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Abstract

Economists inflate the explanatory power of measurable variables such as price and
income to explain demand. Using only quantifiable variables is very attractive since it makes it
easy to construct mathematically consistent and well expressed models. However, since
Lancaster (1971), economic awareness has increased to such a degree that latent, hardly
observable and/or measurable variables may bring more insight to the demand analysis. Two
approaches compete to introduce such variables: an economic approach originally developed by
Lancaster and Becker (1965), and a statistical approach. For Lancaster, beyond quantities of
goods demanded, the characteristics of goods are what shape consumer utility and consequently
determine its choice. This approach is theoretical and largely based on economic intuition. Few
empirical studies using Lancaster have been successful so far. The second, purely statistical
approach, considers the possibility of transforming observed data to obtain the ““basic wants”
that truly affect consumer choice. This approach, known as the Preference Independence
Transformation (PIT), has so far been applied only in a few studies using the Rotterdam model
frame. The PIT was certainly deduced through mathematically thorough and consistent analysis
to uncover the basic want, denoted as T-goods. We intend to revisit the PIT under the Rotterdam
framework to uncover the basic goods. Alongside, we implement —for the first time—an
independent transformation that eliminates the Slusky interdependencies from the Almost Ideal
Demand System (AIDS) setting. We will refer to it as the Slutsky Matrix Independent
Transformation (SMIT). Regarding our purpose to check if the two techniques identically define
the basic goods, the findings were not conclusive. As a result, we further the analysis by

introducing a possibility to unveil the basic wants using US household data.
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1 Introduction

For a long time, it has been considered convenient and realistic to explain consumer
demand by considering economic variables such as prices and income, whether the consumer is
an individual or a set of individuals. This has been the case because such variables are amenable
to measurement and quantification. There exists, however, strong research that considers the
characteristics of goods to be strong candidates for explaining consumption behavior(Lancaster,
K. 1971) and (Becker, G. S. 1965) are two of them. (Brooks, R. B. 1970) and (Theil, H. 1975-76)
initiated an original technique to move from an existing set of commodities — that are
complementary or substitutes—into a new set of goods of equal numbers and intended to meet
the basic wants of the consumer. The underlying assumption is that the latent goods, that is, the
goods that correspond to basic wants, are unrelated. The literature rather, cautiously refers to
these latent goods as transformed goods or T-goods. Leading researchers have explored this

technique of incorporating characteristics.

In this study, we revisit this technique by trying to uncover the basic wants behind the
demand for gas, distillate fuel oil, and the liquefied petroleum gases (LPG) by US households.
To give some examples, electricity may be used for many basic wants such as lighting, cooking,
and cooling. Similarly, without being exhaustive, gas may be used for heating, and cleaning. We
will first explore the technique under the Rotterdam model framework and then undertake its

extension to the Almost Ideal Demand System (AIDS).

The Rotterdam model is a model sufficiently studied to allow the Preference

Independence Technique to use it as a framework. In a recent paper, (Barnett, W. A. and A.



Serletis 2008) address the issues of how to estimate the Rotterdam model for two versions: the

absolute and the relative price versions.

On the other hand, economists interested in the topic have not, to the best of our
knowledge, so far applied any independent transformation technique using a theoretical
framework other than the one defined by the Rotterdam model. In this work, we implement an
independent transformation on the Slutsky matrix to one of the most, with the Rotterdam model,
popular demand systems: The Almost Ideal Demand System (AIDS). We will refer to it as the
Slutsky Matrix Independence Transformation (SMIT). The introduction of the SMIT enables us
to first check its feasibility and then the sensitivity of the transformed goods to the technique and

the demand system chosen.

In the next chapter, we will address the literature review and analyze the two models.
More importantly, we will dissect the PIT and see how close technique could be associated with
the AIDS. Chapter 3 covers the estimations with the two models. The last chapter will examine a

realistic and meaningful way to establish the thread between commodities and basic wants.



2 The theoretical toolbox

In this chapter we will first conduct an in-depth presentation of the two systems of
demand—Rotterdam and AIDS—that are going to serve as platforms for the Preference
Independence Technique (the Rotterdam case) and the Slutsky Matrix Independence
Transformation (the AIDS case). We will highlight all theoretical tools that will be needed to
unfold the transformation techniques. In a second stage we will, after introducing the technique,

provide the understanding on how to apply it in the two systems of demand.

2.1. The theoretical framework

2.1.1. The Rotterdam model

The Rotterdam model is one of the most popular models for the empirical estimation of
the consumer demand for goods. It originated with (Theil, H. 1965) and (Barten, A. P. 1966)
and, because they were both based in Rotterdam during that period, the model is referred to as
the Rotterdam model. The model is based on a log linear specification. Economic literature
provides substantial applications of this model to various markets. Using the Rotterdam
framework, (Barnett, W. A. 1979), studied the issue of aggregation over consumers. Introducing
the possibility for consumers to have different tastes, while using a convergence technique, he

presents a Rotterdam model with constant coefficients.

We present in the next sections some important theoretical tools necessary to have a
sufficient knowledge of the derivation as well as the formulation of the Rotterdam model. Next,
we set the problem of the Preference Independence Technique and the way to apply it under the

Rotterdam model framework. To be specific, we provide an overview of the Stone model, the



differential system formulation through the Barten’s equation, formulate the Rotterdam model

and proceed to the transformation technique.

In demand analysis, two categories of models emerge: those constructed outside the
utility theory—the earliest ones—and those using microeconomic theory. (Stone, R. 1954) is a

pioneer in utilizing the first type.

2.1.1.1. Stone’s demand function
Because of its double logarithmic expression, Stone’s demand function directly captures
the commodity economic interdependences, without referring to the consumer theory formalism.

It can be expressed as follows

Ing,=a;+m,InM +> & Inp, i=1..n (2.1.1)
j=1

Where ¢ is the quantity demanded of good i, ¢; is the constant for equation i, M is the
income, p; is the price of good j, 7; is the income elasticity of demand for good i, and &; is

the Cournot elasticity of demand for good i with respect to price j. Differentiating this

equation—denoted as the double-log system—allows a straight computation of price and income

elasticities.

We can draw some important properties from this model when we multiply the income

Pi i

elasticity of good i by its corresponding budget share, w, = VR

- The relation between the marginal share, the budget share, and the income

elasticity



w = Pidiolng _ pg; o M _ a(pid;)

W 21.2
THEM oM T M oM g oM (2.12)

For each good, the product of the income elasticity and the budget share equals the

marginal share. Let us denote the latter asm :

_o(pa)
/’li - aM "

Equivalently, the income elasticity is the ratio of the marginal share to the budget share

=8 wh =1 (2.1.3)
This relation states that the total expenditure equals income. That is,

M
> pa(M, Py, Py Py) = M (2.1.4)
i=1

The Engel aggregation is obtained by differentiating both sides of (2.1.4) with respect to
M . We still have the Engel aggregation by differentiating (2.1.4) with respect to P on both

sides.

oq;
Pj=—+0 =0
Zi: * op,

In terms of budget shares this can be translated as



ijjsi,- =—w,

A last way of apprehending the adding-up condition is to divide both sides of (2.1.4) by

by M.

- The symmetry condition
w & =w,E;, 1j=1,...,n (2.1.5)

In some ways, this model is the predecessor of the Rotterdam model. According to
(Deaton, A. and J. Muellbauer 1980), it suffices to envisage variable income and price
elasticities, differentiate Stone’s equation, and incorporate the Slutsky decomposition, to get the
basic equation for the Rotterdam model. From this perspective, the Rotterdam model is just a
differential of Stone’s equation. However, a huge difference exists between the Rotterdam model
and the Stone model since the latter is not supported by any utility theory. In addition, doing this

way neglects many important concepts crucial for a good understanding of the Rotterdam model.

One advantage of the Rotterdam model over the Stone demand function is, on the one
hand, its generation from the utility theory and, on the other hand, its thorough logical
consistency. Before giving the definitive version of the Rotterdam model, it is worth reviewing
all the steps leading to its definition. Knowledge of these steps is vital for its correct use in
empirical studies. Barten’s Fundamental Equation is an important system of equations leading to

a good understanding of the Rotterdam model.



2.1.1.2. Barten’s fundamental equation

The Rotterdam model is understood as a first order approximation of a demand system.
Its determination begins with the differentiation of the Marshallian demand and budget
constraint. For this, the Rotterdam model is a further specification of the differential approach.
This requires having a “well-behaving” utility function, that is, twice differentiable, strictly
quasi-concave with positive marginal utility for each good, and a second derivative matrix that is

a negative definite. In addition, no specific form of the utility function is needed.

Suppose a utility function U =U(q) where q=(0,0,,.--,0,4,0,) €0 and an

economic environment defined by the income M , and the price vector

p = (py, P2, P3,..., Pn) €07

Subject to the budget constraint, the first order conditions of the utility function

maximization gives

ou (g, dy) _ip., i=1...n (2.1.6)
oqi
and
Zi":l pa = M (217)

The first step towards the Rotterdam model is to differentiate each of these two equations,

(2.1.6) and (2.1.7), with respect to the price of each good and the income M . By doing so, we

seek to assess the impact on the endogenous variables (q,4)of changes in the explanatory

variables(p,M ).



Differentiating them with respect to M yields:

oU og, 04
kzlaqiaqk oM B '8M

n

Z pl aql =

Next, we differentiate them with respect to p; .

0% agy oA
— 16 + p 2
& 5000 P 1P ,-

n

eler g,
Zp. %,

We have previously seen that the second element of each of these two systems represents

two ways of expressing the Engel aggregation. Because of this adding-up property, we will

always assimilate the total expenditure to the income.

Note that &;; is the Kronocker product with value 1 when i = j, and 0 otherwise. These

four equations can be concisely written in matrix terms as follow

oq
l_=1
P oM
nnap.

oq
op' 1

oq _ o4
"M oM P

U 9 =Al+p'—

00; Ol

2
Where U is the matrix of the second derivatives of the utility function U, , = [ oY } .



All these equations can be summarized in one matrix relation known as the Barten’s

fundamental matrix equation that can be expressed as follows

oq  9q
| oM op' 0 Al
Uno P P | (2.1.8)
p’ 0) o4 04 1 —q
oM op'

2
U, = {86 8U } the matrix of second derivatives, is symmetric and negative definite as
’ 0;0q;

the utility function is quasi-concave.

We solve this matrix relation by taking the first element of the left-hand side—provided it

is invertible— to the right.

oq  9q
oM op' | (U, pY (0 A1
Pojo| B P (2.1.9)
Loa oy lp 0) 0 4
oM op'

It can be shown that

(2.1.10)

(Um p]_lz 1 {(p'Ulp)Ul—Ulp(Ulp)' Ulp]

() 4

Plugging (2.1.10) into the right hand-side of (2.1.9) yields



a9

oM op | 1 [(p'UTR)UT-UTp(UTR) U'p|0
04 o] p'Up (u'p) -1 (1 -q'
oM op'

This new relation yields the following relations:

a__ 1 gy

= U
oM p 'U’lp P
o _ 1
oM p'U'p

o DA e
—q=/1Ul—.—pU1p(U1P)—(U1p)q

= p———
op  pU'p pU'p

0A_ A _ys L .

We can plug (2.1.13) into (2.1.12) to get

20 _ oy
oM oM

(2.1.12)

(2.1.13)

(2.1.14)

(2.1.15)

(2.1.16)

On the other hand, we also use (2.1.12) and (2.1.13) to reformulate (2.1.15) as

A__,o_on,
op oM oM

Finally, we use (2.1.12) and (2.1.13) to rewrite (2.1.14) as

' "o Tam
oM

(2.1.17)

(2.1.18)

10



Letu’be the i"row and the j"column of the U™ matrix, we can rewrite this equation

as:

L N BCIC BEL (2.1.19)
op A MM oM
oM

Equation (2.1.18) or, equivalently, (2.1.19) decomposes the total effect in total
substitution effect and income effect. The first two terms, together, measure the total substitution
effect that can be decomposed, according to Houtthaker, into a specific effect, the first term, and
a general effect, the second term. The first term is called the specific effect because it is specific
to each(i, j) . It shows the specific interdependences between the goods i and the goods j. The
second term, the general effect, indicates how all the commodities compete for the last unit of

dollar. A thorough analysis of the distinction between specific effect and general effect can be

found in pages 191-193 of (Theil, H. 1967).

An important observation for the subsequent developments is that when the marginal
utility of each good is independent of the quantity demanded of any other good, the second
derivative of the marginal utility is O whenever i is not equal to j. The matrix of the second
derivatives becomes diagonal and so does its inverse. In both cases, the Hessian matrix of the

utility function, by assumption, is a negative definite.

It is worth keeping in mind that the Rotterdam model is a specific extension of the

differential approach.

In the second stage, we will connect this remark to the results found above. Let us

consider a differential of the Marshalian demand function:

11



oq; = 0Q;
dg, =—-dM + » —dp,
% = ;ap. P,

]

(2.1.20)

Where i =1,..,n.

: . noq dp,
This is equivalent to g, 46 _ %y dM +> o, j b
0P P

g oM M

Multiplying this equation by %yields:

wding, = gdInM +Y PP; %1 p,

2.1.21

Incorporating (2.1.19) into (2.1.21) yields:

! S PP, A 0q0q , 0q
wdling =(—-1)dInM + Au' — — dinp.
ding =Gy ;M o omom Lam [T

oM

(2.1.22)

As denoted above, % = 4 is the marginal share.

By rewriting (2.1.22), we obtain:

v | Au'pp; /M a(pg,) (p;d;) d
wding =gdInM - —L - L L1 1dInp, — g ) w.dlnp. (2.1.23)
LT @ am om |

oM

Next, we define the Divisia volume index, d InQ .

12



dinQ=>wdIng =dInM -> wdlnp,
i=1 i=1

If we define:
the income elasticity of the marginal utility of income as

oA M

_1 e v
¢ oM A

the normalized price coefficients as

_App,

. i,j=1...,n,
luu ¢M J

and the Frisch price index can be expressed as

P =3 udlinp

i=1

Then the equation can be written as:

wdIng, = dINQ+ g3 4, (dln%)
-1

(2.1.24)

(2.1.25)

(2.1.26)

(2.1.27)

(2.1.28)

The left-hand side of (2.1.28) indicates the contribution of the i" good to the Divisia

volume index. It can be viewed as the “quantity component” of the change of the j" budget

share. The first term on the right-hand side is a fraction of the Divisia volume index. Two

13



observations need to be made for £ and s, : All x sum to one and, given a rowi, the row sum

of all 4, equals g . For this reason, the ,,’s are denoted as the normalized price coefficients.

From now on, we denote[uij] as M, , . Make distinction between M , the total

n,n

expenditure and M,, , the matrix of normalized price coefficients. In matrix term,
M, v=[u], v =[], and u,M, v, =1, where vis the n by 1 matrix of ones. It is also

important to highlight the difference between the matrix of the normalized price coefficient

M, , with the matrix of price coefficients that we will denote as V,, ,

Von = [ duij ]n,n =[vi ]n,n

n n
We can easily see from what is said above that ZZVU— = ¢ . This parameter is supposed
i

to be negative in the th Iddaﬂa(g'bj')&zUOTh" lained by th
0 be negative in the theory. Indeed, —- =—CP-=—-= <0. The sign is explained by the

negative definiteness of the Hessian matrix U (not to be confused with the utility U which is not
in bold). (Theil, H. 1975, vol. 1, p.29) reports (Frisch, R. 1959) conjectures on the income

flexibility the higher| ¢ |, the richer the consumer. Note that high income flexibility in absolute

value is identical to low income elasticity of the marginal utility of income since one is the

reciprocal of the other.

The fact that the sum of all price coefficients equals one allows us to express the

normalized price coefficient matrix in a more explicit way

14



M, , = (2.1.29)

From (2.1.26), we see that 4 is positive since the matrix [u’ ] is negative definite and
¢ is negative. In matrix terms, (2.1.26) should be written as

_ ip |U—lp

Mn n
’ ¢M

(2.1.30)

where P is a diagonal matrix that has the prices along the diagonal. The marginal utlity
of income, 4, and M are positive.
This means that, the matrix of the normalized price coefficients M, | =[x;1,,.is definite

positive. The estimation of the (2.1.28) system would not directly gives M, but the matrix

[412;1,., » where g, is the coefficient of the j" relative price.

B /lp |U71p

Vn,n :[Vij]n,n :[¢/uij]n,n - M (2131)

Observe that if we fix i and sum g, over the columns, we find ¢z, . The matrix v isa

symmetric and negative definite matrix.

In the next developments, we should note that if the marginal utility of each good is
independent from the change in any quantity consumed of another good (u” = 0 whenever i is

different from j), then from (2.1.26)

15



_Joifi=] (2.1.32)
7 gy it i N

The differential equation simply becomes:

P;

wdIng, = zdInQ + @6, (dI”? (2.1.33)
In that case, (2.1.31) can be explicitly written as
gy O . . . 0]
0 du,. . . . O
Vn,n =
| 0 o . . . du

On the other hand, the equation (2.1.28) can be re-expressed to show the decomposition

of the total effect into general effect and specific effect:

wd Ing; = 4d InQ"‘i [#r;dInp; _Zn:¢zn‘/lidlnpi] (2.1.34)

j=L =l
While the first term inside the brackets is the specific effect, the second stands for the

general effect. Moreover, as seen in(2.1.27), Z,uidlnpi measure corresponds to the Frisch index

i=1

(1932).

At this point, it is appropriate to introduce the Slutsky equation in a more convenient

way. From the expression (2.1.19), the direct substitution effect can be written as

16



pl,, op M " 04 oM oM
oM

Note also the direct substitution effect can be written as

w.dIng,
G_ql = '—q'l (2.1.36)
op |, dlogp; pp;
If we denote 7 as the (i, j)™ fraction of the direct substitution effect
o Wi8 In Qi
i = 3N P
Then equalizing (2.1.35) and (2.1.36) enables to write
ij A
piuY p;
7j = A— v L aﬁ" o (2.1.37)
oM
It suffices to consider (2.1.25) and (2.1.26) to express our previous expression as
Ty =V — P (2.1.38)
my =V — duyu; - Observe that v, = gy, In other words, 7, = gu, — gp
This allows us to re-express (2.1.34) as:
wdIng = 4dInQ+> z;dinp;, i, j=1,..,n (2.1.39)
j=1

17



[7;],, 1S @ symmetric negative semi-definite with rank n-1. We can verify that

B Wi8|n Qi

i =20 T We should remember that this relation gives the Slutsky coefficient. Hence, the
i

Slutsky elasticity (compensated) of the i good with respect to the j" price is

g 7i(P) (2.1.40)

' o

The resultant uncompensate elasticity can be expressed as

rot _ zrot

ij =Gij —WjTj (2.1.41)

Equation (2.1.39), equivalent to equation (2.1.34), is the final step for the differential
equation. However, they can only be estimated when the differentials are replaced by finite

approximations.

In the last step of the formulation, we write the discrete equations. The Rotterdam model

is in fact a discrete formulation of either (2.1.34) or (2.1.39).

In the first case, the relative price version v, = gy, v, is the (i, j)" price coefficient. The

parameters are the z’s and v, ’s.

In the second case, the absolute version, we need to explicitly keep 7 in the equation.
The parameters are the x4 ’s and the r, ’s. In both cases, we set, for any variable X, ,

Dx, =Inx, —InX,,.

18



Since the approach is discrete, we consider W, as the arithmetic average of the budget

W._.. +

i W. n
share between t and t-1. Hence, W, =%. Also, DQ, = > W, Dg, .
i=1

In the first case, the following equation is obtained:

W, Dgq;, = £,DQ, + > v, (Dp, — DP)) (2.1.42)
i=1
Where DP,' =" 1, Dp, is the Frisch price index.
i=1

In the second, the equation becomes:
DO, = 4,DQ, + Z”ij Dp;, + & (2.1.43)

Where 7, =v;, —guu; and i, j=1,...,n

At this level, it is important to introduce the homogeneity condition as it constitutes one
criterion that characterizes the optimizing behavior of a consumer. It translates the idea that the
consumer does not react after a simultaneous and proportionate change in income and prices. In
other words, the consumer is only sensitive to the real income; he is not victim of money

illusion. For this to happen, the demand functions should be homogenous of degree zero.

We can then apply the Euler equation to the Marshallian demand equation,

a4 =0ad(M,py,..., Py, Py) -

First, we consider the fact that by homogeneity of the demand functions, we can write

19



for >0, A0, = q;(AM, Apy,..., Apj,.... APy) (2.1.44)

Then, we differentiate this relation with respect of the multiplicative parameter 4.

n- a i a i
nAmig ZG%M +zjzla_gpj (2.1.45)
J

It is then easy to see that when the demand functions are homogenous of degree zero, that

is n =0, the relation (2.1.45) can be expressed as

_ 90 9
0= M +ijlapj P (2.1.46)

This equation can be reformulated as

_q| &M o4 Pi
O_q|(aM qi +Zj:16pj qi j]

This last relation provides the demand homogeneity property in terms of the elasticities:
m+ Y &M =0, i=1..,n (2.1.47)
i=1

To get the demand homogeneity in terms of the Hicksian elasticities, we first send the
second term of (2.1.47) to the right hand-side. By doing so, we obtain the expression of the

income elasticity in terms of the uncompensated elasticitites. Second we sum over | the relation

(2.1.41) to get

Zjé:igm = Zjé‘:l}()t — I
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Next, we plug the expression of the income elasticity in terms of the price elasticities into
this last relation. The resulting relation is the homogeneity condition in terms of the Hicksian

elasticities.

Z,- &t =0 (2.1.48)

We recall that this relation is equivalent to zjw”:o, which implies our final

expression of the homogeneity condition:

Zjnij =0 (2.1.49)

We can now close the parenthesis of the homogeneity issue and come back to our

Rotterdam model expression in (2.1.43).

The Slutsky coefficients satisfy the symmetry conditions and add up to zero—the

homogeneity condition:

-y =, foralliand j. (2.1.50)
- > =0foralliand j. (2.1.51)
j=1

In the relative price version the adding-up property states that the marginal propensity to

spend of all goods sum to one and the net effect of a price change on the budget is zero. 4 and

v; are the parameters, and the model is nonlinear in the parameters.
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In the absolute version, ¢ and ., are the parameters. The model is linear in the

parameters. Note that when the preferences are independent, the model simplifies to the

following system:
W, D, = 14DQ, + ¢, (Dpjt - DP't) (2.1.52)

2.1.2 Formulation of the Almost Ideal Demand System

The AIDS, due to (Deaton, A. and J. Muellbauer 1980), specifies a system of demand the
goal of which is to capture the behavior of the budget shares as dependent on the logarithms of
the prices of all the commaodities involved and the logarithm of the income. This way of
expressing the demand system found its plausibility on the fact that it is not the quantity
demanded that is of interest but, rather, the demand behavior. What matters to economists is

mainly finding parameters that enable the calculation of the price and income elasticities.

AIDS is derived from a cost function that presents a Cobb Douglas structure
C(U,p) = a(p)Yb(p)" (2.1.53)

where the utility index U is such that 0 <U <1 . The relation U =0 corresponds to a
subsistence state, and U =1 to a bliss state. pis a column vector of n unit prices. Applying the

logarithm operator to this equation will give
INnCU,p) =@-U)Ina(p) + U Inb(p) (2.1.54)

Deaton and Muellbauer (1980) assign a Translog structure to Ina(p)

n 1 n n 5
Ina(p) = a, + kzlak In p, +§kzlzlﬁkj In py In p; (2.1.55)
= =lj=
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The symmetry condition is imposed by the relation £; = ;i = %(,Bkj + Bi )

Inb(p) has the following structure
n
Inb(p) = Ina(p) + Ao | pe* (2.1.56)
k
Combining (2.1.53), (2.1.54) and (2.1.55) we get
n 1 n n B n
INC(U,p) = ag + ) a In py +§ZZﬂkj InpcInp; +U B[] pe* (2.1.57)
k=1 k=1j=1 k=1

or equivalently,

n
INC(U,p) = Ina(p) +U S | p¢* (2.1.58)
k=1
From the Sephard’s lemma, aC(gL;’P) =(; , we can use the equivalent formula
i
oCU,p) _ pGi .,
oinp, _cUp) MO
n n
W, =5 + Zﬂ” In pJ + ﬂUﬂ()H pkk (2159)
i=1 k=1

Deducing the expression of the third term in (2.1.58), we can write the final expression of

the AIDS system:

n
W = + Zﬂij In pj + A[InM —InP], where InP = Ina(p) and M=C(U,p) (2.1.60)
j=1
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Note that:

n n n
1. The adding-up restriction is verified if > a =1 ,and > 4 => S =0.
i=1 i=1

i=1

n

2. The homogeneity condition can be expressed as Z,Hij =0
i=1

3. The symmetry is imposed by £; = Bji = %(ﬁkj + Bjk )

4. The semi-negative definiteness of the Slutsky matrix is usually checked and not

imposed. This is the case when

n n
D v % <0 V forany column vector v n elements.
i=1 j=1 i

2.1.2.1. AIDS elastcities and the Slutsky matrix
First, we will derive the general formula for the elasticities. Second, we will determine
the Aids elasticities. Finally, we will determine the AIDS Slutsky matrix. It is important to point

out that the AIDS slutsky matrix constitutes its Hessian matrix.
2.1.2.1.1. Elasticity formula

We need to formulate the price and income elasticities in a more suitable way for

calculating the AIDS elasticities and the Hessian matrix as well. We will normalize the

price by setting v; :%. Since the mathematical definition of the budget share is

. : . W
, it can be written as w; = v;q;, or equivalently, g; = V—'
i
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By definition, the price elasticities can be expressed as & =(§%% . This definition is the
i di

product of two elements:

oq; . ow; l_ ovV; q_l
8pJ apj Vi 8pJ Vi

2 Pi_ P
i Wi
ow; Pj ov; Pj
Hence &j = —— ———.
v aPj W P Vi
Note that for i = j, ﬁﬁzland fori = j ﬁ=O
opj Vi op;
Finally,
ow; Pj : olnw,
& (v) :8_p;Wi_§”’ or equivalently I p; — Jjj (2.1.61)
i . Oifi=]j
Where ¢;; is the kronocker product with &;; = Lific
ifi=|
On the other hand, the income elasticity 7, :Wq— can be expressed in terms of
i

w, and M . In fact, from the expression of the budget share, we can obtain the following

expression
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Deriving this expression gives ——

G _ W - owi M . Hence,
i I

oM oM p;

oG M _wM  ow M 2
oM g pigi oM pig

M/ _ i pi/ _
Note that Ai = % , and equivalently % =M. As aresult,

2.1.2.1.2. The AIDS price and income elasticities

We recall the full AIDS system of equations:

n
W = g +Z,Bij Inp; + A[InM - P], where

Ina(p)_a0+2ak|n P + ZZﬂkj Inpy Inp;j, a

Lbj=1...,n

The income elasticity

Using the (2.1.62) formula,

B

pADS —1 4

(2.1.62)

(2.1.63)
and

(2.1.64)

Although, the AIDS system does not directly compute the marginal budget share, it can

be deduced from the relation

(2.1.65)
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In other words
1% = w + B, (2.1.66)
Its sign is determined by the S sign, and its absolute value relatively to the budget share.

n
It should also be noted that one of the adding-up condition (Zﬂl = 0 ) guarantees the unity of
i=1

the sum of the marginal shares of all the commodities involved.

The uncompensated price elasticities

The procedure is to first calculate the matrix of uncompensated elasticities (&) . Then,

we will use the Slutsky equation to get the matrix of compensated elasticities(gzij ).

From the relation (2.1.61), we want to compute the first element of the right side:

n
B In py
i _ M o _ M @ -3 et I kzzll :
- - 1
OVj op; P j P
Plugging this relation into (2.1.61), we get
1 n
ijMDS = W|:ﬂu - ﬂi [OCJ + ZIBkJ In Pk ]:| — 5IJ (2167)
i k=1

It is possible to reformulate this equation by using the AIDS equation in (2.1.63)." In that

case,

DS = Wii[ﬂij - p (wj - p; In(%j) — W5 } (2.1.68)
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Note that the uncompensated elasticity matrix is not symmetric since gw; # S;w;.

The compensated price-elasticity and the Slutsky matrices
From the uncompensated elasticity matrix, we can easily derive the compensated price

elasticity matrix. It suffices to use the Slutsky equation. For some given i and j , the Slutsky

equation appears to be

i = Sij +wim; (2.1.69)
Using the income elasticity in (2.1.64), we found
= 1 M
iJAIDS =WI|:ﬂ” +ﬂlﬂj |n(3j—w,5” +Win j| (2170)

2.1.2.1.3. The Slutsky matrix

It is derived from the formula of the compensated elasticities

a9 _4 £AIDS
= & .
apj u=a Pj .
Hence,
aq; Pi P;j M
a—p;u:ﬁ =_|'VIJ_|:,8ij +/Biﬂj IH(F)—W@J +Win} (2171)

It is clear that the Slutsky matrix obtained shows symmetry in its structure.
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2.1.3. Some AIDS-related systems of demand

2.1.3.1. The LA-AIDS

2.1.3.1.1. Definition

The AIDS estimation, formulated above, is non-linearly expressed. It is usual to proceed
to its linearization by using a proxy of the income deflator, which originally presents a translog
structure. (Deaton, A. and J. Muellbauer 1980) advise the use of The Stone’s Price index. It is a

geometric means of the commodity prices weighted by the corresponding budget shares.

Applying the logarithm operator to the index, this can finally be formulated as

n
InP =1Ina(p) ~ > w;, In p; (2.1.72)
=

(Eales, J. S. and L. J. Unnevehr 1988) propose lagging the budget share in order to avoid

any simultaneity problem.

This Linearized AIDS is referred to in the literature as LA-AIDS. The LA-AIDS can be

explicitly written as:
n n
Wo=a + Y Bilnp;+AInM =D wInpl i, j=1...,n (2.1.73)
j=1 i=1

Though its estimation is easier because of its linearity in the parameters, the finding of

the Hessian matrix can be more demanding.

2.1.3.1.2. The Hicksian elasticity matrix of the LA-AIDS

The Marshallian price elasticity matrix
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We will still use our elasticity formula written above in (2.1.61).

First we consider

8|nWi _ dWi i_ o dP ~ n | |
olnp; dinp;w _%Vi(ﬂ” Adinp. D j '”P—iZ:l)W.ln P (2.1.74)

8\Nk ow;
and ——

P n
Note that a— =W + Zln Pi =W, (é:'J + §IJ) by (2161)
i=1

oln p;

Finally

GMADS = =5 + %\,i [ﬂij - fi [Wj + éwi (&AM + 65 )Inpy H (2.1.75)

Evidently, there is a circularity issue in the sense that the elasticity is simultaneously on
the left and right sides of the equation. It becomes logical that the Slutsky matrix that could result

from it is not appropriate for applying the Preference Independence Transformation.

The Differential AIDS (DAIDS)

We obtain the DAIDS by differentiating the LA/AIDS equation:
dw; = gdInp; + AdInM — gdP” (2.1.76)

n

Where P™ =) wy In py . From the following two observations,
=

- the relative change of the income can be decomposed in Divisia price

and Divisia volume indices,
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dM n n
W = Zw,d In Pi +2Wid Inqi = DP + DQ
i=1 i=1

- and the Stone index can be approximated by the Divisia price index

n n n
dP™ =Y wdInp, + D dwInp *> wdInp, +0,
k=1 k=1 k=1

The DAIDS can be formulated as
n
j=1
(Barten, A. P. 1993) shows it is possible to give this equation the same structure as the
Rotterdam model. It suffices to consider the three following relations:
1. dWi = Wid In Pi +Wid |nqi —VVld InM
2. Wid In pPi = Zé‘uwjd In pJ
]

3. W, DP = ZWled In pJ
i

The DAIDS equation can then be presented as follow

n

Wid In g = (Wi +ﬂi )DQ + Z(ﬂ” _é]jwj +Win )d In pJ (2178)

j=1

Recall that we have shown above that the marginal share of the AIDS model is

L =W + i . Then the expression in parentheses on the second term of the right hand side is
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comparable to z;; of the Rotterdam model. In addition, we see easily that the income elasticity,

- N . . L= O Wi+ Wi W
DAIDS :1+% , and the Hicksian price elasticity is given by &PAIDS = Py ”W’ L
i i

7

The DAIDS Slutsky matrix is given by

oq; _ Pi Pj

il TM [ By — widij +wiw; ] (2.1.79)
Jlu=g

2.2. The Preference Independence Transformation: Genesis, formulation, and
procedure

At this point it is relevant to precise three core concepts we will be using all along the

subsequent developments.

By commodities, we mean the goods bought in the markets at some prices. Basically, we
will be dealing with four commodities consumed by the US households: electricity, distillate fuel
oil, gas, and liquefied petroleum gas. By T-goods, we understand the basic wants supporting the

acquisition of the goods.

The third concept is the Preference Independence Transformation process which is a
linear transformation of a matrix, namely the specific effect, that describes the commodity
interdependences at the preference level in such a way its matrix counterpart becomes diagonal
under the assumptions that the number of goods equals the number of basic wants, and the basic

wants are preference independent.

2.2.1. Genesis
In the relatively recent history of consumer demand, economists have realized that the

main factors that determine consumer demands are not as apparent as many think. Behind
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quantities of goods demanded exists basic wants whose definition may be essential to capturing
the evolution of demand. In practice, two main paths are open to researchers to incorporate basic
wants: the first, primarily theoretical, was initially explored by (Barten, A. P. 1993), (Lancaster,
K. 1971, Lancaster, K. J. 1966), and(Becker, G. S. 1965); the second, purely statistical, is the
Preference Independence Transformation introduced by Henry (Theil, H. 1967). (Brooks, R. B.
1970), (Theil, H. 1975, 1977), and (Theil, H. and K. Laitinen 1992) make decisive contributions

on how to assess consumer basic wants using this technique.

Economists are stressing more and more the empirically challenging issue of quality on
demand. In his article,—"“Qualities, Prices and Budget Enquiries” (1951-1952)—Theil makes a
distinction between goods and commodities using the quality criteria. According to this
approach, a commaodity is a group of goods, a good being a quality of the commaodity, which is
perfectly homogenous. In other words, he defined the good as having a perfectly homogenous
quality. Later, while economists used to assume that consumption of goods produced a
homogenous utility, (Ironmonger, D. S. 1972) pointed out that wants are various, and multiple.
He introduced the assumption that, although consumers may be considered as ultimately having
one want, in practice, they pursue many wants. This raises the interest of disaggregating the
utility. There is an advantage in microeconomic research to break the synthetic concept of utility
into many sub-utilities. In his model, he assumed that the consumer has a consumption
technology (consumption matrix) that transforms units of a commodity into units of “personal
satisfaction’ of the wants. Concurrently, (Lancaster, K. 1971) introduced a slightly similar but
very innovative approach. According to Lancaster, goods are defined by characteristics, and
consumers buy goods not for their quantities but for the characteristics they have. For Lancaster,

all goods possess objective characteristics. The difference between the Lancaster model and the
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Ironmonger model is that Lancaster model assumes that the characteristics are the same for
everybody, though people have different reactions to them. Theoretically, this difference can be
noticed in the consumption matrix. For Ironmonger, each consumer has his own consumption
technology. Lancaster on the other hand considers a unique consumption technology matrix for
all consumers. In the Lancaster model each good presents “measurable characteristics in fixed
proportions with quantities of the characteristics directly proportional to the quantities of the
goods” (Brooks, R. B. 1970). Under the Lancaster approach, the problem of the consumer can be

expressed as follows:

{Max v 2.2.1)

st..z=Bq, pq<Y and q,Y >0.
Where U(z) is the utility function, z is the vector of characteristics, q is the vector of

goods, B is the consumption technology matrix, and Y is the income. To have a clear idea of

how B is constructed, let us consider that each commodity has K potential characteristics.

Given k e[LK], b* =[by b, ...b; ...b, ]" is the amount of the k™ characteristic possessed by

the j" commodity. From here, we see that B =[b* b* ..b“].

This problem raises a recurring question: How can we use the model in empirical studies
if the characteristics are not measurable and, even less, observable?

A close, but different and no less important, model is the one introduced by Becker
(1965). He considers the household unit as a “factory” where goods purchased on the market are
combined with the time—by the mean of a household production function—to produce

“commodities”. These commodities provide the direct arguments in the household’s utility

function. They are denoted as “basic commaodities.” If we denote Z, the basic commodityi, T.
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the vector of time inputs used to get the i" basic commodity, and X; the vector of market goods,

then the household production function can be expressed as

Z, =Q(X,,T,) (2.2.2)

This research raises the necessity to find a technical way of uncovering the basic wants.
Theil (1967; 1975-76; 1977) and Brook (1970) introduced a statistical technique in the analysis:
the Preference Independence Transformation (PIT). Historically, two techniques were used in
economics to formulate “a set of variables that are in some way ‘more basic’ than the observed
variables”: Principal Component Analysis and Factor Analysis. The first technique was
introduced in economics by (Stone, R. 1947). The second was used by (Gorman, W. M. 1965,
1959, 1976) to assess the consumer’s basic wants. According to (Theil, H. 1967, 1975, 1977), the
PIT is between these two techniques. It defines a set of variables that are more essential than the
observed variables. In practice, observed data on closed goods reveal “substitutability” or
“complementarity” patterns. The PIT changes “observed consumer goods” into “transformed
goods,” the latter being characterized by the independence of the marginal utility of each good
relative to the consumption of all other goods. The transformed goods—denoted in the literature
as T-goods— are representative of the basic wants. The main assumption made with this
technique is that the consumer chooses “basic wants” independently. In other words, the
“transformed goods” are neither complement, nor substitute. For this reason, (Theil, H. and K.
Laitinen 1992) found it somehow unrealistic to apply the PIT technique on “narrowly defined
goods.” The “transformed goods” should have an additive structure at the level of the utility
function. An example of such structure is given by the Klein-Rubin (1948) utility function which

can be expressed as follows
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U(a)=30mn( -a) (223)

Where Z@i =1 and the g, ’s are constant.

2.2.2. Formulation under the Rotterdam model
The formulation of the PIT technique began with Brook’s dissertation who first noticed
that a change in real income modifies the proportion of luxuries and necessities in the
consumer’s basket. Under the Rotterdam model framework, measuring these changes is
simplified if the cross-partial derivatives of the consumer’s utility function are zero. From this

observation, he considers Taylor’s expansion of the utility function around the optimal point:
. 1. .
U(x)=ax +§X Ux + remainder term (2.2.4)

If we suppose that the Hessian matrix is diagonal, then the utility function can explicitly

be written as:

2

n 10U
U(x) = X +—
(x) iZﬂ)a. > Ty

x? + remainder term (2.2.5)

In the general case, it is not. Brook wanted to find a way to diagonalize the Hessian
matrix. This problem is not different from Lancaster’s, who focused on uncovering the
characteristics of goods based on their quantities. In fact, diagonalizing the Hessian matrix is
equivalent to the construction of a set of “new commodities” referred to as “basic goods” with
the propriety of being “want or preference independent.”Brooks’ first step is to transform

linearly the price and quantity vectors by setting:
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z=Bx and y=Bp (2.2.6)

Where B is the transformation matrix, z is the transformed quantity vector, and y is the

transformed price vector.

For the budget constraint to hold in the new prices and quantities, it suffices that BB =1 .

In that case the budget constraint p x =Y is equivalent to
y'B'B'z=Y. (2.2.7)
Likewise,
yz=pBBx=px=Y (2.2.8)
As a result, the transformation matrix must be diagonal.

It becomes then possible to write Taylor’s utility function expansion in terms of the

transformed goods.

Let
U; (z)=U (Bz) (2.2.9)

Then

U; (z) = (Ba)' z +%z'BUB'z + remainder term (2.2.10)

37



For the basic goods to be independent, the matrix BUB must be diagonal. This means
that the marginal utility of each basic good is independent of the quantity consumed of any other

transformed good.

From the expressions (2.2.6), we can draw the following equations:

For every good i, z, =b,x +b,X, +..+b, X, andy, =b,p, +b,p, +...+b, p, with the

in“n

condition that Zbif1 =1 because of the orthogonality condition. The first equation gives the

i=1
contribution of each good quantity to the transformed good. The second equation shows how

each price contributes to the transformed good.
Barnett (1979) pointed out that under the Rotterdam model framework a diagonalization
of the Hessian matrix U involves at the same time a diagonalization of M & =[x;]—the

normalized price coefficient matrix—with respect to the n byn diagonal matrix of the budget

W, - 0
shares, (W), =| : -. : |.Thisisequivalent to writing
0 - W

(i — AW,)% =0, i=1,.,n (2.2.11)

Where the 4, ’s are latent roots and the X;’s are characteristic vectors normalized. From

now on, we will read Y, as the matrix Y in diagonal form.
As a result,

0if i+ j

) (2.2.12)
1 otherwise

Xil (V_V)A X; :{
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In matrix form, this can be concisely written as

(M=-4(W),)x;=0and X (W), X =1,

2.2.13
i=1..,m X=X, X, .. X o

In view of (2.1.30), Theil (1975) defines (2.2.12) as a “diagonalization of the inverted
Hessian in expenditure terms relative to the expenditure levels”. He noticed a more practical
way of rewriting it by premultiplying (2.2.13) by the matrix of the square root of the budget

share in diagonal form, (w),"?, and taking (w),"? X out the braces:
(W), "M (W),"? — AT](W),;"* X = 0 where X (W) [X (W)¥*] =1 (2.2.14)

From the normalization expression in (2.2.14), we find that:
(w), =(XX)* (2.2.15)

This allows us to write the normalized price coefficient matrix as function of the

eigenvectors of the diagonlization:
M, , = (X,.) " AXGh (2.2.16)

Theil (1975), using three axioms showed that the transformation—the move from the
knowledge of the parameters of the commodity goods to this of the basic wants—denoted as T-
goods in the literature—is a passage to equation (2.1.34) to a new equation involving two

additional matrix operators, denoted R and S.
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The full understanding of the transformation requires to write the model in matrix term

and a thorough explanation of the three operators involved: the transformation matrices

R, and S, ,, and the composition matrix T, , .

2.2.2.1. The Rotterdam model in matrix term
Let us reconsider the Rotterdam model equation (2.1.42). To write it in a matrix format,

we consider the following:
Yo =[ WDy Wy Dy ... WyDgy ], m =[Dpy Dpx ... Dpy ]' and

& =lex ex o &m |
It is important to note that the second term of the right hand side of the Rotterdam model
can be expressed as

n n
¢Z Hij ( Dpj — Zﬂk Dpy j = My — My u'M, () = M, (I— ') my
i—1 k=1

We have used "M, , = p'obtained from the relation seen above that M, ;v = p,;.
The Rotterdam can then be expressed as
¥, =(DQ )Mi+gM(l —u'M)m, +g, (2.2.17)
2.2.2.2. The transformation matrix R

By definition, R, =[r,]1(i, j=1...,n) is the square matrix for which the components r,

measures the quantity of dollars on the i" T-good (basic want) when one dollar is spent on the

j™ commodity. The total expenditure on the i T-good is then
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n
2 %P
j=1
Consequently, the total expenditure (full income) on all the basic wants is

Zrij P;d;

n
i=1l j=1

Theil’s first axiom states that the T-goods satisfy the budget constraint. Consequently,

Full income=>">"p;a; =>.> "1, p;q; (2.2.18)

i=1 j=1 i=1 j=1
This implies that

VR, =t thatisr; +1,, +..+1; =1foranyj=1,--,n. (2.2.19)

This constraint, very important for subsequent developments, is the condition under

which the full income is invariant under the transformation. It suffices to divide on both side of

the equality in (2.2.18) to get the definition of the "™ T-good budget share in terms of the

commodity budget shares:
(W, ), = z i Wi (2.2.20)
j=L

In matrix terms this relation can be expressed as wr = R, ,w

To summarize the three equations (2.2.18), (2.2.19), and (2.2.20) express somehow the

same fact that the full income is invariant under the transformation.

2.2.2.3. The transformation matrix S
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The operator S is determined after a decomposition of the T-good budget share change,
first using the discrete time, second, the continuous time, and finally proceeding by identification

between the two expressions.

In general, the decomposition of the budget share in discrete time can be expressed as

follows
AW ~ W;;Dpj + Wi Dqj — W; DM,
The same decomposition when the changes are infinitesimal is:
dwj = wjdInpj +wydIngj — wjdIn M,

Moving these two equations from the commodity space to the T-good space requires
applying R and summing over j in the first equation. In the second, it requires just to add the

index T (which design time in the T-good space). It is important to note that in both equations,
we deal with the i"" T-good. This explains why we should have the indexi, and not j in the

second equation. We get the following two equations:

- D AWy = D GWDpj + D5 W; DAy — X Wj DM,
j j j j

- d(Wi)r = (Wie)r (Dpie)r + (Wi )t (Ddie )r — (Wi )1 (DMe)r

(2.2.21)

Recall thatDp, , and Dqj, are the commodity price and quantity log-change. By contrast,
(Dpji)r » and (Dqj)r are the T-good price and quantity log-change. Insofar as these two
equations express the same reality, we can approximate the corresponding terms of the two

equations.

Hence, equalizing the two first terms of the right hand side leads to the following relation
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Zrijv_vthpjt Zrijv_vthpjt
Dpi, )y = - = 2.2.22
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The definition of the price log-change of the i T-good corresponds to the second Theil

axiom. This definition enables us to identify the (i, j)" component of our operator S, =[s;las
s =— (2.2.23)

The price log-change of the the i T-good (2.2.22) can be simply expressed as

(Dpie)r = > s;;Dpje where > s =1
i1 i

Likewise, (Dgi )y = Zsij Dqgj;. The transformation matrix (2.2.23) can be written in
j=1
matrix terms as
S =(wr ), R(w), (2.2.24)

The constraint on the s; is:

S

Il
-
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2.2.2.4. The composition matrix T

Applying the operator R;,, to the Rotterdam dependent variable y, proceeds to moving

from the j"" component of the Divisia (w;,Dq; ) to the Divisia quantity component of the i T-
n

good (D K;W;;Dqjp).
j=1

Hence,
Ry, =(DQ,)RMt+¢RM[l —u'M]n, + Re, (2.2.25)

This transformation is not yet complete since it contains the vector of price log-changes
of commodities. We need to move from z; toSmx, . This is the reason why the previous equation

is reformulated as
Ry, =(DQ,)(RMS™ )1+ #(RMS™)[I —u'(RMS™)]Sx, + Re, (2.2.26)

We obtain this result using the two main properties of the transformation matrices

Rand S, namely, v'R =1"and Su=1. We infer then that the independent transformation

technique is the fact from moving fromM to RMS™. (Theil, H. 1975, chapter 12) has shown
that this expression is equivalent to solving the diagonalizaton of the normalized price coefficient

matrix with respect to the budget share — see relation(2.2.11).
In fact using the definition of S, , in (2.2.24), we can write that:
RMS™ = RM[(w; ), R(w),]* =RM(w). 'R (w;), (2.2.27)
Using (2.2.15) , and (2.2.16) the expression can be written as:
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RMS™ = R(X)PAXH(XX)R* (w; ), (2.2.28)

If we take the T-good budget shares in diagonal form to the left hand-side, the relation

implies:
(RMS™)(w; )} = R(X)*AXR™ =[XR7J'AXR™ (2.2.29)

We remark that the left hand side is the product of two matrices in diagonal form. As a

result, the right hand-side should be diagonal.

Hence, the problem is to choose the transformation matrix R in such a way
(X'RY)TA(X'R™) is diagonal under the constraint YR=t' . X and A are the eigenvector and

eigenvalue matrices.

(Theil, H. 1975) has proved that the solution of such a problem is

R = B( X )A X', where B, , represents a permutation matrix with exactly one in each row and

each column. Without loss of generality, we may chooseB =1.

According to Theil third axioms, RMS™ is diagonal with positive elements. This is the
case because the matrix of normalized price coefficients has positive roots—see (Theil, H. 1975)
on pages 221 and 236. In addition, from the formulas above two important relations can be

derived:
RMS™ = (u;), = (X), A(X™), (2.2.30)

(wr)s = (T), = (X))} (2.2.31)
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The last member of the relation (2.2.30) is obtained from the expression of the
transformation matrices, the normalized price coefficients, and the budget shares in diagonalized
form, all expressed in terms of the eigenvector matrix X. The second member of the same

relation is directly read from the after transformation Rotterdam model (2.2.26). We in fact

observe that (RMS ™)1 = p, . Dividing (2.2.30) by (2.2.31) yields the important relation that:

_ (n7)a
A= m (2.2.32)

Consequently, the eigenvalues constitutes the transformed good expenditure elasticities.

2.2.2.5. Important formulas

In practice, five formulas are of special interest:

- The composition matrix definition T = R(w),
- The transformation of the commodity budget share into the T-good budget share

via the operator R:wt = R, ,w
- The definition of the Transformation matrix S, , : S, = (wr )gan,n (W),

- The property of the T matrix that its row sums yield the T-good budget shares:
Tv=wg
- The property of the T matrix that its column sums yield the commodity budget

shares: v'T = w'

To visualize the two last properties, we may want to observe it on a general structure of a

T matrix of four commodities and four T-goods.
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The column outside the matrix is the T-good budget share. It is the row sum of the T, matrix.

This comes from our second formula above. Likewise, the row below the matrix is the column
sum that gives the commodity budget shares. This is possible because of the invariance of the
income. See (2.2.19). It is easy to see from this matrix that for a given observation period, each

element of R is obtained by the corresponding element in column of T,  divided by the
column sum. Likewise, each element of S is obtained by the corresponding element in row of

T, , divided by the row sum.

2.2.2.6. Sequential procedure to solving the problem
Step 1. we solve the diagonalization problem (2.2.14) to get the eigenvalues and

eigenvectors.

Step 2: We need to remember that our original problem is a diagonalization with respect
to the budget share. Hence from the solution of step 1 we deduce the solution for the problem

(2.2.13). That is the reason we consider

k; = (V_V)lA/2 X

(2.2.33)

as the characteristic vector for (2.2.14). From it, we deduce the characteristic vector of

our initial problem, the relation(2.2.13).
X, = (W);?k, (2.2.34)
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Step 3: From the knowledge of X, we find the transformation matrices R, and S, ,,

n

and the transformation matrix T, . We will expressed all these matrices in terms of X. These

additional formulas can be deduced from the main formulas above.
- Rn,n = Bn,n (Xﬁll)A Xnn (2235)

Where B, , is any permutation matrix with exactly one in each row and each column, and

0’s elsewhere. If we specify B, tobe I, , then (2.2.35) becomes:

- R, =(X"),X,, (2.2.36)
- Sn,n = (X_ll);lX;,ln (2237)
- Tn,n = (X_ll)A X;ln (2238)

The next relations lead to the determination of the outputs of the diagonalization. The
relation (2.2.39) defines the T-goods budget share in diagonal form. (2.2.40) is commodity
income elasticity. (2.2.41) is the T-good marginal share in diagonal form. (2.2.42) is the T-good

income elasticity in diagonal form.

- (W), = (XT)? (2.2.39)
- A=(W)IM, (2.2.40)
- (), =R, M, ST = (X)) A(XTY), (2.2.41)

n,n~n,n

- A =(wy )gl (nr)a (2.2.42)
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A consequence of these results is that
- R,,S., =1, (2.2.43)

(2.2.43) can be used for verification of the validity of the econometric results as well the

constraintson R and S.

2.2.3. Formulation under the AIDS model
In this part, we explore the possibility of implementing the independent transformation
technique to the Almost Ideal Demand System. We recall that the Rotterdam model does not
require specifying the utility function, and is in addition determined from welfare maximization
under the budget constraint. This will not be the case with the AIDS. The AIDS originated from
the logarithm subclass of price-independent generalized-linear preferences denoted as PIGLOG.

With PIGLOG preferences, the expenditure function is expressed as e(p,U) = a(p) + Ub(p) and
results from an expenditure minimization for some level of utility. a(p) and b(p) are supposed

to be positive and linearly homogeneous. We have seen previously that the main AIDS equations
are deduced by application of the Shepard’s lemma. This is the main difference with the
Rotterdam model. As a result, we apply an independent transformation on the Slutsky matrix.
For this reason, we refer to the technique as the Slutsky Matrix Independent Transformation. As

it was done with the Rotterdam model, it is conceivable to proceed to its diagonalization.

2.2.3.1. Transformation of the AIDS in matrix form

It is important to point out here that we keep all the notations and definitions we used
while applying the transformation to the Rotterdam model. In the following developments we
will need to write the AIDS in matrix notation. We have seen that the full AIDS can be written

as:
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n
W = @ +Z,6’ij Inp; + A[INM —InP], where InP =Ina(p), i=1...,n.
j=1

n 1 n n 5
Ina(p) = a, +kz_:1ak In p, +§Zzﬂkj In p In p;

k=1j=1

In matrix notation, it can be expressed as
: 1.
Zt =0py t Bn,nl_lt + ®n,1mt - ®n,1(a0 + al,nHt + E(Ht Bn,nHt) + &

Where variable matrices are

Zi =Wy Wy oo Woogr Wy |
I =[Inpy Inpy ... Inpy Inpy],
ande =[ey &x ... & )"

We express the logarithm of the total expenditure as:

m, =InM,,

The parameter matrices are:

1
‘ln,lz[alt Oyt ... Oyt ant]:

®n,1:[ﬂ1t ,th ,Bn—lt ﬂnt]'

Bn,n = [ﬂu] '

ag IS the constant.

(2.2.44)
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As we have seen it in the previous sub-section, the transformation consists of applying
the matrix R, , to the system of demand and rewriting it in such a way that we will have in the

equation only variables in the T-good space. For example, we would like to have in the equation

S nI; instead of II;.
First, we apply the matrix R, , to (2.2.44) to get:

Rn,nZt = Rn,nun,l + Rn,an,nHt + Rn,nen,lmt - Rn,n®n,la0

, 1 . (2.2.45)
— R nOp 109,11 — ERn,nGn,lnt Bn,nHt) + Ry, &

Next, we apply S, , on II;, using the fact that we does not change the equation when we

introduce S;5Snn

Rn,nZt = Rn,nan,l + Rn,an,nSH,ln (Sn,nHt) + Rn,n(")n,lmt

—Rpn©®n13 — Rn,n®n,1a'l,nsﬁ,ln (Sn,nHt) (2.2.46)
1 - bl _
_ERn,n(')n,lnt Sn,n(sn,n) 1Bn,nsn,ln (Sn,nHt) + Rn,nat

Since The two transformation matrices are linked by the relation (2.2.43), we use
S;t =R, on the fifth term of the right-hand side, and (S, ,)™" = R,, on the sixth term of the

right-hand side. This yields the final expression of the transformed AIDS:

Rn,nZt = Rn,nun,l + Rn,an,nSH,ln (Sn,nHt) + Rn,n®n,1mt
- Rn,n®n,1a{) - Rn,n®n,1ul1,nR'n,n (Sn,nHt)

1 ! _
- ERn,nGnJHt Sn,an,an,nSn,ln (Sn,nHt) + Rn,nst
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Reformulating the fifth and sixth term of the right hand-side of the equation give the final

expression of the AIDS after an independent transformation:

Rn,nZt = (Rn,nan,l) + (Rn,an,nSH,ln)(Sn,nHt) + (Rn,nQn,l)mt
- (Rn,n®n,1)a0 - (Rn,n®n,l)(Rn,nan,1)'(Sn,nHt) (2-2-47)

1 ' _
- E(Rn,n(an,l)(sn,nnt) (Rn,an,nSn,ln)(Sn,nHt) + Rn,nst

Comparing the before-transformation AIDS in matrix form (2.2.44)to the after-transformation

AIDS in matrix notation (2.2.47) allows us to draw the following remarks.

1. Applying the transformation matrix R, , to the budget share column matrix of the

commodities directly yields the basic want budget share column matrix: wy = R, 1Z;

2. The SMIT is essentially the move from:
B to RBS™,
S to SII,

O to RO,

an; 1O Rp o

It should be noted that because of the transformation, RBSis diagonal.

It is also easy to see in view of the AIDS income elasticity that the T-good expenditure
elasticitiy matrix for each period t can be expressed as:

— (Rn,nZt + Rn,n®n,1)A

H
t (R 0Zy)s

(2.2.48)
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3 Applications of the PIT and SMIT technique

The Preference Independence Transformation is the transformation that only applies on the
specific substitution effect. Indeed, we will associate it with the Rotterdam model. Concerning
the SMIT, the transformation is implemented at the level of the expenditure function Hessian

matrix.

3.1 Data description
According to the Energy Information Administration (EIA), the types of energy used in
the home are natural gas (45%), electricity (41%), heating oil (8%), and propane (5%). We have

obtained the following residential sector data to conduct our analysis:

1. The Electricity Retail Sales to the Residential Sector in million kilowatt-hours and the
Average Retail Price of Electricity in Nominal Cents per kilowatt-hour (Taxes included).
After cleaning and harmonizing all the data, the quantity for electricity is expressed in
million kilowatt hours, the price in dollars per kilowatt hours.

2. The Natural Gas Consumed by the Residential Sector in Billion Cubic Feet and the
Natural Gas Price, Delivered to Residential Consumers expressed in Nominal Dollars per
Thousand Cubic Feet. For reason of consistency, the quantity is expressed in million

cubic feet, and the price in dollars per cubic feet.
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3. The raw Distillate Fuel Oil Consumed by the Residential Sector expressed in Thousand
Barrels (42 gallons) per Day is the number 2. Distillate Price to Residences, U.S.
Average, expressed in Nominal Cents per Gallon Excluding Taxes. Some technical
explanations need to be made. Heating oil is refined from oil; it is what Americans use to
heat their homes. Note that at refineries, crude oil is separated into different fuels such as
gasoline, kerosene, lubricating oil, heating oil, and diesel. Heating oil and the diesel fuel
are denoted as distillates. The difference between the two is that the heating oil contains
more sulfur. It should, however, be stated that the number 2 fuel oil is the main heating
oil in US residences. The quantity and price of the final data we use on Distillate Fuel Oil
are respectively in million gallon and dollar per gallon.

4. The Liquefied Petroleum Gases (LPG) are mixtures of propane, ethane, normal butane,
and isobutane. However, American homes basically use propane. We express the quantity
of LPG in Million gallons and the price in dollar per gallon.

All data start on January 1995 and end on August 2010, which corresponds to 187

observations.

3.2 The Preference Independence Transformation under the Rotterdam model

We have previously seen that the Rotterdam model is a discrete formulation of the
differential system. As such, two estimation procedures are available: the absolute version
estimation, linear in the parameters, and the relative version estimation which involves a
nonlinear estimation. The application of the Preference Independence Transformation under the
Rotterdam model requires a nonlinear estimation as it gives the possibility to extract the

normalized price coefficient v;; , which gives the specific nature—in the Houthakker’s sense—of
the relation between the commodities involved. We recall that when v;; is positive the
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commodities i and j are specific complements, and vice versa. Brooks, Theil, Barnett, and
followers have used it are the core of the transformation. This does not mean that we should omit
the absolute version. In practice, the Absolute version estimation enables us to control the
validity of the relative version estimation. It is also very useful, when we will proceed to the

conditional demand estimation that will be necessary for the relative version estimation.

In the following developments, we will respectively proceed to the absolute version
estimation, the relative version estimation, and the diagonalization of the normalized price

coefficient matrix.

3.2.1. The absolute version estimation

As a first approach, the model of the absolute version can be expressed as follow

4
W,Dq, = ,DQ, + > 7, Dp, + &, i=1.4 (3.1.1)
i=1

Where the parameters are the marginal budget share, z , and the (i, j)" (Slutsky, E.
1915) coefficient. The latter can be explicitly written as 7z;; = vij — @15 With i, j =1,...,4. Four

restrictions are of paramount importance:

n
- The adding-up restriction: Yz =1
=

- The homogeneity condition:
- Thisis an attribute of a rational consumer that is not veiled by the nominal
change of income. It precisely means that he is insensitive to any simultaneous

and proportionate change in income and prices. In other words, consumption is

55



only sensitive to real income change. In the Rotterdam model, this is translated

4
by Zﬂ'u =0.
=it

- The Slutsky symmetry condition:
In essence, this is an economic translation of the mathematic Young’s theorem that
stipulates that when a valued function of n variables is twice continuously differentiable on its
domain, then, on the interior of its domain, the n x n matrix of second-order partial derivatives is

symmetric. This is the case when
Tij = Tjis ihj=1..4

In practice, real data always show discrete patterns; their changes are not infinitesimal.
Hence, it is always an approximation to suppose that demands for goods are symmetric in their
interactions. Still, for the sake of the theory elegance, this condition is widely accepted as one of

the regularity condition of utility theory.
- The negative semi-definiteness of the Slutsky matrix of rank 3.

Our study takes into account four goods: electricity, distillate fuel oil, gas, and liquefied
petroleum gas. The negative semi-definiteness could be translated by the three following

inequalities:

11 T2 T3
711 72

m1 < 0, > O, Tlp1 7Ty  7Tp3 < 01

o1 T2
731 732 7133

3.2.1.1. Redundancy issue and last equation parameter derivation
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3.2.1.1.1. Redundancy issue

To show that one of the equations is redundant, it suffices to add all the equations to see

that
4
D& =0, t=1,...,T.
i=1

In fact, this is the case from the following summation

4 4 4 (4 4
lev_vit Dg; = DQtzllﬂi +Z[le7z-ij JDpjt +legit -
i= i= i=1 \_j= i=

By invoking the Divisia formula, the adding-up restriction, and the homogeneity condition, the

equation is equivalent to
4
DQ; =DQ + Zgit
i=1

In conclusion, the disturbances are linearly dependent and the resulting variance-covariance
matrix is singular. This is a reason why we said previously that the Slutsky matrix is of rank 3, i.e. n-1.

One equation has to be dropped, no matter which one.

3.2.1.1.2. Parameter derivation of the last equation
By simplification, let us suppose we deleted the last equation as recommended above. It
could be any equation. After the estimation we need to recover its parmeters and corresponding

standard deviations. To do this, let us add the three undeleted equations.
3 3 3 4 3

ZV_Vit Da;, = DQtZ/ui "'Z[Z”ij ijjt +Zgit
i=1 i=1 i=1 \_j=1 i=1
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3
3

We can observe the followings: > W, Dg, = DQ, - W,,Dq,, , 2 4 =1— s,
i=1

i=1

3 3

Zgit = —&y , and Zﬂij = —m4; (by homogeneity) . Plugging these expressions into the
i=1 i—1

equation, multiplying both sides by -1, and adding on both sides DQ; enables us to get the last

equation:
4
=1

3.2.1.1.3. Derivation of the standard deviations
From now on, we suppose that equation 3 is the dropped one. This assumption is taken
for the sake of consistency with the next developments. We will provide the reason on

subsections 3.2.1.2.

The following eight equations enter into the last equation parameter derivation:

1-pg =+t + iy (3.1.3)
m3 =~y — Ty ~ My (3.1.4)
o3 = —Tlp1 — 7oy — 74 (3.1.5)
733 = —7013 — 723 — 743 (3.1.6)

= (my + mp + mg) + (moq + o + 7w94) + (m1g + 74 + 74y)

T34 = —T04 — T4 — g (3.1.7)

731 =~y — 71~ 7ay (3.1.8)
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T3p = —Tp — Ty — a2 (3.1.9)

T4z = —741 — Tap — Tag (3.1.10)

We can write this system in matrix form as

Agy = Lg12Cip1 (3.1.11)

where

1
A8,1=[1—ﬂ3 M3 723 M3z 34 731 T3 ”43]1

C12,1=[ﬂ1 M1 M T4 My T1 Ty T4 My T4 g ”44] , and

100 010 0 010 0 0
0-1-1-1000 00UO0 0 0
0 0 0 0-1-1-1020 0 0
L81_011101110111
*loo 0100 0 -100 0 -1
0-10 00-10020-120 0
00 -1000-10200 -10
00 0 000 0 0 0 -1 -1 -1

It is noteworthy that Lg;, is the matrix that enables the passage from the matrix of the

estimates to the parameter matrix of the dropped equation. Since the relation (3.1.11) is linear,

we can derive the variance by considering
Var(Ag‘l) = L8‘12Var(C)L‘12‘8 (3112)

The 12 x12 square matrix Var(C) can be provided by Stata after finishing the

estimation.
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3.2.1.2. Econometric estimation and results

In the above developments, we pointed out the importance of dropping one equation to
circumvent the singularity effect of the variance-covariance matrix. We first conducted
preliminaries estimation using the seemingly unrelated regression and dropping the third
equation. Obviously, it could be easier to drop the last equation. However, our first estimations
have yielded a Slutsky coefficient matrix in which one of the diagonal entries (coefficient of
LPG) is positive. A closer examination shows that the coefficient is not significant at 5 %.
Consequently, it could be considered as 0, which is consistent with the negative definiteness of
the Hessian matrix which requires that all the diagonal elements be less or equal to 0 (

i <0forallie[L4]). However we found embarrassing for the PIT unfolding that the entry
744 Vanishes. After reconsidering the data, we found that lagging the prices of DFO (commodity

2) and LPG (good 4) by three periods solves the problem when all the regularity conditions
(adding-up, symmetry, homogeneity) are incorporated. In that case, all the diagonal elements
become negative. This is comprehensible if we remember the fact that the two goods (DFO,
LPG) are not consumed all the year. Households use them basically for heating, which only
occurs during the span October to March. Hence, it seems plausible that their current
consumptions depend on lagged prices by three months. This explains why we have chosen not
to drop one of the goods for which the prices are lagged. Instead, we have chosen to lag the third

commodity (gas).Thereby we end up having 184 observations instead of 187.

3.2.1.2.1. Estimation technique

With the third equation dropped, the absolute version can be finally expressed as:
Wi Daiy = 14 DQ; + zjﬂﬂij (Dpjt —Dpat) + &, 1=12,4. (3.1.13)
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From the initial absolute version equation, we have dropped the third equation and used

the expression 73 = (i1 + 7y + 7is) = Zj¢372'ij to get this ready-to-use equation.

Zellner’s Seemingly Unrelated Technique (SUR) is appropriate for estimating this
system. It is a joint estimation of several regressions. It is presumed that the contemporaneous
errors associated with the dependent variables are correlated. SUR on a set of regressions
presenting the same explanatory variables on the right hand side give identical results of
individual OLS estimations of the models. However we would still gain from the SUR if we

have to perform some joint tests.

Lety; =[WyDgy WDy ... WiesDaies ], Bi =[s 7in 7m2 7ia]'s
& =[e1 &2 ... &uss]' and
DQl Dpxl,l - DpXLn_l
Xrp=| : , Where Dpx; ; = Dpj; — Dp3t.
DQr Dpxry ... DpXrn

The absolute version model can be reformulated as:

yi = Xpl + & where i = 1,2,4 (3114)

Or more explicitly,

Y1 X 0 0B €
Yo =10 X 0[Py |+] & (3.1.15)
Ya 0 0 X |[Bs €4

This last equation can be succinctly written as
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y=I_1®X)B+e (3.1.16)
I,_; is the identity matrix of order n-1. ® is the Kronecker product.

The following assumptions apply to the disturbances:

E(si) =0

Oifs =t
wj;j otherwise

E(eisejt) Z{

Let us consider the contemporaneous variance-covariance matrix Q,_; ,_; = [@;], i,j# 3

. Not eliminating the third equation—in our case—or anyone of the four equations—in

the general case—would make €, , singular.
Hence, we have

oy ol ol y D1 W Ay
E(ee) =| onlrr wpliy oulir |=| 0y 0n 0y Ot =Q33811 1

oplrr opltr oyl s Wy Qg Wy
We can show that the SUR will give the following results:

B=[1®XX)"X']y (3.1.17)

Var(p) =[ @ ® (X'X)™* ] (3.1.18)

3.2.1.2.2. Results

Two preliminary estimations have been conducted. First (see Appendix A), we estimate

the absolute version without any restrictions. It turns out that the constants were not significant.

At this level, only marginal shares are of interest. The marginal share is higher for gas (47%). In
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second position, we have the marginal share electricity (45%). DFO, and gas are expected
presents the same marginal share. Consequently, without any restriction on the estimation, gas is
more sensitive to the total expenditure. 45% of the increase of the total expenditure is due to gas

consumption. Dropping the constants (see appendix B) slightly improve the estimation.

Table 1: Absolute version with all regularity conditions (adding-up, symmetry,

homogeneity)

Equation Observation Parameter RMSE R? XZ p-value
Equation 1 184 4 .0487502 0.8003 811.51 0.0000
Equation 2 184 4 .0062405 0.5932 129.26 0.0000
Equation 4 184 4 .0055228 0.7638 591.28 0.0000

Coefficients Std. error t-student  p-value Confidence intervals

Equation 1

DQt 4271871 .0201586 21.19 0.000 .3876769 4666973

Elec. -.857377 .0485713 -17.65 0.000 -.9525751 -.7621789

Dfo .0214555 .0093793 2.29 0.022 .0030724 .0398387

Lpg .1049314 .005809 18.06 0.000 .0935459 .1163168
Equation 2

DQt .0421955 .0039182 10.77 0.000 .034516 .0498749

Elec. .0214555 .0093793 2.29 0.022 .0030724 .0398387

Dfo -.0120974 .0079147 -1.53 0.126 -.0276099 .0034151

Lpg -.0062495 .0036314 -1.72 0.085 -.0133669 .0008678
Equation 4

DQt .0394701 .0023984 16.46 0.000 .0347693 .0441708

Elec. .1049314 .005809 18.06 0.000 .0935459 .1163168

Dfo -.0062495 .0036314 -1.72 0.085 -.0133669 .0008678

Lpg -.0059645 .0034273 -1.74 0.082 -.0126818 .0007528

63



The results contained in the above table excludes the third equation parmaters. The two
subsequent tables gives respectively the matrix L --see equation (3.1.12)—that allows to uncover

the missing estimates related to the third equation.

Table 2: The matrix Lg;, enabling the moves from Table 1 estimates to last equation

parameter estimates

H Ty 1o Ty H Ty Typ  Ton My 9z T2 qm
0|1 0 0 0 1 0 0 0 1 0 0 0
3 |0 -1 -1 -1 0 0 0 0 0 0 0 0
Ty |0 0 0 0 0 1 1 10 0 0 0
Ty |0 1 1 1 0 1 1 1 0 1 1 1
T3 |0 0 0 -1 0 0 0 -1 0 0 0 -1
Ty |0 10 0 0 10 0 0 1 0 0
T3, |0 0 -1 0 0 0 -1 0 0 0 -1 0
T |0 0 0 0 0 0 0 0 0 1 1 1

Table 3: The asymptotically estimated variance-covariance of the last equation

s T3 T3 733 Tl34 T3 T3 TT43

15 |.00030613

75 | -8.841e-06 .00184058

Ty, |.0000129 .00002653 .00014105

T3 | -3.563e-06 -.00168514 -.0001528 .00167652

T3 | -4.915e-07 -.00018197 -.00001478 .00016142 .00003533

7y | -8.841e-06 .00184058 .00002653 -.00168514 -.00018197 .00184058

73, | 0000129 .00002653 .00014105 -.0001528 -.00001478 .00002653 .00014105
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743 | -4.915e-07 -.00018197 -.00001478 .00016142 .00003533 -.00018197 -.00001478 .00003533

Finally the complete estimates of marginal shares and Slutsky coefficients are displayed

in the subsequent table. Among all the four goods Gas is the most sensitive to its price. Table 5

shows that an increase of the gas price by 1% decreases Gas consumption by 2.6%.

Table 4: Marginal share and Slutsky coefficient estimates

Marginal Slutsky coefficients
share
4271871 -.857377 .0214555 .7309901 1049314
(.02016) (.04857) (.00938) (.04290) (.00581)
.0421955 .0214555 -.0120974 -.0031086 -.0062495
(.00392) (.00938) (.00791) (.01188) (.00363)
4911473 .7309901 -.0031086 -.6351641 -.0927174
(.01750) (.04290) (.01188) (.04095) (.00594)
0394701 1049314 -.0062495 -.0927174 -.0059645
(.00240) (.00581) (.00363) (.00594) (.00343)

After getting all the estimates, It is insightful to check the overall income and price

elasticities and their evolutions over the time as well to get a complete picture of the issue.

Expenditure and price elasticitites

Table 5 displays the overall expenditure and price elasticities. At this level we should

insist on the use of expenditure instead of income. It is somehow unreasonable to mistake the
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expenditure elasticity for the income elasticity. For example, gas expenditure elasticity over the
period is 2 %. We may be tempted to infer that gas is a luxury. It is however hard to believe that
any of these four goods could acceptably be viewed as a luxury. To clarify the paradox, we need
to remember that the Rotterdam model—this will be the case also for the AIDS model—does not
consider the income in its construction but rather the total expenditure. The US household energy
total expenditure is in fact a portion of the US household income. From this perspective our four
goods could be viewed as a block of commodities detachable from the set all goods purchased by

the US households.

Suppose that R is the income of a US household and M the portion of that income

allocated to the residential energy consumption as a block of commodities (electricity,

dfo,gas,and Ipg). Let &,z the income elasticity for good i with respect to g;; and 7, the total

expenditure for good i with respect to g; . We show:

. _%5_(%@)(EM)
W ORG \OM R M q
_(M R\( g M
( N )(aM = ) (3.1.19)

_(M R
"\ R M ) Tam

We identify the first element of the last equality member as the elasticity of energy total
expenditure with respect to the income. It gives the percentage of increase in the total
expenditure whenever the income increases by 1%. In the US, this percentage may range,
depending on the income interval in which belongs the household. According to American
Coalition for Clean Electricity (ACCE), in 2012, US families with gross annual income below $

50,000 were expected to spend 8% of their after-tax income of 22,390 on residential energy.
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These families represent 50% of the US households. The average US household who has an

estimated after-tax income of $53,229 spend 4% of their after tax income on residential energy.

Finally, having a gas expenditure elasticity of 2% does not mean at all that gas is a luxury
good. All that can be inferred is that gas consumption is the most sensitive to the expenditure
change. Indeed when total expenditure increases, US households tend to first restrict the Gas
consumption. We note also that DFO, LPG, and gas are complement. Electricity and gas appear

as substitute. Over the time the elasticities are not very flexible.

Table 5: The average total expenditure and price elasticities during the 184 months

EXPENDITURE

ELASTICITIES ELE DFO GAS LPG
ELEC |.64079947 -1.2861033 03218419 1.0965173 15740172
DFO .86350242 43907232 -.24756512 -.0636154 -.1278918
GAS 2.0189012 3.0047947 -.01277815 -2.6108941 -.38112247
LPG 1.568138 4.1689003 -.24829119 -3.6836409 -.23696821
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Table 6 : Dynamics of the compensated price and income elasticities

Commodities

Income eslaticities

Cross and direct price elasticities

OBS. ELE DFO GAS LPG
1 Ele 0.74331628 -1.4918575 0.03733311 1.2719411 0.18258327
1 Dfo 0.87059921 } 0.44268089 -0.24959977 -0.06413823 -0.12894289
1 Gas 1.3618764 2.0269239 -0.00861967 -1.761213 -0.25709118
1 Lpg 2.4381794 6.4819085 -0.38604924 -5.7274152 -0.36844398
2 Ele 0.72458275 -1.4542588 0.03639222 1.2398849 0.17798169
2 Dfo 0.83426493 | 0.42420569 -0.23918277 -0.06146143 -0.12356149
2 Gas 1.4300387 2.1283719 -0.00905109 -1.8493621 -0.26995866
2 Lpg 2.4054417 6.3948751 -0.38086571 -5.6505126 -0.36349684
3 Ele 0.68357668 -1.3719584 0.03433268 1.1697165 0.16790923
3 Dfo 0.83174176 } 0.42292271 -0.23845938 -0.06127555 -0.12318778
3 Gas 1.6062157 2.3905818 -0.01016616 -2.0771988 -0.30321687
3 Lpg 2.1266162 5.6536168 -0.33671788 -4.9955366 -0.32136231
4 Ele 0.62373511 -1.2518546 0.03132714 1.0673173 0.15321015
4 Dfo 0.85557338 | 0.43504058 -0.24529188 -0.06303126 -0.12671744
4 Gas 2.0038268 2.9823589 -0.01268274 -2.5913994 -0.37827676
4 Lpg 1.9075506 5.0712301 -0.30203211 -4.4809396 -0.28825835
5 Ele 0.55662891 -1.1171705 0.02795672 0.95248715 0.13672663
5 Dfo 0.95133369 } 0.48373263 -0.27274625 -0.07008605 -0.14090033
5 Gas 2.9076897 4.3276067 -0.01840353 -3.7602978 -0.54890544
5 Lpg 2.0473415 5.4428645 -0.3241659 -4.8093158 -0.30938275
6 Ele 0.51202666 -1.0276525 0.02571657 0.87616508 0.12577083
6 Dfo 1.1604564 | 0.59006701 -0.33270148 -0.08549241 -0.17187312
6 Gas 4.3247357 6.4366413 -0.02737239 -5.5928575 -0.81641139
6 Lpg 2.5035747 6.6557621 -0.3964036 -5.8810323 -0.37832615
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Commodities

Income eslaticities

Cross and direct price elasticities

OBS. ELE DFO GAS LPG
91 Ele 0.49820438 -0.99991075 0.02502235 0.85251279 0.12237561
91 Dfo 1.340946 0.68184206 -0.38444763 -0.09878932 -0.19860511
91 Gas 5.3927456 8.0261943 -0.0341321 -6.9740349 -1.0180273
91 Lpg 1.9731149 5.245533 -0.31241324 -4.6349537 -0.29816605
92 Ele 0.50489301 -1.013335 0.02535828 0.86395818 0.12401856
92 Dfo 1.1777134 } 0.59884182 -0.33764904 -0.08676375 -0.17442903
92 Gas 5.0453877 7.5092105 -0.03193358 -6.5248229 -0.95245404
92 Lpg 1.9038645 5.0614304 -0.30144846 -4.4722806 -0.28770131
93 Ele 0.5484372 -1.1007295 0.02754529 0.93846973 0.13471447
93 Dfo 0.91268505 | 0.46408063 -0.26166573 -0.06723875 -0.13517615
93 Gas 3.2585075 4.84974 -0.02062395 -4.2139842 -0.61513183
93 Lpg 1.6362034 4.3498524 -0.25906833 -3.8435302 -0.24725387
94 Ele 0.64166193 -1.2878343 0.03222751 1.0979932 0.15761357
94 Dfo 0.80383517 } 0.40873282 -0.23045859 -0.05921963 -0.11905459
94 Gas 1.916427 2.8522791 -0.01212957 -2.4783719 -0.36177768
94 Lpg 1.5494626 4.1192518 -0.24533423 -3.6397715 -0.2341461
95 Ele 0.74052941 -1.4862642 0.03719314 1.2671723 0.18189872
95 Dfo 0.77957438 | 0.39639673 -0.22350305 -0.05743231 -0.11546137
95 Gas 1.4161226 2.1076601 -0.00896301 -1.8313655 -0.26733162
95 Lpg 1.7794471 4.7306665 -0.28174884 -4.1800176 -0.26890006
96 Ele 0.80263687 -1.6109157 0.04031249 1.3734488 0.19715439
96 Dfo 0.73221011 } 0.37231302 -0.20992377 -0.05394292 -0.10844633
96 Gas 1.2610026 1.8767901 -0.00798122 -1.6307604 -0.2380485
96 Lpg 1.9110813 5.0806164 -0.30259114 -4.4892334 -0.28879188
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Commodities

Income eslaticities

Cross and direct price elasticities

OBS. ELE DFO GAS LPG
182 Ele 0.73220667 -1.4695602 0.03677513 1.2529307 0.17985438
182 Dfo 0.99648959 | 0.50669342 -0.28569239 -0.07341275 -0.14758829
182 Gas 1.4444757 2.1498589 -0.00914247 -1.8680324 -0.27268403
182 Lpg 1.1536271 3.0669217 -0.1826596 -2.7099325 -0.17432965
183 Ele 0.66659979 -1.3378853 0.03348002 1.1406661 0.16373914
183 Dfo 1.1749154 ‘ 0.59741909 -0.33684685 -0.08655762 -0.17401462
183 Gas 1.7344816 2.581484 -0.01097799 -2.2430755 -0.32743055
183 Lpg 0.9849111 2.6183896 -0.15594594 -2.3136095 -0.14883424
184 Ele 0.6001841 -1.204587 0.03014429 1.0270175 0.14742523
184 Dfo 1.1547472 | 0.58716398 -0.33106465 -0.0850718 -0.17102754
184 Gas 2.3410714 3.4842908 -0.01481725 -3.0275327 -0.44194084
184 Lpg 0.94193904 2.5041483 -0.14914196 -2.2126658 -0.14234054
185 Ele 0.54197701 -1.0877637 0.02722083 0.92741525 0.13312763
185 Dfo 1.1624136 ‘ 0.59106219 -0.3332626 -0.08563659 -0.17216299
185 Gas 3.5385892 5.2665945 -0.02239666 -4.5761929 -0.66800487
185 Lpg 1.0754474 2.8590807 -0.17028101 -2.5262841 -0.16251557
186 Ele 0.50454706 -1.0126407 0.02534091 0.8633662 0.12393359
186 Dfo 1.4627226 | 0.74376286 -0.41936085 -0.10776077 -0.21664123
186 Gas 5.207839 7.7509919 -0.03296178 -6.734909 -0.98312113
186 Lpg 1.3082955 3.4781082 -0.20714903 -3.0732569 -0.19770228
187 Ele 0.49211523 -0.98768966 0.02471652 0.84209323 0.12087991
187 Dfo 1.9152667 0.97387171 -0.54910469 -0.14110031 -0.28366672
187 Gas 6.0465285 8.9992401 -0.03827006 -7.8195235 -1.1414466
187 Lpg 1.3763323 3.6589844 -0.21792164 -3.2330791 -0.20798362
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3.2.2. The relative version estimation
The relative version system can be formulated as follows:

n 4 4
W Dgy = 14DQ; + > Vi (DPj — D v ( Dpji — > #4«DPie J + it
i =] =]

i=1,...,4

(3.1.20)

The Slutsky equation, aboved determined, z; = v; — g, 1, , links the previous model and

the relative version. Note that the Slutsky coefficients are replaced with their expressions in
terms of the price coefficients, the income flexibility, and the marginal shares. This makes the
new model nonlinear in the parameters. As an estimation technique, we will need to use the
feasible generalized nonlinear least square which is a nonlinear version of Zellner’s Seemingly
Unrelated regression model. The literature denotes it as nonlinear SUR (NLSUR). NLSUR
becomes relevant when the conditional means of the dependent variables given the in dependent
variables are nonlinear. It can be expressed as

Y, = H(B, X;) + Uy,

wheret =1,...,T observations ;

n=1..,N equations, and

H (B, X¢) = (h (B, %), -, by (B X))

In practice, the relative version estimation is the appropriate model for applying the
Preference Independence Transformation technique as it enables to directly obtain the price
coefficient matrix. Under the assumption that basic wants should have positive basic wants,
some identification problem may be raised. Barnett (981) suggests to circumventing the issue by
introducing the assumption of block independence. Depending on the number of goods in the

models, at least one good should be assumed block-independent from the others. Obviously,
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some test is required to check which good is more likely to be block-independent from the

others.

As in the absolute version, it is necessary to drop one equation to avoid the singularity
issue. Theil (1975) has shown how we can delete one equation by reformulating the relative

version in a more convenient way.

In the next sections, before conducting the estimation, strictly speaking, we will follow
Theil by showing how to reformulate the relative version by deleting the last equation. We will
also define some concepts that are related to the block independence notion. The estimation will
be conducted gradually. We will first estimate a full version of the model without imposing the
regularity conditions. Next we will proceed to the estimation of the full version with all the
regularity conditions. Finally, under the block independence assumption, we will estimate the
conditional demand before deriving the normalized price coefficient matrix. The last part of this

chapter will present the diagonalization process.

3.2.2.1. Ondropping the last equation
Dropping the last equation (i = 4) or any other equation from the previous formulation
(3.1.20) of the relative version is not enough. This is the case because we still need to drop the

parameter 14, inside the second term of the right hand side.

Theil observed that, since the row sums of the normalized price coefficients yields the

product of the income flexibility and the marginal shares, vij = du; —Zvij . Therefore the

i#]

second term can be written as
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4 4 4 4
D i (Dpje — D #4Dpar) = Vii (Dpie — D 14DPie) + D Vi (DPje — D 14 Dpit)
=t k=1 ko1 ko1

i#]

4 4
= (d; — Y Vi )(Dpyy — kZﬂk Dpy) + D_Vvij (Dpj — kZﬂk Dpk:)
= iz =

i#] i#]

3
Using the adding-up condition, z, =1— Zﬂk , We have

k=1
4 4 3
D Vi (Dpj — D 1aDpyy) = gy (( Dpit — Dpat ) — D, 14 (Dpy — DP4t)J
=i k=1 k=1

+ > Vi (Dpj; — Dpy)

i#]

Hence the relative version can be formulated as

3
W;Dar = £4DQ; + dui | Dpxie — > 44 (Dpy — Dpyy ) |, where i =1,...,3
k=1 (3.1.21)

and Dpxi; = Dpj; — Dpg

3.2.2.2. Preference independence, block-independence, blockwise dependence

Preference independence

Preference independence occurs when all the two-by-two commaodities are independent.
There are no two goods that are specific substitutes or specific complements. This is the case

when

Ofori=j . .
Vij = dui Tori = | Lj=1...,n
i Tor 1 =)
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The preference system can then be represented by a utility function expressed as the sum
of n sub-utility functions corresponding to the n goods. Such a utility function presents a

diagonal Hessian matrix. Its Slutsky coefficients are

g fori= |
! —pipy, fori =
We observe that because of the negativity of the income flexibility (¢), the off-diagonals

are positive.
Block independence

Whereas the preference independence assumption sets the independence on the
commodities, the block independence puts the additivity-assumption on the groups of goods.
Suppose that we have G groups of goods (G < n) that are mutually exclusive and exhaustive

blocks: Sq,..,Sg. The utility is henceforth the sum of G group sub-utilities,

G
U(q) = Zug(qg)-
g=1

In this formula, q = (q192......44.....96) and q, is the column vector of quantities
available tos . In that case, the marginal utility of a good is a function of the consumption of

only the goods belonging to the same groups, not those belonging to other groups. As a

consequence, the Hessian matrix of such a utility function becomes block-diagonal. This means
2 o°U

) . o°U ..
that forieqg,jeg',g#qg', ——=0andfori,je g, —— = 0.
0,]€0,0#9 20,00, Jegd 2020,
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(Barnett, W. A. 1981, p.53) strongly recommended using this approach to avoid
“identification problems.” It consists of setting, from the matrix of price coefficients,

vij = 0 whenever i and j are in different blocks . In practice, when the number of goods is very

limited (four goods in our case), it is enough to find one good that is block-independent from the
others. Obviously, some tests are indicated to uncover which commodity qualifies to be block-

independent from the others.
Blockwise dependence

This assumption is often denoted in the literature as the weak separability hypothesis. It
supposes the existence of an increasing function by which the utility is a function of some sub-
utility functions under the assumption that there exist G groups of commodities as defined above.

We have Blockwise dependence if

U(q) =U W(q1), - Us(qs))

Blockwise dependence is a weaker version of block independence. Consequently,
(Barnett, W. A. 1981) rightly pointed out that a rejection of weak separability induces a rejection
of block independence. It has to be noted that acceptance of weak separability does not

necessarily mean acceptance of the block independence assumption.

3.2.2.3. Unconditional, composite and conditional demand equations

Under the block independence assumption, three types of equations can be considered:
the within group demand equation (unconditional demand equation), the between group demand
equation (composite demand equation), and the conditional demand equation. To correctly apply

the relative version estimation, it is important to find one good that is separable, in the block
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independence sense, from the rest of the goods. Upon finding a good for which the test of block
independence is conclusive, the estimation of the conditional demand equation on the rest of the

goods guarantees the elimination of any identification issue.

It is instructive to specify the three types of equation, and to see how a test may work

before displaying the results for the full version estimation.
The unconditional demand equation

It is the individual equation which describes what is happening inside the groups. As

such, it can be referred to as the within group demand equation.

V_Vit int = U DQt + Z Vij ( Dpjt - DPI) + &it i e Sg (3122)
jeSg

These equations describe only the demand for goods in the same group. As (Selvanathan,
S. and E. A. Selvanathan 2005) observed it, the equations only take into account the prices of the

same group.
The demand for the groups

The demand for groups can be obtained by adding over i e S, the unconditional demand

equation. This requires defining the group budget and marginal shares as well as the conditional

budget and marginal shares. We define them in order as:

Wy = zigsg Wit (3.1.23)

M, = Ziesg L (3.1.24)
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W, = V_VH/VVt . ies, (3.1.25)
g

i = %/Ig . ies, (3.1.26)

These new concepts verify the adding-up property:

G G
D Wy => Mg =land > W = > 4 =1
g g

S, =
We define in addition:
1. The group divisia index DQy = Ziegv_v{d Ing;,
2. The group price index DPy = > . Wid In py

3. The Frisch price index DPy = > . 4 Dpy
€99

We can show that the weighted average of the group price and volume Divisia indices

verify the volume and price indices of the set of n goods.
G G
DQ; = thwgt DQg and DP = ZgwgtDPgt

Similarly, the weighted average of the group Frisch index equals the complete Frisch

price index.

G
DR = Z M DPy;
g=1
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Using the above formula and adding over all the unconditional equations inside the same

group, we define the group demand equation as
Wyt DQyt = My DQ; + M (DPgﬁ — DP") (3.1.27)

We observe that the parentheses on the second term contain the difference between two
Frisch indices. The first is the group Frisch price index and the second is the overall Frisch price
index. The right-hand side expresses the idea that the demand for a group of goods as a whole is
explained by the real income and the relative price of the group (the group Frisch price index

deflated by the overall Frisch price index).
The conditional demand equations

As their names suggest, these individual equations are conditional to the group demand.

They specify the group expenditure allocation among commodities within the group.
We can obtain the conditional demand equation in three steps:

Step 1: we get an expression of DQ; from the group demand equation

W, .
DQ, = M—gt DQy — #(DP§ — DP') (3.1.28)
g

Step 2: we plug this expression into the unconditional demand equation (3.1.22) to obtain

Wit DGy = 1WgDQg; — us; (DPg; — DP') + Zjesg vij (DP; — DP') (3.1.29)
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Step 3: we remark that if the block independence is true, then for any row of the price

coefficient matrix, the sum of the entries is the product of the row marginal share and the income

flexibility: zjesg Vij = B .
This finally allows us to write the final expression of the conditional demand equation

Wi DOyt = £4Wg DQgy + Zjesg Vi (DP; — DPy;), i € S (3.1.30)

As mentioned before, estimating this equation requires eliminating one equation.
The explicit expression of the conditional demand equation

Suppose we decide to eliminate the equation k of block one that has three goods, the

equation becomes:

Withit = ,ui'\Ngt DQgt + Zjesg VIJ(DPjt - ngli), with i # k,

_ - | (3.1.31)
i €Sy and DPy; = Ziesg 1 Dps.

As seen before, the fact of eliminating the equation k does not eliminate all the z.we

need to reformulate it in such a way that all the parameters belonging to equation k are

eliminated.

Let us denote the second term of the right hand-side A. Then,
A =V, (DR, — DP}) + > s, V; (DP; — DPY) (3.1.32)
j#i

We now consider the fact that

Z,-Esg Vi = @, 4, Where ¢, is the income flexibility obtained from the block S, estimation. We
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can rewrite the expression as v;, = ¢g,ui' — Zjesg,Vu . This expression allows us to reformulate
j#i

A

A= (g1 — Z}Eisg,v”)( DP, - DPJ )+ Z}eisg,vi,. (DP, — DPJ)

=y ( DP, — DPy )+ Zje_sg,vij (DP, — DR,)
j=i
Now we use the expression of the Frisch price index DPy; = > . 4 Dpy; -
€

A= gyt ( DR =Y #DPy )+ ies, % (DP, — DRy)
9 j#i
=@y 14[DP, — (Zjeig,/uilejt + 44,Dp )] + Zje_sgvvij (DP; — DRy).
1# j#i
Note that x4, =1- Zjik’ulj . Then,
A = ¢,14[(DP, — Dpy) + Zjeig,ﬂj (Dp; — Dpy) + Zjesg,vij (DP; — DR).
17 j#i

Finally the elaborated model of the conditional demand equation can be expressed as:

w; Dy = ﬂi'Wgt DQg: + ¢gﬂi'[(DF=t — Dpyt) + ZjEig,ﬂ'j (Dpj: — Dpy)
J#

_ _ (3.1.33)
+ > jes,,Vij(DP;, — DRy ), where i € Sy and i # k.
j=#i
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3.2.2.4. The relative version estimation

Table 7: The Full version estimation without symmetry

Equation Observation Parameters RMSE R2 Constants
wltdqlt 184 6 .0492983 0.7958* (none)
w2tdg2t 184 6 .0074195 0.4250* (none)
w4tdgdt 184 6 .0081426 0.4866* (none)
Coefficients Std. errors  t-student  p-value 95 %Confidence intervals
mul |.5163949 .0190412 27.12 0.000 4790748 5537149
Phi |-2.50476 1743041 -14.37 0.000 -2.84639 -2.16313
mu2 |.0190418 .0022529 8.45 0.000 0146262 .0234574
mu4 |.020909 .002286 9.15 0.000 0164285 .0253895
v12 |-.4339414 0668528 -6.49 0.000 -.5649704 -.3029124
v1l4 |.083956 0764421 1.10 0.272 -.0658677 .2337798
v21 |[-.0749307 0172387 -4.35 0.000 -.1087179 -.0411435
v24 |-.000289 .0135831 -0.02 0.983 -.0269114 0263334
v4l |-.0873149 .018545 -4.71 0.000 -.1236625 -.0509672
v42 1.0430541 .0123956 3.47 0.001 .0187593 .067349

In the absence of the regularity conditions, the marginal share is higher than the one

obtained under the same conditions when we used the absolute version method. It was 45% in
the absolute version, here it is 51%. We can remark that v,, v,,, and v,, are the only coefficients

that are not significant. However, we have, as expected, a negative income flexibility. Without

the symmetry condition, the third equation, and the diagonal elements we have ten parameters

(sixVv;'s, three z's, and ¢). Imposing the symmetry conditions would bring the number of

parameters to seven.
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Table 8: The Full version estimation with symmetry constraints imposed

Equation Observation Parameters RMSE R2 Constants
wltdqglt 184 6 .0501013 0.7890* (none)
w2tdg2t 184 6 .0075786 0.4001* (none)
w4tdg4t 184 6 .0083203 0.4639* (none)

Parameters|Coefficients Std. errors  t-student p-value 95 %Confidence intervals

mul 4810664 .0180915 26.59 0.000  .4456077 5165252
Phi -2.721291 1787509 -15.22 0.000 -3.071636 -2.370946
mu2 |.0197855 .0026731 7.40 0.000  .0145463 .0250248
mu4  |.0213345 0022672 941 0.000  .0168909 025778
v12 -.1039904 .0190024 -5.47 0.000  -.1412345 -.0667464
v14 -.0846439 .0192149 -4.41 0.000  -.1223044 -.0469835
v24 0201714 .0099983 2.02 0.044  .0005752 .0397676

Table 8 brings back the electricity marginal share to a lower level (48%). It was (42 %) in
the absolute version. The DFO and LPG marginal shares are also lower than before. However, as
before, they are in the same range. The income flexibility in absolute value went up. It is now -

2.7%.

Derivation of the standard deviations of the dropped equation

(Barnett, W. A. 1981, p. 54-55) concisely presents the general procedure to derive the
standard deviations of the dropped equation. He originates the procedure to (Theil, H.1971,

p.598-602).

82



Let S be the vector of parameters to be deduced and y the vector of parameters within

the estimated model. Obviously, 7 and 3 are the resulting estimators. In our case, we will see in

the next paragraph that
B=(us iy Viz Voo Vo3 Vag Vg3 Va3)' and

Y= & 1 My Vig Vig Vi)'

We can observe that » contains all the parameters in table 8 (relative version estimation
with symmetry) and p contains the remaining parameters not in table 8. The model has in fact

15 parameters. 10 parameters define the coefficient price matrix. They would have been 16 in the

absence of the symmetry restriction. The remaining parameters are the four marginal shares and

the income flexibility.

It is permissible to write p = B(y) since the parameters not in the relative version
estimation table can be deduced by y. In fact, the missing parameters can be deduced using the

following system of equations:

3 =1— 4 — pp — 1y

Vig = g + gud

Vig = gy — (Vg + Vip +Vig) =ty — duf — 7q —Vip — Vg

Vop = Ty + i

Vo3 = iy — (Vig + Vg + Voq) = Bpip — dug — mpp — (Vip + Vig) (3.1.34)
Vag = Taq + Pl

Vg = Pz — (Vg + Vog + Vag) = Pz — ¢ﬂ§ — 7tag — (Vig +Voa)

Vag = ¢z — (Vi3 + Vo3 + Vag)

= i — dup + Qut + Puis + dui + Zﬁii +2Vpp + 2Vyg + 2Vp
|
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Let us now set that D(y) = agy) as the derivative of g with respect to y and V the

covariance matrix of the limiting distribution of \/T(y? — 7). One can show that
VT (B - B)—=—>N(0,D(y)VD(y)) . (3.1.35)
Consequently, a consistent estimator of the limiting variance-covariance matrix is

FDVD()' = D) 1V D)

In Stata, the estimate, =V , of the asymptotic variance-covariance matrix of y is denoted

|~

as e(V) . If we denote the variance-covariance of the deduced parameters as Hgg, then

Hgg = D()e(V)D(y)" .
The matrix D(y) is given by the subsequent table

Table 9: Derivatives of eliminated parameters

H ¢ Ho Ha Vo Vig Vy
u |1 0 -1 -1 o 0 0
Vig | 2mn 7 0 0 0 0 0
vis | #Q—2um) - uf 0 0 -1 -1 0
Vo | O 7 24, 0 0 0 0
Vo3 |0 ¢ 1l 0 -1 -1 0
Vag | O ui 0 2011y 0 0 0
Vaz | O #(ps = 13) 0 24y, 0 1
Vag | @A+ 2pm) pu - pp + puf +pd v ui A+ 2up) 24y, 2 2 2

The corresponding valued D(y) is given by
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Table 10: Values of the derivatives of the eliminated parameters

1 ¢ 2] My Vig Vig Vo
M |-1 0 -1 -1 0O 0 O
Vi |-2.6182433 23142488 0 0 0 0 0
Vi3 |-.10304767 24964152 0 0 -1 -1 0
Voy |0 .00039147 -.10768421 0 0O 0 O
Vos [0 -2.721291 .0197855 0 -1 -1 0
Vaq |0 .00045516 0 -.11611477 0O 0 O
Vi3 |0 -1.2990312 0 11611477 0o -1 -1
V33 [-5.3395343 69355241 -2.8289752 -.11611477 2 2 2

Table 11: The estimated variance-covariance of the missing parameters

M3 Vi1 Vi3 V22 Vo3 Vaq Vi3 Va3

13 1.00031032

Vi1 [.0007822 .00410267

Vi3 [-1.323e-07 .00180231 .00249164

Vy,|3.468e-07 -2.144e-06 -2.344e-06 7.579e-08

V,3(.00035765 -.02120435 -.01784581 5.953e-06 .24389948

Vg4 |-4.923e-07 -2.876€-06 -1.184e-06 2.270e-08 -5.928e-06 6.417¢-08
V43/.0001888 -.01003115 -.0087025 3.119e-06 .11599694 -4.148e-06 .05538576

0301082

V33(.00157812 .01028679 .00391035 1.075e-07 -.06882259 -1.014e-06 -.03244668 4

Finally, displays the complete marginal share and price coefficient estimates. Under the
Rotterdam model, the V matrix has to be normalized. Indeed, the assumption that the basic wants
should have nonnegative income elasticities requires the roots of the candidate-matrix for
diagonalization to be positive. Note that we make some nuance on the assumption. In fact, it is
improbable to have a basic want with negative income elasticity. Such a basic want would not be

one. On the other hand, it is not impossible to have a basic want with null income elasticity. It is
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the case whenever we reach the needed consumption amount on that basic want. In that case,

whenever the income increases, the household increases the other basic want consumption.

Table 12: Marginal shares and relative version price coefficients

MARGINAL V MATRIX
SHARES ELE DFO GAS LPG
ELE 4810664 -1.48715144  -1039904  .3666640817 0846439
(.01809) (.06405) (.01900) (.06405) (.01921)
DFO 0197855 -1039904  -.013162692  .0431395898 0201714
(.00267) (.01900) (.00028) (.49386) (.01000)
GAS 4778136 3666640817 0431395898  -1.72369176  .0136182424
(.017616) (.06405) (.49386) (.17352) (.23534)
LPG 0213345 -.0846439 0201714 0136182424  -.0072031252
(.00227) (.01921) (.01000) (.23534) (.00025)

The test of block independence

All it takes to solve the identification issues is to find one good that is strongly separable
from the others. Since we have four goods, we have four possibilities, provided the block
independence assumption is true, to have two blocks of one and three goods, respectively. The

previous results on the full version estimation provide an income flexibility ¢, = —2.721291.
This indicator is important as it represents the sum of all the price coefficients. Suppose that
good k € [1,4] is the strongly separable good. Removing temporarily this good and estimating
the block of three goods would give a new income flexibility specific to that block. Let us call it
¢ . Under the validity that good Kk is strongly separable, our new estimation relative to the

former one would verify

86



Pran = P + Vi

Where v, is the diagonal entry corresponding to good k.

Consequently to check which good is strongly separable, we will test the null hypothesis

Ho © drun = $c + Vi VErsus Hy @ den # dc + Vi

After estimating the conditional demand equations, we found that only good four does

not reject the null hypothesis. We cannot reject the coefficient -2.714088 to be equal to ¢y, with

72 = 3.11 and a p-value of 0.0780. Hence, if we impose the strong separability on good four,

the two following price coefficient matrices should provide identical income flexibility.

Vit Vi Vi3 Vig |44 Vit Vip Viz 0 g
Vip Voo Voz Vou |Hp . [ Viz Vo Vo3 O g
Vis Vo3 Vag Vas |43 | Vis Vaz Vi O |
Vig Vog V3 Vag [ My 0 0 0 wvu

We observe that in the first matrix corresponding to the full version estimation with
symmetry, the marginal share sum equals one. In the second we use the conditional demand
estimation. As such, the sum of the conditional marginal shares (; not z; ) of the first three

goods equals one.

Results of the conditional demand estimation

The conditional demand estimation concerns the first three goods: electricity, DFO and
gas. As we did before, one of the equations has to be dropped. As shown Table 13, we drop the

third equation.
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Table 13: Estimates of the conditional demand

Equation Observation Parameters RMSE R? Constants
wltdqglt 184 4 .0483831 0.8033* (none)
w2tdg2t 184 4 .0086054 0.2265* (none)

Coefficients  Std. errors  t-student  p-value 95 %Confidence intervals
mupl |.5314166 0196842 27.00 0.000 4928362 569997
Phi -3.058302 1953032 -15.66 0.000 -3.441089 -2.675515
mup2 |.0109806 .0018258 6.01 0.000 .007402 .0145591
v12 -.0196034 .0108008 -1.82 0.070 -.0407725 0015657

The next step is to derive the matrix of price coefficients From Table 13 and Table 8
under the block independence assumption on the first three goods. Then, we normalize the price
coefficient matrix. To do that, we divide each price coefficient by the sum of all the price
coefficients. As we have seen before, the sum of all price coefficients equals one. The matrix
below displays the results. We can easily check that the sum of all coefficients equals one. In
addition, the matrix presents positive eigenvalues, which attests that the normalized price
coefficient matrix is positive definite. This is the desirable effect in order to have basic want

income elasticities that are positive.

Matrix to be diagonalized

Matrix My 4 Roots
54648747 .73323895
03821363  .00483693 44940884
—.13473902 -.01585262 .63340957 .00264695
0 0 0 .00264695| .00208618
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3.2.2.5. Composition matrices, Transformation matrices R and S under Rotterdam model

By definition, the composition matrix is a square table whose column sums yield the
commaodity budget shares and the row sums the T-goods. The table below shows that for the
second T-good all commodities positively contribute into its budget shares. Logically, the second
T-good is the T-good with the highest budget share (89%). The product that contributes the most
on this T-good is the electricity. This excludes heating form being the second T-good. We

suspect it to be cooling, since it has the second largest income elasticity.

The first T-good is the most difficult to interpret. The reason is that electricity and DFO
negatively contribute to it. It has however the highest contribution of gas and the highest income
elasticity. We may legitimately view it as heating. The fact that electricity and DFO contribute

negatively to it may be due to the overwhelming gas contribution.

We may think that T-good 1 is a luxury for being the only basic want with the highest
income elasticity. It ranges from 2% to up to 7%. (it is 2.16% in the first month, 3.81% in the
fifth month and 1.77% in the last month of our observations running from February 1995 to
August 2010). In fact, none of the T-goods should be qualified as luxury. As we have seen in
(3.1.19), applying the elasticity of energy total expenditure with respect to income to its elasticity

in some period yields result less than one.
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Table 14: Rotterdam compostion matrices and transformation matrices

COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
1 -0.0726 -0.0068 0.1648 0.0000 0.0854 1.87
1 0.6565 0.0442 0.1950  0.0000 0.8958 0.00 0.89
1 0.0000 0.0000 0.0000  0.0162 0.0162 0.00 0.00 0.16
1 -0.0092 0.0110 0.0008 0.0000 0.0027 0.00 0.00 0.00 0.04
SUM 0.5747 0.0485 0.3606  0.0162 1.0000
COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
2 -0.0700 -0.0067 0.1698 0.0000 0.0932 1.95
2 0.6693 0.0453 0.1728 0.0000 0.8875 0.00 0.88
2 0.0000 0.0000 0.0000 0.0164 0.0164 0.00 0.00 0.16
2 -0.0098 0.0119 0.0008 0.0000 0.0030 0.00 0.00 0.00 0.04
SUM 0.5896 0.0506 0.3435 0.0164 1.0000
COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
3 -0.0623 -0.0061 0.1713 0.0000 0.1029 2.16
3 0.6952 0.0477 0.1339 0.0000 0.8768 0.00 0.84
3 0.0000 0.0000 0.0000  0.0186 0.0186 0.00 0.00 0.14
3 -0.0080 0.0092 0.0006  0.0000 0.0018 0.00 0.00 0.00 0.04
SUM 0.6249 0.0507 0.3058 0.0186 1.0000
COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
4 -0.0480 -0.0050 0.1553 0.0000 0.1023 2.66
4 0.7359 0.0513 0.0896  0.0000 0.8768 0.00 0.79
4 0.0000 0.0000 0.0000  0.0207 0.0207 0.00 0.00 0.13
4 -0.0029 0.0030 0.0001 0.0000 0.0002 0.00 0.00 0.00 0.04
SUM 0.6849 0.0493 0.2451 0.0207 1.0000
COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
5 -0.0311 -0.0034 0.1169 0.0000 0.0825 3.81
5 0.7881 0.0561 0.0523 0.0000 0.8965 0.00 0.72
5 0.0000 0.0000 0.0000  0.0193 0.0193 0.00 0.00 0.14
5 0.0105 -0.0084 -0.0003 0.0000 0.0017 0.00 0.00 0.00 0.04
SUM 0.7675 0.0444 0.1689 0.0193 1.0000
COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
6 -0.0200 -0.0022 0.0818 0.0000 0.0596 5.63
6 0.8187 0.0598 0.0323 0.0000 0.9108 0.00 0.68
6 0.0000 0.0000 0.0000  0.0158 0.0158 0.00 0.00 0.17
6 0.0356 -0.0212 -0.0006  0.0000 0.0138 0.00 0.00 0.00 0.05
SUM 0.8343 0.0364 0.1136  0.0158 1.0000
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R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG ROW SUMS
1 -0.1263 -0.1404 0.4569 0.0000 -0.8498 -0.0797 1.9295 0 1
1 1.1423 0.9124 0.5408 0.0000 0.7329 0.0494 0.2177 0 1
1 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
1 -0.0161 0.2280 0.0023 0.0000 -3.4569 4.1400 0.3169 0 1
COLUMN SUMS 1 1 1 1
R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG
2 -0.1187 -0.1319 0.4944 0.0000 -0.7514 -0.0716 1.8230 0 1
2 1.1353 0.8962 0.5031 0.0000 0.7542 0.0511 0.1947 0 1
2 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
2 -0.0166 0.2357 0.0024 0.0000 -3.2877 4.0080 0.2797 0 1
COLUMN SUMS 1 1 1 1
R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG
3 -0.0996 -0.1211 0.5601 0.0000 -0.6052 -0.0597 1.6649 0 1
3 1.1124 0.9399 0.4380 0.0000 0.7929 0.0544 0.1528 0 1
3 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
3 -0.0128 0.1812 0.0019 0.0000 -4.5169 5.1970 0.3199 0 1
COLUMN SUMS 1 1 1 1
R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG
4 -0.0702 -0.1009 0.6337 0.0000 -0.4696 -0.0486 1.5183 0 1
4 1.0744 1.0408 0.3657 0.0000 0.8392 0.0585 0.1022 0 1
4 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
4 -0.0043 0.0601 0.0006 0.0000 -15.315 15.5368 0.7786 0 1
COLUMN SUMS 1 1 1 1
R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG
5 -0.0405 -0.0763 0.6923 0.0000 -0.3769 -0.0411 1.4180 0 1
5 1.0269 1.2659 0.3096 0.0000 0.8790 0.0626 0.0583 0 1
5 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
5 0.0136 -0.1895 -0.0019 0.0000 6.0228 -4.8412 -0.1816 0 1
COLUMN SUMS 1 1 1 1
R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG
6 -0.0240 -0.0618 0.7207 0.0000 -0.3355 -0.0377 1.3732 0 1
6 09813 1.6437 0.2849 0.0000 0.8989 0.0656 0.0355 0 1
6 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
6 0.0427 -0.5820 -0.0055 0.0000 2.5744 -1.5290 -0.0454 0 1
COLUMN SUMS 1 1 1 1
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COMPOSITION MATRIX

T-EXPENDITURE ELASTICITTIES

SUM
ELE DFO GAS LPG T1 T2 T3 T4
91 -0.0158 -0.0018 0.0665 0.0000 0.0489 7.01
91 0.8176 0.0607 0.0254  0.0000 0.9036 0.00 0.68
91 0.0000 0.0000 0.0000  0.0200 0.0200 0.00 0.00 0.13
91 0.0556 -0.0274 -0.0007 0.0000 0.0275 0.00 0.00 0.00 0.06
SUM 0.8575 0.0315 0.0911 0.0200 1.0000
COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
92 -0.0169 -0.0019 0.0708 0.0000 0.0520 6.56
92 0.8238 0.0603 0.0271 0.0000 0.9112 0.00 0.68
92 0.0000 0.0000 0.0000  0.0207 0.0207 0.00 0.00 0.13
92 0.0393 -0.0226 -0.0006  0.0000 0.0161 0.00 0.00 0.00 0.05
SUM 0.8461 0.0358 0.0973 0.0207 1.0000
COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
93 -0.0273 -0.0030 0.1059 0.0000 0.0756 4.26
93 0.7971 0.0568 0.0451 0.0000 0.8990 0.00 0.71
93 0.0000 0.0000 0.0000  0.0241 0.0241 0.00 0.00 0.11
93 0.0091 -0.0075 -0.0002 0.0000 0.0013 0.00 0.00 0.00 0.04
SUM 0.7789 0.0462 0.1507 0.0241 1.0000
COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
94 -0.0507 -0.0052 0.1592 0.0000 0.1033 2.55
94 0.7233 0.0501 0.0967 0.0000 0.8701 0.00 0.80
94 0.0000 0.0000 0.0000  0.0255 0.0255 0.00 0.00 0.10
94 -0.0068 0.0076 0.0004  0.0000 0.0012 0.00 0.00 0.00 0.04
SUM 0.6658 0.0525 0.2563 0.0255 1.0000
COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
95 -0.0705 -0.0067 0.1673 0.0000 0.0902 1.94
95 0.6596 0.0444 0.1784  0.0000 0.8824 0.00 0.89
95 0.0000 0.0000 0.0000  0.0222 0.0222 0.00 0.00 0.12
95 -0.0122 0.0164 0.0011 0.0000 0.0052 0.00 0.00 0.00 0.04
SUM 0.5769 0.0541 0.3468 0.0222 1.0000
COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
96 -0.0734 -0.0066 0.1444  0.0000 0.0644 1.77
96 0.6207 0.0407 0.2434  0.0000 0.9049 0.00 0.93
96 0.0000 0.0000 0.0000  0.0207 0.0207 0.00 0.00 0.13
96 -0.0151 0.0235 0.0017 0.0000 0.0100 0.00 0.00 0.00 0.03
SUM 0.5322 0.0576 0.3895 0.0207 1.0000
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R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG ROW SUMS
91 -0.0184 -0.0569 0.7297 0.0000 -0.3228 -0.0366 1.3594 0 1
91 0.9535 1.9280 0.2784 0.0000 0.9048 0.0671 0.0281 0 1
91 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
91 0.0649 -0.8711 -0.0081 0.0000 2.0237 -0.9970 -0.0267 0 1
COLUMN SUMS 1 1 1 1
R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG
92 -0.0200 -0.0535 0.7277 0.0000 -0.3257 -0.0368 1.3626 0 1
92 0.9736 1.6841 0.2783 0.0000 0.9041 0.0662 0.0297 0 1
92 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
92 0.0464 -0.6307 -0.0060 0.0000 2.4418 -1.4057 -0.0361 0 1
COLUMN SUMS 1 1 1 1
R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG
93 -0.0351 -0.0650 0.7027 0.0000 -0.3616 -0.0398 1.4014 0 1
93 1.0234 1.2281 0.2989 0.0000 0.8867 0.0632 0.0501 0 1
93 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
93 0.0117 -0.1631 -0.0016 0.0000 6.8222 -5.6409 -0.1813 0 1
COLUMN SUMS 1 1 1 1
R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG
94 -0.0762 -0.0991 0.6213 0.0000 -0.4910 -0.0503 1.5414 0 1
94 1.0864 0.9549 0.3773 0.0000 0.8313 0.0576 0.1111 0 1
94 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
94 -0.0102 0.1442 0.0015 0.0000 -5.8440 6.5209 0.3232 0 1
COLUMN SUMS 1 1 1 1
R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG
95 -0.1222 -0.1232 0.4825 0.0000 -0.7817 -0.0740 1.8556 0 1
95 1.1434 0.8203 0.5144 0.0000 0.7475 0.0503 0.2022 0 1
95 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
95 -0.0212 0.3029 0.0031 0.0000 -2.3426 3.1353 0.2074 0 1
COLUMN SUMS 1 1 1 1
R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG
96 -0.1379 -0.1149 0.3708 0.0000 -1.1390 -0.1028 2.2418 0 1
96 1.1663 0.7070 0.6250 0.0000 0.6860 0.0450 0.2690 0 1
96 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
96 -0.0284 0.4079 0.0042 0.0000 -1.5098 2.3447 0.1651 0 1
COLUMN SUMS 1 1 1 1
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COMPOSITION MATRIX

T-EXPENDITURE ELASTICITTIES

SUM
ELE DFO GAS LPG T1 T2 T3 T4
182 -0.0691 -0.0066 0.1660  0.0000 0.0902 1.97
182 0.6566 0.0448 0.1737 0.0000 0.8751 0.00 0.89
182 0.0000 0.0000 0.0000  0.0342 0.0342 0.00 0.00 0.08
182 -0.0040 0.0041 0.0003 0.0000 0.0004 0.00 0.00 0.00 0.05
SUM 0.5834 0.0423 0.3400 0.0342 1.0000
COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
183 -0.0572 -0.0058 0.1642 0.0000 0.1012 2.33
183 0.6893 0.0484 0.1195 0.0000 0.8573 0.00 0.85
183 0.0000 0.0000 0.0000  0.0401 0.0401 0.00 0.00 0.07
183 0.0087 -0.0068 -0.0005 0.0000 0.0014 0.00 0.00 0.00 0.05
SUM 0.6408 0.0359 0.2832 0.0401 1.0000
COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
184 -0.0402 -0.0043 0.1381 0.0000 0.0937 3.09
184 0.7353 0.0526 0.0723 0.0000 0.8602 0.00 0.78
184 0.0000 0.0000 0.0000  0.0419 0.0419 0.00 0.00 0.06
184 0.0166 -0.0118 -0.0007 0.0000 0.0042 0.00 0.00 0.00 0.05
SUM 0.7118 0.0365 0.2098 0.0419 1.0000
COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
185 -0.0250 -0.0028 0.0981 0.0000 0.0703 4.62
185 0.7848 0.0569 0.0414  0.0000 0.8831 0.00 0.72
185 0.0000 0.0000 0.0000  0.0367 0.0367 0.00 0.00 0.07
185 0.0284 -0.0179 -0.0007 0.0000 0.0098 0.00 0.00 0.00 0.05
SUM 0.7882 0.0363 0.1388 0.0367 1.0000
COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
186 -0.0164 -0.0019 0.0686  0.0000 0.0503 6.77
186 0.7992 0.0597 0.0266  0.0000 0.8855 0.00 0.70
186 0.0000 0.0000 0.0000  0.0302 0.0302 0.00 0.00 0.09
186 0.0639 -0.0290 -0.0009 0.0000 0.0340 0.00 0.00 0.00 0.06
SUM 0.8467 0.0288 0.0943 0.0302 1.0000
COMPOSITION MATRIX SUM T-EXPENDITURE ELASTICITTIES
ELE DFO GAS LPG T1 T2 T3 T4
187 -0.0140 -0.0016 0.0594  0.0000 0.0438 7.85
187 0.7721 0.0596 0.0230  0.0000 0.8547 0.00 0.71
187 0.0000 0.0000 0.0000  0.0287 0.0287 0.00 0.00 0.09
187 0.1100 -0.0360 -0.0011 0.0000 0.0728 0.00 0.00 0.00 0.08
SUM 0.8681 0.0220 0.0812 0.0287 1.0000
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R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG ROW SUMS
182 -0.1185 -0.1558 0.4881 0.0000 -0.7663 -0.0731 1.8394 0 1
182 1.1254 1.0580 0.5109 0.0000 0.7503 0.0512 0.1985 0 1
182 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
182 -0.0069 0.0978 0.0010 0.0000 -9.3406 9.5582 0.7824 0 1
COLUMN SUMS 1 1 1 1
R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG
183 -0.0893 -0.1602 0.5799 0.0000 -0.5650 -0.0568 1.6218 0 1
183 1.0757 1.3490 0.4220 0.0000 0.8041 0.0565 0.1394 0 1
183 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
183 0.0136 -0.1888 -0.0019 0.0000 6.2247 -4.8446 -0.3800 0 1
COLUMN SUMS 1 1 1 1
R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG
184 -0.0564 -0.1166 0.6584 0.0000 -0.4286 -0.0455 1.4741 0 1
184 1.0331 1.4386 0.3448 0.0000 0.8548 0.0611 0.0841 0 1
184 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
184 0.0233 -0.3220 -0.0032 0.0000 3.9742 -2.8160 -0.1582 0 1
COLUMN SUMS 1 1 1 1
R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG
185 -0.0317 -0.0762 0.7067 0.0000 -0.3554 -0.0394 1.3948 0 1
185 0.9957 1.5686 0.2980 0.0000 0.8887 0.0645 0.0468 0 1
185 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
185 0.0360 -0.4924 -0.0047 0.0000 2.8863 -1.8195 -0.0668 0 1
COLUMN SUMS 1 1 1 1
R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG
186 -0.0194 -0.0644 0.7274 0.0000 -0.3260 -0.0369 1.3629 0 1
186 0.9439 2.0700 0.2818 0.0000 0.9025 0.0674 0.0300 0 1
186 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
186 0.0754 -1.0056 -0.0092 0.0000 1.8788 -0.8533 -0.0255 0 1
COLUMN SUMS 1 1 1 1
R-MATRICES S-MATRICES
ELE DFO GAS LPG ELE DFO GAS LPG
187 -0.0162 -0.0726 0.7312 0.0000 -0.3203 -0.0365 1.3568 0 1
187 0.8894 2.7074 0.2829 0.0000 0.9033 0.0698 0.0269 0 1
187 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1 1
187 0.1267 -1.6349 -0.0141 0.0000 1.5102 -0.4945 -0.0157 0 1
COLUMN SUMS 1 1 1 1
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3.2.2.6. Commodity price and income elasticities

Table 15: Price and Income elasticities

COMMODITIES PRICE ELASTICITIES

COMMODITIES INCOME ELASTICITIES

ELE DFO GAS LPG ELE DFO GAS LPG
1 -3.8052 -0.2661 0.9382 0.0000 0.7829
1 -3.1551 -0.3994 1.3089 0.0000 ‘ 0.0000 0.5612
1 1.4951 0.1759 -7.0283 0.0000 0.0000 0.0000 1.3388
1 0.0000 0.0000 0.0000 -0.6543 0.0000 0.0000 0.0000 0.1635
COMMODITIES PRICE ELASTICITIES COMMAODITIES INCOME ELASTICITIES
ELE DFO GAS LPG ELE DFO GAS LPG
2 -3.7093 -0.2594 0.9145 0.0000 0.7632
2 -3.0234 -0.3827 1.2542 0.0000 ‘ 0.0000 0.5377
2 1.5699 0.1847 -7.3801 0.0000 0.0000 0.0000 1.4058
2 0.0000 0.0000 0.0000 -0.6455 0.0000 0.0000 0.0000 0.1613
COMMODITIES PRICE ELASTICITIES COMMODITIES INCOME ELASTICITIES
ELE DFO GAS LPG ELE DFO GAS LPG
3 -3.4994 -0.2447 0.8628 0.0000 0.7200
3 -3.0143 -0.3815 1.2504 0.0000 ‘ 0.0000 0.5361
3 1.7633 0.2075 -8.2893 0.0000 0.0000 0.0000 1.5790
3 0.0000 0.0000 0.0000 -0.5707 0.0000 0.0000 0.0000 0.1426
COMMODITIES PRICE ELASTICITIES COMMODITIES INCOME ELASTICITIES
ELE DFO GAS LPG ELE DFO GAS LPG
4 -3.1930 -0.2233 0.7873 0.0000 0.6570
4 -3.1006 -0.3925 1.2863 0.0000 ‘ 0.0000 0.5515
4 2.1998 0.2588 -10.3413 0.0000 0.0000 0.0000 1.9698
4 0.0000 0.0000 0.0000 -0.5119 0.0000 0.0000 0.0000 0.1279
COMMODITIES PRICE ELASTICITIES COMMODITIES INCOME ELASTICITIES
ELE DFO GAS LPG ELE DFO GAS LPG
5 -2.8495 -0.1993 0.7026 0.0000 0.5863
5 -3.4477 -0.4364 1.4302 0.0000 ‘ 0.0000 0.6132
5 3.1921 0.3756 -15.0059 0.0000 0.0000 0.0000 2.8584
5 0.0000 0.0000 0.0000 -0.5494 0.0000 0.0000 0.0000 0.1373
COMMODITIES PRICE ELASTICITIES COMMODITIES INCOME ELASTICITIES
ELE DFO GAS LPG ELE DFO GAS LPG
6 -2.6212 -0.1833 0.6463 0.0000 0.5393
6 -4.2055 -0.5323 1.7446 0.0000 ‘ 0.0000 0.7480
6 4.7477 0.5586 -22.3189 0.0000 0.0000 0.0000 4.2514
6 0.0000 0.0000 0.0000 -0.6719 0.0000 0.0000 0.0000 0.1679
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COMMODITIES PRICE ELASTICITIES

COMMODITIES INCOME ELASTICITIES

ELE DFO GAS LPG ELE DFO GAS LPG
91 -2.5504 -0.1783 0.6288 0.0000 0.5248
91 -4.8596 -0.6151 2.0160 0.0000 ‘ 0.0000 0.8643
91 5.9201 0.6965 -27.8306 0.0000 0.0000 0.0000 5.3013
91 0.0000 0.0000 0.0000 -0.5295 0.0000 0.0000 0.0000 0.1323
COMMODITIES PRICE ELASTICITIES COMMODITIES INCOME ELASTICITIES
ELE DFO GAS LPG ELE DFO GAS LPG
92 -2.5847 -0.1807 0.6373 0.0000 0.5318
92 -4.2681 -0.5402 1.7706 0.0000 | 0.0000 0.7591
92 5.5388 0.6517 -26.0380 0.0000 0.0000 0.0000 4.9598
92 0.0000 0.0000 0.0000 -0.5109 0.0000 0.0000 0.0000 0.1277
COMMODITIES PRICE ELASTICITIES COMMODITIES INCOME ELASTICITIES
ELE DFO GAS LPG ELE DFO GAS LPG
93 -2.8076 -0.1963 0.6922 0.0000 0.5777
93 -3.3076 -0.4187 1.3721 0.0000 ‘ 0.0000 0.5883
93 3.5772 0.4209 -16.8164 0.0000 0.0000 0.0000 3.2032
93 0.0000 0.0000 0.0000 -0.4391 0.0000 0.0000 0.0000 0.1097
COMMODITIES PRICE ELASTICITIES COMMODITIES INCOME ELASTICITIES
ELE DFO GAS LPG ELE DFO GAS LPG
94 -3.2848 -0.2297 0.8099 0.0000 0.6759
94 -2.9131 -0.3687 1.2085 0.0000 ‘ 0.0000 0.5181
94 2.1038 0.2475 -9.8902 0.0000 0.0000 0.0000 1.8839
94 0.0000 0.0000 0.0000 -0.4158 0.0000 0.0000 0.0000 0.1039
COMMODITIES PRICE ELASTICITIES COMMODITIES INCOME ELASTICITIES
ELE DFO GAS LPG ELE DFO GAS LPG
95 -3.7909 -0.2651 0.9347 0.0000 0.7800
95 -2.8252 -0.3576 1.1720 0.0000 ‘ 0.0000 0.5025
95 1.5546 0.1829 -7.3083 0.0000 0.0000 0.0000 1.3921
95 0.0000 0.0000 0.0000 -0.4775 0.0000 0.0000 0.0000 0.1193
COMMODITIES PRICE ELASTICITIES COMMODITIES INCOME ELASTICITIES
ELE DFO GAS LPG ELE DFO GAS LPG
96 -4.1089 -0.2873 1.0131 0.0000 0.8454
96 -2.6536 -0.3359 1.1008 0.0000 | 0.0000 0.4720
96 1.3843 0.1629 -6.5077 0.0000 0.0000 0.0000 1.2396
96 0.0000 0.0000 0.0000 -0.5129 0.0000 0.0000 0.0000 0.1282

97



COMMODITIES PRICE ELASTICITIES

COMMODITIES INCOME ELASTICITIES

ELE DFO GAS LPG ELE DFO GAS LPG
182 -3.7483 -0.2621 0.9242 0.0000 0.7712
182 -3.6113 -0.4571 1.4981 0.0000 ‘ 0.0000 0.6423
182 1.5857 0.1866 -7.4546 0.0000 0.0000 0.0000 1.4200
182 0.0000 0.0000 0.0000 -0.3096 0.0000 0.0000 0.0000 0.0774
COMMODITIES PRICE ELASTICITIES COMMODITIES INCOME ELASTICITIES
ELE DFO GAS LPG ELE DFO GAS LPG
183 -3.4125 -0.2386 0.8414 0.0000 0.7021
183 -4.2579 -0.5390 1.7664 0.0000 | 0.0000 0.7573
183 1.9041 0.2240 -8.9512 0.0000 0.0000 0.0000 1.7051
183 0.0000 0.0000 0.0000 -0.2643 0.0000 0.0000 0.0000 0.0661
COMMODITIES PRICE ELASTICITIES COMMODITIES INCOME ELASTICITIES
ELE DFO GAS LPG ELE DFO GAS LPG
184 -3.0725 -0.2148 0.7575 0.0000 0.6322
184 -4.1848 -0.5297 1.7361 0.0000 ‘ 0.0000 0.7443
184 2.5700 0.3024 -12.0817 0.0000 0.0000 0.0000 2.3014
184 0.0000 0.0000 0.0000 -0.2528 0.0000 0.0000 0.0000 0.0632
COMMODITIES PRICE ELASTICITIES COMMODITIES INCOME ELASTICITIES
ELE DFO GAS LPG ELE DFO GAS LPG
185 -2.7745 -0.1940 0.6841 0.0000 0.5709
185 -4.2126 -0.5332 1.7476 0.0000 ‘ 0.0000 0.7493
185 3.8847 0.4570 -18.2618 0.0000 0.0000 0.0000 3.4786
185 0.0000 0.0000 0.0000 -0.2886 0.0000 0.0000 0.0000 0.0721
COMMODITIES PRICE ELASTICITIES COMMODITIES INCOME ELASTICITIES
ELE DFO GAS LPG ELE DFO GAS LPG
186 -2.5829 -0.1806 0.6368 0.0000 0.5314
186 -5.3010 -0.6710 2.1991 0.0000 ‘ 0.0000 0.9428
186 5.7172 0.6726 -26.8764 0.0000 0.0000 0.0000 5.1195
186 0.0000 0.0000 0.0000 -0.3511 0.0000 0.0000 0.0000 0.0877
COMMODITIES PRICE ELASTICITIES COMMODITIES INCOME ELASTICITIES
ELE DFO GAS LPG ELE DFO GAS LPG
187 -2.5192 -0.1762 0.6211 0.0000 0.5184
187 -6.9410 -0.8786 2.8794 0.0000 | 0.0000 1.2345
187 6.6379 0.7810 -31.2047 0.0000 0.0000 0.0000 5.9440
187 0.0000 0.0000 0.0000 -0.3694 0.0000 0.0000 0.0000 0.0923
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The table above requires some comments:
1. All the own-price elasticities are negative. Gas is the commodity with the highest

own-price elasticity. The households are more sensitive to the change in gas price.
This means that an increase in gas price pushes them to significantly adjust their gas
consumption.

2. Gas and electricity appear to be substitute. This may explain why electricity enters
negatively the T-good 1 budget share.

3. DFO and gas are also substitute.

3.3. The SMIT Under the AIDS Framework

So far, the Preference Independent Transformation technique has been exclusively
associated with the Rotterdam model. Two reasons can be highlighted for this situation. Firstly,
the Rotterdam model is one of the most thoroughly elaborated microeconomic models. It comes
out after the Barten Fundamental Equation. Secondly, the Preference Independence
Transformation is born out of the Rotterdam model setting. There is an umbilical-like cord tying
the PIT to the Rotterdam model. It may be possible to apply it in its original form to the AIDS if
we could identify a specific effect whose diagonalization concomitantly implies a

diagonalization of the Hessian matrix of the utility function.

In this chapter, we apply the SMIT technique to the AIDS with the purpose of
conducting a comparative analysis of the results obtained with the two frameworks. We have
seen that the AIDS model is rival to the Rotterdam model in the literature. As in the Rotterdam
model, we may have many levels of formulations. In its primary specification, the AIDS is
nonlinear in the parameters as the level of price in the main equation presents a Translog

structure. The AIDS can, however, be linearly expressed relatively to the parameters if we
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approximate, by assumption, the level of price by the Stone’s index. We have also seen that a
third possibility is to differentiate the AIDS in order to have what is commonly denoted as the

Differential AIDS (DAIDS.)

The choice of which formulation (full AIDS, LA/AIDS or DAIDS) is used depends on

how well the Hessian matrix lends itself to the diagonalization.

3.3.1. The matrix to be diagonalized
The choice is between the DAIDS and the full AIDS Slutsky matrices. From the very

start, we eliminate the LA/AIDS Slutsky matrix because of a circularity issue raised on page 29.

oq; Pi Pj
HPAIDS _ _ap',- B - II\/IJ [ Bi —wid; +ww; | (3.1.36)
o Pi Pj M
HAIDS :_ap; y - |IV|J [ﬁij + BB '”(fj—wﬁij +Win:| (3.1.37)

We observe that the Hessian of the AIDS encompasses the LA/AIDS Hessian. In

addition, it contains a quantity, w;s;; , that does not reflect any preference interdependencies

ij?
between the goods. The quantity is however important since it scales down the diagonal of the
Hessian matrix. For this reason, we may legitimately think that the quantity is very crucial for the

semi-negative definiteness of the Hessian matrix. We choose to make the independent

transformation on the full AIDS since it capture more the interaction between the commodities.

Our goal is first to conduct the full version estimation. As in the Rotterdam model there is
necessity to address the redundancy issue and to find the standard deviations of the dropped

equations. Concerning the procedure to drop the last equation, we will show it while questioning
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the possibility to use conditional demand equation. Naturally, all the estimations we perform
below first drops one equation. Then we will show how to uncover the dropped equation
parameters and their standard deviations. Second, we will respectively display the dynamics of
uncompensated price ealsticities, the income elasticities, and the Hicksian price elasticities. The
order is important in view of the fact that AIDS is derived from a cost function. There is

precedence of the uncompensated elasticities over the compensated elasticities computations.
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3.3.2. The full AIDS estimation with all regularity conditions imposed

3.3.2.1. The results under equation 4 dropped

Table 16: Full version estimation

Equations Obs Parms RMSE R-sq Constants

wilt 184 11 .0951748 0.3968 a0

w2t 184 11 .0089544 0.3992 a0

w3t 184 11 .0904787 0.3863 a0

Coef. Std. Err. z P>z [95% Conf. Interval]

/al -1.572743 .3067773 -5.13 0.000 -2.174015 -.97147
/b1l .0926476 .0352658 2.63 0.009 .0235278 .1617674
/b12 .0034667 .0112238 0.31 0.757 -.0185316 .0254649
/b13 -.1024101 .0391904 -2.61 0.009 -.1792218 -.0255983
/q1 -.1562817 .0237467 -6.58 0.000 -.2028244 -.109739
/a0 44.20367 5.243765 8.43 0.000 33.92608 54.48126
/a2 -.3293933 1723623 -1.91 0.056 -.6672171 .0084305
/a3 3.181137 .5780746 5.50 0.000 2.048131 4.314142
/b22 .0011453 .0113568 0.10 0.920 -.0211137 .0234044
/b23 -.0410222 .0200825 -2.04 0.041 -.0803832 -.0016612
/b33 .1904219 .0613573 3.10 0.002 .0701637 .31068
/q2 -.0163288 .0066383 -2.46 0.014 -.0293396 -.0033181
/a3 .1789558 .0214131 8.36 0.000 .1369869 .2209246

3.3.2.2. Parameter derivations and corresponding standard deviations

Parameter derivation

The table above shows 13 parameters:

- Six parameters are g; ’s. They would be nine without the symmetry conditions.

- Three parameters are ¢; ’s and three others are £ ’s.

- One parameter is o
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The derivation of the fourth equation parameters will use the following equations:

B = —(Pu + B2 + Pr3)
PBos = (P2 + Pao + f23)
Bas = —(Piz + oz + Pa3)

(3.1.38)
Bas = —(Bra + Pos + Ba) = Piu + Paz + P33 + 2P12 + 213 + 203
ds = —(Ch + 92 + G3)
a4 :1—a1—a2 —a3
The complete estimation is summarized by the following table.
Table 17: Complete results
Matrix f; MATRIX | MATRIX
Iprice ele Iprice dfo Iprice gas Iprice Ipg b ai
Iprice ele 0.09265 -0.15628 -1.57274
Iprice dfo 0.00347 0.00115 -0.01633 -0.32939
Iprice gas -0.10241 -0.04102 0.19042 0.17896 3.18114
Iprice Ipg 0.00630 0.03641 -0.04699 0.00428 -0.00635 -0.27900

Standard deviation

We use the formula (3.1.12) to derive the variance-covariance of the last equation and,

consequently, the standard deviations.

The resulting matrix Lg ¢ of the system (3.1.38) is given by the following table:

a Pu P Pz B aw i fr B3 P P> B
B |0 -1 -1 -1 0 0 0 0 0 0 0 0 0
Py |0 0 -1 0 0 0 0 0 -1 -1 0 0 0
B |0 0 0 -1 0 0 0 0 0 -1 -1 0 0
Pas |0 1 2 2 0 0 0 0 1 2 0 0
By |0 0 0 0 -1 0 0 0 0 0 0 -1 -1
ay (-1 0 0 0 0 0 -1 -1 0 0 0 0
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The asymptotic variance-covariance of the last equation is given by the STATA software
can be found in appendix D.The estimated variance-covariance of the dropped equation

parameters is given by Table 18.

Table 18: Estimated variance-covariance for equation 4

Bia Poa B Paa Ba ay
Aa | 0.000454

Pas -4.7E-05 0.000106

P -0.00081 6.72E-05 0.001587

Bas | 0.000399 -0.00013 -0.00085 0.000574

Pa -0.00026 3.93E-05 0.000543 -0.00032  0.00021

ay -0.00597 0.000614 0.012294 -0.00693 0.004545 0.100835
The resulting standard deviations are given by Table 19.

Table 19: Standard deviations for the last equation parameters

Gﬂu 0,324 O-ﬂ34 Gﬂ44 0ﬂ4 O-a4

0213150182 .0102727796 .0398351603 .0239486952 .0144941367 .3175451779

3.3.3. The matrix to be diagonalized

Table 20: Matrix H, , and corresponding roots

ELE DFO GAS LPG ROOTS
ELE .85957598 1.0588
DFO 06946257 .0699234 0.4576
GAS  -.27635391 -.06435829 .64678228 0.0606
LPG .02388973 .00214189 -.00970955 .0507193 0.0500

Before we proceed to the diagonalization, it is informative to check the dynamics of the
Hicksian price elasticities. To the contrary of the Rotterdam model, with the AIDS model we

first assess the dynamic of the uncompensated price elasticities. The Hicksian price elasticity
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matrices are deduced through the Channel of the Slutsky equation matrices. We in fact have

shown the procedure while we were computing the Hessian matrix.

The table below shows that all uncompensated own price elasticities are negative. The
magnitude order of the income elasticities ranks the commodities as follows: Gas, electricity,

DFO, and LPG.

The table Table 22 displays the dynamics of the Hicksian elasticities. As expected, all the
direct price elasticities are negative. The highest direct price elasticities in absolute value are
related to gas. Demand for gas is very sensitive to its price. The results show that electricity and

gas are substitute. DFO and gas are also substitute. Only Gas and LPG are complement.

Table 23 is related to the transformation, strictly speaking according to the SMIT. It
reveals surprising results. Firstly, the eigenvalues of the transformation do no longer correspond
to the transformed good expenditure elasticity. This could be understood if we consider the

(Rn,nZt + Rn,n®n,1)A

and
(RynZy)s

expression of the T-good expenditure elasticity matrices given by H, =

the fact that this equation cannot be related to the eigenvalues as in the Rotterdam model.
Secondly, it becomes possible to see basic wants that are inferior. To be precise, T-2 is an
inferior good. We may see this as the most basic T-good. For this good, gas and LPG negatively
enter it. This excludes heating to be the T-good. Gas contributes most on T3 and T4. Since the T

good expenditure elasticity is higher in T3 than in T4, we may think that T3 is heating.
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3.3.4. The dynamics of the uncompensated elasticities and income elasticities

Table 21: uncompensated price and income elasticities

Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
1 ELE -1.1864  -0.0340 0.4963  -0.0057 0.7299
1 DFO ‘ -0.3724  -1.0271  -0.0069 0.7543 ‘ 0.0000 0.6521
1 GAS 0.3503 -0.0400 -1.7041  -0.0992 0.0000 0.0000 1.4930
1 LPG -0.1600 3.0776  -2.7049  -0.6622 0.0000 0.0000 0.0000 0.4494
Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
2 ELE -1.1817  -0.0336 0.4843  -0.0058 0.7368
2 DFO ‘ -0.3562  -1.0265  -0.0057 0.7211 ‘ 0.0000 0.6673
2 GAS 0.3677 -0.0411 -1.7404 -0.1037 0.0000 0.0000 1.5174
2 LPG -0.1621 3.1151 -2.7372  -0.6584 0.0000 0.0000 0.0000 0.4426
Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
3 ELE -1.1715  -0.0333 0.4588  -0.0061 0.7521
3 DFO ‘ -0.3539  -1.0285  -0.0020 0.7144 ‘ 0.0000 0.6700
3 GAS 0.4134 -0.0422 -1.8367 -0.1147 0.0000 0.0000 1.5802
3 LPG -0.1591 3.0356 -2.6645 -0.6681 0.0000 0.0000 0.0000 0.4561
Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
4 ELE -1.1577 -0.0317 0.4214 -0.0065 0.7744
4 DFO ‘ -0.3689  -1.0316 0.0037 0.7385 ‘ 0.0000 0.6582
4 GAS 0.5195 -0.0482 -2.0536 -0.1398 0.0000 0.0000 1.7221
4 LPG -0.1621 3.0179 -2.6426 -0.6720 0.0000 0.0000 0.0000 0.4587
Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
5 ELE -1.1432  -0.0294 0.3812  -0.0070 0.7984
5 DFO ‘ -0.4133  -1.0371 0.0130 0.8162 ‘ 0.0000 0.6212
5 GAS 0.7665 -0.0641  -2.5538 -0.1967 0.0000 0.0000 2.0481
5 LPG -0.1835 3.2826  -2.8635 -0.6463 0.0000 0.0000 0.0000 0.4107
Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
6 ELE -1.1328  -0.0276 0.3533  -0.0069 0.8140
6 DFO | -0.4952  -1.0454 0.0194 0.9734 | 0.0000 0.5478
6 GAS 1.1494  -0.0919 -3.3318 -0.2896 0.0000 0.0000 2.5639
6 LPG -0.2217 3.9171 -3.4124  -0.5795 0.0000 0.0000 0.0000 0.2965
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Obs.

Commodities

Uncompensated elasticities

Commodity income elasticity

ELE DFO GAS LPG ELE DFO GAS LPG
116 ELE -1.1456  -0.0276 0.3724  -0.0065 0.8074
116 DFO } -0.3602  -1.0302 0.0242 0.6831 } 0.0000 0.6831
116 GAS 1.1635 -0.0956 -3.2838  -0.2822 0.0000 0.0000 2.4982
116 LPG -0.1275 1.9925 -1.7223  -0.7852 0.0000 0.0000 0.0000 0.6425
Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
117 ELE -1.1557  -0.0278 0.3973  -0.0048 0.7910
117 DFO } -0.2899  -1.0219 0.0113 0.5581 } 0.0000 0.7424
117 GAS 0.8209 -0.0794 -2.6003 -0.2137 0.0000 0.0000 2.0724
117 LPG -0.0996 1.6096 -1.3981 -0.8236 0.0000 0.0000 0.0000 0.7117
Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
118 ELE -1.1835 -0.0321 0.4678 -0.0054 0.7532
118 DFO ‘ -0.2542  -1.0186 0.0087 0.4902 ‘ 0.0000 0.7738
118 GAS 0.5064 -0.0509 -1.9857 -0.1328 0.0000 0.0000 1.6630
118 LPG -0.0884 1.4360 -1.2480 -0.8425 0.0000 0.0000 0.0000 0.7429
Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
119 ELE -1.2171  -0.0380 0.5534  -0.0068 0.7084
119 DFO } -0.2556  -1.0187 0.0093 0.4922 } 0.0000 0.7728
119 GAS 0.3686 -0.0370 -1.7175  -0.0959 0.0000 0.0000 1.4818
119 LPG -0.1059 1.7137 -1.4886 -0.8124 0.0000 0.0000 0.0000 0.6932
Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
120 ELE -1.2362  -0.0411 0.6024  -0.0073 0.6822
120 DFO } -0.2877  -1.0209 0.0099 0.5546 } 0.0000 0.7440
120 GAS 0.3208 -0.0326  -1.6244  -0.0837 0.0000 0.0000 1.4199
120 LPG -0.1200 1.9481 -1.6928 -0.7866 0.0000 0.0000 0.0000 0.6513
Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
121 ELE -1.2374  -0.0415 0.6061  -0.0067 0.6794
121 DFO } -0.3219  -1.0234 0.0097 0.6228 } 0.0000 0.7128
121 GAS 0.3114 -0.0318 -1.6064 -0.0824 0.0000 0.0000 1.4092
121 LPG -0.1180 1.9334 -1.6817 -0.7875 0.0000 0.0000 0.0000 0.6539
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Obs.

Commodities

Uncompensated elasticities

Commodity income elasticity

ELE DFO GAS LPG ELE DFO GAS LPG
182 ELE -1.1906  -0.0295 0.4873 0.0002 0.7326
182 DFO ‘ -0.4019 -1.0229 -0.0127 0.8051 ‘ 0.0000 0.6324
182 GAS 0.3855  -0.0509 -1.7431 -0.1172 0.0000 0.0000 1.5257
182 LPG -0.0649 1.1612  -1.0207 -0.8684 0.0000 0.0000 0.0000 0.7929
Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
183 ELE -1.1732  -0.0292 0.4442  -0.0007 0.7588
183 DFO ‘ -0.4685 -1.0311 -0.0066 0.9327 ‘ 0.0000 0.5735
183 GAS 0.4619 -0.0539 -1.8962 -0.1373 0.0000 0.0000 1.6255
183 LPG -0.0728 1.2793  -1.1223  -0.8555 0.0000 0.0000 0.0000 0.7714
Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
184 ELE -1.1570  -0.0273 0.4023 -0.0014 0.7834
184 DFO | -0.4530 -1.0319 0.0000 0.8949 | 0.0000 0.5901
184 GAS 0.6270 -0.0684 -2.2186 -0.1816 0.0000 0.0000 1.8415
184 LPG -0.0789 1.3565 -1.1874  -0.8475 0.0000 0.0000 0.0000 0.7573
Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
185 ELE -1.1446  -0.0259 0.3693  -0.0025 0.8038
185 DFO ‘ -0.4547  -1.0343 0.0101 0.8858 ‘ 0.0000 0.5931
185 GAS 0.9658 -0.0954 -2.8786 -0.2670 0.0000 0.0000 2.2753
185 LPG -0.0923 1.5271  -1.3314  -0.8299 0.0000 0.0000 0.0000 0.7265
Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
186 ELE -1.1364  -0.0251 0.3477 -0.0031 0.8169
186 DFO ‘ -0.5709  -1.0451 0.0213 1.1021 ‘ 0.0000 0.4927
186 GAS 1.4409 -0.1320 -3.8050 -0.3862 0.0000 0.0000 2.8823
186 LPG -0.1144 1.8463 -1.6054 -0.7956 0.0000 0.0000 0.0000 0.6691
Obs. Commodities Uncompensated elasticities Commodity income elasticity
ELE DFO GAS LPG ELE DFO GAS LPG
187 ELE -1.1335  -0.0244 0.3398  -0.0032 0.8213
187 DFO ‘ -0.7437  -1.0583 0.0291 1.4325 ‘ 0.0000 0.3404
187 GAS 1.6786  -0.1545 -4.2637 -0.4473 | 0.0000  0.0000  3.1869
187 LPG -0.1165 1.8696 -1.6248 -0.7932 0.0000 0.0000 0.0000 0.6649
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3.3.5. The dynamics of the Hicksian elasticities
Table 22: Hicksian elasticities

Obs.

Obs.

Obs.

Obs.

Obs.

Obs.

[S2 BN B RV | B b b w w w w N N NN LT T o

[e) I e) B e) B @) }

Commodities

ELE
DFO
GAS
LPG

Commodities

ELE
DFO
GAS
LPG

Commodities

ELE
DFO
GAS
LPG

Commodities

ELE
DFO
GAS
LPG

Commodities

ELE
DFO
GAS
LPG

Commodities

ELE
DFO
GAS
LPG

Compensated elasticities

ELE DFO GAS LPG
-0.76417 0.00022 0.76125 0.00270
0.00485 -0.99654 0.22984 0.76184
1.21396 0.03012 -1.16213 -0.08194
0.10001 3.09866 -2.54169 -0.65698
Compensated elasticities
ELE DFO GAS LPG
-0.74427 0.00257 0.73910 0.00260
0.04003 -0.99375 0.22506 0.72866
1.26862 0.03339 -1.21563 -0.08638
0.10067 3.13685 -2.58417 -0.65335
Compensated elasticities
ELE DFO GAS LPG
-0.69736 0.00391 0.69077 0.00268
0.06851 -0.99536 0.20461 0.72224
1.40960 0.03601 -1.34934 -0.09627
0.12850 3.05817 -2.52385 -0.66282
Compensated elasticities
ELE DFO GAS LPG
-0.62130 0.00535 0.61336 0.00259
0.08706 -1.00010 0.16687 0.74617
1.71228 0.03407 -1.62678 -0.11957
0.15565 3.03981 -2.52887 -0.66659
Compensated elasticities
ELE DFO GAS LPG
-0.52415 0.00501 0.51752 0.00161
0.06837 -1.01033 0.11907 0.82289
2.35452 0.02423 -2.20412 -0.17463
0.13494 3.30031 -2.79337 -0.64188
Compensated elasticities
ELE DFO GAS LPG
-0.44868 0.00182 0.44643 0.00044
-0.03480 -1.02559 0.08206 0.97833
3.30426 0.00067 -3.03846 -0.26646
0.02750 3.92783 -3.37849 -0.57683
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Obs.

116
116
116
116

Obs.

117
117
117
117

Obs.

118
118
118
118

Obs.

119
119
119
119

Obs.

120
120
120
120

Obs.

121
121
121
121

Commodities

ELE
DFO
GAS
LPG

Commodities

ELE
DFO
GAS
LPG

Commodities

ELE
DFO
GAS
LPG

Commodities

ELE
DFO
GAS
LPG

Commodities

ELE
DFO
GAS
LPG

Commodities

ELE
DFO
GAS
LPG

Compensated elasticities

ELE DFO GAS LPG
-0.49065 0.01401 0.46884 0.00779
0.19399 -0.99499 0.10575 0.69525
3.19020 0.03308 -2.98543 -0.23785
0.39368 2.02560 -1.64552 -0.77377
Compensated elasticities
ELE DFO GAS LPG
-0.56424 0.02234 0.52930 0.01259
0.26522 -0.97485 0.13521 0.57441
2.37054 0.05197 -2.25443 -0.16808
0.43253 1.65474 -1.27931 -0.80796
Compensated elasticities
ELE DFO GAS LPG
-0.70654 0.02224 0.67114 0.01316
0.23580 -0.96274 0.21759 0.50934
1.55943 0.06912 -1.53681 -0.09173
0.38199 1.48965 -1.04752 -0.82413
Compensated elasticities
ELE DFO GAS LPG
-0.83734 0.01295 0.81653 0.00786
0.15858 -0.96315 0.29637 0.50821
1.16288 0.06946 -1.16711 -0.06523
0.26568 1.76349 -1.23111 -0.79806
Compensated elasticities
ELE DFO GAS LPG
-0.90068 0.00238 0.89315 0.00514
0.07827 -0.97340 0.32703 0.56810
1.01917 0.05801 -1.01928 -0.05790
0.20034 1.98966 -1.41524 -0.77476
Compensated elasticities
ELE DFO GAS LPG
-0.90616 -0.00283 0.90321 0.00578
0.02555 -0.98284 0.32138 0.63592
0.99839 0.04832 -0.99010 -0.05661
0.20075 1.97054 -1.39576 -0.77553
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Obs.

182
182
182
182

Obs.

183
183
183
183

Obs.

184
184
184
184

Obs.

185
185
185
185

Obs.

186
186
186
186

Obs.

187
187
187
187

Commodities

ELE
DFO
GAS
LPG

Commodities

ELE
DFO
GAS
LPG

Commodities

ELE
DFO
GAS
LPG

Commodities

ELE
DFO
GAS
LPG

Commodities

ELE
DFO
GAS
LPG

Commodities

ELE
DFO
GAS
LPG

Compensated elasticities

ELE DFO GAS LPG
-0.76237 0.00305 0.73670 0.02262
-0.03230 -0.99483 0.20261 0.82452

1.27728 0.01692 -1.22373 -0.07047
0.39850 1.19638 -0.75080 -0.84408
Compensated elasticities

ELE DFO GAS LPG
-0.68160 -0.00012 0.66132 0.02040
-0.09693 -1.00916 0.15751 0.94858

1.51501 0.00836 -1.43114 -0.09223
0.42690 1.30881 -0.90164 -0.83407
Compensated elasticities

ELE DFO GAS LPG
-0.59189 0.00395 0.56887 0.01907
-0.02736 -1.00840 0.12544 0.91033

1.95543 0.00497 -1.82699 -0.13341
0.46741 1.38669 -1.02636 -0.82774
Compensated elasticities

ELE DFO GAS LPG

-0.50453 0.00630 0.48211 0.01612
0.01761 -1.01049 0.09337 0.89951
2.77770 -0.00412 -2.55934 -0.21423
0.48628 1.55621 -1.22942 -0.81307

Compensated elasticities

ELE DFO GAS LPG
-0.43911 0.00122 0.42536 0.01253
-0.15040 -1.02928 0.06817 1.11151

3.90108 -0.03918 -3.53098 -0.33091
0.45673 1.86781 -1.54178 -0.78276
Compensated elasticities

ELE DFO GAS LPG
-0.41530 -0.00405 0.40697 0.01238
-0.44607 -1.04991 0.05699 1.43899

4.46549 -0.07562 -4.00293 -0.38695
0.46497 1.88609 -1.57042 -0.78065

111



3.3.6. Composition matrices T , transformation matrices R and S, and T-good income

elasticities
Table 23: AIDS composltion matrices and transformation matrices

Composition matrices

SUM EIE DFO GAS PG Sum Roots T-Exp. Elast.
1 0.0150 0.0022 -0.0091 0.0167 0.0249 4.4584 0.2568
1 0.0318 0.0086 -0.0326 -0.0014 0.0064 ‘ 2.5739 | -3.1782
1 -0.0386 0.0735 0.1259 0.0005 0.1613 1.1242 1.2892
1 0.5702 -0.0374 0.2788 -0.0042 0.8074 1.0013 0.9984
SUM 0.5785 0.0469 0.3630 0.0115 1.0000
ELE DF((_‘)omposmlonGrzztrlces PG Sum Roots T-Exp. Elast.
2 0.0144 0.0021 -0.0088 0.0163 0.0239 45121 0.2429
2 0.0218 0.0058 -0.0235 -0.0010 0.0032 ‘ 2.5906 ‘ -5.1063
2 0.0305 0.1032 0.1956 -0.0001 0.3292 1.1062 1.1789
2 0.5270 -0.0620 0.1825 -0.0039 0.6437 0.9893 0.9666
SUM 0.5937 0.0491 0.3458 0.0114 1.0000
ELE DF%omposmonGn;:trlces T Sum Roots T-Exp. Elast.
3 0.0149 0.0022 -0.0100 0.0163 0.0235 4.4071 0.1879
3 0.0012 0.0003 -0.0015 -0.0001 0.0000 ‘ 2.7148 ‘ -100.3316
3 0.1067 0.1160 0.2063 -0.0008 0.4282 1.1421 1.1294
3 0.5076 -0.0691 0.1136 -0.0037 0.5483 0.9568 0.9360
SUM 0.6304 0.0495 0.3084 0.0117 1.0000
ELE DFCoomp05|t|onGn;:tr|ces PG Sum Roots T-Exp. Elast.
4 0.0153 0.0026 -0.0123 0.0152 0.0207 4.4007 -0.0370
4 -0.0208 -0.0059 0.0302 0.0018 0.0053 ‘ 3.0982 | 6.2109
4 0.1248 0.1147 0.1480 -0.0012 0.3863 1.2357 1.1039
4 0.5733 -0.0636 0.0820 -0.0040 0.5877 0.9059 0.9213
SUM 0.6927 0.0478 0.2478 0.0117 1.0000
ELE DF((_‘)omposmlonGrzztrlces PG Sum Roots T-Exp. Elast.
5 0.0131 0.0027 -0.0156 0.0090 0.0093 4.8696 -1.7254
5 -0.0277 -0.0084 0.0523 0.0069 0.0231 ‘ 4.0976 ‘ 3.5757
5 0.1034 0.0997 0.0779 -0.0011 0.2798 1.4180 1.0848
5 0.6865 -0.0509 0.0561 -0.0040 0.6878 0.8441 0.9157
SUM 0.7754 0.0431 0.1707 0.0108 1.0000
ELE DF%omposmonGn;:trlces PG Sum Roots T-Exp. Elast.
6 -0.0041 -0.0010 0.0070 -0.0012 0.0006 6.2926 21.8365
6 -0.0082 -0.0037 0.0279 0.0145 0.0304 ‘ 5.4284 ‘ 2.2055
6 0.0707 0.0779 0.0409 -0.0008 0.1888 1.7136 1.0859
6 0.7821 -0.0371 0.0386 -0.0035 0.7802 0.8006 0.9156
SUM 0.8404 0.0361 0.1144 0.0090 1.0000

112



R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
1 0.0260 0.0467 -0.0249 1.4472 0.6051 0.0882 -0.3644 0.6710 1.0000
1 0.0550 0.1836 -0.0898 -0.1226 4.9466 1.3385 -5.0656 -0.2194 1.0000
1 -0.0667 1.5655 0.3467 0.0425 -0.2392 0.4557 0.7805 0.0030 1.0000
1 0.9856 -0.7958 0.7681 -0.3671 0.7062 -0.0463 0.3453  -0.0052 1.0000
SUM 1 1 1 1
R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
2 0.0243 0.0421 -0.0255 1.4296 0.6019 0.0865 -0.3686 0.6802 1.0000
2 0.0367 0.1178 -0.0679 -0.0843 6.9091 1.8309 -7.4362  -0.3038 1.0000
2 0.0513 2.1026 0.5656 -0.0062 0.0925 0.3135 0.5942  -0.0002 1.0000
2 0.8877 -1.2625 0.5278 -0.3391 0.8187 -0.0963 0.2836 -0.0060 1.0000
SUM 1 1 1 1
R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
3 0.0237 0.0453 -0.0323 1.3947 0.6353 0.0954  -0.4241 0.6933 1.0000
3 0.0020 0.0068 -0.0048 -0.0057 0.4979  27.1899 -1.2130 -5.3934 1.0000
3 0.1692 2.3450 0.6689 -0.0687 0.2491 0.2710 0.4818 -0.0019 1.0000
3 0.8052 -1.3971 0.3682 -0.3202 0.9258 -0.1261 0.2071  -0.0068 1.0000
SUM 1 1 1 1
R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
4 0.0221 0.0535 -0.0498 1.2924 0.7402 0.1236  -0.5968 0.7330 1.0000
4 -0.0300 -0.1229 0.1218 0.1502 -3.9333 -1.1113 5.7114 0.3332 1.0000
4 0.1802 2.4006 0.5971 -0.1007 0.3231 0.2969 0.3830 -0.0031 1.0000
4 0.8277 -1.3312 0.3309 -0.3419 0.9755 -0.1082 0.1396 -0.0068 1.0000
SUM 1 1 1 1
R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
5 0.0170 0.0630 -0.0911 0.8322 1.4181 0.2931 -1.6781 0.9669 1.0000
5 -0.0357 -0.1950 0.3063 0.6431 -1.1996 -0.3640 2.2638 0.2998 1.0000
5 0.1334 2.3118 0.4562 -0.1046 0.3695 0.3561 0.2784  -0.0040 1.0000
5 0.8854 -1.1797 0.3286 -0.3708 0.9982 -0.0739 0.0816  -0.0058 1.0000
SUM 1 1 1 1
R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
6 -0.0049 -0.0288 0.0608 -0.1277 -6.6810 -1.6753  11.2105 -1.8542 1.0000
6 -0.0098 -0.1027 0.2439 1.6024 -0.2704 -0.1218 0.9172 0.4750 1.0000
6 0.0842 2.1577 0.3578 -0.0896 0.3747 0.4127 0.2169 -0.0043 1.0000
6 0.9306 -1.0262 0.3375 -0.3852 1.0024 -0.0475 0.0495 -0.0045 1.0000
SUM 1 1 1 1
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Composition matrices

SUM Sum Roots T-Exp. Elast.
ELE DFO GAS LPG
116 -0.0173 -0.0043 0.0322 -0.0011 0.0095 5.7833 6.6329
116 0.0120 0.0002 0.0080 0.0295 0.0497 ‘ 2.8482 ‘ 0.9805
116 0.1962 0.1236 0.0527 -0.0041 0.3684 1.2592 1.0094
116 0.6204 -0.0680 0.0266 -0.0064 0.5725 0.7985 0.9026
SUM 0.8113 0.0515 0.1194 0.0177 1.0000
Composition matrices Sum Roots T-Exp. Elast.
ELE DFO GAS LPG
117 -0.0191 -0.0045 0.0320 -0.0013 0.0070 4.2585 6.6670
117 0.0155 -0.0002 0.0141 0.0381 0.0674 ‘ 2.2958 ‘ 1.0143
117 0.4340 0.1499 0.1102 -0.0102 0.6839 1.0817 0.9881
117 0.3174 -0.0817 0.0105 -0.0045 0.2417 0.7972 0.8646
SUM 0.7477 0.0634 0.1669 0.0220 1.0000
Composition matrices Sum Roots T-Exp. Elast.
ELE DFO GAS LPG
118 0.0084 0.0018 -0.0104 0.0009 0.0006 2.9311 -15.3566
118 0.0009 -0.0042 0.0338 0.0405 0.0710 ‘ 2.0228 | 1.1786
118 0.6122 0.0832 0.2482 -0.0165 0.9271 1.0471 0.9988
118 0.0117 -0.0086 -0.0016 -0.0002 0.0013 0.7762 -0.5729
SUM 0.6332 0.0722 0.2699 0.0247 1.0000
Composition matrices Sum Roots T-Exp. Elast.
ELE DFO GAS LPG
119 0.0792 0.0138 -0.0656 0.0220 0.0494 2.7092 -0.3080
119 -0.0206 -0.0047 0.0229 0.0075 0.0052 ‘ 2.2316 ‘ 4.0234
119 0.5167 0.0034 0.3795 -0.0094 0.8903 1.0427 1.0385
119 -0.0394 0.0593 0.0346 0.0005 0.0551 0.7867 1.2638
SUM 0.5360 0.0719 0.3714 0.0207 1.0000
Composition matrices Sum Roots T-Exp. Elast.
ELE DFO GAS LPG
120 0.0647 0.0104 -0.0436 0.0288 0.0603 2.9431 0.1441
120 0.0328 0.0068 -0.0280 -0.0052 0.0062 ‘ 2.3175 ‘ -2.5378
120 0.4240 -0.0547 0.3671 -0.0059 0.7305 1.0275 1.0486
120 -0.0296 0.1014 0.1307 0.0005 0.2030 0.8606 1.1881
SUM 0.4918 0.0638 0.4262 0.0182 1.0000
Composition matrices Sum Roots T-Exp. Elast.
ELE DFO GAS LPG
121 0.0704 0.0120 -0.0473 0.0292 0.0642 2.9358 0.1368
121 0.0320 0.0071 -0.0270 -0.0057 0.0064 ‘ 2.3371 ‘ -2.3332
121 0.3393 -0.0835 0.2167 -0.0050 0.4674 1.0398 1.0120
121 0.0459 0.1213 0.2950 -0.0001 0.4619 0.9257 1.1542
SUM 0.4875 0.0569 0.4373 0.0183 1.0000
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R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
116 -0.0213 -0.0831 0.2693 -0.0636 -1.8286 -0.4526 3.4005 -0.1193 1.0000
116 0.0148 0.0038 0.0667 1.6607 0.2420 0.0039 0.1606 0.5935 1.0000
116 0.2418 2.3997 0.4412 -0.2338 0.5326 0.3356 0.1431 -0.0113 1.0000
116 0.7647 -1.3204 0.2227 -0.3633 1.0836 -0.1188 0.0465 -0.0113 1.0000
SUM 1 1 1 1
R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
117 -0.0256 -0.0713 0.1919 -0.0611 -2.7164 -0.6419 4.5493 -0.1910 1.0000
117 0.0207 -0.0039 0.0844 1.7302 0.2295 -0.0036 0.2091 0.5650 1.0000
117 0.5804 2.3645 0.6607 -0.4650 0.6346 0.2192 0.1612 -0.0150 1.0000
117 0.4245 -1.2893 0.0630 -0.2040 1.3133 -0.3382 0.0435 -0.0186 1.0000
SUM 1 1 1 1
R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
118 0.0133 0.0246 -0.0387 0.0344 14.2919 3.0205 -1.7759 1.4469 1.0000
118 0.0015 -0.0582 0.1251 1.6421 0.0132 -0.0592 0.4754 0.5707 1.0000
118 0.9668 1.1529 0.9196 -0.6688 0.6603 0.0898 0.2677 -0.0178 1.0000
118 0.0185 -0.1193 -0.0061 -0.0077 9.3208 -6.8648 -1.3035 -0.1524 1.0000
SUM 1 1 1 1
R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
119 0.1478 0.1917 -0.1767 1.0647 1.6040 0.2789 -1.3288 0.4459 1.0000
119 -0.0384 -0.0648 0.0618 0.3627 -3.9325 -0.8911 4.3888 1.4347 1.0000
119 0.9641 0.0479 1.0217 -0.4532 0.5804 0.0039 0.4262 -0.0105 1.0000
119 -0.0735 0.8252 0.0932 0.0259 -0.7153 1.0768 0.6287 0.0097 1.0000
SUM 1 1 1 1
R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
120 0.1316 0.1623 -0.1024 1.5830 1.0741 0.1718 -0.7239 0.4780 1.0000
120 0.0666 0.1058 -0.0658 -0.2873 5.2472 1.0812 -4.4910 -0.8375 1.0000
120 0.8621 -0.8570 0.8614 -0.3246 0.5804 -0.0748 0.5025 -0.0081 1.0000
120 -0.0603 1.5889 0.3067 0.0289 -0.1461 0.4994 0.6440 0.0026 1.0000
SUM 1 1 1 1
R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
121 0.1443 0.2102 -0.1081 1.5915 1.0956 0.1861 -0.7361 0.4544 1.0000
121 0.0657 0.1251 -0.0618 -0.3097 4.9862 1.1078 -4.2095 -0.8845 1.0000
121 0.6959 -1.4684 0.4954 -0.2739 0.7258 -0.1786 0.4635 -0.0107 1.0000
121 0.0941 2.1331 0.6745 -0.0079 0.0993 0.2625 0.6385 -0.0003 1.0000
SUM 1 1 1 1
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Composition matrices

SUM Sum Roots T-Exp. Elast.
ELE DFO GAS LPG
182 0.0499 0.0132 -0.0506 0.0037 0.0162 2.7669 -1.8196
182 0.0094 -0.0085 0.0259 0.0460 0.0728 ‘ 1.6392 ‘ 1.0641
182 -0.0236 0.0790 0.1468 0.0029 0.2051 1.1899 1.2626
182 0.5488 -0.0393 0.2184 -0.0220 0.7059 1.0044 0.9817
SUM 0.5845 0.0444 0.3404 0.0306 1.0000
Composition matrices Sum Roots T-Exp. Elast.
ELE DFO GAS LPG
183 0.0223 0.0067 -0.0262 0.0017 0.0045 3.0768 -4.6198
183 0.0115 -0.0065 0.0196 0.0422 0.0669 ‘ 1.8133 ‘ 1.0389
183 -0.0056 0.0735 0.1402 0.0019 0.2101 1.3913 1.2724
183 0.6196 -0.0355 0.1525 -0.0181 0.7186 0.9601 0.9515
SUM 0.6479 0.0383 0.2861 0.0278 1.0000
Composition matrices Sum Roots T-Exp. Elast.
ELE DFO GAS LPG
184 -0.0072 -0.0021 0.0105 -0.0005 0.0007 3.6417 17.0301
184 0.0185 -0.0017 0.0192 0.0456 0.0816 ‘ 1.9319 | 1.0218
184 0.0573 0.0864 0.1013 -0.0040 0.2411 1.4608 1.1592
184 0.6527 -0.0429 0.0816 -0.0149 0.6766 0.8937 0.9238
SUM 0.7214 0.0398 0.2127 0.0261 1.0000
Composition matrices
Sum
ELE DFO GAS LPG
185 -0.0170 -0.0046 0.0299 -0.0010 0.0073 5.0670 6.9702
185 0.0208 0.0013 0.0110 0.0411 0.0742 ‘ 2.1845 ‘ 0.9744
185 0.0845 0.0872 0.0543 -0.0053 0.2207 1.5358 1.0846
185 0.7081 -0.0438 0.0451 -0.0116 0.6978 0.8298 0.9135
SUM 0.7963 0.0401 0.1403 0.0232 1.0000
Composition matrices Sum Roots T-Exp. Elast.
ELE DFO GAS LPG
186 -0.0141 -0.0039 0.0272 -0.0007 0.0085 7.2680 7.5868
186 0.0165 0.0018 0.0062 0.0329 0.0574 ‘ 2.6438 ‘ 0.9436
186 0.0533 0.0648 0.0297 -0.0038 0.1440 1.9226 1.1009
186 0.7978 -0.0306 0.0320 -0.0092 0.7900 0.7932 0.9149
SUM 0.8536 0.0322 0.0951 0.0192 1.0000
Composition matrices Sum Roots T-Exp. Elast.
ELE DFO GAS LPG
187 -0.0120 -0.0035 0.0236 -0.0006 0.0075 8.4613 8.5310
187 0.0230 0.0082 0.0091 0.0372 0.0775 ‘ 2.6852 ‘ 0.9739
187 0.0245 0.0410 0.0202 -0.0084 0.0774 2.4612 1.2016
187 0.8390 -0.0210 0.0289 -0.0093 0.8376 0.7824 0.9167
SUM 0.8745 0.0248 0.0818 0.0189 1.0000
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R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
182 0.0853 0.2974 -0.1487 0.1210 3.0856 0.8174  -3.1324 0.2294 1.0000
182 0.0162 -0.1912 0.0760 1.5019 0.1297 -0.1166 0.3552 0.6316 1.0000
182 -0.0404 1.7788 0.4313 0.0941 -0.1152 0.3853 0.7159 0.0141 1.0000
182 0.9389 -0.8850 0.6415 -0.7170 0.7774 -0.0557 0.3094 -0.0311 1.0000
SUM 1 1 1 1
R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
183 0.0344 0.1758 -0.0917 0.0602 5.0015 1.5113 -5.8881 0.3753 1.0000
183 0.0178 -0.1697 0.0685 1.5211 0.1726 -0.0972 0.2932 0.6313 1.0000
183 -0.0086 1.9205 0.4901 0.0703 -0.0265 0.3499 0.6673 0.0093 1.0000
183 0.9564 -0.9267 0.5330 -0.6516 0.8623 -0.0494 0.2122  -0.0252 1.0000
SUM 1 1 1 1
R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
184 -0.0100 -0.0522 0.0495 -0.0187  -10.1895 -2.9250 14.8023 -0.6878 1.0000
184 0.0257 -0.0421 0.0903 1.7420 0.2272 -0.0205 0.2353 0.5580 1.0000
184 0.0794 2.1704 0.4764 -0.1534 0.2377 0.3586 0.4203 -0.0166 1.0000
184 0.9049 -1.0761 0.3838 -0.5699 0.9648 -0.0634 0.1206  -0.0220 1.0000
SUM 1 1 1 1
R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
185 -0.0214 -0.1146 0.2131 -0.0423 -2.3296 -0.6296 4.0934 -0.1342 1.0000
185 0.0262 0.0331 0.0781 1.7711 0.2809 0.0179 0.1476 0.5536 1.0000
185 0.1060 2.1733 0.3872 -0.2273 0.3826 0.3951 0.2462 -0.0239 1.0000
185 0.8891 -1.0918 0.3217 -0.5015 1.0148 -0.0628 0.0647 -0.0167 1.0000
SUM 1 1 1 1
R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
186 -0.0165 -0.1197 0.2859 -0.0387 -1.6595 -0.4536 3.2004 -0.0873 1.0000
186 0.0193 0.0561 0.0648 1.7182 0.2875 0.0314 0.1073 0.5737 1.0000
186 0.0625 2.0148 0.3125 -0.2002 0.3702 0.4502 0.2063 -0.0266 1.0000
186 0.9347 -0.9512 0.3368 -0.4794 1.0099 -0.0388 0.0405 -0.0116 1.0000
SUM 1 1 1 1
R-matrices S-matrices
ELE DFO GAS LPG ELE DFO GAS LPG
187 -0.0138 -0.1402 0.2881 -0.0313 -1.6146 -0.4652 3.1592 -0.0794 1.0000
187 0.0263 0.3305 0.1115 1.9658 0.2964 0.1056 0.1177 0.4803 1.0000
187 0.0280 1.6576 0.2473 -0.4422 0.3167 0.5301 0.2614  -0.1082 1.0000
187 0.9595 -0.8479 0.3532 -0.4923 1.0017 -0.0251 0.0345 -0.0111 1.0000
SUM 1 1 1 1
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3.3.7. Comparative analysis between the two model results
It is logical to check if we could have close results between the two models. The
differences can be directly observed comparing the composition matrices of the two models for
each period. It should be noted that the results of the two models will be even closer than the two

matrices to be diagonalized are identical.

Table 24 shows that for both models T2 has the highest budget share. They also classify the
t-goods in the same order. Except that, they produce different results. The T-good expenditure
elasticities are higher with the AIDS model framework. The analysis of these juxtaposed results
makes us state that choosing a specific demand system is equivalent to putting additional

assumptions on the household behavior.

The gap in the results of the two models is a stimulus for looking for a third approach of
uncovering the basic wants. One question that arises is to wonder if it is possible to predefine the
basic wants and a standard composition matrix that enables us to make the arbitrage between

different models serving as Preference Independent Transformation platform.

In conclusion, imposing a demand system appears to have a similar effect as making

additional restrictions.
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Table 24: AIDS versus Rotterdam

ROTTER. COMPOSITION MATRIX

AIDS COMPOSITION MATRICES

OBS SUM SUM EIGEN E
ELE DFO GAS LPG E ELE DFO GAS LPG
1 -0.073 -0.007 0.165 0.000 0.085 1870 0.015 0.002 -0.009 0.017 0.025 4458  0.257
1 0.657 0.044 0.195 0.000 0.896 0.890 0.032 0.009 -0.033 -0.001 0.006 2.574 -3.178
1 0.000 0.000 0.000 0.016 0.016 0.160 -0.039 0.074 0.126 0.001 0.161 1.124  1.289
1 -0.009 0.011 0.001 0.000 0.003 0.040 0.570 -0.037 0.279 -0.004 0.807 1.001 0.998
SUM 0.575 0.049 0.361 0.016 1.000 0.579 0.047 0.363 0.012 1.000
0BS COMPOSITION MATRIX Composition matrices SUM EIGEN
ELE DFO GAS LPG ELE DFO GAS LPG
2 -0.070 -0.007 0.170 0.000 0.093 1950 0.014 0.002 -0.009 0.016 0.024 4512 0.243
2 0669 0.045 0.173 0.000 0.888 0.880 0.022 0.006 -0.024 -0.001 0.003 2.591 -5.106
2 0.000 0.000 0.000 0.016 0.016 0.160 0.031 0.103 0.196 0.000 0.329 1.106 1.179
2 -0.010 0.012 0.001 0.000 0.003 0.040 0.527 -0.062 0.183 -0.004 0.644 0.989 0.967
SUM 0.590 0.051 0.344 0.016 1.000 0.594 0.049 0.346 0.011 1.000
0BS COMPOSITION MATRIX Composition matrices SUM EIGEN
ELE DFO GAS LPG ELE DFO GAS LPG
3 -0.062 -0.006 0.171 0.000 0.103 2.160 0.015 0.002 -0.010 0.016 0.024 4.407 0.188
3 0695 0.048 0.134 0.000 0.877 0.840 0.001 0.000 -0.002 0.000 0.000 2.715 -100.3
3 0.000 0.000 0.000 0.019 0.019 0.140 0.107 0.116 0.206 -0.001 0.428 1.142  1.129
3 -0.008 0.009 0.001 0.000 0.002 0.040 0.508 -0.069 0.114 -0.004 0.548 0.957 0.936
SUM 0.625 0.051 0.306 0.019 1.000 0.630 0.050 0.308 0.012 1.000
OBS COMPOSITION MATRIX Composition matrices SUM EIGEN
ELE DFO GAS LPG ELE DFO GAS LPG
4 -0.048 -0.005 0.155 0.000 0.102 2660 0.015 0.003 -0.012 0.015 0.021 4.401 -0.037
4 0736 0.051 0.090 0.000 0.877 0.790 -0.021 -0.006 0.030 0.002 0.005 3.098 6.211
4 0.000 0.000 0.000 0.021 0.021 0.130 0.125 0.115 0.148 -0.001 0.386 1.236 1.104
4 -0.003 0.003 0.000 0.000 0.000 0.040 0.573 -0.064 0.082 -0.004 0.588 0.906 0.921
SUM 0.685 0.049 0.245 0.021 1.000 0.693 0.048 0.248 0.012 1.000
OBS COMPOSITION MATRIX Composition matrices SUM EIGEN
ELE DFO GAS LPG ELE DFO GAS LPG
5 -0.031 -0.003 0.117 0.000 0.083 3.810 0.013 0.003 -0.016 0.009 0.009 4870 -1.725
5 0.788 0.056 0.052 0.000 0.897 0.720 -0.028 -0.008 0.052 0.007 0.023 4.098 3.576
5 0.000 0.000 0.000 0.019 0.019 0.140 0.103 0.100 0.078 -0.001 0.280 1.418 1.085
5 0.011 -0.008 0.000 0.000 0.002 0.040 0.687 -0.051 0.056 -0.004 0.688 0.844 0.916
SUM 0.768 0.044 0.169 0.019 1.000 0.775 0.043 0.171 0.011 1.000
OBS COMPOSITION MATRIX Composition matrices SUM EIGEN
ELE DFO GAS LPG ELE DFO GAS LPG
6 -0.020 -0.002 0.082 0.000 0.060 5.630 -0.004 -0.001 0.007 -0.001 0.001 6.293 2184
6 0819 0.060 0.032 0.000 0911 0.680 -0.008 -0.004 0.028 0.015 0.030 5.428  2.206
6 0.000 0.000 0.000 0.016 0.016 0.170 0.071 0.078 0.041 -0.001 0.189 1.714 1.086
6 0.036 -0.021 -0.001 0.000 0.014 0.050 0.782 -0.037 0.039 -0.004 0.780 0.801 0.916
SsuUmMm 0.834 0.036 0.114 0.016 1.000 0.841 0.036 0.114 0.009 1.000
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4. Essay on identifying the T-goods

Though the Preference Independence Technique is deduced with a rare and noticeable
mathematical rigor, its originators (Brooks, and Theil) and followers did not take much risk to
clearly identify the T goods with some economically meaningful basic wants. At most, they
could use the income elasticity of the T goods and how the commaodities enter to the T goods
budget share to give them an economic meaning. The current state of the optimization software
progress and data availability may allow the exploration of more ways to identify the goods.

We have seen that depending on the system of demand model we use, the results we
obtain are different. This last chapter responds to a need to find a more decisive way of

uncovering the basic wants.

We strive to push one step ahead in the research on the possibility of identifying the T-
goods. We will mainly use the definition and the properties of the transformation matrix as stated
previously. We will show that by pre-defininig the basic wants, the stock of data available
enables to directly compute empirical T matrices, and hence resulting empirical transformation
matrices. This computation is a noticeable advance in gaining certainty and precision while
identifying the T-goods. Even if the data could not fully recover the transformation matrices, we
will display a second order solution when only the knowledge of the budget shares of the
commodities and the budget shares of the basic wants—statistically found—are available. In that
case, we show that it is possible to approximate the T matrix and, hence, the composition

matrices R, , and S, .

4.1. Preliminary discussions

The Energy Information Administration reports an Annual Energy Outlook that provides
“delivered energy consumption by fuel” every year, at least since 2008.” This can easily be
computed as empirical T-matrices. We will denote them as T:{,n .Before we proceed to their

computation, some clarifications on the assumptions that found the Preference Independence

Transformation are important:

- The number of commodities equals the number of basic wants.

- The basic wants are independent.
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- The basic wants are normal goods in the sense that increasing the consumer
purchasing power increases its consumption of these goods. This is true for the
PIT, not for the SMIT.

In practice, the number of basic wants is in most of the cases different from the number
of commodities. In our case The Energy Information Administration refers to them as end uses
although end uses and basic wants do not exactly correspond. The EIA takes into account, to
name the most important, space heating, water heating, space cooling, refrigeration, cooking, and
lighting. It is clear that some end uses should not be assimilated to basic wants. If we do, then the
basic want would not be independent. For example, refrigeration is not preference independent
from cooking, and cooking is not preference independent from heating. And yet, a Basic want
should not have another basic want as substitute or complement. Therefore, the pre-definition of
basic want should strictly observe the preference independence assumption.

Another aspect of the problem is the difficulty of reconciling the first two assumptions
above mentioned. In order to attain this, we should consider one of the T-good as a composite of
basic wants that are not too relevant to the analysis. Hence, if we consider three goods—for
example, electricity, liquefied petroleum, and gas—we may consider three basic wants (heating,
cooling, and T-3). We call the third basic want T-3 as it is a composite of negligible basic wants.
In this example, it is obvious that heating and cooling are preference independent. Let us take the
example of four goods (electicity, dfo, gas, Ipg) as in our previous chapters. In that case we
should consider three of our most relevant basic wants plus T-4, the composite of residual basic
wants. The three most important basic wants are heating (space heating and water heating),
cooling and lighting. One may raise the issue however that lighting and heating may not be
completely preference independent. From this issue we infer that the more goods we add, the less

plausible is the basic want preference independence assumption.
From an empirical point of view, two cases may arise:

The data are available and allow us to statistically compute the empirical composition

matrix.
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1. Table 25 reports these matrices from 2009 to 2012. In those cases, the results
obtained provide valuable information in identifying the T-goods. The resulting
transformation matrices can be easily computed. We use for that the following two

equations:

R" = T (w); (4.1.1)

S =R (4.1.2)

We assign a star to refer to the empirical aspect of the matrices. This is the case whenever

the composition or transformation matrices are statistically determined.

2. The data are not available. This is the case in most poor countries. In that case a
statistical survey may help find the budget shares of the T-goods as well as the budget
shares of the commodities. However, determining a plausible empirical T matrix may

be more challenging as it may require a minimax optimization.

In the next section, we will expound some US empirical composition matrices spanning

from 2009 to 2012. From these T", we will deduce the transformation matricesR™ and S”. In
section 04.3, we will introduce the possibility of approaching the empirical composition matrices

when only the budget shares are available.

4.2. On uncovering the transformation matrices when T is available

In this section, we construct the empirical composition matrices from 2009 to 2012. We
only consider three goods and, accordingly, three basic wants from which, for the sake of
feasibility, one is a composite basic want. Heating comprises space and water heating. The
composite basic want includes cooking and lighting as we are bound by the assumption that the

number of goods equals the number of basic wants.
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In consideration of Table 25, we see that for 2009, and even the other years, the first
entry, 7.7%, represents the ratio of the electricity consumption due to heating to the total
expenditure allocated to the three commodities. In other words, if multiplied by the total
expenditure—M—the coefficient gives the electricity consumption due to heating. More visibly,
it just represents the fraction of the electricity budget share entering in the heating budget share.
It is noticeable to see that 45% of gas consumption is due to heating. Over all, heating (space and
water heating) represents 59 % of all energy consumption. Note that DFO, LPG, and Gas do not
bring any cooling. Another important remark is the absence of negative numbers inside the
matrix, unlike the composition matrix obtained from the system of demand estimation. To put it

more clearly, no commodity consumption will negatively enter a basic want budget share.

Table 25: US EMPIRICAL T from 2009 to 2012 (we include lighting in heating)

Years 2009 2010
Basic wants ELEC DFO/LPG GAS W, ELEC DFO/LPG GAS W,
Heating 0.0772 0.0900 0.4500 0.6172 0.0783 0.0900 0.4500 0.6183
Cooling 0.1337 0.0000 0.0000 0.1337 0.1461 0.0000 0.0000 0.1461
Others 0.2391 0.0100 0.0000 0.2491 0.2256 0.0100 0.0000 0.2356
w 0.4500 0.1000 0.4500 1 0.4500 0.1000 0.4500 1
years 2011 2012
Basic Wants ELEC DFO/LPG GAS W, ELEC DFO/LPG GAS W,
Heating 0.0780 0.0900 0.4500 0.618 0.0793 0.0900 0.4500 0.6193
Cooling 0.1211 0.0000 0.0000 0.1211 0.1189 0.0000 0.0000 0.1189
Others 0.2399 0.0200 0.0010 0.2609 0.2408 0.0200 0.0010 0.2618
w 0.4390 0.1100 0.4510 1 0.4390 0.1100 0.4510 1

In view of Table 26, the empirical transformation matrix states that 17% and 30% of the
electricity consumption respectively goes to heating and cooling. These statistics do not vary a
lot from one year to another. LPG, DFO or gas consumption has 0% contribution in the cooling

activity. We in fact readr,, =r,; =0.
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Table 26: The US empirical transformation matrices

Years Empirical R Empirical S Row sums
0.1716 0.9000 1.0000 0.0000 0.0000 1.0000 | 1
0.2971 0.0000 0.0000 3.3657 -17.8833 15.5176 | 1
2009 0.5313 0.1000 0.0000 0.0000 10.0000 -9.0000 | 1
Column Sums 1 1 1
0.1740 0.9000 1.0000 0.0000 0.0000 1.0000
0.3247 0.0000 0.0000 3.0801 -15.4415 13.3614
2010 0.5013 0.1000 0.0000 0.0000 10.0000 -9.0000
Column Sums 1 1 1
0.1777 0.8182 0.9978 0.0000 -0.0123 1.0123
0.2759 0.0000 0.0000 3.6251 -10.9976 8.3725
2011 0.5465 0.1818 0.0022 0.0000 5.5556 -4.5556
Column Sums 1 1 1
0.1806 0.8182 0.9978 0.0000 -0.0123 1.0123
0.2708 0.0000 0.0000 3.6922 -11.2431 8.5509
2012 0.5485 0.1818 0.0022 0.0000 5.5556 -4.5556
Column Sums 1 1 1

4.3. On uncovering the empirical T matrices when only the budgets shares
(commodities and basic wants) are available

In most countries, the stock and quality of data available do not allow an ease of

computation of the empirical composition matrices. In the United Sates the adequate data seem

to be only available since 2008. In countries endowed with poor data, a survey is necessary to

assess the basic want budget shares. It is possible that providing all data for estimating T  is
costly. In that case finding a way of constructing the composition matrix from the budget shares

data may be considered as an option.

In the following development, we raise the possibility of approximating the composition

matrix from only the knowledge of commodity and basic wants budget shares.
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The procedure is to statistically assess the budget shares of the basic wants and the
commodities. Then using a minimax optimization problem, we compute the empirical
transformation matrix, which can be plausibly viewed as an approximation of the true

composition matrix.

4.3.1. Context setting
As stated previously, the mathematical definition of the transformation matrix is

Tn,n = Rn,n (W) (4.1.3)
Three properties accompany this definition:

- The row sums of the T, , matrix yield the T-good budget shares
Tt =wr (4.1.4)
- The column sums of the T, , matrix yield the commodity budget shares
VT, =w (4.1.5)

- The components of the T, , sum to one.

VT pr=vwr =wh=1 (4.1.6)

This property is always verified since the sum of the budget shares, whether for the

commaodities or the goods, equals one.

Note that from (4.1.4) and (4.1.5) we can write

T,,ou'T,, =wrw' (4.1.7)
Using the expression of T, , in(4.1.3), (4.1.7) can be written as

Row'Ryp =wrw' (4.1.8)
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Since (W)at=w; V'R, =1"and v(w), = w', we get from (4.1.8)

Ry Www'=wrw (4.1.9)

This equation would lead to the determination of the transformation matrix Ry, , if ww'

were invertible. It is not. In fact, we can explicitly write ww' as

WiW;  WiW

WoWw; WoWw;

WhaW1 W, W

WiW, W1 W1 W1

WoWn | W» W» W2
. =W W Whp

W3 W3 W3

WhW, Wy Wy Wy

This expression highlights the singularity issue.

4.3.2. The optimization problem
We can circumvent the issue by solving the following program

Where Ry, = (rlj )1Si,jsn :

The first constraint is the

min
(F1,h25eTn)

subject to :

n (4.1.10)
D=1 j=1..,n

i=1

IRy pww'— wTw'||l

expression of the relation: v'R,, =1'. This condition states

that the T-goods satisfy the original constraint. We can show that the constraint is equivalent to

(4.1.5), the second property of the T, , matrix.
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In fact, premultiplying the mathematical definition— (4.1.3)— of the T, , by ' matrix

we get:

w'=1'R(W), (4.1.11)

Note that w'=1'(w), . Replacing the left hand side of (4.1.11) by this expression

reconstitutes the constraint as follows:

VR, =0

Hence, the constraint is equivalent to the second property of the T, , matrix.

4.3.3. Computational procedure
For simplicity we set:

- Kon = ww' = (Kjjici j<n

= Pono=wrw' = (Pijicij<n

Rn,nKn,n = (Cij )1§i,jsn

- by = — pyj i,j=1,...,n

Under n commodities, K, , and P, , are provided by the data. On the contrary, the

matrix R, , components remain unknown.

Using these notations, we can rewrite the objective function to be minimized in (4.1.10)

as
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n

J (rll’ M2, rnn) = ”Rn,nKn,n - l)n,n ”1 = maxlsjgn Z|bij |

i=1
n n
=max,_ > D ik = Pj

i=1

We can now reformulate the optimization problem (4.1.10) as:

n n
min - qmax,_ 1> finKey — Py
(f1,f2,0Mn) i=1lm=1
subject to :
n
i-1
rj =0 L]=1...,n

The problem is linear and does not need the Kuhn-Tucker approach.

If we denote the objective function as

n n
Iy =max,_ le erimkmj - pj
I=1l{m=

The problem becomes at its last stage
min { ‘](1) , J(z) . J(|) . J(n) ,}

When j =1,

n n
Jay =max D | D finkey — pil‘
i=1|m=1

To get rid of the absolute value in the numerical simulation, we consider

(4.1.12)
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n
o ait i D ke — py 20
zrimkml - pil‘: m:l
m=1 .
ai if Zrimkml - Py <0
m=1

Where @i > 0and o > 0. We can then write

n
zrimkml - pil‘zai+ +8; .

m=1

This comes from the fact that |x| = x* + x~ with x* = max(x,0) and x~ = max(-x,0)

We should observe also that x = x* — x~.

By setting, x; = ;" and y; = a; , the optimization problem becomes

n
minJgy =min ) (% +Y;)
=]
subject to:
n
=1 i=%..,n
- (4.1.13)
D limkm =P =% -y i=1..,n
m=1
;20 i,j=1...,n
X; =20 i=1..n
y; =20 i=1..,n

In order to optimally solve the problem, we use the commercial MILP, namely IBM-

CPLEX V12.3. We restrict n to be four as this is our number of commodities.
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Table 27: Empirical T matrices deduced from budget shares

Years 2009 2010
Basic wants Elec Dfo_lpg Gas Wy Elec Dfo_lpg Gas Wr
HEATING 0.0861 0.1000 0.4500 0.6361 0.0523 0.1000 0.4500 0.6023
COOLING 0.1280 0.0000 0.0000 0.1280 0.1461 0.0000 0.0000 0.1461
OTHERS 0.2359 0.0000 0.0000 0.2359 0.2516 0.0000 0.0000 0.2516
w 0.4500 0.1000 0.4500 1.0000 0.4500 0.1000 0.4500 1.0000
Years 2011 2012
Basic wants Elec Dfo_lpg Gas Wr Elec Dfo_lpg Gas Wr
HEATING 0.0619 0.1100 0.4510 0.6229 0.0598 0.1100 0.4510 0.6208
COOLING 0.1162 0.0000 0.0000 0.1162 0.1174 0.0000 0.0000 0.1174
OTHERS 0.2609 0.0000 0.0000 0.2609 0.2618 0.0000 0.0000 0.2618
w 0.4390 0.1100 0.4510 1.0000 0.4390 0.1100 0.4510 1.0000

We see that the table pretty well approximates Table 25. Indeed this program will always
give a solution that verifies all the constraints. However, it has to be signaled that the solution is
not unique. When we move from three goods to four goods, it becomes necessary to obtain
additional restrictions. Hopefully, we will often get them. In our case, we have seen in section

04.2 that r,, = r,; = 0. We can use these two constraints to narrow down the solutions.

In conlusion, by getting the empirical transformation matrices, we can match them with
the transformation matrices found by the Rotterdam or Aids demand system. This allows us with
greater certainty to say which T-good corresponds to which basic want. It will be desirable to use
both the T-good income elasticities and the empirical T matrix to identify which row in our T
matrix corresponds to which basic want. The simultaneous use of these two tools enables us to
better understand how the commodity consumptions contribute to the basic want satisfaction.

Beyond this result, the fact of getting the empirical transformation matrix S offers the possibility
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of defining some shadow prices and quantities for the basic want. We recall that the definition of
these shadow prices is:

(Dpi)r = D siiDpjt
o1

(Daip)r =, 5;Daj.
=1

4.4. General approach to a statistical survey for the empirical T matrix elaboration

So far, this study is based on the conviction that in order to fully apprehend the economic
determinants of household energy consumption, it is necessary to take the analysis at the level of
basic wants which are implicit, unlike prices and quantities. Whether we use the Rotterdam
model, the AIDS, or any other demand system, the results obtained by the Preference
Independence Transformation would be more effective and credible if we use an empirical
transformation matrix as a barometer to interpret our findings. In poor countries, and even in
some rich countries, there is a need to construct data to obtain these tables. In this last section,
we show that this is easy and possible if the survey directly provides the empirical R matrix
entries. The analyses we have conducted so far suggest focusing on the key matrix: the
transformation matrix R”. Obtaining this matrix before the composition matrix is statistically

more straightforward.

For illustration, let us give some imaginary but realistic numbers. Suppose a survey
establishes that 25%, 55% and 15% of electricity consumed are due to heating, cooling and
lighting, respectively. The remaining is attributable to negligible basic wants. Similarly, we
suppose that 75%, 0% and 0% of DFO consumption are due to heating, cooling, and lighting.

The remaining is imputable to the composite basic want. Concerning gas, we suppose that 60%,
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0% and 0% are due to heating, cooling, and lighting, respectively. Finally, let us consider that

90% of LPG consumption is related to heating and nothing for cooling and lighting. Of course

the 10% is captured by the composite basic want. It is easy to see that having these kind of data

directly enables us to define the empirical transformation matrix R”.

Empirical R
Commodities Elec. Dfo Gas Lpg
Basic wants

Heating .25 75 .60 .90
Cooling .55 .00 .00 .00
Lighting 15 .00 .00 .00

Others .05 25 40 10

SUMS 1 1 1 1

This table verifies the condition v'R,, , =1'. All it needs is collecting data showing how

the goods are allocated between basic wants. It directly defines the matrix R”. From this matrix

we can derive the corresponding T" and S™.

In conclusion, if a survey has to be conducted on basic wants and commodities, it should

incorporate the quantification of how commodity consumptions are allocated between basic

wants.
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S CONCLUSION

In this work, we humbly attempted to reopen the chapter of the Preference
Independence Transformation technique in economic analysis. Since it was introduced by
Brooks in his dissertation and extensively constructed by Theil, few authors have
attempted to bring their contributions to it. It is definitely not due to lack of interest in the
field. Research on basic wants or characteristics as explanatory variables of demand has
never been so important. Nowadays, expandable possibilities of production make the love

for varieties more realizable. Technological advances are fluid and continuous.

Throughout our analysis, our aim was twofold:

- To find a way to better identify the basic needs after an independent

transformation.

- To explore the possibility implement and additional independent transformation

technique in addition to the PIT technique.

Our line of attack sought to better unveil the basic wants as key-variables in
defining US households’ energy consumption. We first explored what has been done so
far in the field. The Preference Independence Transformation technique was implemented
only using the Rotterdam model setting. We tried to implement a new technique, related
to the PIT, with the Almost Ideal Demand System framework. Doing this, there was a
need to modify it by considering all the elements of the Slutsky matrix. We referred to
this modified Preference Independence Transformation as the Slutsky Matrix
Independence Transformation (SMIT). We found the two models did not uncover the

basic wants in the same way. The results are different. On the one hand, the
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diagonalization under the Rotterdam model is done on the specific effect, the
diagonalization of which implies the diagonalization of the Hessian matrix U. On the
other hand, the AIDS diagonalization is performed on a wider portion of the expenditure
function Hessian matrix. The results will be even more different the further the candidate-

matrices of the two systems to be diagonalized are from one another.

This observation raises the need to look for an additional way of uncovering the
basic wants with more confidence. We asked the question whether the results provided by
the transformation were reversible. More clearly, if given an empirical transformation
matrix—a concept that we have introduced in the analysis, is it possible to get back the
empirical transformation matrices? The answer is yes. We can use the following two

relations:
R™ =T (w);!
S*=(R")*?

The knowledge of R* will help us see the real restrictions on the r;. That s, it will inform

us of which good is not contributing to which basic want and of which good is the highest

provider of a given basic want. When facing results provided by two systems of demand, the

transformation matrix R"is a good criterion to check which one performs better in association

with the PIT or the SMIT.

The knowledge of S enables us to compute some shadow price and volume log-changes

of the basic wants through the two following formulas:
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(Dpi)r = > s;;Dpjt
o

(Ddip)r = Y 5Dt
Ft

We asked a yet more specific question: If only the commodity and basic want budget
shares are available, is it possible to uncover the empirical T matrix, and get back to the first
question? The answer is less conclusive. If the number of goods is very limited, the answer is
yes. In that case, we need to use a 11— norm minimax optimization. With more than three goods,

the solution exists, but it is necessary to add more restrictions.

It appears that the more realistic outcome is obtained when we conduct a survey on the

empirical transformation matrix R* . Indeed, the transformation matrix R” concentrates key

information for the PIT.

In conclusion, having R" or T"is interesting insofar as they allow us to have more

realistic basic want expenditure elasticities. It suffices to consider the two following relations:

(r) =Ro,M, S,

AT =(wr), (m7),

These formulas provide basic want expenditure elasticities that are more accurate, since

they combine the parameters estimated from one of the models and the empirical budget shares.

A last contribution of this work is showing that an approximation of the income by the
total expenditure on a microeconomic scale may overvalue the income elasiticities of the

commodities and the basic wants as well. In fact, all system-wide approaches of demand lie on
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the adding-up property that total expenditure equals income. There is need to multiply these
values by the elasticity of the total expenditure with respect to income to fully give these found

elasticities their real scope.

While the preference independence transformation can be applied directly to the relative
price version of the Rotterdam model, direct application to the AIDs model would be extremely
difficult. The absolute price version of the Rotterdam model contains marginal budget shares
and Slutsky coefficients as parameters. Those coefficients, if derived for the AIDS model,
would be nonlinear functions. In principle those functions could be substituted into the absolute
price version of the Rotterdam model, and then the absolute price version of the Rotterdam
model, with AIDS coefficients, could be transformed into the analog of the relative price
version. The resulting price coefficient matrix could be diagonalized to produce the preference
independent transformation. But the elements of the resulting price coefficient matrix would be
extremely complicated nonlinear functions, producing an unreasonably difficult preference
independence transformation.

Since the preference independence transformation would thereby be unrealistically
difficult to apply to the AIDS model, | have defined a transformation more suitable to the
parameterization and form of the AIDS model. The result is transformed goods characterized by
Slutsky independence among them, in the sense that Hicks-Slutsky interactions are
removed. While this transformation is practical with the AIDS model, it should be emphasized
that the interpretation of the resulting T-goods is more complicated than the interpretation of the
basic wants produced by the preference independence transformation with the Rotterdam model.

The original preference independence transformation is a direct transformation of the

utility function into a new utility function containing basic wants as arguments. That utility
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function has the normal properties of a utility function with nonseparable interactions removed,
thereby rationalizing the interpretation of transformed goods as “basic wants.” In contrast, my
transformation of AIDS produces derived demands for transformed goods having Hicks-Slutsky
interactions removed. Caution should be used in imputing conventional properties to demand for
those transformed goods without a derived utility function containing them. Further research
would be justified on the interpretation and use of the Slutsky independent goods proposed in

this dissertation.
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Appendix A  Absolute version estimation without symmetry, and with constant

2

Equation Observation Parameter RMSE R? x p-value
Equation 1 184 4 .0466053 0.8172 822.35 0.0000
Equation 2 184 4 .0061578 0.6037 280.30 0.0000
Equation 3 184 4 .040203 0.8609 1138.56 0.0000
Equation 4 184 4 .0053249 0.7801 652.73 0.0000
Coefficients Std. error t-student p-value Confidence intervals
Equation 1
DQt .4500254 .0207568 21.68 0.000 4093427 .490708
ELE -.8907213 .0523408 -17.02 0.000 -.9933074 -.7881351
DFO -.2112631 .059649 -3.54 0.000 -.328173 -.0943531
LPG .2329829 .0573705 4.06 0.000 .1205388 .345427
C .0010363 .0034405 0.30 0.763 -.0057069 .0077795
Equation 2
DQt .0409534 .0027425 14.93 0.000 .0355781 .0463287
ELE .0307495 .0069156 4.45 0.000 .0171951 .0443038
DFO .0011675 .0078812 0.15 0.882 -.0142795 .0166144
LPG -.013639 .0075802 -1.80 0.072 -.0284959 .0012178
C -.0001779 .0004546 -0.39 0.696 -.0010689 .0007131
Equation 3
DQt 4718923 .0179054 26.35 0.000 4367983 .5069862
ELE .7520093 .0451506 16.66 0.000 .6635156 .8405029
DFO .1925055 .0514549 3.74 0.000 .0916557 .2933552
LPG -.200264 .0494894 -4.05 0.000 -.2972614 -.1032666
C -.0007207 .0029678 -0.24 0.808 -.0065376 .0050962
Equation 4
DQt .037129 .0023716 15.66 0.000 .0324807 .0417772
ELE .1079626 .0059803 18.05 0.000 .0962414 .1196837
DFO .0175901 .0068153 2.58 0.010 .0042324 .0309478
LPG -.0190798 .0065549 -2.91 0.004 -.0319273 -.0062324
C -.0001377 .0003931 -0.35 0.726 -.0009082 .0006327
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Appendix B

Absolute version without symmetry without constant

2

Equations Observation  Parameter = RMSE R? % p-value
Equation 1 184 4 .0466168 0.8174 823.49 0.0000
Equation 2 184 4 .0061604 0.6036 280.19 0.0000
Equation 3 184 4 .0402095 0.8609 1138.82 0.0000
Equation 4 184 4 .0053267 0.7803 653.39 0.0000
Coefficients Std. error t-student p-value Confidence intervals
Equation 1
DQt .4500314 .020762 21.68 0.000 4093387 4907241
ELE -.8914686 .0522949 -17.05 0.000 -.9939647 -.7889725
DFO -.2109469 .0596545 -3.54 0.000 -.3278676 -.0940263
GAS .2327506 .0573794 4.06 0.000 .120289 .3452123
Equation 2
DQt .0409524 .0027437 14.93 0.000 .0355749 .0463299
ELE .0308777 .0069107 4.47 0.000 .017333 .0444225
DFO .0011132 .0078833 0.14 0.888 -.0143378 .0165642
GAS -.0135992 .0075826 -1.79 0.073 -.0284609 .0012626
Equation 3
DQt .471888 .0179083 26.35 0.000 4367884 .5069876
ELE .752529 .0451071 16.68 0.000 .6641206 .8409373
DFO .1922856 .0514552 3.74 0.000 .0914353 .2931359
GAS -.2001025 .0494928 -4.04 0.000 -.2971066 -.1030983
Equation 4
DQt .0371282 .0023724 15.65 0.000 .0324784 .041778
ELE .1080619 .0059755 18.08 0.000 .09635 1197737
DFO .0175481 .0068165 2.57 0.010 .0041881 .0309082
GAS -.019049 .0065565 -291 0.004 -.0318995 -.0061984
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Appendix C  Absolute version estimation, symmetry and homogeneity imposed

2

Equation Observation Parameter RMSE R? x p-value
Equation 1 184 4 .0487502 0.8003 811.51 0.0000
Equation 2 184 4 .0062405 0.5932 129.26 0.0000
Equation 4 184 4 .0055228 0.7638 591.28 0.0000
Coefficients Std. error t-student p-value Confidence intervals

Equation 1

DQt 4271871 .0201586 21.19 0.000 .3876769 4666973

ELE -.857377 .0485713 -17.65 0.000 -.9525751 -.7621789
DFO .0214555 .0093793 2.29 0.022 .0030724 .0398387
LPG .1049314 .005809 18.06 0.000 .0935459 .1163168
Equation 2

DQt .0421955 .0039182 10.77 0.000 .034516 .0498749

ELE .0214555 .0093793 2.29 0.022 .0030724 .0398387
DFO -.0120974 .0079147 -1.53 0.126 -.0276099 .0034151
LPG -.0062495 .0036314 -1.72 0.085 -.0133669 .0008678
Equation 4

DQt .0394701 .0023984 16.46 0.000 .0347693 .0441708

ELE .1049314 .005809 18.06 0.000 .0935459 .1163168
DFO -.0062495 .0036314 -1.72 0.085 -.0133669 .0008678
LPG -.0059645 .0034273 -1.74 0.082 -.0126818 .0007528
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Appendix D  Asymptotic variance-covariance provided by Stata

B

! A Ao B i} ty ! ] B B B B B
0.0941

0.0028 00012

0.0016 0.0000 0.0001

00015 00012 0.0000 00013

00042 00003 0.0001 0.0003 0.0006

13445 01162 0.0223 0.0601 01118 274971

0.0223 00033 00015 00026 00022 05382 0.0297

01613 -0.0063 00021 00031 0.00081 26472 0.0396 03342

00008 -0.0003 0.0000 0.0003 0.0001 0.0284  -0.0008 0.0016 0.0001

0.0026 00003 00002 00003 00002 00347 000335 00044 00001 0.0004

0.0093 0.0008 00000 00019 0.0001 0.0743 0.0013 00233 00002 00001 00038

0.0000 00000 00001 -0.0001 00000  -0.0030 0.0009 0.0001 0.0000 00001 00001 0.0000
0.0024 0.0004 00001 -0.0005 00004 -0.0793 0.0021 -0.003% -0.0001 00002 00005 00000 0.0003
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