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Abstract

A Monte Carlo Simulation Study was conducted to assess the tenability of a novel

treatment of missing data. Through aggregating multiply-imputed data sets prior to

model estimation, the proposed technique allows researchers to reap the benefits of

a principled missing data tool (i.e., multiple imputation), while maintaining the sim-

plicity of complete case analysis. In terms of the accuracy of model fit indices de-

rived from confirmatory factor analyses, the proposed technique was found to perform

universally better than a naive ad hoc technique consisting of averaging the multiple

estimates of model fit derived from a traditionally conceived implementation of mul-

tiple imputation. However, the proposed technique performed considerably worse in

this task than did full information maximum likelihood (FIML) estimation. Absolute

fit indices and residual based fit indices derived from the proposed technique demon-

strated an unacceptable degree of bias in assessing direct model fit, but incremental

fit indices led to acceptable conclusions regarding model fit. ∆χ2 values derived from

the proposed technique were unbiased across all study conditions (except for those

with very poor parameterizations) and were consistently more accurate than such val-

ues derived from the ad hoc comparison condition. It was also found that ∆χ2 values

derived from FIML-based models were negatively biased to an unacceptable degree

in any conditions with greater than 10% missing. Implications, limitations and future

directions of the current work are discussed.
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Chapter 1

Introduction

Missing data are an omnipresent reality in the work of the social scientist and certainly not least in

that of psychologists. Perhaps more so than any other scientific discipline, psychology is intimately

tied, at its most fundamental level, with the most sensitive areas of the human condition. Therefore,

any academician attempting to shed an inquiring light on the sheltered corners of the human psyche

must necessarily probe their subjects’ most private and personal beliefs—the type of inquiry to

which these subjects are least likely to acquiesce. Add to this the inherently fickle nature of human

subjects, and the prevalence of nonresponse in psychological studies tends to be quite high.

As this has been the nature of experimental psychology since its very inception, it is little

surprise that advancements in missing data analysis are keenly sought after by so many researchers

in the field. However, the unfortunate truth of the world is such that a technique which is difficult to

implement correctly or onerously time consuming when applied (no matter how wonderful it may

be) has a very small chance of becoming a widely utilized tool. Thus, any such overly burdensome

advancement is rendered ineffectual in improving the quality of the average applied researcher’s

methodology and is subsequently stripped of nearly all power to advance the state of psychological

science. It was a cognizance of this unfortunate reality that led the author and his colleagues to

instigate the current project. The pursuit of an easily accessible, yet methodologically principled,

solution to an all-too-common problem was the impetus for the current project.

1



Time and time again the author has run into the same frustrating conundrum. Namely, when

fitting latent variable models to multiply-imputed data there is no readily apparent approach with

which the goodness-of-fit of a hypothesized model can be determined. Customarily, after a run of

any given multiple imputation algorithm, the researcher is left with m separate imputed data sets.

The usual protocol would entail analyzing each of these m data sets separately and combining the

resulting m sets of parameter estimate using Rubin’s Rules (Rubin, 1987). However, Rubin’s Rules

were not developed with latent variable modeling in mind and are principally intended only to cor-

rect standard errors in order to minimize bias in the test statistics associated with model parameters.

Therefore, they are not directly applicable to the aggregation of the χ2 1 (or χ2-based model fit

indices) across multiple imputations. Previous work has developed χ2-distributed statistics which

can be calculated in the context of multiply imputed data structures and offer unbiased assessments

of model fit (e.g., Browne, 1984; Meng & Rubin, 1992). Unfortunately, these statistics tend to

entail difficult computations that can make them difficult to implement conscientiously, and they

have yet to be widely implemented in popular statistical analysis software.

Over the years, several solutions to this conundrum have been proposed and tested, but it is the

opinion of the author that a solution that is sufficiently simple to become a widely utilized tool has

yet to be suggested. Unfortunately, the simplest ad hoc solution to this problem has been shown to

provide suboptimal results. Although intuitively appealing, simply averaging the m χ2 statistics af-

ter fitting the analysis models will lead to biased assessments of model fit (Asparouhov & Muthén,

2010). More principled approaches that have been suggested in the literature include averaging the

covariance matrices derived from multiple EM imputations (Cai & Lee, 2009) and averaging the

m covariance matrices calculated from the m imputed data sets produced by a Bayesian multiple

imputation (Lee & Cai, 2012). However, these approaches are both two-stage procedures that

require subsequent post hoc correction to the resulting likelihood ratio (LR) statistic before it fol-

lows a χ2 distribution. Additionally, neither of these papers explicitly addressed the performance

1It should be understood that the usage of the term χ2, when referenced as a model fit index, constitutes a slight
abuse of notation. The more appropriate name for this statistic would be Likelihood Ratio Statistic. However, these
terms will be used interchangeably throughout this paper.
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of their proposed estimators in the context of hypothesis testing2.

Developments that are particularly germane to the current project have arisen in the context

of variable selection for stepwise regression procedures. Wood, White, and Royston (2008) have

suggested a “stacked data” approach based on aggregating the m imputed data sets by stacking them

one atop the other into an mN× p data frame where N is the original number of observations and p

is the number of variables. When this stacked data frame was subsequently analyzed with a series

of weighted linear regression models, the resulting Type I error rates and power were comparable

to those derived from Rubin’s Rules, even with relatively simple weighting schemes. The current

work develops a technique that is mathematically equivalent to the W1 technique from Wood et al.

(2008), yet offers a simplified implementation that is tailored to covariance structure modeling. Our

approach was designed to aggregate the multiply imputed data sets prior to model estimation in a

fashion that will allow researchers to address their missing data issues in a principled fashion (i.e.,

by leveraging the benefits of multiple imputation), yet still maintain the simplicity of estimating a

single analysis model.

1.1 The Proposed Technique

As the desired product after the application of this technique is a condensed data structure which

aggregates a number of multiply imputed data sets, the first step is creating some number of plau-

sible imputations. Of course, all of the usual tenets underlying any missing data analysis remain,

and all of the customary considerations must be made in constructing these imputations. The tech-

nique under study is not envisioned as a correction for any shortcomings in the initial imputation

scheme, and all subsequent steps are conducted under the implicit assumption that the imputations

upon which they are performed were well constructed (see Enders, 2010; Schafer & Graham,

2002 for very accessible overviews of multiple imputation and missing data analysis, and Rubin,

1987; Schafer, 1997 for more technical treatments of multiple imputation).

2While both of these papers do present the structural parameters and associated standard errors derived from
applying their proposed estimators to example data, the correctness of the values is never thoroughly scrutinized.
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Once the imputations have been created, the proposed technique is very simple to implement.

After some number (m > 1) of imputations have been created, these m imputed data sets are

“stacked” one atop the other to create a single data frame whose number of rows is equal to the

number of observations in the original data set times the number of imputations. For example,

consider a data set that contains N = 250 observations of p = 25 variables. If you create m = 20

imputations, the final dimensions of this combined data frame will be mN× p = 20(250)× 25 =

5000× 25. Once this aggregated data frame has been constructed, it is summarized with a single

covariance matrix that is calculated from all of the mN observations. This covariance matrix then

acts as sufficient statistics for any subsequent modeling. In the example above, this would lead

to a 25× 25 covariance matrix that would then be used as input for future analyses. Figure 1.1

gives a graphical representation of the process for a trivial example in which the original data are

comprised of 4 observations of 3 variables.
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Figure 1.1: A graphic representation of the SuperMatrix technique as applied to a data set with 4
observations of 3 variables

Because the aggregate covariance matrix that is produced by this process is envisioned as a
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proxy of the true complete-data covariance matrix, the number of observations ascribed to the

underlying data set is explicitly specified to be equal to the original sample size N. This constraint

has the effect of downwardly adjusting the LR statistics derived from these models to correct for

the spurious inflation of sample size that follows from treating the stacked m imputed data sets as a

single data frame. Incidentally, this correction also makes the proposed technique mathematically

equivalent to the W1 weighting scheme proposed by Wood et al. (2008).

In offering guidance to researchers seeking to implement multiple imputation techniques, van

Buuren (2012) suggests that stacking techniques which are similar to the technique proposed here

will produce unbiased point estimates of model parameters, yet may lead to negatively biased

standard errors for those estimate. Likewise, our proposed technique (hereafter referred to as the

SuperMatrix technique) is expected to produce unbiased point estimates of model parameters, but

we do not have confidence that it will produce accurate standard errors3. However, it is intuited

that the SuperMatrix (SM) technique will maintain enough of the total information inherent in the

original m imputed data sets to produce, in the course of standard model fitting procedures, an

acceptable assessment of model fit. Further, because significance tests that employ nested model

∆χ2 statistics are not affected by the tested parameters’ standard errors, we anticipate the SM

technique can be used to achieve accurate tests of hypotheses when using the ∆χ2 test within a

model comparison framework.

This final point is considered to be of paramount importance because it appreciably extends

the utility of the current work. While there are extant techniques that can produce unbiased Wald

statistics in the context of multiply-imputed data structures (i.e., Rubin’s Rules), these techniques

are, in a certain sense, suboptimal. The problem with hypothesis testing through Rubin’s Rules

is essentially two-fold. First, standard errors can be highly sensitive to distributional assumptions

and the specifics of model identification (even with fully observed data). Second, many of the hy-

potheses tested with latent variable models entail the comparison of alternative understandings of a

phenomenon that are quantified as competing models (as opposed to hypotheses that involve testing

3The reader is encouraged to refer to Wood et al. (2008, Appendix A) to see an analytic justification for this
expectation.
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single structural parameters). Taking these two points under consideration, we see that it is often

desirable to forgo single parameter tests entirely and implement a model-comparison paradigm that

employs the ∆χ2 test as its primary test statistic. However, as discussed above, χ2 statistics are not

naturally forthcoming in the context of multiply-imputed data structures. Thus, the SM technique

is envisioned as not only offering an easily implemented method of assessing goodness-of-fit in

latent variable models but also providing a very parsimonious method with which to test complex,

multi-parameter hypotheses.

A Monte Carlo simulation study was conducted to test the tenability of the SM technique while

varying sample size and percent missing. Of particular interest were convergence rates of the

analysis models, assessments of direct model fit (i.e., the analysis models’ goodness-of-fit to the

simulated data), and the accuracy of hypothesis tests conducted with nested model ∆χ2 statistics.

Specifically, it is hypothesized that:

1. Across the replications of the Monte Carlo study, the SM conditions will show higher rates of

convergence than will the conditions based on full information maximum likelihood (FIML)

estimation4. This effect will be especially pronounced for lower sample sizes and higher

percents missing.

2. Estimates of model fit derived from the SM technique will show negligible deviation from

estimates of model fit derived from complete data comparison conditions. Although, this

performance is expected to deteriorate monotonically as sample size decreases and percent

missing increases.

3. Estimates of model fit derived from an ad hoc technique consisting of simply averaging the

m estimates of model fit (hereafter referred to as the Naive approach) will show universally

larger deviations from complete data-based estimates than will estimates derived from the

SM technique.

4Although there are no specific hypotheses regarding the relative performance of the SM technique and FIML
estimation when it comes to assessments of direct model fit, it is generally expected that the FIML conditions will
outperform the SM conditions in this regard.
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4. Across all conditions, a nested model χ2 difference test conducted using the SM-based ∆χ2

values will show negligible deviation from the same tests conducted with the complete data-

based ∆χ2 and will be universally closer to the complete data values than will such tests

employing the Naive-based ∆χ2 .
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Chapter 2

Methods

2.1 Data Simulation

The data for the Monte Carlo study were simulated using R 2.151 (R Development Core Team,

2011). The data for each observation were derived from a multitrait multimethod (MTMM) con-

firmatory factor analytic model with fixed, known population-level parameter values. This model

consisted of four latent factors which acted as predictors of twenty manifest variables. Two of

these factors were conceptualized as “common factors” underlying the twenty manifest variables

and were each exclusively associated with ten of these variables. The third and fourth factors were

conceptualized as “covariate factors.” These factors were introduced into the model in the same

fashion as method factors in a traditional MTMM model, except that both covariate factors were

allowed to predict all twenty measured variables.

All “common factor” loadings were specified to be equal in the population model with a value

of λ = .6 (i.e., the measurement model was essentially tau equivalent, at the population level). The

covariate factors were each allowed to a have a different, small association with the two simulated

“scales.” That is, the first ten manifest variables loaded onto the first covariate factor at λ = .2 while

the second ten loaded onto this factor at λ = .1. Likewise, the first ten manifest variables loaded
1Code excerpt 1 shows the source code of the function used to simulation the complete data.
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onto the second covariate factor at λ = .05 while the second ten did so at λ = .1. The primary

purpose of these covariate factors was to provide factor scores that would act as predictors of the

missing data process. However, including them in the data simulation model, as well, increased

the ecological validity of the results by conditioning the missingness on variables which also had

a direct connection to the simulated data.

Common factors had variances fixed to ψ1,1 = ψ2,2 = 1.0 and were allowed to covary with one

another at ψ2,1 = .5. The two covariate factors were specified to be independent of one another

and the common factors. They had variances of ψ3,3 = 1.0 and ψ4,4 = 3.0. Variances of all unique

factors were specified to be a constant θ = 1−λ 2 = 1− .62 = .64. The final form of the population

model is shown in Figure 2.12.
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Figure 2.1: Path diagram of the population level data-generation model
Note: Mean Structures are not shown

After the appropriate matrices were populated with the parameter values described above, the

latent and residual covariance matrices were included as arguments to the R function rmvtnorm
2Note that the mean structures are not pictured in Figure 2.1. Except for the mean of Covariate 2 (αc2 = 4), all

latent means and item intercepts were fixed to zero in the population.
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(Genz et al., 2012) to simulate multivariate normal factor scores and error terms, respectively.

These factor scores and error terms were then included in the factor analytic data model represented

by Equation 2.1 to simulate the final data values for use in subsequent analyses.

Y = ηΛ
T +Θ (2.1)

Where Y is a N×20 matrix of simulated data, η is a N×4 matrix of factor scores, Λ is a 20×4

matrix of factor loadings and Θ is a N×20 matrix of residual error components. Finally, the factor

scores associated with the two covariate factors where appended to Y. Therefore, the final simu-

lated data set Ycomplete was a N×22 matrix consisting of the twenty variables to which subsequent

analysis models would be fit and the two auxiliary variables that would be used as predictors of the

missing data process.

2.1.1 Parsimony Error

In addition to the parameterization described above, an additional degree of complexity was in-

cluded in the data generating model. In order to maximize the ecological validity of the current

work, an attempt was made to reflect the reality of statistical modeling as a reductionist exercise. To

accomplish this, the data were generated according to a model which was more complex than the

subsequently specified analysis models, thereby introducing a trivial level of misspecification into

every model examined in this study. This “hidden” simplification is analogous to the parsimony

error introduced by researchers attempting to portray highly complex psychological phenomena

with simplified mathematical models. To implement this misspecification, the residual covariance

matrix used to create the error components of Equation 2.1 was specified to be Toeplitz in form,

rather than the customary diagonal matrix implied by the common factor model. This alteration al-

lowed the introduction of a small residual covariance (θ = .03)3 between every fifth unique factor.

3This value was chosen so that ideal comparison models would demonstrate “very good” model fit without reflect-
ing perfect replication of the simulated data. Specifically, when the full model described below is fit to complete data
that has been generated in this fashion, CFI ≈ [.97 : .98] and RMSEA≈ [.02 : .04].

10



When these residual covariances were not included in the analysis models, the result was a small

degree of model misspecification that was constant across conditions.

2.2 Missing Data Imposition

Missing data were simulated to follow a Missing at Random (MAR) process as defined by Rubin

(1976). A function was written in R 2.154 which ran iteratively through all twenty of the simulated

scale variables. This function first computed the value of the inverse normal cumulative distribu-

tion function (CDF) associated with each observation of a predictor of the missingness process

(i.e., one of the factor scores for the covariate factors). This provided the quantile on the nor-

mal CDF associated with that observation of the covariate. If this value was equal to or less than

a threshold chosen to delete the appropriate proportion of observations (i.e., the desired percent

missing rescaled to account for the algorithm running twenty times) the associated observation of

the currently selected simulated variable was deleted. Because this function imposes the missing

data according to this simple probit regression model, the Rubin (1976) definition of a MAR pro-

cess is replicated as closely as possible. That is, the missingness can be considered a pure random

sample of the complete data, after conditioning on the predictor of missingness.

2.3 Comparison Conditions

Three comparison conditions were included against which the performance of the SM technique

was judged. As an optimal, control condition, analysis models that were analogous to those fit

with the SM technique were fit to the complete data (i.e., data sets which were simulated in the

same fashion as those provided to the SM treatment without any missing data imposed). It should

be noted that all assessments of performance in the current study are based on the implicit un-

derstanding that the optimal solution to a missing data problem will produce results equivalent to

those that would have been derived had the data been fully observed. This is an important point to

4Code Excerpt 2 shows the source code for the function used to impose the missingness.

11



clarify, because it essentially rejects the possibility that missing data tools can be used to improve

the quality of model estimates beyond what would be possible with fully observed data, and, as the

reader may realize, this is not always true (e.g., well implemented planned missing data designs

can offer higher power and lower parameter bias than their complete-data analogues). However,

for the purposes of the current work, the estimated model fit from the complete data conditions

was chosen as the ideal against which all missing data treatments would be judged.

Additionally, as an anticipated upward comparison, FIML estimation was used to fit the anal-

ysis models directly to the incomplete data. FIML was chosen for this purpose because it has been

shown to produce estimates which demonstrate optimal statistical properties for a wide range of

missing data problems (Enders, 2010; Enders & Bandalos, 2001; Schafer & Graham, 2002). To

ensure that the FIML conditions truly represented an optimal comparison, an inclusive modeling

strategy was implemented through the application of the saturated correlates approach as described

by Graham (2003). To fully satisfy the MAR assumption, the saturated correlates method was used

to introduce the factor scores associated with the covariate factors as manifest-level auxiliary vari-

ables.

Finally, as an anticipated downward comparison the missing data were treated by naively av-

eraging the m estimates of model fit to achieve an ad hoc assessment of the model’s fit to the

observed data (i.e., the Naive approach). This condition was chosen because it is an intuitive

alternative to the SM technique, but it has been shown to perform poorly in previous work (As-

parouhov & Muthén, 2010). Because the Naive approach is a solution which could fill the same

niche as the SM technique, it was judged to be an option relative to which the performance of the

SM technique should be assessed. It is expected that the results derived from the SM technique

will fall somewhere in between those derived from the Naive approach and those from the FIML

estimation.
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2.4 Simulation Parameters

There were two simulation parameters varied in this study: sample size and percent missing. Be-

cause initial explorations of the SM technique suggested that employing discretely binned con-

ditions lead to a considerable loss of interesting information, the levels of the current simula-

tion parameters were specified in increments that were deemed small enough to approximate a

continuous progression through the range of possible values (i.e., n = {100,120, . . . ,980,1000},

pm = {2,4, . . . ,48,50}). Therefore, for every replication there were 1150 crossed levels of sample

size and percent missing, this number was deemed adequate to support summary of the results

through methods designed for continuous data (e.g., plotting three dimensional response surfaces).

Within each of these 1150 cells, eight separate analysis models were estimated using the R

package lavaan (Rosseel, 2012). “Full” and “restricted” CFA models were fit to either the complete

data with ordinary maximum likelihood (ML) estimation or to the incomplete data using FIML

estimation, the SM technique, or the Naive approach. The full model was a two factor CFA in

which each factor was indicated by ten of the twenty simulated indicators, and the latent factors

were allowed to freely covary (Figure 2.2 shows the path diagram associated with these models).

The restricted model was identical to the full model except that the latent covariance was fixed

to ψ2,1 = 0. This constraint offered the means to assess Hypothesis 4 by facilitating significance

tests of the latent covariance via nested model ∆χ2 tests. The analysis models associated with the

FIML conditions were identical to those described above except that they also incorporated the

predictors of the missing data process via the saturated correlates technique (Figure 2.3 shows the

path diagram associated with these models).
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2.5 Random Numbers

Because of the large number of crossed conditions entailed in this simulation, an effort was made

to expedite the analysis process by employing parallel computing to run the simulation code on

many processors simultaneously. Consequently, maintaining replicable and non-overlapping ran-

dom number streams became a paramount concern. Conceptually, if the replications of a Monte

Carlo simulation are to be aggregated when summarizing the results, the requirement of non-

overlapping random number streams can be thought of as the analogue of the assumption of inde-

pendent observations in linear regression. To ensure that these stipulations were met, the random

numbers were generated via the L’ecuyer RNG (L’ecuyer, Simard, Chen, & Kelton, 2002) as

implemented in the R package snowFT (Ševčíková & Rossini, 2010). By maintaining a unique

sub-stream for each replication, rather than sending a stream to each processor in the comput-

ing cluster, snowFT’s implementation of the L’ecuyer RNG ensures that there is no cross over in

the random numbers from one replication to another. Thus, each replication can be treated as an

independent observation of the population-level process under study.

2.6 Test Statistics

Two test statistics were employed in assessing the performance of the various techniques under

study: percentage relative bias (PRB) and root mean square error (RMSE). PRB was chosen be-

cause its intuitive interpretation makes it particularly well suited to the a priori explication of

thresholds by which the adequacy of numeric results can be judged. PRB is simply the average

bias in the estimated statistic rescaled as a percentage of the magnitude of the true statistic5. For

example, PRB = 10 would reflect a positive bias in the estimated statistic equivalent to 10 percent

5It is important to note that, for this study, the values derived from the complete data conditions were the ideal
against which the missing data techniques were judged, so the complete data-based values were considered the “true”
values. Thus, the bias that is referred to above is not bias in the usual sense because these fit indices are not compared
back to any true population values.
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of the magnitude of the true statistic. The formula for PRB is quite simple:

PRB = 100 ·

(
K−1

K

∑
i=1

T̂i−T
T

)
(2.2)

Where T is the true value of the statistic, T̂i is the estimated statistic for the ith replication and K is

the number of replications.

The RMSE was chosen because it combines information on both bias and variability into a

well-rounded measure of overall accuracy (Burton, Altman, Royston, & Holder, 2006). Addition-

ally, it is interpretable on the same metric as the statistic under study. The RMSE was therefore

considered an ideal statistic to supplement the PRB in this study. The formula for RMSE is also

quite simple:

RMSE =

√
K−1

K

∑
i=1

(
T̂i−T

)2
=

√(
¯̂T −T

)2
+
(
SET̂

)2 (2.3)

Where T is the true value of the statistic, T̂i is the estimated statistic from the ith replication, ¯̂T is the

mean of the estimated statistic, SET̂ is the empirical standard deviation of the estimated statistic,

and K is number of replications.

As a rule-of-thumb by which to judge each techniques performance, PRB > 5 was considered

to be an excessive degree of bias. In other words, if the estimated value of a missing data-based fit

index deviated from the analogous complete data-based value by more than 5% of the magnitude of

that complete data-based value, the associated missing data technique was considered to perform

unacceptably in that condition.

2.7 Procedure

For every replication a single data set was simulated according to the process described in section

2.1. This data set was then used to fit the complete data control models. Next, the data were

treated with the function to impose missingness, as described in section 2.2, thereby producing

an incomplete data frame with a certain fixed percent missing. This incomplete data frame was
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then used to fit the models for the FIML conditions. Subsequently, the missing data were imputed

100 times using the R package Amelia II (Honaker, King, & Blackwell, 2011). Amelia II is a

very powerful software package that employs the Bootstrapped EM algorithm (EMB) to create

multiple imputations (Honaker & King, 2010; King, Honaker, Joseph, & Scheve, 2001). These

100 imputed data sets were then either analyzed separately (i.e., using the Naive approach) or

submitted to the SM treatment, the results of which were then analyzed. If the Naive approach was

used, the resulting fit indices were averaged to get a single, aggregate estimate of model fit.

Once the fit indices of all eight models had been collected, the ∆χ2 between the respective full

and restricted models was calculated for the complete data conditions and all three missing data

treatments, and the PRB and RMSE of the χ2 , ∆χ2 , confirmatory fit index (CFI), Tucker-Lewis

Index (TLI), root mean error of approximation (RMSEA)6, and standardized root mean residual

(SRMR) were calculated for the SM, FIML, and Naive approaches (i.e., using the complete data

values as the true values). This process was repeated 500 times for every one of the 1150 crossed

levels of percent missing and sample size. This resulted in a total of 3(treatments)×2(model

constraints)×46(sample size)×25(percent missing)= 6900 total crossed conditions within each

of the 500 replications.

6PRB values are not reported for the RMSEA. This is because the formula for PRB is intractable if the value of the
true statistic is zero, and this was true of many of the complete data-based RMSEA values.

17



Chapter 3

Results

3.1 Convergence Rates

Hypothesis 1 was fully supported. All of the imputation-based conditions demonstrated perfect

convergence, while the FIML models had very low rates of convergence for conditions with small

sample sizes and large percents missing. Figure 3.1 shows the convergence rates of the FIML-

based models plotted by sample size and PM, while Table 3.1 shows the convergence rates for the

FIML conditions that had lower than 80% convergence.

As the reader can see from the precipitous drop-off in Figure 3.1 and corresponding entries in

Table 3.1, sample sizes lower than 200 tend to produce very low convergence rates, particularly

when percent missing exceeds 30%.
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Figure 3.1: Convergence rates for FIML-based models plotted by sample size and percent missing
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N PM N PM N PM
100 26 0.708 140 32 0.776 200 40 0.786

100 28 0.65 140 34 0.698 200 42 0.66

100 30 0.538 140 36 0.626 200 44 0.614

100 32 0.422 140 38 0.526 200 46 0.492

100 34 0.35 140 40 0.394 200 48 0.398

100 36 0.22 140 42 0.308 200 50 0.282

100 38 0.178 140 44 0.22 220 42 0.768

100 40 0.086 140 46 0.126 220 44 0.714

100 42 0.06 140 48 0.082 220 46 0.602

100 44 0.03 140 50 0.036 220 48 0.502

100 46 0.016 160 36 0.75 220 50 0.376

100 48 0.008 160 38 0.648 240 44 0.738

100 50 0 160 40 0.564 240 46 0.69

120 28 0.8 160 42 0.456 240 48 0.586

120 30 0.726 160 44 0.358 240 50 0.464

120 32 0.65 160 46 0.262 260 46 0.756

120 34 0.55 160 48 0.13 260 48 0.686

120 36 0.444 160 50 0.108 260 50 0.568

120 38 0.344 180 38 0.764 280 46 0.784

120 40 0.236 180 40 0.666 280 48 0.73

120 42 0.186 180 42 0.584 280 50 0.64

120 44 0.104 180 44 0.472 300 48 0.78

120 46 0.046 180 46 0.38 300 50 0.654

120 48 0.024 180 48 0.272 320 50 0.742

120 50 0.016 180 50 0.19 340 50 0.792

Convergence
Rate

Convergence
Rate

Convergence
Rate

Table 3.1: Convergence rates of FIML conditions with convergence lower than 80%
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3.2 Direct Model Fit

Tables 3.2, 3.3, 3.4, 3.5, and 3.6 show the PRB and RMSE values associated with the χ2, CFI,

TLI, SRMR, and RMSEA for selected levels of sample size and percent missing (namely: n =

{100,200, . . . ,1000} and pm = {10,20, . . . ,50}).

Percentage Relative Bias: Chi-Squared Root Mean Square Error: Chi-Squared

N PM FIML SM Naive N PM FIML SM Naive N PM FIML SM Naive N PM FIML SM Naive

100 2 -0.119 2.518 5.322 600 2 -0.43 1.988 4.799 100 2 5.715 7.711 12.212 600 2 5.54 6.96 11.48

100 10 0.766 14.419 29.99 600 10 -2.684 9.655 24.578 100 10 12.424 30.882 59.369 600 10 12.971 23.323 52.119

100 20 4.301 32.275 68.687 600 20 -5.011 20.926 53.96 100 20 18.993 64.812 132.831 600 20 20.157 47.278 112.956

100 30 8.895 48.619 112.75 600 30 -6.651 33.967 88.746 100 30 27.048 95.844 216.623 600 30 24.461 74.12 184.603

100 40 22.066 63.457 159.135 600 40 -8.461 46.611 126.443 100 40 45.599 123.74 304.874 600 40 28.77 100.338 262.387

100 50 NA 71.336 198.964 600 50 -8.775 58.311 164.231 100 50 NA NA NA 600 50 30.931 124.557 340.213

200 2 -0.038 2.524 5.444 700 2 -0.666 1.714 4.465 200 2 5.34 7.374 11.899 700 2 5.627 6.676 11.078

200 10 -0.213 13.216 29.05 700 10 -3.298 8.849 23.471 200 10 12.114 28.115 56.203 700 10 13.83 22.536 51.21

200 20 0.674 29.544 65.33 700 20 -5.706 20.004 52.328 200 20 16.935 58.982 124.382 700 20 20.362 46.358 112.369

200 30 2.022 47.247 108.289 700 30 -7.563 32.638 86.068 200 30 21.009 92.443 204.947 700 30 25.611 72.702 183.403

200 40 4.392 63.1 153.276 700 40 -9.179 45.255 122.943 200 40 23.508 121.378 288.803 700 40 30.071 100.075 261.768

200 50 11.761 75.595 195.214 700 50 -10.742 55.119 158.288 200 50 33.517 144.979 367.232 700 50 33.399 120.966 336.323

300 2 0.002 2.529 5.438 800 2 -0.715 1.706 4.388 300 2 5.282 7.297 11.902 800 2 5.518 6.586 11.068

300 10 -0.844 12.178 27.879 800 10 -3.515 8.561 22.818 300 10 11.685 26.583 55.036 800 10 13.929 22.501 51.335

300 20 -1.713 26.087 61.243 800 20 -6.535 18.871 50.303 300 20 16.408 53.588 119.192 800 20 22.267 45.354 111.235

300 30 -1.747 41.921 101.085 800 30 -8.697 30.743 82.644 300 30 19.873 84.233 195.723 800 30 27.86 71.151 181.567

300 40 -0.993 57.673 144.493 800 40 -11.239 42.052 117.482 300 40 22.278 114.38 278.767 800 40 33.442 95.829 257.477

300 50 1.506 69.946 185.003 800 50 -12.757 52.344 152.601 300 50 24.954 137.778 356.012 800 50 38.285 119.1 334.108

400 2 -0.354 2.149 5.044 900 2 -0.834 1.547 4.15 400 2 5.335 6.86 11.362 900 2 5.67 6.535 10.911

400 10 -1.712 11.022 26.547 900 10 -3.779 8.182 22.043 400 10 12.066 24.766 53.465 900 10 15.325 22.888 51.299

400 20 -3.161 23.805 58.325 900 20 -6.992 18.106 48.666 400 20 17.86 50.545 116.044 900 20 22.662 44.475 110.639

400 30 -4.017 38.368 96.128 900 30 -9.609 29.433 79.856 400 30 21.504 78.896 189.911 900 30 29.537 70.023 180.511

400 40 -3.439 54.597 138.844 900 40 -12.128 40.563 113.767 400 40 24.1 110.885 273.588 900 40 35.553 95.188 256.488

400 50 -3.023 65.712 177.571 900 50 -14.492 49.101 146.478 400 50 25.543 132.477 349.15 900 50 41.321 114.566 329.734

500 2 -0.56 1.882 4.747 1000 2 -0.973 1.392 3.946 500 2 5.64 6.796 11.19 1000 2 5.914 6.446 10.737

500 10 -2.497 9.912 25.124 1000 10 -4.121 7.869 21.382 500 10 12.905 23.546 52.143 1000 10 15.779 22.532 51.081

500 20 -4.219 22.226 55.991 1000 20 -8.013 16.681 46.455 500 20 18.742 48.662 114.426 1000 20 24.963 42.614 108.681

500 30 -5.299 36.363 92.452 1000 30 -11.32 26.871 75.938 500 30 22.267 76.909 187.684 1000 30 33.404 66.555 176.705

500 40 -5.838 51.067 132.889 1000 40 -14.303 37.235 108.451 500 40 24.575 106.428 269.012 1000 40 40.552 90.878 251.787

500 50 -5.921 62.456 170.94 1000 50 -16.388 46.372 141.055 500 50 27.158 129.598 345.531 1000 50 46.57 112.179 326.826

Table 3.2: Percentage Relative Bias and Root Mean Square Error of the χ2 from selected conditions

When referring to these tables, the reader will see that Hypothesis 2 is only minimally sup-

ported. The SM-based absolute fit indices (i.e., χ2 and RMSEA) and residual-based indices (i.e.,

SRMR) performed quite poorly under nearly all model parameterizations. However, the SM-based

incremental fit indices (i.e., CFI and TLI) performed relatively well, although their performance

was degraded in conditions with small sample sizes and large percents missing.

A result of key interest is the support of Hypothesis 3 in the context of assessing direct model
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Percentage Relative Bias: CFI Root Mean Square Error: CFI

N PM FIML SM Naive N PM FIML SM Naive N PM FIML SM Naive N PM FIML SM Naive

100 2 0.139 -0.66 -1.434 600 2 -0.002 -0.111 -0.265 100 2 0.0114 0.0111 0.0173 600 2 0.0016 0.0018 0.003

100 10 -0.631 -4.014 -8.085 600 10 0.019 -0.541 -1.356 100 10 0.0231 0.0444 0.0816 600 10 0.0034 0.0063 0.0139

100 20 -2.705 -8.809 -16.902 600 20 0.027 -1.192 -2.983 100 20 0.0434 0.0911 0.1668 600 20 0.0055 0.013 0.0301

100 30 -6.013 -12.987 -25.134 600 30 -0.008 -1.966 -4.903 100 30 0.0764 0.1318 0.2463 600 30 0.0073 0.0207 0.0491

100 40 -14.373 -16.781 -32.362 600 40 -0.035 -2.776 -7.04 100 40 0.1504 0.1687 0.3161 600 40 0.0097 0.0288 0.0703

100 50 NA -19.231 -37.752 600 50 -0.275 -3.636 -9.327 100 50 NA NA NA 600 50 0.0135 0.0375 0.093

200 2 0.072 -0.342 -0.746 700 2 0.004 -0.086 -0.218 200 2 0.0056 0.0055 0.0089 700 2 0.0013 0.0015 0.0025

200 10 -0.079 -1.86 -4.095 700 10 0.033 -0.44 -1.145 200 10 0.0111 0.0213 0.042 700 10 0.0029 0.0052 0.0117

200 20 -0.537 -4.249 -8.966 700 20 0.029 -1.014 -2.565 200 20 0.0178 0.0449 0.09 700 20 0.0046 0.011 0.0258

200 30 -1.243 -6.771 -14.171 700 30 0.001 -1.677 -4.226 200 30 0.0267 0.0704 0.1417 700 30 0.006 0.0176 0.0423

200 40 -2.613 -9.148 -19.294 700 40 -0.066 -2.401 -6.107 200 40 0.0391 0.0934 0.192 700 40 0.0084 0.0249 0.061

200 50 -6.062 -11.154 -23.774 700 50 -0.156 -3.07 -8.06 200 50 0.0729 0.1138 0.2363 700 50 0.011 0.0317 0.0804

300 2 0.006 -0.242 -0.529 800 2 0.002 -0.077 -0.194 300 2 0.0034 0.0037 0.0061 800 2 0.0011 0.0013 0.0022

300 10 -0.049 -1.218 -2.773 800 10 0.021 -0.389 -1.01 300 10 0.007 0.0139 0.0283 800 10 0.0026 0.0046 0.0103

300 20 -0.14 -2.638 -5.983 800 20 0.042 -0.866 -2.232 300 20 0.0108 0.0281 0.0601 800 20 0.0041 0.0095 0.0225

300 30 -0.403 -4.286 -9.662 800 30 0.017 -1.439 -3.692 300 30 0.0158 0.0446 0.0965 800 30 0.0055 0.0152 0.0369

300 40 -0.924 -5.985 -13.542 800 40 0.023 -2.038 -5.333 300 40 0.0221 0.0615 0.1349 800 40 0.007 0.0212 0.0533

300 50 -2.077 -7.46 -17.175 800 50 -0.07 -2.663 -7.116 300 50 0.0342 0.0764 0.171 800 50 0.0102 0.0276 0.0711

400 2 0.024 -0.162 -0.381 900 2 0.003 -0.065 -0.169 400 2 0.0025 0.0027 0.0044 900 2 0.001 0.0012 0.002

400 10 0.014 -0.853 -2.045 900 10 0.018 -0.342 -0.896 400 10 0.0051 0.0098 0.0209 900 10 0.0025 0.0042 0.0092

400 20 -0.015 -1.875 -4.464 900 20 0.031 -0.767 -1.987 400 20 0.0083 0.0202 0.0449 900 20 0.0034 0.0083 0.02

400 30 -0.118 -3.066 -7.284 900 30 0.019 -1.272 -3.289 400 30 0.011 0.0321 0.0729 900 30 0.0047 0.0134 0.0329

400 40 -0.478 -4.438 -10.42 900 40 0.007 -1.813 -4.767 400 40 0.0156 0.0459 0.104 900 40 0.0063 0.0188 0.0476

400 50 -1.003 -5.555 -13.405 900 50 -0.016 -2.314 -6.33 400 50 0.0218 0.0571 0.1337 900 50 0.0082 0.0239 0.0631

500 2 0.015 -0.119 -0.301 1000 2 0.005 -0.054 -0.149 500 2 0.0019 0.0021 0.0035 1000 2 0.0009 0.001 0.0017

500 10 0.035 -0.639 -1.607 1000 10 0.018 -0.306 -0.806 500 10 0.0041 0.0075 0.0165 1000 10 0.0022 0.0037 0.0083

500 20 0.009 -1.471 -3.592 1000 20 0.052 -0.66 -1.765 500 20 0.0066 0.0159 0.0362 1000 20 0.0032 0.0072 0.0178

500 30 -0.072 -2.433 -5.886 1000 30 0.074 -1.086 -2.915 500 30 0.0086 0.0254 0.0589 1000 30 0.0045 0.0115 0.0292

500 40 -0.258 -3.509 -8.483 1000 40 0.086 -1.565 -4.254 500 40 0.0113 0.0361 0.0846 1000 40 0.0061 0.0164 0.0425

500 50 -0.578 -4.46 -11.044 1000 50 0.049 -2.054 -5.718 500 50 0.0163 0.0457 0.1101 1000 50 0.008 0.0213 0.057

Table 3.3: Percentage Relative Bias and Root Mean Square Error of the CFI from selected condi-
tions
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Percentage Relative Bias: TLI Root Mean Square Error: TLI

N PM FIML SM Naive N PM FIML SM Naive N PM FIML SM Naive N PM FIML SM Naive

100 2 -0.066 -0.835 -1.762 600 2 -0.008 -0.126 -0.3 100 2 0.0101 0.0133 0.0208 600 2 0.0017 0.0021 0.0034

100 10 -0.935 -4.739 -9.337 600 10 0.016 -0.613 -1.532 100 10 0.0256 0.0518 0.0939 600 10 0.0038 0.0071 0.0156

100 20 -3.291 -10.149 -19.273 600 20 0.025 -1.347 -3.363 100 20 0.05 0.1048 0.1901 600 20 0.0062 0.0147 0.0339

100 30 -7.039 -14.857 -28.553 600 30 -0.015 -2.218 -5.525 100 30 0.0882 0.1509 0.2795 600 30 0.0082 0.0233 0.0553

100 40 -16.39 -19.135 -36.702 600 40 -0.045 -3.13 -7.93 100 40 0.1704 0.1922 0.3579 600 40 0.0109 0.0324 0.0791

100 50 NA -21.892 -42.779 600 50 -0.314 -4.098 -10.504 100 50 NA NA NA 600 50 0.0151 0.0422 0.1047

200 2 -0.051 -0.432 -0.921 700 2 0.002 -0.096 -0.246 200 2 0.0049 0.0067 0.0106 700 2 0.0014 0.0017 0.0028

200 10 -0.219 -2.215 -4.739 700 10 0.035 -0.497 -1.29 200 10 0.0123 0.025 0.0484 700 10 0.0033 0.0059 0.0132

200 20 -0.735 -4.912 -10.22 700 20 0.031 -1.144 -2.889 200 20 0.0203 0.0518 0.1025 700 20 0.0051 0.0124 0.029

200 30 -1.533 -7.75 -16.078 700 30 -0.001 -1.889 -4.759 200 30 0.0305 0.0804 0.1606 700 30 0.0068 0.0198 0.0475

200 40 -3.073 -10.424 -21.842 700 40 -0.076 -2.704 -6.877 200 40 0.0448 0.1063 0.2172 700 40 0.0095 0.0281 0.0686

200 50 -6.956 -12.683 -26.884 700 50 -0.177 -3.458 -9.075 200 50 0.0829 0.1293 0.267 700 50 0.0124 0.0357 0.0905

300 2 -0.043 -0.294 -0.629 800 2 0.001 -0.086 -0.218 300 2 0.0032 0.0044 0.0071 800 2 0.0012 0.0015 0.0025

300 10 -0.105 -1.418 -3.171 800 10 0.022 -0.44 -1.139 300 10 0.0077 0.016 0.0323 800 10 0.0029 0.0052 0.0116

300 20 -0.207 -3.019 -6.784 800 20 0.046 -0.976 -2.514 300 20 0.0121 0.032 0.0681 800 20 0.0046 0.0107 0.0253

300 30 -0.504 -4.874 -10.926 800 30 0.018 -1.621 -4.158 300 30 0.0177 0.0505 0.109 800 30 0.0062 0.0171 0.0415

300 40 -1.091 -6.787 -15.293 800 40 0.024 -2.295 -6.004 300 40 0.025 0.0696 0.1522 800 40 0.0079 0.0238 0.0599

300 50 -2.386 -8.447 -19.382 800 50 -0.08 -2.999 -8.012 300 50 0.0387 0.0864 0.1928 800 50 0.0114 0.0311 0.0799

400 2 -0.006 -0.193 -0.448 900 2 0.003 -0.073 -0.19 400 2 0.0024 0.0031 0.0051 900 2 0.0011 0.0013 0.0022

400 10 -0.017 -0.988 -2.334 900 10 0.02 -0.385 -1.008 400 10 0.0056 0.0113 0.0238 900 10 0.0028 0.0047 0.0104

400 20 -0.049 -2.143 -5.058 900 20 0.034 -0.863 -2.237 400 20 0.0093 0.023 0.0508 900 20 0.0039 0.0093 0.0225

400 30 -0.166 -3.484 -8.231 900 30 0.022 -1.432 -3.702 400 30 0.0123 0.0364 0.0823 900 30 0.0053 0.015 0.037

400 40 -0.569 -5.027 -11.761 900 40 0.007 -2.041 -5.366 400 40 0.0176 0.0519 0.1173 900 40 0.0071 0.0212 0.0535

400 50 -1.158 -6.284 -15.121 900 50 -0.019 -2.605 -7.125 400 50 0.0245 0.0645 0.1507 900 50 0.0092 0.0269 0.071

500 2 0.005 -0.138 -0.346 1000 2 0.006 -0.061 -0.168 500 2 0.002 0.0024 0.004 1000 2 0.001 0.0012 0.0019

500 10 0.027 -0.731 -1.822 1000 10 0.021 -0.344 -0.908 500 10 0.0046 0.0086 0.0186 1000 10 0.0025 0.0042 0.0093

500 20 -0.001 -1.668 -4.055 1000 20 0.059 -0.743 -1.987 500 20 0.0074 0.018 0.0408 1000 20 0.0036 0.0081 0.02

500 30 -0.093 -2.751 -6.638 1000 30 0.083 -1.222 -3.281 500 30 0.0097 0.0287 0.0663 1000 30 0.005 0.013 0.0328

500 40 -0.302 -3.962 -9.561 1000 40 0.097 -1.761 -4.789 500 40 0.0128 0.0407 0.0952 1000 40 0.0069 0.0184 0.0478

500 50 -0.663 -5.032 -12.445 1000 50 0.055 -2.313 -6.436 500 50 0.0183 0.0516 0.1239 1000 50 0.009 0.024 0.0641

Table 3.4: Percentage Relative Bias and Root Mean Square Error of the TLI from selected condi-
tions
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Percentage Relative Bias: SRMR Root Mean Square Error: SRMR

N PM FIML SM Naive N PM FIML SM Naive N PM FIML SM Naive N PM FIML SM Naive

100 2 -6.747 1.287 2.617 600 2 -10.527 1.095 2.479 100 2 0.0049 0.0016 0.0023 600 2 0.0031 0.0006 0.0009

100 10 3.749 7.092 13.722 600 10 -4.516 5.467 12.311 100 10 0.0043 0.0056 0.0096 600 10 0.0017 0.0019 0.0037

100 20 21.639 15.293 29.056 600 20 5.027 11.71 25.701 100 20 0.0154 0.0111 0.0198 600 20 0.0022 0.0037 0.0075

100 30 47.005 23.792 45.827 600 30 18.335 19.014 40.54 100 30 0.0322 0.0168 0.0309 600 30 0.0056 0.0058 0.0117

100 40 85.914 33.741 64.807 600 40 37.729 27.004 56.551 100 40 0.0583 0.0234 0.0436 600 40 0.0111 0.0081 0.0163

100 50 NA 42.826 84.671 600 50 69.217 35.334 73.171 100 50 NA NA NA 600 50 0.0202 0.0105 0.0211

200 2 -9.22 1.286 2.676 700 2 -10.705 0.976 2.344 200 2 0.0045 0.0011 0.0016 700 2 0.0029 0.0005 0.0008

200 10 -1.241 6.664 13.547 700 10 -4.966 5.156 11.968 200 10 0.0022 0.0038 0.0067 700 10 0.0016 0.0017 0.0033

200 20 12.085 14.492 28.474 700 20 4.666 11.556 25.429 200 20 0.0067 0.0076 0.0139 700 20 0.0018 0.0034 0.0069

200 30 30.976 23.011 44.783 700 30 17.336 18.427 39.778 200 30 0.0154 0.0116 0.0216 700 30 0.005 0.0052 0.0107

200 40 58.793 32.182 62.337 700 40 36.122 26.323 55.599 200 40 0.0286 0.016 0.0299 700 40 0.0099 0.0074 0.015

200 50 108.014 41.78 80.84 700 50 65.343 33.926 71.59 200 50 0.0522 0.0206 0.0388 700 50 0.0178 0.0094 0.0192

300 2 -9.832 1.258 2.651 800 2 -10.826 0.916 2.265 300 2 0.004 0.0009 0.0013 800 2 0.0028 0.0005 0.0007

300 10 -2.705 6.314 13.244 800 10 -5.027 5.168 11.868 300 10 0.0019 0.003 0.0054 800 10 0.0015 0.0016 0.0031

300 20 8.484 13.184 27.34 800 20 3.795 10.875 24.583 300 20 0.0041 0.0057 0.011 800 20 0.0016 0.003 0.0063

300 30 24.219 20.915 42.81 800 30 16.394 17.898 38.981 300 30 0.01 0.0087 0.017 800 30 0.0045 0.0048 0.0099

300 40 47.976 29.619 59.796 800 40 34.488 25.299 54.308 300 40 0.0194 0.0122 0.0237 800 40 0.009 0.0067 0.0138

300 50 88.335 38.894 77.566 800 50 62.798 33.014 70.315 300 50 0.0352 0.0159 0.0307 800 50 0.0162 0.0087 0.0179

400 2 -10.26 1.088 2.49 900 2 -10.842 0.96 2.276 400 2 0.0036 0.0007 0.001 900 2 0.0027 0.0004 0.0007

400 10 -3.642 5.931 12.902 900 10 -5.245 5.029 11.604 400 10 0.0018 0.0024 0.0046 900 10 0.0015 0.0015 0.0029

400 20 6.765 12.412 26.62 900 20 3.532 10.748 24.222 400 20 0.0031 0.0047 0.0093 900 20 0.0014 0.0028 0.0059

400 30 21.71 20.195 42.144 900 30 15.803 17.425 38.206 400 30 0.0079 0.0074 0.0146 900 30 0.0041 0.0045 0.0093

400 40 43.939 29.131 59.099 900 40 33.281 24.869 53.37 400 40 0.0155 0.0105 0.0205 900 40 0.0083 0.0063 0.013

400 50 79.458 37.105 75.74 900 50 60.005 32.059 68.845 400 50 0.0278 0.0132 0.0262 900 50 0.0147 0.008 0.0167

500 2 -10.452 1.055 2.457 1000 2 -10.954 0.876 2.175 500 2 0.0033 0.0006 0.0009 1000 2 0.0026 0.0004 0.0006

500 10 -4.165 5.611 12.53 1000 10 -5.334 5.025 11.473 500 10 0.0018 0.0021 0.004 1000 10 0.0015 0.0014 0.0028

500 20 5.87 12.131 26.266 1000 20 3.024 10.306 23.583 500 20 0.0024 0.0041 0.0083 1000 20 0.0013 0.0026 0.0055

500 30 19.84 19.618 41.312 1000 30 14.235 16.247 36.803 500 30 0.0065 0.0064 0.013 1000 30 0.0036 0.004 0.0086

500 40 41.134 28.492 58.165 1000 40 31.769 23.702 51.896 500 40 0.0131 0.0092 0.0182 1000 40 0.0076 0.0058 0.0121

500 50 73.398 36.242 74.392 1000 50 58.162 31.156 67.434 500 50 0.0232 0.0117 0.0232 1000 50 0.0137 0.0075 0.0157

Table 3.5: Percentage Relative Bias and Root Mean Square Error of the SRMR from selected
conditions
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N PM FIML SM Naive N PM FIML SM Naive

100 2 0.0056 0.0072 0.0104 600 2 0.0017 0.0021 0.0032

100 10 0.0118 0.0223 0.0362 600 10 0.0039 0.0059 0.0113

100 20 0.0164 0.0387 0.0628 600 20 0.0065 0.0105 0.0201

100 30 0.0214 0.0507 0.0858 600 30 0.008 0.0148 0.0283

100 40 0.0317 0.0601 0.1059 600 40 0.0092 0.0184 0.0358

100 50 NA NA NA 600 50 0.0102 0.0215 0.0425

200 2 0.0039 0.005 0.0075 700 2 0.0015 0.0018 0.0026

200 10 0.0081 0.0154 0.0257 700 10 0.0036 0.0049 0.0097

200 20 0.0112 0.0265 0.0437 700 20 0.0056 0.0089 0.0177

200 30 0.0134 0.036 0.0599 700 30 0.0072 0.0128 0.0252

200 40 0.0148 0.0431 0.0739 700 40 0.0087 0.0162 0.0322

200 50 0.019 0.0483 0.0853 700 50 0.0097 0.0187 0.038

300 2 0.0028 0.0038 0.0058 800 2 0.0012 0.0014 0.0022

300 10 0.0064 0.0113 0.0196 800 10 0.0032 0.0042 0.0085

300 20 0.0088 0.0193 0.0334 800 20 0.0052 0.0076 0.0157

300 30 0.0103 0.0263 0.046 800 30 0.0069 0.011 0.0225

300 40 0.0112 0.0325 0.0575 800 40 0.0086 0.014 0.0288

300 50 0.0125 0.0368 0.0668 800 50 0.0099 0.0165 0.0344

400 2 0.0026 0.0031 0.0046 900 2 0.0011 0.0012 0.0019

400 10 0.005 0.0087 0.0158 900 10 0.0031 0.0037 0.0076

400 20 0.0079 0.015 0.0273 900 20 0.0047 0.0067 0.0142

400 30 0.0096 0.0209 0.0379 900 30 0.0064 0.0098 0.0205

400 40 0.0103 0.0265 0.0479 900 40 0.008 0.0126 0.0264

400 50 0.011 0.0299 0.0557 900 50 0.0096 0.0145 0.0314

500 2 0.0023 0.0025 0.0038 1000 2 0.001 0.001 0.0016

500 10 0.0046 0.007 0.013 1000 10 0.0027 0.0033 0.0068

500 20 0.0069 0.0123 0.0231 1000 20 0.0047 0.0059 0.0128

500 30 0.0083 0.0174 0.0324 1000 30 0.0065 0.0086 0.0186

500 40 0.0092 0.0219 0.041 1000 40 0.0085 0.011 0.024

500 50 0.01 0.0252 0.0481 1000 50 0.0098 0.013 0.0289

Table 3.6: Root Mean Square Error of the RMSEA from selected conditions
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fit. The Naive approach performed universally more poorly than the SM technique in all conditions

tested. To give a visualization of the relative performance of the SM and Naive approaches vis-à-

vis the complete data conditions, Figure 3.2 shows superimposed surfaces that correspond to the

CFI and TLI of these three conditions plotted by sample size and PM. Referring to this figure, the

reader can see a representative example of the consistent superiority of the SM technique to the

Naive approach.
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Plate 1: CFI for the SuperMatrix, Naive, and Complete Data Conditions
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Plate 2: TLI for the SuperMatrix, Naive, and Complete Data Conditions
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Figure 3.2: Incremental fit indices for complete data, SM, & naive conditions plotted by sample
size and percent missing
Upper surface=Complete data conditions, Intermediate surface=SM conditions, Lower
surface=Naive conditions
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3.3 Significance Testing with the ∆χ2

Perhaps the most important finding of this study is the complete support of Hypothesis 4. As the

reader can see from Table 3.7, the SM-based ∆χ2 values were reasonably accurate across all con-

ditions tested (although these values tend to demonstrate an unacceptable degree of positive bias

when pm > 40 and n < 300). While the Naive-based ∆χ2 also acquits itself reasonably well, a

direct comparison between the PRB and RMSE values associated with the SM and Naive condi-

tions shows that the SM technique leads to consistently superior results. Therefore, Hypothesis 3

is also supported in the context of significance testing with the ∆χ2 test. An unexpected outcome

was the poor performance of the FIML-based ∆χ2 tests. As the reader can see from Table 3.7 the

FIML-based ∆χ2 values showed a consistent and appreciable negative bias. In fact, for all levels

of sample size, the FIML-based ∆χ2 values showed an unacceptable degree of negative bias when

pm > 10. Plate 1 of Figure 3.3 shows how closely, on average, the SM-based ∆χ2 values track

their complete data-based counterparts. On the other hand, Plate 2 of Figure 3.3 illustrates the con-

siderable discrepancy between the average FIML-based ∆χ2 values and the complete data-based

versions.
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Percentage Relative Bias: Chi-Squared Difference Root Mean Square Error: Chi-Squared Difference

N PM FIML SM Naive N PM FIML SM Naive N PM FIML SM Naive N PM FIML SM Naive

100 2 -1.201 0.301 0.368 600 2 -1.338 0.016 0.029 100 2 1.255 1.238 1.242 600 2 3.443 2.76 2.76

100 10 -5.941 1.903 2.286 600 10 -6.023 0.8 0.86 100 10 3.215 3.007 3.021 600 10 10.646 6.112 6.13

100 20 -13.876 2.924 3.792 600 20 -13.302 1.137 1.269 100 20 5.391 4.644 4.693 600 20 22.074 9.838 9.872

100 30 -23.867 3.892 5.485 600 30 -21.173 2.104 2.357 100 30 7.647 5.704 5.815 600 30 33.942 13.556 13.649

100 40 -33.526 6.527 9.493 600 40 -30.383 2.946 3.361 100 40 9.948 7.942 8.216 600 40 47.345 17.353 17.545

100 50 NA 14.522 20.885 600 50 -40.177 5.389 6.168 100 50 NA 10.693 11.483 600 50 62.45 22.398 22.86

200 2 -1.405 0.066 0.102 700 2 -1.269 0.064 0.074 200 2 1.839 1.661 1.659 700 2 3.633 2.935 2.935

200 10 -6.216 1.081 1.259 700 10 -6.465 0.414 0.465 200 10 4.951 4.016 4.025 700 10 12.912 6.674 6.687

200 20 -13.204 2.169 2.582 700 20 -13.212 1.301 1.414 200 20 8.882 6.351 6.398 700 20 25.027 10.969 11.015

200 30 -21.675 3.2 3.934 700 30 -20.918 2.396 2.605 200 30 13.146 8.514 8.601 700 30 38.555 14.984 15.097

200 40 -30.463 6.132 7.465 700 40 -30.205 2.895 3.254 200 40 16.955 10.199 10.447 700 40 54.953 18.113 18.299

200 50 -40.791 8.764 11.178 700 50 -39.898 5.628 6.284 200 50 22.668 13.622 14.133 700 50 71.725 25.415 25.942

300 2 -1.295 0.085 0.108 800 2 -1.226 0.105 0.114 300 2 2.15 1.945 1.944 800 2 3.932 3.061 3.061

300 10 -6.52 0.519 0.636 800 10 -6.193 0.549 0.593 300 10 6.765 4.728 4.735 800 10 14.22 7.225 7.242

300 20 -13.157 1.652 1.913 800 20 -13.231 1.353 1.452 300 20 12.094 7.561 7.59 800 20 28.421 11.895 11.95

300 30 -21.594 2.361 2.831 800 30 -21.177 2.066 2.245 300 30 18.491 9.441 9.509 800 30 44.801 16.221 16.308

300 40 -31.343 3.659 4.499 800 40 -30.273 2.481 2.794 300 40 25.444 11.814 12.018 800 40 62.487 19.608 19.799

300 50 -40.537 7.761 9.321 800 50 -40.482 4.327 4.88 300 50 32.59 16.281 16.807 800 50 82.82 25.716 26.146

400 2 -1.19 0.183 0.2 900 2 -1.157 0.182 0.19 400 2 2.574 2.297 2.297 900 2 4.242 3.301 3.303

400 10 -6.271 0.692 0.78 900 10 -6.235 0.595 0.635 400 10 8.124 5.208 5.218 900 10 16.165 8.237 8.253

400 20 -13.07 1.635 1.833 900 20 -13.336 1.053 1.142 400 20 15.211 8.112 8.153 900 20 31.93 11.815 11.852

400 30 -21.536 2.26 2.622 900 30 -21.298 1.659 1.818 400 30 23.485 10.365 10.452 900 30 50.013 15.729 15.819

400 40 -30.841 3.237 3.875 900 40 -29.99 3.099 3.377 400 40 32.87 14.63 14.817 900 40 69.544 21.265 21.489

400 50 -40.478 5.714 6.824 900 50 -39.948 4.599 5.1 400 50 42.645 17.094 17.529 900 50 91.792 27.673 28.133

500 2 -1.186 0.18 0.194 1000 2 -1.261 0.064 0.071 500 2 2.866 2.54 2.542 1000 2 4.729 3.576 3.577

500 10 -6.3 0.626 0.698 1000 10 -6.197 0.612 0.647 500 10 9.725 5.878 5.89 1000 10 17.559 8.48 8.496

500 20 -13.991 0.661 0.824 1000 20 -13.679 0.616 0.697 500 20 19.369 8.943 8.966 1000 20 36.195 12.873 12.901

500 30 -21.317 2.082 2.376 1000 30 -21.195 1.673 1.817 500 30 28.819 12.501 12.58 1000 30 55.106 17.365 17.452

500 40 -30.836 2.836 3.333 1000 40 -30.535 2.212 2.468 500 40 40.489 15.061 15.245 1000 40 78.533 21.547 21.725

500 50 -40.296 5.327 6.23 1000 50 -40.007 4.645 5.086 500 50 52.097 19.127 19.558 1000 50 101.77 29.755 30.242

Table 3.7: Percentage Relative Bias and Root Mean Square Error of the ∆χ2 from selected condi-
tions
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Plate 1: Δχ2 for the Complete Data and SuperMatrix Conditions
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Plate 2:  Δχ2 for the Complete Data and FIML Conditions
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Figure 3.3: ∆χ2 values for complete data, SM, & FIML conditions
Plate 1: Upper surface=SM conditions, Lower surface=Complete data conditions
Plate 2: Upper surface=Complete data conditions, Lower surface=FIML conditions
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Chapter 4

Discussion

This study endeavored to demonstrate the utility of the SM technique as a parsimonious method

of streamlining missing data analysis for the typical social scientist. Of principle concern was

the degree to which model fit indices derived from the SM technique could replicate fit indices

derived from complete data and the extent to which hypothesis tests conducted with SM-based

∆χ2 statistics replicated those conducted with complete data-based ∆χ2 statistics. By way of

comparison, the performance of the SM technique was contrasted with the performance of FIML

estimation and the Naive approach in replicating these same complete data values.

Overall, the SM technique performed reasonably well. As anticipated, the SM technique uni-

versally out-performed the Naive approach as both a method of assessing the analysis models’

direct fit to the data and as a tool with which to conduct ∆χ2-based hypothesis testing. Although

many of the SM-based and Naive-based model fit estimates were similar, the SM-based estimates

were always superior (i.e., closer to the complete data values). In addition to this superior per-

formance, the SM technique only requires the fitting of a single analysis model (as opposed to m

analysis models), so it is more computationally efficient than the Naive approach. The SM tech-

nique also offers a more parsimonious implementation with fewer chances for miscalculation than

the Naive approach. Thus, there is no reason to consider the Naive approach as a viable alternative

to the SM technique.
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Unfortunately, though the SM technique performed very well when contrasted with the Naive

approach, when compared to the current gold standard in missing data analysis, FIML estimation,

the results were mixed. On the positive side, the SM technique exhibited very good rates of conver-

gence. In fact, all SM-based conditions achieved 100% convergence. FIML conditions, however,

had considerable issues with convergence, particularly under suboptimal model parameterizations.

Once sample sizes dropped below 200 and rates of missing increased much beyond 30%, the FIML

models began to exhibit very low convergence rates. This is not a terribly surprising results when

one considers how FIML estimation is accomplished. Since FIML estimates are derived from ag-

gregated casewise loglikelihoods that are based on only the observed responses, mixing such high

percents missing with small sample sizes effectively decreases the sample size below what is re-

quired to satisfy the large sample assumption of ML estimation. Because imputation techniques

(including the SM technique) operate by simulating plausible values for the missing data, they

circumvent this loss of sample size. However, the merits of this result must be weighed carefully.

While ostensibly beneficial, this artificially maintained sample size can be both a great strength

and a key weakness of imputation-based approaches.

At this juncture, it is worth acknowledging that most social scientists will have only a single

data set with which to test their hypotheses. So, it is unlikely that applied researchers will have

much direct interest in the empirical convergence rates derived from this study. However, this

result is not trivial. Higher rates of convergence observed in a Monte Carlo simulation directly

translate to higher probabilities of model convergence in a one-off substantive study. Thus, the

poor showing of the FIML conditions observed here suggests that researchers can anticipate a

higher probability of achieving convergence if they treat their missing data with the SM technique

rather than employing FIML estimation. This will be especially true if they are faced with small

sample sizes and high rates of nonresponse.

Unfortunately, in terms of assessing direct model fit to the data, the performance of the SM

technique fell far short of FIML estimation. As expected, the FIML-based estimates were very
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accurate across all levels of percent missing and sample size1. This result should not come as a

surprise and replicates the findings of previous work assessing the performance of FIML estima-

tion (e.g., Enders & Bandalos, 2001). However, contrary to our hypothesis, the SM technique

performed quite poorly when tasked with assessing direct model fit. This was particularly true

when model fit was quantified by the χ2, RMSEA, or SRMR. Indeed, other than those conditions

with trivially small percents missing (i.e., pm < 10%), there were no conditions tested in which

the SM-based χ2, RMSEA, or SRMR were deemed trustworthy metrics by which to judge the

adequacy of the analysis models’ fit to the data. However, the SM-based CFI and TLI were much

more accurate, at least once sample sizes increased outside of the range that would be considered

relatively small for covariance structures modeling (i.e., N > 200).

Although initially perplexing, this discrepancy is not entirely unintuitive when one considers

the unique nature of the hypothesis tested by incremental fit indices. It must be noted that the

χ2, RMSEA, and SRMR are all derived from comparing a hypothetical, model-implied covari-

ance matrix (which describes the modeler’s expectations) to an observed covariance matrix (which

describes the true response pattern in the data). Thus, these three indices are designed to test the

degree to which the proposed model can replicate the observed responses. On the other hand,

the CFI and TLI are both derived by comparing functions of the χ2 values from a “worst-case”

null model (which is designed to describe the data as badly as possible by ignoring any latent

structure) to a similar function derived from the χ2 of the proposed model (which describes the

modeler’s theory-driven expectations). Therefore, these two indices represent the degree to which

a proposed model is an improvement over the worst possible explanation of the observed rela-

tionships. Clearly, the critical difference lies in the absence of the observed covariance matrix in

the incremental approach. Because the incremental indices employ no term to quantify the raw,

unstructured relationships in the data, they completely ignore the degree to which the researchers

expected relationships replicate those in the observed data. Rather, these indices focus only on

1While the reader will note that the performance of some of the FIML-based fit indices drops off in those conditions
that cross small sample sizes and high rates of missingness, these results must be interpreted in the context of the very
low convergence rates for the FIML models in these conditions.
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how much better a given model is than the worst possible model that can be ascribed to the same

data set.

Because multiple imputation is designed to incorporate the researcher’s uncertainty in the true

values of the imputed data, it follows that the final imputed data sets, in some sense, represent

the true population values less correctly (at least in terms of larger variances) than the complete

data would have. Therefore, the discrepancies between an idealized model-implied covariance

matrix and a matrix derived from imputed data should be larger than those between that same

model-implied covariance matrix and a matrix derived from complete data. The χ2, RMSEA, and

SRMR would, in turn, reflect these inflated discrepancies. However, because they are impartial to

the absolute discrepancies between observed and model implied covariance matrices, the CFI and

TLI would not reflect the additional “badness” introduced by multiple imputation. Keeping this

distinction in mind and referring back to the SM-based CFI and TLI, it is more clear why these

two indices demonstrate reasonable performance when the χ2, RMSEA, and SRMR do not. The

CFI and TLI are ignoring additional misfit introduced by the missing data treatment, while the χ2,

RMSEA, and SRMR capture not only any inappropriateness of the hypothesized model but also

the additional misfit that is caused by the imputation process.

Unfortunately, the positive performance of the SM-based CFI and TLI is not enough to validate

its utility as a method of assessing direct model fit. While it would be possible to rely on the CFI

and TLI alone to get an accurate assessment of the adequacy of your model, the responsible re-

searcher will recognize that model fit must be viewed as a gestalt. By relying on only incremental

fit indices to judge the adequacy of a given model, the modeler will get only an incomplete and

possibly skewed idea of that model’s appropriateness. Adding to this concern is the unique hy-

pothesis tested by incremental fit indices. If one were to rely only upon the CFI and TLI to assess

their model’s accuracy, they would be ignoring all information regarding the discrepancy between

the relationships implied by their hypothesized model and those truly represented by the observed

data. Thus, the SM technique cannot yet be recommended as a tool to assess the direct fit of a

hypothesized model to an observed sample. At the SM technique’s current stage of development,
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FIML estimation is still a superior tool to assess direct model fit.

Happily, the performance of the SM technique as a tool with which to conduct ∆χ2 testing

was much more promising than its performance in assessing direct model fit. In all conditions

tested (except for a few condition with very high rates of missing and small sample sizes), the SM-

based ∆χ2 values showed negligible bias. This result suggests that the SM technique can produce

unbiased assessments of parameter significance without the need to consider the usual assumptions

regarding standard errors (e.g., distribution of the indicators, method of scale setting, correction

for multiple imputations).

While unbiased SM-based ∆χ2 tests were hypothesized and expected, an interested result that

was not anticipated was the considerably poor performance of the FIML-based ∆χ2 tests. Indeed,

in all but those conditions with the lowest percents missing (i.e., pm < 10%), the FIML-based

∆χ2 values were unacceptably negatively biased. Although the effect size associated with this test

(i.e., ψ2,1 = r = .5) was too large to assess rejection rates, the substantial degree of negative bias

suggests that researchers seeking to capture a small effect size with FIML-based ∆χ2 tests may

face considerably inflated Type II error rates.

4.0.1 Limitations and Future Directions

Conclusions regarding the utility of the SM technique must be drawn tentatively. The scope of

this study was very limited and therefore represents only a small subset of the possible modeling

situations for which the applied researcher may considering using the SM technique. With regards

to the data structure, all indicators where multivariate normally distributed, and the data generating

and analysis models represented trivially simple, cross-sectional, single group models. None of

these characteristics are likely to be the reality experienced by the applied researcher, and variation

in model complexity and adherence to model assumptions could have a non-negligible impact on

the performance of the techniques under study.

Future extensions of this work must address some of the important shortcomings that limit the

generalizability of the current study. First and foremost, the SM technique must be compared to
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additional missing data treatments, especially those that are currently recommended in the method-

ological community. To that end, additional simulations must be run with the Expectation Maxi-

mization (EM) Algorithm, Yuan & Bentler Two-Stage Estimator, and various corrections to the χ2

(e.g., the Satorra-Bentler Robust χ2) included as comparison conditions. Also, the current study

was not designed to assess the accuracy of model parameters or their associated standard errors,

so no conclusions can be drawn about the correctness of parameter estimates or the plausibility of

hypothesis testing with Wald statistics. Considering that model fit will only be of tertiary interest

to most of those who would implement the SM technique, this is a considerable shortcoming of the

current work. The work of previous authors (e.g., Rubin, 1987; Satorra & Bentler, 1994; van Bu-

uren, 2012; Wood et al., 2008) and the principles of point estimation that motivate Rubin’s Rules

would seem to suggest that the SM technique should produce unbiased point estimates of model

parameters, but these suppositions must be confirmed. Future work must empirically examine the

degree to which the SM technique can produce accurate parameter estimates and standard errors.

Also, future work must examine the power and Type I error rates associated with the SM-based

∆χ2 . Finally, an effort must be made to address the unacceptable estimates of direct model fit. Past

work has proposed several corrections to the χ2 statistic which could be applicable to the current

situation (e.g., Browne, 1984; Cai & Lee, 2009; Lee & Cai, 2012; Yuan & Bentler, 2000).

Although converting the SM technique into a two stage estimator is not an optimal outcome, such

corrections are likely to be the only recourse for correcting the considerable shortcomings of the

SM technique as a tool to assess direct model fit.

4.1 Conclusion

In summary, the SM technique may not yet demonstrate sufficient performance to act as an

“all-in-one” missing data tool. As it is currently implemented, the SM-technique does not have the

capability to provide an accurate picture of overall direct model fit to the data, and this constitutes

a considerable shortcoming that will keep many researchers from using the technique. However,

there is much promise in the SM technique. It did outperform the Naive approach on all counts, and
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when compared to FIML estimation it demonstrated far superior convergence rates. This finding

suggests that researchers who employ the SM technique can expect a higher probability of reaching

convergence for a given model than they can if using FIML estimation. The SM technique also

outperformed FIML estimation in the context of nested model comparisons. SM-based significance

tests with the ∆χ2 demonstrated considerably more accurate conclusions than their FIML-based

counterparts. These two findings in concert suggest that the SM technique will allow researchers to

do more with what they have, so to speak, and offer a higher chance of observing those effects that

truly exist. In short, even though the SM technique may not be ready to stand on its own quite yet,

with some further modification to address its shortcomings in assessing direct model fit, it shows

the potential to grow into a powerful tool in the arsenal of the applied researcher faced with the

need for a simple, yet principled, missing data treatment.
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Appendix A: R Code for Key Functions

Code Excerpt 1: Function to simulate complete data

s imData <− f u n c t i o n ( parms )
{

r e q u i r e ( mvtnorm )

nobs <− parms $ nobs
mfK <− parms $mfK
l e n S c a l e <− parms $ l e n S c a l e

p h i <− matrix ( c ( 1 , . 5 , . 5 , 1 ) , 2 , 2 )

lambda <− matrix ( c ( rep ( . 6 , ( l e n S c a l e / 2) ) , rep ( 0 , ( l e n S c a l e / 2) ) ,
rep ( 0 , ( l e n S c a l e / 2) ) , rep ( . 6 , ( l e n S c a l e / 2) ) ,
rep ( . 2 , ( l e n S c a l e / 2) ) , rep ( . 1 , ( l e n S c a l e / 2) ) ,
rep ( . 0 5 , ( l e n S c a l e / 2) ) , rep ( . 1 , ( l e n S c a l e / 2) )

) , l e n S c a l e , 4 )

t h e t a <− t o e p l i t z ( c ( ( 1 − . 6 ^ 2 ) , 0 , 0 , 0 , mfK , 0 , 0 , 0 , 0 , mfK , 0 , 0 , 0 , 0 ,
mfK , 0 , 0 , 0 , 0 , mfK) )

e t a <− rmvnorm ( nobs , c ( 0 , 0 ) , p h i )

Covs <− rmvnorm ( nobs , c ( 0 , 2 ) , matrix ( c ( 1 , 0 , 0 , 3 ) , 2 , 2 ) )
p r e d s <− cbind ( e t a , Covs )
colnames ( p r e d s ) <− c ( " F1 " , " F2 " , " c1 " , " c2 " )

e r r o r s <− rmvnorm ( nobs , rep ( 0 , l e n S c a l e ) , t h e t a )

d a t <− p r e d s %∗% t ( lambda ) + e r r o r s

newDat <− cbind ( da t , p r e d s [ , 3 : 4 ] )
colnames ( newDat ) <− c ( p a s t e ( " a " , 1 : ( l e n S c a l e / 2) , sep =" " ) ,
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p a s t e ( " b " , 1 : ( l e n S c a l e / 2) , sep =" " ) , " c1 " , " c2 " )

newDat
}# End simData ( )

Code Excerpt 2: Function to impose missing data

makeMAR <− f u n c t i o n (pm , da t , parms )
{

l e n S c a l e <− parms $ l e n S c a l e
marPred1 <− parms $ marPred1
marPred2 <− parms $ marPred2

Y <− r u n i f ( l e n S c a l e ∗ . 5 , 0 , . 2 5 ∗pm)

Z <− sample ( c (Y+pm,−Y+pm) , r e p l a c e =F )

fun1 <− f u n c t i o n ( x , d a t ) pnorm ( da t , mean ( d a t ) , sd ( d a t ) ) <= x

R1 <− sapply ( Z [ 1 : ( l e n g t h ( Z ) ∗ . 5 ) ] , fun1 , d a t = d a t [ , marPred1 ] )
R2 <− sapply ( Z [ ( ( l e n g t h ( Z ) ∗ . 5 ) +1) : l e n g t h ( Z ) ] , fun1 , d a t = d a t

[ , marPred2 ] )

R <− cbind ( cbind ( R1 , R2 ) [ , sample ( dim ( cbind ( R1 , R2 ) ) [ 2 ] ,
r e p l a c e =F ) ] ,

matrix ( FALSE , dim ( d a t ) [ 1 ] , ( dim ( d a t ) [2]−dim (
cbind ( R1 , R2 ) ) [ 2 ] ) ) )

d a t [R] <− NA

d a t

}# End makeMAR ( )

Code Excerpt 3: Function to implement imputation-based missing data treatments

i m p u t e S t a c k <− f u n c t i o n ( da t , runNumber , parms )
{

r e q u i r e ( Amelia )
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r e q u i r e ( mice )

miceDat <− d a t
imps <− parms $ imps
l e n S c a l e <− parms $ l e n S c a l e

applyMICE <− f u n c t i o n ( index , da t , c o v s I n d e x )
{

mice . impute . norm . p r e d i c t ( d a t [ , index ] , ! i s . na ( d a t [ , index
] ) , d a t [ , c o v s I n d e x ] )

}

miceOut <− t r y C a t c h ( sapply ( c ( 1 : l e n S c a l e ) , FUN=applyMICE , d a t =
miceDat , c o v s I n d e x =c ( ( l e n S c a l e +1) : dim ( miceDat ) [ 2 ] ) ) , e r r o r =
f u n c t i o n ( e ) {NULL} , f i n a l l y = l i s t ( ) )

i f ( i s . n u l l ( miceOut ) ==FALSE) { miceDat [ i s . na ( miceDat ) ] <− u n l i s t (
miceOut ) } e l s e { miceDat <− NA}

i f ( i s . n u l l ( miceDat ) ==FALSE & sum ( i s . na ( miceDat ) ) ==0) {
miceConverge <− TRUE} e l s e { miceConverge <− FALSE ;
miceDat <− NA}

amel i aOu t <− t r y C a t c h ( a m e l i a ( da t , m=imps , empr i = .1 ∗dim ( d a t )
[ 1 ] , p2s =0 , i n c h e c k =FALSE) , e r r o r = f u n c t i o n ( e ) {NULL} ,
f i n a l l y = l i s t ( ) )

i f ( i s . n u l l ( ame l i aOu t ) ==FALSE)
{

ame l i aConve rge <− TRUE

s t a c k e d D a t <− do . c a l l ( " r b i n d " , ame l i aOu t [ [ 1 ] ] )

meanImps <− matrix ( apply ( matrix ( u n l i s t ( ame l i aOu t [ [ 1 ] ] ) ,
nco l =dim ( d a t ) [ 1 ] ∗dim ( d a t ) [ 2 ] , byrow=TRUE) , 2 , mean

) , nco l =dim ( d a t ) [ 2 ] , dimnames= l i s t (NULL, colnames (
d a t ) ) )

rawCov <− l a p p l y ( ame l i aOu t [ [ 1 ] ] , cov )

superMat <− cov ( s t a c k e d D a t [ , 1 : l e n S c a l e ] )
} e l s e { ame l i aConve rge <− FALSE ; rawCov <− NA; superMat

<− NA; meanImps <− NA}
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rm ( s t a c k e d D a t )
rm ( ame l i aOu t )
rm ( miceOut )

impDat <− l i s t ( ame l i aConve rge = amel iaConverge , miceConverge=
miceConverge , incompDat= da t , rawCov=rawCov , superMat =
superMat , avImpsDat=meanImps , regImpDat=miceDat )

} # end i m p u t e S t a c k ( )

Code Excerpt 4: Function to fit the CFA models for the missing data conditions

f i t M i s s i n M o d e l s <− f u n c t i o n ( da t , parms )
{

r e q u i r e ( l a v a a n )

check <− f u n c t i o n ( l a vO b j ) i s . n u l l ( l a vO b j ) | | i s . na ( sum (
u n l i s t ( i n s p e c t ( lavObj , " se " ) ) ) ) | | min ( u n l i s t (
i n s p e c t ( lavObj , " se " ) ) ) < 0

mod1 <− parms $mod1
mod2 <− parms $mod2
mod3 <− parms $mod3
nobs <− parms $ nobs
imps <− parms $ imps
l e n S c a l e <− parms $ l e n S c a l e

i f ( d a t $ ame l i aConve rge ==TRUE)
{

smFullMod <− t r y C a t c h ( c f a ( mod1 , sample . cov= d a t $ superMat
, sample . nobs=nobs , s t d . l v =TRUE) , e r r o r = f u n c t i o n ( e )
{NULL} , f i n a l l y = l i s t ( ) )

smResMod <− t r y C a t c h ( c f a ( mod1 , sample . cov= d a t $ superMat ,
sample . nobs=nobs , s t d . l v =TRUE, o r t h o g o n a l =TRUE) ,

e r r o r = f u n c t i o n ( e ) {NULL} , f i n a l l y = l i s t ( ) )

i f ( check ( smFullMod ) ==FALSE & check ( smResMod ) ==FALSE) {
smConverge <− TRUE; s m F u l l F i t <− f i t M e a s u r e s (
smFullMod ) ; smResFi t <− f i t M e a s u r e s ( smResMod ) } e l s e

{ smConverge <− FALSE ; s m F u l l F i t <− NA; smResFi t <−
NA}
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avImpsFullMod <− t r y C a t c h ( c f a ( mod1 , sample . cov=cov ( d a t $
avImpsDat [ , 1 : l e n S c a l e ] ) , sample . nobs=nobs , s t d . l v =
TRUE) , e r r o r = f u n c t i o n ( e ) {NULL} , f i n a l l y = l i s t ( ) )

avImpsResMod <− t r y C a t c h ( c f a ( mod1 , sample . cov=cov ( d a t $
avImpsDat [ , 1 : l e n S c a l e ] ) , sample . nobs=nobs , s t d . l v =
TRUE, o r t h o g o n a l =TRUE) , e r r o r = f u n c t i o n ( e ) {NULL} ,
f i n a l l y = l i s t ( ) )

i f ( check ( avImpsFullMod ) ==FALSE & check ( avImpsResMod ) ==
FALSE) { avImpsConverge <− TRUE; a v I m p s F u l l F i t <−
f i t M e a s u r e s ( avImpsFullMod ) ; a v I m p s R e s F i t <−
f i t M e a s u r e s ( avImpsResMod ) } e l s e { avImpsConverge <−
FALSE ; a v I m p s F u l l F i t <− NA; a v I m p s R e s F i t <− NA}

fitRawMods <− f u n c t i o n ( x , parms )
{

mod1 <− parms $mod1
nobs <− parms $ nobs

fu l lMod <− t r y C a t c h ( c f a ( mod1 , sample . cov=x , sample .
nobs=nobs , s t d . l v =TRUE) , e r r o r = f u n c t i o n ( e ) {NULL
} , f i n a l l y = l i s t ( ) )

resMod <− t r y C a t c h ( c f a ( mod1 , sample . cov=x , sample .
nobs=nobs , s t d . l v =TRUE, o r t h o g o n a l =TRUE) , e r r o r
= f u n c t i o n ( e ) {NULL} , f i n a l l y = l i s t ( ) )

i f ( check ( fu l lMod ) ==FALSE & check ( resMod ) ==FALSE)
{

rawConverge <− TRUE
l i s t ( rawConverge=rawConverge , r a w F u l l F i t =

f i t M e a s u r e s ( fu l lMod ) , r a w R e s F i t = f i t M e a s u r e s (
resMod ) )

} e l s e { rawConverge <− FALSE ; l i s t ( rawConverge=
rawConverge ) }

}

rawMissOut <− l a p p l y ( d a t $ rawCov ,FUN=fitRawMods , parms=
parms )

c o n v e r g e L i s t <− l i s t ( )
f o r ( i i n 1 : l e n g t h ( d a t $ rawCov ) ) c o n v e r g e L i s t [ [ i ] ] <−

rawMissOut [ [ i ] ] $ rawConverge
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i f ( sum ( u n l i s t ( c o n v e r g e L i s t ) ) == l e n g t h ( d a t $ rawCov ) )
{

na iveConve rge <− TRUE

n a i v e F i t <− apply ( matrix ( u n l i s t ( rawMissOut ) , l e n g t h
( rawMissOut ) , 41 , byrow=TRUE, dimnames= l i s t (
NULL, c ( " rawConverge " , rep ( l a b e l s ( rawMissOut [ [ 1 ] ]
$ r a w F u l l F i t ) , 2 ) ) ) ) , 2 , FUN=mean )

n a i v e F u l l F i t <− n a i v e F i t [ 2 : 2 1 ] ; n a i v e R e s F i t <−
n a i v e F i t [ 2 2 : 4 1 ]

} e l s e { na iveConve rge <− FALSE ; n a i v e F u l l F i t <− NA;
n a i v e R e s F i t <− NA}

} e l s e { smConverge <− NA; na iveConve rge <− NA;
avImpsConverge <− NA; s m F u l l F i t <− NA; smResFi t <− NA
; n a i v e F u l l F i t <− NA; n a i v e R e s F i t <− NA;
a v I m p s F u l l F i t <− NA; a v I m p s R e s F i t <− NA}

i f ( d a t $ miceConverge ==TRUE)
{

regImpFullMod <− t r y C a t c h ( c f a ( mod1 , sample . cov=cov ( d a t $
regImpDat [ , 1 : l e n S c a l e ] ) , sample . nobs=nobs , s t d . l v =
TRUE) , e r r o r = f u n c t i o n ( e ) {NULL} , f i n a l l y = l i s t ( ) )

regImpResMod <− t r y C a t c h ( c f a ( mod1 , sample . cov=cov ( d a t $
regImpDat [ , 1 : l e n S c a l e ] ) , sample . nobs=nobs , s t d . l v =
TRUE, o r t h o g o n a l =TRUE) , e r r o r = f u n c t i o n ( e ) {NULL} ,
f i n a l l y = l i s t ( ) )

i f ( check ( regImpFullMod ) ==FALSE & check ( regImpResMod ) ==
FALSE)

{ regImpConverge <− TRUE; r e g I m p F u l l F i t <− f i t M e a s u r e s
( regImpFullMod ) ; r e g I m p R e s F i t <− f i t M e a s u r e s (
regImpResMod ) } e l s e { regImpConverge <− FALSE ;
r e g I m p F u l l F i t <− NA; r e g I m p R e s F i t <− NA}

} e l s e { regImpConverge <− NA; r e g I m p F u l l F i t <− NA;
r e g I m p R e s F i t <− NA}

fimlNul lMod <− t r y C a t c h ( c f a ( mod3 , data=as . data . frame (
d a t $ incompDat ) , miss ing ="FIML" ) , e r r o r = f u n c t i o n ( e ) {
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NULL} , f i n a l l y = l i s t ( ) )

f imlFu l lMod <− t r y C a t c h ( c f a ( mod2 , data=as . data . frame (
d a t $ incompDat ) , miss ing ="FIML" , s t d . l v =TRUE) , e r r o r
= f u n c t i o n ( e ) {NULL} , f i n a l l y = l i s t ( ) )

fimlResMod <− t r y C a t c h ( c f a ( mod2 , data=as . data . frame ( d a t
$ incompDat ) , miss ing ="FIML" , s t d . l v =TRUE,
o r t h o g o n a l =TRUE) , e r r o r = f u n c t i o n ( e ) {NULL} , f i n a l l y =
l i s t ( ) )

i f ( check ( f imlFu l lMod ) ==FALSE & check ( fimlResMod ) ==FALSE
& check ( f imlNul lMod ) ==FALSE)

{
f i m l C o n v e r g e <− TRUE

f i m l F u l l C F I <− max ( 0 , ( f i t M e a s u r e s ( f imlNullMod , "
c h i s q " )−f i t M e a s u r e s ( f imlNullMod , " d f " ) )−(
f i t M e a s u r e s ( f imlFul lMod , " c h i s q " )−f i t M e a s u r e s (
f imlFul lMod , " d f " ) ) ) / ( f i t M e a s u r e s ( f imlNullMod , "
c h i s q " )−f i t M e a s u r e s ( f imlNullMod , " d f " ) )

f imlResCFI <− max ( 0 , ( f i t M e a s u r e s ( f imlNullMod , " c h i s q
" )−f i t M e a s u r e s ( f imlNullMod , " d f " ) )−( f i t M e a s u r e s (
fimlResMod , " c h i s q " )−f i t M e a s u r e s ( fimlResMod , " d f "
) ) ) / ( f i t M e a s u r e s ( f imlNullMod , " c h i s q " )−
f i t M e a s u r e s ( f imlNullMod , " d f " ) )

f i m l F u l l T L I <− ( ( f i t M e a s u r e s ( f imlNullMod , " c h i s q " ) /
f i t M e a s u r e s ( f imlNullMod , " d f " ) )−( f i t M e a s u r e s (
f imlFul lMod , " c h i s q " ) / f i t M e a s u r e s ( f imlFul lMod , "
d f " ) ) ) / ( ( f i t M e a s u r e s ( f imlNullMod , " c h i s q " ) /
f i t M e a s u r e s ( f imlNullMod , " d f " ) )−1)

f imlResTLI <− ( ( f i t M e a s u r e s ( f imlNullMod , " c h i s q " ) /
f i t M e a s u r e s ( f imlNullMod , " d f " ) )−( f i t M e a s u r e s (
fimlResMod , " c h i s q " ) / f i t M e a s u r e s ( fimlResMod , " d f "
) ) ) / ( ( f i t M e a s u r e s ( f imlNullMod , " c h i s q " ) /
f i t M e a s u r e s ( f imlNullMod , " d f " ) )−1)

f i m l F u l l F i t <− c ( f i t M e a s u r e s ( f imlFu l lMod ) [ 1 : 6 ] ,
f i m l F u l l C F I , f i m l F u l l T L I , f i t M e a s u r e s ( f imlFu l lMod
) [ 9 : 2 0 ] )

names ( f i m l F u l l F i t ) <− l a b e l s ( f i t M e a s u r e s (
f imlFu l lMod ) )
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f i m l R e s F i t <− c ( f i t M e a s u r e s ( fimlResMod ) [ 1 : 6 ] ,
f imlResCFI , f imlResTLI , f i t M e a s u r e s ( fimlResMod )
[ 9 : 2 0 ] )

names ( f i m l R e s F i t ) <− l a b e l s ( f i t M e a s u r e s ( fimlResMod )
)

} e l s e { f i m l C o n v e r g e <− FALSE ; f i m l F u l l F i t <− NA;
f i m l R e s F i t <− NA}

c o n v e r g e <− matrix ( c ( d a t $ amel iaConverge , d a t $
miceConverge , f imlConverge , smConverge ,
na iveConverge , avImpsConverge , regImpConverge ) ,
nco l =7 , dimnames= l i s t (NULL, c ( " a m e l i a " , " mice " , " f i m l "
, "sm" , " n a i v e " , " avImps " , " regImp " ) ) )

l i s t ( c o n v e r g e = converge , f i m l F u l l F i t = f i m l F u l l F i t ,
f i m l R e s F i t = f i m l R e s F i t , s m F u l l F i t = s m F u l l F i t ,
smResFi t =smResFi t , n a i v e F u l l F i t = n a i v e F u l l F i t ,
n a i v e R e s F i t = n a i v e R e s F i t , a v I m p s F u l l F i t =
a v I m p s F u l l F i t , a v I m p s R e s F i t = avImpsResF i t ,
r e g I m p F u l l F i t = r e g I m p F u l l F i t , r e g I m p R e s F i t =
r e g I m p R e s F i t )

}# End f i t M i s s i n M o d e l s ( )
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