integer Programming, Linear Programming, Nonlinear
Programming, Stochastic Programming, Global Optimization. N.p., n.d.
Web. 27 Sept. 2013. <http://www.lindo.com/>

Matsuoka, S., & Muraki, M. (2007). Short-term maintenance scheduling for utility
systems. Journal of Quality in Maintenance Engineering, 13(3), 228-240.
doi:http://dx.doi.org/10.1108/13552510710780267

Taylor, R. W. "A Linear Programming Model to Manage the Maintenance
Backlog." Omega 24.2 (1996): 217. ProQuest. Web. 15 Aug. 2013.

32

Appendix

The purpose of the appendix is to provide more granular data to assist in
understanding how the developed model was implemented. This will be done in
three sections. The first will provide the Veritas data needed for each project.
The next section will contain the LINGO model that was created to derive the
optimized schedule. Finally, the last section will provide the results obtained by
LINGO.

The data provided only pertains to the Access Switch “proof of concept”
scenario. The addition of the Core Switch scenario would not have provided
further value to the understanding of this research and would have increased the

size of this report by 95 pages.

Veritas Project Data

The data provided in this section will serve as constants in the model
developed through this research. This data includes specifications for each
project and market resource availability for each maintenance window over the

three week timespan.

Due Hrs in
Project Date MW Res Required
Project 1 15 5 1
Project 2 10 5 1
Project 3 3 2 1
Project 4 12 5 1
Project 5 14 5 1
Project 6 5 5 1
Project 7 5 2 1

33

Project 8 I < [3 1
Table 3 — Due date, hours required, and resources required for each project

Project Techl | Tech2 Tech3 Tech4

Project 1 1 1 1 0
Project 2 1 1 1 1
Project 3 0 0 0 0
Project 4 0 1 0 0
Project 5 0 1 0 0
Project 6 0 0 0 0
Project 7 0 0 0 1
Project 8 1 1 1 1

Table 4 — Technologies impacted by each project (binary constants)

Project Devicel | Device2 | Device3 | Deviced
Project 1
Project 2
Project 3
Project 4
Project 5
Project 6
Project 7

Project 8 0 0
Table 5 - Devices impacted by each project (binary constants)

oo |Oo|O|C |~ |0
OO0 |- |~ |0 |-

= IO|0O|0OjO|O O |O
o|co|O|jO|C|O|O|O

Maintenance | Resources
Window Available

W INO | WIN |-

[
o

NN NN N [e | e

[y
[

12 1
13 1
14 1
15 1

Table 6 - Resources available for each maintenance window

LINGO Model

MODEL:

SETS:

Dates: MW;

projects: proj_num;

constants;

PxV (projects, constants) : Veritas_Data;
MktRes: res_avail;
PxD(projects,Dates) : V_schedule;
ENDSETS

DATA:

projects = 1..8;

proj num = 1 2 3 4 56 7 8;

Dates = 1..15;

MW =12 3 456 7 8 9 10 11 12 13 14 15;
MktRes = 1..15;

res_avail =111112222211111;

constants = DUE RES_REQ HOURS TECH_1 TECH_2 TECH_3 TECH 4 DEVICE_1
DEVICE_2 DEVICE 3 DEVICE 4;

DUE = 1;

RES REQ = 2;

HOURS = 3
TECH_1
TECH_2
TECH 3 =
TECH 4 =
DEVICE_1
DEVICE_2
DEVICE_3
DEVICE_4

Il
N~ ol

.. e e

8;
9;
10;
11;

Veritas Data
is 5 11
10
3

12
14
5

5

4 1
ENDDATA

L S S = =

WLy oW,
HOoKMOoOOOKR|

HOOMKMKOMH

HOOOQOQOH

HMOOOQOHOI
HOOOOCOOO
OO O0OO0COCOoOH+-O
OCOCOOMPMFOI
COO0O0D0DO0OO0 OO

|Congtraint#l;
@FOR (Dates (date_index) :
IThere cannot be projects affecting TECH 1 occurring at the same time;
@SUM (projects (proj_index) :
V_schedule (proj_index,date_index)*Veritas_Data (proj_index, TECH_1))
<= 1;
IThere cannot be projects affecting TECH 2 occurring at the same time;
@SUM (projects (proj_index) :
V_schedule (proj_index,date_index) *Veritas_Data (proj_index, TECH_2))
<= 1;
|There cannot be projects affecting TECH 3 occurring at the same time;
@8UM (projects (proj_index) :
V_schedule (proj_index,date_index)*Veritas_Data(proj_index, TECH_3))
<= 1;
IThere cannot be projects affecting TECH 4 occurring at the same time;
@SUM (projects (proj_index):
V_schedule (proj_index,date_index)*Veritas_Data(proj_index, TECH_4))
<= 1);

iConstraint#z;
@FOR (Dates (date_index) :
iThere cannot be projects affecting DEVICE 1 occurring at the same
time;
@SUM (projects (proj_index) :
V_schedule (proj_index,date_index) *Veritas_Data(proj_index,DEVICE_1))
&=-1:2
|There cannot be projects affecting DEVICE 2 occurring at the same
time;
@SUM (projects (proj_index) :
V_schedule (proj_index,date_index) *Veritas_Data(proj_index,DEVICE_2))
<=:"13
{There cannot be projects affecting DEVICE_3 occurring at the same
time;
@SUM (projects (proj_index) :
V_schedule (proj_index,date_index) *Veritas_Data (proj_index,DEVICE_3))
<= 1;
IThere cannot be projectes affecting DEVICE 4 occurring at the same
time;
@SUM (projects (proj_index) :
V_schedule (proj_index,date_index) *Veritas_Data(proj_index,DEVICE 4))
<= 1);

IConstraint #3
Prevent overloading of market resources by limiting the number of

projects

based on hours reguired to complete;

@FOR (Dates (date_index) :

®SUM (projects (proj_index): V_schedule (proj_index,date_index)*

Veritas_Data (proj_index,RES_REQ)*Veritas_Data (proj_index, HOURS))

<= 5*res_avail (date_index));

|Constraint #4

Relaxation technigue to reduce variables. This allows for a set
amount of hours for

maintenance or small projects in a given week;

iWeek 1;

@SUM (Dates (date_index) |date_index #LT#6: S5*res_avail (date_index)) -

36

@SUM (PxD (proj_index,date_index) |date_index #LT#6:
V_schedule (proj_index,date_index)*Veritas_Data(proj_index, HOURS))
S8
IKeek 2;
@SUM (Dates (date_index) |date_index #GT# 5 #OR¥ date_index #LT# 11:
S5*res_avail (date_index))} -
@SUM (PxD (proj_index,date_index) |date_index #LTH#6:
V_schedule (proj_index, date_index)*Veritas_Data(proj_index, HOURS))
>z B
IWeek 3;
@SUM (Dates (date_index) |date_index #GT# 10: 5*res_avail (date_index)) -
@SUM (PxD (proj_index,date_index) |date_index #LT#6:
V_schedule (proj_index,date_index)*Veritas_Data (proj_index, HOURS))
>= 5;

!Conetraint #5

Projects must be completed- Still need to set the bounds;

@FOR (projects (proj_index) :

@SUM (Dates (date_index) | date_index #LT# Veritas_Data (proj_index,DUE) :
V_schedule (proj_index,date_index))

>= 1);

|Constraint#6;
|V_schedule must be binary;
@FOR (PxD(I,J): @BIN(V_schedule(I,J)));

|OBJECTIVE FUNCTION;
MIN = @SUM(Dates (date_index):
@SUM (PxD (proj_index, date_index):
MW (date_index)*V_schedule (proj_index,date_index)));
END

LINGO Model Results

Global optimal solution found.

Objective value: 32.00000
Objective bound: 32.00000
Infeasibilities: 0.000000
Extended solver steps: 0
Total solver iterations: B9
Elapsed runtime seconds: 0.06
Model Class: PILP
Total variables: 120
Nonlinear variables: 0
Integer variables: 120
Total constraints: i47
Nonlinear constraints: 0
Total ncnzeros: 720
Nonlinear nonzeros: 0

37

Variable

<
.
c
o

Reduced_Cost

DUE

RES_REQ

HOURS

TECH_1

TECH_2

TECH_3

TECH_4

DEVICE_1

DEVICE_2

W0 (N (U D W (N =

DEVICE_3

[y
o

DEVICE_4

[
(==

MW(1)

MW(2)

MW(3)

MW(4)

MW(5)

MW(6)

MW(7)

MW(8)

MW(9)

VR |IN|OY |V | WIN =

MW(10)

(=Y
o

MW(11)

-
—

MW(12)

ey
N

MW(13)

ey
w

Mw(14)

[y
-

MW(15)

[y
w

PROJ_NUM(1)

PROJ_NUM(2)

PROJ_NUM(3)

PROJ_NUM(4)

PROJ_NUM(5)

PROJ_NUMI(6)

PROJ_NUM(7)

PROJ_NUM(8)

VN B WIN -

VERITAS_DATA(1,DUE)

[y
v

VERITAS_DATA(1,RES_REQ)

VERITAS_DATA(1,HOURS)

VERITAS_DATA(1,TECH_1)

VERITAS_DATA(1,TECH_2)

P P TR Y

olojlo|lojo|ojo|jo|jlojoc|ojo|o|Oo|Oo(Cc|Oo|O(O|0OjC|0|C|O|0O|O|C|OjO(O|O|O|O |0 |0 |O (O |C|O

38

VERITAS_DATA(1,TECH_3)

VERITAS_DATA(1,TECH_4)

VERITAS_DATA(1,DEVICE_1)

VERITAS_DATA(1,DEVICE_2)

VERITAS_DATA(1,DEVICE_3)

VERITAS_DATA(1,DEVICE_4)

O |00 |0 (=

VERITAS_DATA(2,DUE)

-
o

VERITAS_DATA(2,RES_REQ)

VERITAS_DATA(2,HOURS)

VERITAS_DATA(2,TECH_1)

VERITAS_DATA(2,TECH_2)

VERITAS_DATA(2,TECH_3)

VERITAS_DATA(2,TECH_4)

VERITAS_DATA(2,DEVICE_1)

VERITAS_DATA(2,DEVICE_2)

VERITAS_DATA(2,DEVICE_3)

VERITAS_DATA(2,DEVICE_4)

VERITAS_DATA(3,DUE)

VERITAS_DATA(3,RES_REQ)

VERITAS_DATA(3,HOURS)

VERITAS_DATA(3,TECH_1)

VERITAS_DATA(3,TECH_2)

VERITAS_DATA(3,TECH_3)

VERITAS_DATA(3,TECH_4)

VERITAS_DATA(3,DEVICE_1)

VERITAS_DATA(3,DEVICE_2)

VERITAS_DATA(3,DEVICE_3)

VERITAS_DATA(3,DEVICE_4)

OO0 |I0C(CIC|IO|N|K|[WIOIC|k[O|= |||k |un |-

VERITAS_DATA(4,DUE)

fury
~N

VERITAS_DATA(4,RES_REQ)

VERITAS_DATA(4,HOURS)

VERITAS_DATA(4,TECH_1)

VERITAS_DATA(4,TECH_2)

VERITAS_DATA(4,TECH_3)

VERITAS_DATA(4,TECH_4)

VERITAS_DATA(4,DEVICE_1)

VERITAS_DATA(4,DEVICE_2)

VERITAS_DATA(4,DEVICE_3)

VERITAS_DATA(4,DEVICE_4)

O|= 000 |0|=|O|u |~

VERITAS_DATA(5,DUE)

-
S

VERITAS_DATA(5,RES_REQ)

[aeY

oo |o|o|o|jojo|o|jojoc|jojojoc|jo|jo|lo|o oo |olo (o

39

VERITAS_DATA(5,HOURS)

VERITAS_DATA(5,TECH_1)

VERITAS_DATA(5,TECH_2)

VERITAS_DATA(5,TECH_3)

VERITAS_DATA(5,TECH_4)

VERITAS_DATA(S,DEVICE_1)

VERITAS_DATA(S,DEVICE_2)

VERITAS_DATA(S,DEVICE_3)

VERITAS_DATA(5,DEVICE_4)

VERITAS_DATA(6,DUE)

VERITAS_DATA(6,RES_REQ)

VERITAS_DATA(6,HOURS)

VERITAS_DATA(6,TECH_1)

VERITAS_DATA(6,TECH_2)

VERITAS_DATA(6,TECH_3)

VERITAS_DATA(6,TECH_4)

VERITAS_DATA(6,DEVICE_1)

VERITAS_DATA(6,DEVICE_2)

VERITAS_DATA(6,DEVICE_3)

VERITAS_DATA(6,DEVICE_4)

VERITAS_DATA(7,DUE)

VERITAS_DATA(7,RES_REQ)

VERITAS_DATA(7,HOURS)

VERITAS_DATA(7,TECH_1)

VERITAS_DATA(7,TECH_2)

VERITAS_DATA(7,TECH_3)

VERITAS_DATA(7,TECH_4)

VERITAS_DATA(7,DEVICE_1)

VERITAS_DATA(7,DEVICE_2)

VERITAS_DATA(7,DEVICE_3)

VERITAS_DATA(7,DEVICE_4)

VERITAS_DATA(8,DUE)

VERITAS_DATA(8,RES_REQ)

VERITAS_DATA(8,HOURS)

VERITAS_DATA(8,TECH_1)

VERITAS_DATA(8,TECH_2)

VERITAS_DATA(8,TECH_3)

VERITAS_DATA(8,TECH_4)

VERITAS_DATA(8,DEVICE_1)

VERITAS_DATA(8,DEVICE_2)

VERITAS_DATA(8,DEVICE_3)

CO|R|R|RiR|k| Wik MO |IOjCOO|R|O0|lOIN|R|INODjO|I0C|IO0|0|IC R | Nio|loc|lolo|loloc|~ioln

ocjocjlojo|o|cjcjojo|0o|oj0oocjo|ojo|oc|jo|jojo|ojoocjo|lo|lc|jlo|lojoc|ojlo|o|lojo|olo|o oo

40

VERITAS_DATA(8,DEVICE_4)

RES_AVAIL(1)

RES_AVAIL(2)

RES_AVAIL(3)

RES_AVAIL{4)

RES_AVAIL(5)

RES_AVAIL(6)

RES_AVAIL(7)

RES_AVAIL(8)

RES_AVAIL(9)

RES_AVAIL(10)

RES_AVAIL(11)

RES_AVAIL(12)

RES_AVAIL(13)

RES_AVAIL(14)

RES_AVAIL(15)

V_SCHEDULE(1,1)

V_SCHEDULE(1,2)

V_SCHEDULE(1,3)

V_SCHEDULE(1,4)

V_SCHEDULE(1,5)

V_SCHEDULE(1,6)

V_SCHEDULE(1,7)

V_SCHEDULE(1,8)

V_SCHEDULE(1,9)

OCIINOyI»(_IWIN |~ OI0O0O|I0O0O0|O|0O|O|0O|O|C|O|O|O|O

CioOm0OCCOj0O|CIOCOIC|CO0|I0CI00I0C|I0(0 | |00 |C|R || (| ININININ|IN|(R|Ri=|FP|=|o

V_SCHEDULE(1,10) 10
V_SCHEDULE(1,11) 11
V_SCHEDULE(1,12) 12
V_SCHEDULE(1,13) 13
V_SCHEDULE(1,14) 14
V_SCHEDULE(1,15) 15
V_SCHEDULE(2,1) 1
V_SCHEDULE(2,2) 2
V_SCHEDULE(2,3) 3
V_SCHEDULE(2,4) 4
V_SCHEDULE(2,5) 5
V_SCHEDULE(2,6) 6
V_SCHEDULE(2,7) 7
V_SCHEDULE(2,8) 8
V_SCHEDULE(2,9) 9
V_SCHEDULE(2,10) 10

41

V_SCHEDULE(2,11)

0
V_SCHEDULE(2,12) 0 12
V_SCHEDULE(2,13) 0 13
V_SCHEDULE(2,14) 0 14
V_SCHEDULE(2,15) 0 15
V_SCHEDULE(3,1) 1 1
V_SCHEDULE(3,2) 0 2
V_SCHEDULE(3,3) 0 3
V_SCHEDULE(3,4) 0 4
V_SCHEDULE(3,5) 0 5
V_SCHEDULE(3,6) 0 6
V_SCHEDULE(3,7) 0 7
V_SCHEDULE(3,8) 0 8
V_SCHEDULE(3,9) 0 9
V_SCHEDULE(3,10) 0 10
V_SCHEDULE(3,11) 0 11
V_SCHEDULE(3,12) 0 12
V_SCHEDULE(3,13) 0 13
V_SCHEDULE(3,14) 0 14
V_SCHEDULE(3,15) 0 15
V_SCHEDULE(4,1) 0 1
V_SCHEDULE(4,2) 0 2
V_SCHEDULE(4,3) 0 3
V_SCHEDULE(4,4) 0 4
V_SCHEDULE(4,5) 0 5
V_SCHEDULE(4,6) 0 6
V_SCHEDULE(4,7) 0 7
V_SCHEDULE(4,8) 1 8
V_SCHEDULE(4,9) 0 9
V_SCHEDULE(4,10) 0 10
V_SCHEDULE(4,11) 0 11
V_SCHEDULE(4,12) 0 12
V_SCHEDULE(4,13) 0 13
V_SCHEDULE(4,14) 0 14
V_SCHEDULE(4,15) 0 15
V_SCHEDULE(S,1) 0 1
V_SCHEDULE(5,2) 0 2
V_SCHEDULE(5,3) 0 3
V_SCHEDULE(S,4) 0 4
V_SCHEDULE(S,5) 0 5
V_SCHEDULE(5,6) 1 6

42

V_SCHEDULE(S,7) 0 7
V_SCHEDULE(S,8) 0 8
V_SCHEDULE(5,9) 0 9
V_SCHEDULE(S,10) 0 10
V_SCHEDULE(S,11) 0 11
V_SCHEDULE(5,12) 0 12
V_SCHEDULE(5,13) 0 13
V_SCHEDULE(S,14) 0 14
V_SCHEDULE(S,15) 0 15
V_SCHEDULE(6,1) 0 1
V_SCHEDULE(6,2) 1 2
V_SCHEDULE(6,3) 0 3
V_SCHEDULE(6,4) 0 4
V_SCHEDULE(6,5) 0 5
V_SCHEDULE(6,6) 0 6
V_SCHEDULE(6,7) 0 7
V_SCHEDULE(6,8) 0 8
V_SCHEDULE(6,9) 0 9
V_SCHEDULE(6,10) 0 10
V_SCHEDULE(6,11) 0 11
V_SCHEDULE(6,12) 0 12
V_SCHEDULE(6,13) 0 13
V_SCHEDULE(6,14) 0 14
V_SCHEDULE(6,15) 0 15
V_SCHEDULE(7,1) 0 1
V_SCHEDULE(7,2) 0 2
V_SCHEDULE(7,3) 1 3
V_SCHEDULE(7,4) 0 4
V_SCHEDULE(7,5) 0 5
V_SCHEDULE(7,6) 0 6
V_SCHEDULE(7,7) 0 7
V_SCHEDULE(7,8) 0 8
V_SCHEDULE(7,9) 0 9
V_SCHEDULE(7,10) 0 10
V_SCHEDULE(7,11) 0 11
V_SCHEDULE(7,12) 0 12
V_SCHEDULE(7,13) 0 13
V_SCHEDULE(7,14) 0 14
V_SCHEDULE(7,15) 0 15
V_SCHEDULE(8,1) 1 1
V_SCHEDULE(8,2) 0 2

43

V_SCHEDULE(8,3) 0 3
V_SCHEDULE(8,4) 0 4
V_SCHEDULE(8,5) 0 5
V_SCHEDULE(8,6) 0 6
V_SCHEDULE(8,7) 0 7
V_SCHEDULE(8,8) 0 8
V_SCHEDULE(8,9) 0 9
V_SCHEDULE(8,10) 0 10
V_SCHEDULE(8,11) 0 11
V_SCHEDULE(8,12) 0 12
V_SCHEDULE(8,13) 0 13
V_SCHEDULE(8,14) 0 14
V_SCHEDULE(8,15) 0 15

