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Abstract 

Chlamydia trachomatis is an obligate intracellular pathogen of immense public health 

impact and is responsible for diverse disease states leading to blindness, sterility, atherosclerosis 

etc. in humans. Its unique biphasic developmental cycle is essentially linked to its pathogenesis. 

MreB, an actin-like protein, is known to be present in most rod-shaped organisms as a part of the 

cell elongation machinery. The role of MreB in Chlamydia is unknown, even though this gene is 

conserved. Recent studies have attributed diverse roles to MreB in different organisms. Our 

study focusses on the possible role of MreB in Chlamydia trachomatis using different 

approaches and techniques. 

 To understand the functional role of MreB, we sought two strategies, in vitro and in vivo 

analysis. Purified recombinant chlamydial MreB was subjected to a polymerization reactions 

using ATP and Mg
2+

 ions in the presence and absence of a known inhibitor of MreB 

polymerization i.e. A22 and measured using laser light scattering. We observed that MreB 

scatters light even in the absence of ATP almost at a similar rate as in its presence. The presence 

of A22 increased the rate of light scattering as opposed to inhibiting it. When the MreB sequence 

from Chlamydia trachomatis was compared to that of other organisms, some amino acid 

substitutions in the conserved regions of the nucleotide binding pocket which also coincides with 

the A22 binding sites were evident in chlamydial MreB which could contribute to this 

inexplicable phenomenon. Chlamydial A22 mutant had a mutation outside the nucleotide binding 

pocket, confirming the possibility of other targets of A22 in Chlamydia. Quantitative RT-PCR at 

different time points through the developmental cycle of Chlamydia trachomatis revealed that 

the expression of MreB increases at later time points proposing its role in RB to EB conversion. 

Confocal images from immunofluorescence assay showed that MreB appeared as distinct puncta 
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concentrated at the center of the inclusion which increased in number with time. Summarizing 

these observations, it could be said that MreB is involved in the RB to EB conversion in 

Chlamydia. 

 Chlamydia is known to code for an alternative sigma factor, RpoN, but the role is 

unknown. We performed in vitro studies to elucidate the role of sigma 54 (RpoN) in Chlamydia 

trachomatis L2/434/Bu. Using EMSA it was observed that in the presence of RNA core 

polymerase, chlamydial sigma 54 could bind to the predicted RpoN promoters. The quantitative 

RT-PCR analysis showed a pattern which confirms its role in transcription of the predicted 

targets CT652.1 and CT683. Elucidating its role in vivo using modified shuttle vector is the next 

step to study its role in the chlamydial developmental cycle.  
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I. Chlamydial introduction 

 

A. Chlamydial history and public health: 

In 1907, the causative agent for trachoma, an eye infection leading to preventable 

blindness, was discovered and incorrectly termed as ‘Chlamydozoa’ which in Greek meant 

mantle or cloak. Neither considered protozoa nor bacteria these were later in the 1964 designated 

as bacteria (1). Now known as Chlamydia trachomatis, it is the causative agent of trachoma in 

more than 84 million people across the world and over 90 million new cases of sexually 

transmitted disease each year (2). Chlamydia trachomatis belongs to the order Chlamydiales and 

has been characterized as an obligate intracellular pathogen of eukaryotic cells with a very 

unique developmental cycle (3). These are gram-negative spherical shaped eubacteria that 

consist of an inner and an outer membrane (4)   

Among the Chlamydiales, Chlamydia psittaci, Chlamydia pneumonia and Chlamydia 

trachomatis are the three main species of importance to public health (5). C. psittaci is a zoonotic 

pathogen that causes psittacosis, a flu-like illness often accompanied by pneumonia in birds, by 

infecting the respiratory tract and can spread to humans (6). C. pneumoniae infects the upper 

respiratory tract in humans resulting in a host immune response which causes pneumonia and 

bronchitis (7, 8) and is at times associated with coronary heart disease and atherosclerosis (9).  

C. trachomatis also causes ocular infections which may lead to blindness. The ocular 

infections are caused by serovars A, B, Ba, and C. The scarring of the cornea and infected 

conjunctiva is the main cause of blindness in 1-3 million people in endemic areas (10). Trachoma 

in areas of hyperendemicity is treated with single dose of azithromycin to reduce the overall 

chlamydial in community and prevent risk of re-infection.  
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C. trachomatis also causes sexually transmitted infections in women affecting infertility 

worldwide. Serovars D through K cause the genital infections and the LGV (lymphogranuloma) 

strain (L1-L3) are characterized by genital ulcerations. C. trachomatis infects the cervix in 

women causing infection which is asymptomatic in nature and is also a cause of pelvic 

inflammatory disease (PID), ectopic pregnancy and sterility in women (11). About $1.5 billion is 

spent annually for detection, treatment and prevention of C. trachomatis infections in the U.S. 

(12) 

 

B. Chlamydial developmental cycle:   

 Chlamydia has a unique developmental cycle, which sets it apart from other bacteria. The 

developmental cycle involves a reticulate body (RB) and an elementary body (EB), which are 

phenotypically distinct (13).  The metabolically inactive elementary body (EB) is responsible for 

propagation of infection to new host cells. EBs are spherical bodies which survive in 

extracellular environments and are known to be spore-like bodies in Chlamydia (14).  They have 

a highly cross-linked surface which is rich in disulphide bonds and a very condensed DNA.  

 The elementary body attaches to a host cell and is internalized through a membrane 

bound vacuole (15) (Fig 1). This parasitophorous vacuole, termed a chlamydial inclusion, 

prevents fusing with lysosomes, facilitating survival inside the host cell. Upon entry, the EBs 

which are 0.2-0.3 µm in size are then converted into RBs which are larger (0.5-1.6 µm) in size. 

This process is completed within 2-8 hours post infection (hpi) and these metabolically active  
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Figure 1: Developmental cycle of Chlamydia trachomatis 

Infection of a host cell with C. trachomatis initiates with an EB entering a host cell to form a 

parasitophorous vacuole termed an inclusion. The EB is then converted into a non-infectious RB 

which is metabolically active. RB starts replicating within the inclusion by binary fission. RBs 

asynchronously start converting back to EBs which are the infectious, metabolically inactive 

form. EBs are released by host cell lysis or extrusion which infect the neighboring host cells. 
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forms, i.e. RBs, start replicating within the inclusion by binary fission. RBs are the non-

infectious form and are fragile. Between 18-24 hpi these RBs start asynchronously converting 

back into EBs  (13). Exact mechanisms/signals behind this process are yet to be defined. The 

infectious forms (EBs) then burst out of the host cell by the process of extrusion or host cell lysis 

(16), completing one life cycle of a chlamydial EB. 
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II. Chlamydial actin-like protein MreB 

a. Bacterial cell wall and the role of MreB 

Bacterial cytoskeletal proteins are known to have diverse sequences and functions through 

different species which include scaffolding peptidoglycan synthesis, cell shape, cell polarity and 

chromosome segregation. (17). Bacteria contain homologs for eukaryotic actin, tubulin and 

intermediate filaments such as MreB, FtsZ and Crescentin, respectively (18). The presence of 

MreB in different species of bacteria and the similarity of their sequence to eukaryotic actin, 

suggest that the MreB-like proteins have an actin-like role in bacterial cell morphogenesis (19).  

MreB orthologues are found in most rod-shaped, helical and spiral-shaped bacteria though 

there are a few exceptions and are generally absent in spherical shaped bacteria (20) (18). MreB 

null mutants grow as enlarged spherical cells in organisms like E. coli (21), B. subtilis (19) and 

Caulobacter crescentus (22).  

Actin contains a nucleotide binding pocket at the central core that interacts with ATP/GTP 

and hydrolyses it for controlling self-polymerization (23) forming filamentous structures in vitro 

(24). Initial reports suggested that MreB polymers assembled as continuous helical structures 

around the axis of many rod shaped bacteria like B. subtilis (19) and E. coli. But recent report 

suggests that it’s found in patches around the cytoplasmic membrane (25). MreB polymers form 

bundles which were believed to determine the cell shape but these polymers are highly dynamic 

structures and possibly not stable enough to support a sturdy cell shape (24)  Although most 

recent studies indicate that MreB is found in patches which scaffolds the peptidoglycan 

elongation machinery and could also be involved in cytokinesis (26) (27) (28).  

b. MreB and Peptidoglycan in Chlamydia:  
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Due to evolutionary adaptation, obligate intracellular bacteria have a smaller genome as 

compared to other free living organisms and only code for essential genes necessary for 

parasitism (29). Similar feature has been observed in Chlamydia which has a reduced genome 

size of 1.1 Mb as compared to free living E. coli with ~4.6 Mb genome size (30). Although 

Chlamydia encodes genes for the cell wall precursors, efforts to prove the presence of 

peptidoglycan have failed so far (31).  Surprisingly, Chlamydia are susceptible to antibiotics 

against cell wall synthesis like penicillin (32). On treatment with these antibiotics, the 

developmental cycle is arrested with enlarged RB forms which continue to remain in this non-

infectious form until the antibiotic is withdrawn. This has been termed as the chlamydial 

anomaly (33).   

MreB has been known to scaffold peptidoglycan synthesis in many non-spherical organisms and 

is integral in maintaining their shape (26). Chlamydia encodes a few rod-shape determining 

proteins like PBP2, RodA and MreB (30). Given the spherical shape, it is unusual that MreB is 

present in Chlamydia. FtsZ, an essential cell division protein in most bacteria, is found to be 

absent in Chlamydia (34) (30). A definitive role of MreB has not yet been determined although 

an intriguing hypothesis of its involvement in cell division has been proposed stating that MreB 

may substitute for FtsZ as the central co-ordinator of the cell division machinery (35). 

Chlamydial MreB shares a 54% sequence identity to the T. maritima MreB and has conserved 

the nucleotide-binding pocket required for polymerization.  
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Figure 2: Predicted A22 binding site in MreB 

2A shows predicted A22 binding sites in the nucleotide binding pocket of MreB from T. 

maritima. ATP is shown in its crystal position, demonstrating the competition between 

the binding sites of its β- and γ-phosphates and A22. 2B shows predicted interactions of 

A22 with similar residues in the nucleotide binding pocket of chlamydial MreB. 
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A small molecule, A22 (S-3,4-dichlorobenzyl isothiourea), has been shown to inhibit 

MreB polymerization in many non-spherical organisms (36) (37). It not only causes loss of the 

helical MreB structures but also causes cell shape alterations (37). This small compound has 

been a very valuable chemical tool to better understand the role of MreB in bacteria. A22 is said 

to competitively bind to the nucleotide binding pocket of MreB, inhibiting it polymerization. 

When Chlamydia trachomatis is treated with A22, it results in aberrant RBs and hence MreB is 

assumed to be involved in the process of cell division in Chlamydia (35). Also, when Chlamydia 

is treated with this compound, the EB formation is affected and no progeny are produced 

(observations courtesy Lindsay Sammons). The exact mechanism of how A22 affects chlamydial 

MreB is yet to be determined and so is the role of MreB. Computational predictions have shown 

residues that might be involved in A22 binding in MreB from T. maritima (38) (Fig. 2A) and 

similar predicted sites were seen in chlamydial MreB (Fig. 2B -Courtesy: Dr. Michael Barta).  

Recently it has been observed that A22 might have other cellular targets in bacteria (39). Thus, it 

is possible that A22 has a different cellular target in Chlamydia other than MreB. Here we 

conduct in vitro studies to elucidate the possibility of A22 affecting MreB polymerization in 

Chlamydia trachomatis. We also used a genetics approach using chemical mutagenesis to isolate 

A22-resistant mutants to check if chlamydial MreB was a direct target of A22. In vivo 

localization and quantitative RT PCR studies were performed to study the possible role of MreB 

in Chlamydia trachomatis. 
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Materials and methods: 

 

Cloning of pET21b/ pT7HMT: 

The plasmid pT7HMT [variant of the commercially available expression vector pET28 

(Novagen)] (40) with Kanamycin resistance, was obtained from Dr. Michael Barta. The vector 

pT7HMT (5.4 Kb) was digested with BamHI restriction enzyme, and full length MreB sequence 

was ligated into the vector using the infusion kit (Clontech,USA) and transformed into α-Select 

Gold Efficiency cells (Bioline,USA). Colony was selected and sequenced to confirm insert using 

MreB specific primers [Forward primer 5’-GGGGTCGACAGGATCCATGACCCCA-3’ and 

reverse GCGGGCTAGCGGATCCTCATACTAAA-3’]. Selected colony was then transformed 

into the expression cells, BL21(DE3) (Agilent Technologies). Plasmid purification was done 

using the Miniprep Kit (Qiagen,Valencia Ca) and a clone containing full length MreB was 

verified for protein expression by western blot. The C-terminal His-tag (MreB full length) and 

the N-terminal His-tag (MreB full length) constructs were made by Shauna Moore and Lindsay 

Sammons, respectively.  

 

Expression and protein purification by denaturation-renaturation protocol: 

Both the C-terminal His-tag and N-terminal His-tag constructs (pET21b vector) were 

expressed in Acella™ Chemically Competent Cells (Edge BioSystems). Cultures grown at 37
º 
C 

in Luria Broth with 100 µg/mL ampicillin were induced with IPTG of final concentration of 1 

mM at OD600 of 0.6 and grown overnight at 15
º 
C. The clone, MreB-pT7HMT, was expressed in 

presence of kanamycin (50 µg/mL). Overexpressed recombinant protein was purified under 

denaturing conditions, as it was found in the insoluble fraction. Pellets of induced bacterial cells 
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were obtained by centrifugation at 8,000 x g for 10 minutes.  The pellet was resuspended in 50 

mL wash buffer (10mM HEPES, pH 7.2, 5mM EDTA and 0.1% Triton X-100) and sonicated on 

ice for 2 minutes and centrifuged at 15,000 x g for 30 minutes. The pellet was then washed 3 

times with wash buffer and resuspended in 5mL phosphate buffer (pH 6.8) with 6 M guanidine 

hydrochloride for 1 hour on ice. The supernatant containing the desired recombinant protein was 

obtained after a final centrifugation at 39,000 x g for 20 minutes. The protein was purified from 

this supernatant using a cobalt resin column and washed and eluted according to the 

manufacturer’s instructions (TALON His-Tag Purification Resin, Clontech). The denatured 

protein was refolded by step wise dialysis in refolding buffer (30 mM Tris-HCl pH 7.6, 200 mM 

KCl, 1 mM EDTA, 5 mM DTT, 10% [v/v] glycerol) with decreasing concentrations of urea (6, 

3, 2, 0.5, 0, 0 M) for 4 hours each at 4
º 
C. Refolded protein was divided into 100 µl aliquots and 

stored at -20
º 
C. Alternatively the rapid-refolding was used where denatured protein was diluted 

tenfold, rapidly, by injecting it into a beaker with constantly  stirring refolding buffer (20 mM 

Tris-HCl pH 7.6, 500 mM NaCl) and then loaded on the Ni-NTA resin to purify the recombinant 

protein using manufacturer’s instructions (GE healthcare). 

 

SDS-PAGE analysis: 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was 

carried out in a Mini-PROTEAN Tetra Cell System (Bio-Rad Laboratories, Hercules, CA) using 

a 12 % separating gel and 5 % stacking gel.  

Analytical size exclusion chromatography: 

About 0.1 mg/mL of refolded MreB was applied to a Sephacryl S200 BIORAD 

equilibrated with 20 mM Tris-HCl (pH 8) and 500 mM NaCl. Previously, to generate a standard 
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curve, a protein standard containing Thyroglobin (670 kDa), IgG (158 kDa), chicken ovalbumin 

(44 kDa), horse myoglobin (17 kDa), B12 (13.5 kDa)  (BIO-RAD, Hercules, CA) were used. 

  

Transmission electron microscopy sample preparation and imaging: 

3 µM concentration of refolded MreB was used for TEM imaging. 10µl of protein sample 

was laid on to a Carbon coated copper grid and was set aside for 5 minutes at room temperature. 

Excess sample was drained and the sample was stained with 2% UA (20 µls) for 20 mins. 

Sample was imaged using FEI Tecnai F20 XT Field Emission Transmission Electron 

Microscope.  

In-vitro polymerization assay:  

MreB polymerization assay was performed as previously described by Bean and Aman 

(41) with specific modifications. The reaction, in a final volume of 800 µl, contained 5 µM 

MreB, 200 µM ATP, 5 mM MgCl2, 1 mM EGTA, and 10 mM imidazole buffer, pH 7. The non-

protein components were first mixed. Separately, MreB was mixed with 1/9
th

 volume of 10× 

cation exchange buffer (1 mM MgCl2, 10 mM EGTA) on ice and incubated for 1 min. By mixing 

these two solutions, polymerization reaction was initiated at room temperature and monitored for 

20 min. Polymerization was observed using Laser light scattering at 532 nm wavelength. All the 

experiments were performed in triplicate. To study the effect of A22 on polymerization, A22 

(dissolved in DMSO) was added to a final concentration of 10, 50, 100 and 300 µM, to the non-

protein half of the polymerization reaction. DMSO without A22 was used as a control to show 

that DMSO didn’t affect the polymerization reaction. 

In-vivo localization: 
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Anti-MreB Antibody purification: 

a. Using affinity purification on nitrocellulose membrane: 

15-20µg of protein (MreB) was separated on a SDS-PAGE gel. The protein was 

electrophoretically transferred to a nitrocellulose membrane. Ponceau staining of the 

membrane was performed to identify protein bands. Vertical strips of the membrane 

containing the protein (approximately 1 cm in width) were cut. In a 50 mL conical tube, 

the membrane was blocked with PBS/Tween. Anti-MreB antiserum (from rabbit) in 

PBS/Tween was added and incubated overnight at RT while rocking. The membrane was 

washed 3X with PBS/Tween (10 minutes each) and 2X with PBS (10 minutes each). The 

strips were then cut into small squares and placed into a new 50 mL conical. 3 mLs of 

100 mM Glycine (pH 2.5) was added and rocked at RT for 15 minutes. The reaction was 

neutralized with 300 µls of 1M Tris (pH 8.0) and dialyzed overnight in cold PBS. The 

purified antibodies were then assayed for reactivity.  

b. Using coupling resin: 

Anti-MreB antibodies were also purified using AminoLink Plus Coupling Resin (Thermo 

Scientific) according to the manufacturer’s instructions.  Purified Antibodies were then 

assayed for reactivity.  

 

Chlamydial infection and EB seed Prep: 

In a spinner flask, one liter RPMI (Mediatech Inc, Manassas, VA) supplemented with 10 

μg/mL gentamycin and 5 % fetal bovine serum (FBS) was used to grow L929 mouse fibroblasts. 

Cells were grown to 8 x10
5 

cells/mL. At a multiplicity of infection (MOI) of ~1, cells were 

infected with C.trachomatis L2/434/Bu and transferred into 250 mL sterile centrifuge tubes at 48 
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hpi. Cells were centrifuged at 1380 x g for 10 minutes at 15
0
C, the supernatant was removed and 

pellet was then washed with 200 mL Hank’s Balanced Salt Solution (Life technologies). Cells 

were resuspended in 50 mL HBSS and 40 mL sterile Oak Ridge tubes. The cells were sonicated 

on setting 6 (Sonic Dismembrator 100), 6 times for 15 seconds each on ice. After centrifugation 

at 150 x g for 10 minutes at 15
0
C, the supernatant was transferred to 40 mL Oak Ridge tubes. 

This supernatant was again centrifuged at 28,000 x g for 30 minutes at 4
0
C. The pellet was 

resuspended in 2 mL SPG buffer and sonicated two times for 3 seconds each on setting 4 (Sonic 

Dismembrator 100) on ice. Aliquots of the chlamydial seed were stored at -80 
0
C.  

 

Anti-MreB immunoblot: 

Immunoblot was performed by separating MreB on a SDS-PAGE gel followed by 

electrophoretic transfer to a nitrocellulose membrane. The membrane was blocked with 5% non-

fat milk solution in PBS/Tween at RT for 1 hour. 1:50 dilution of affinity purified primary anti-

MreB antibody (from rabbit) was used for primary staining by rocking at RT for 1 hour followed 

by 3 washes of 10 minutes each at RT using PBS/Tween. Secondary antibody (diluted 1:5000) 

was used for secondary staining by rocking at RT for 1 hour. The membrane was imaged using 

Odyssey Infrared imager (LI-COR Biosciences).  

 

MreB localization in Chlamydia trachomatis using immunofluorescence assay: 

In an µ-Slide eight-well plate (IBIDI, Munich Germany),  L929 mouse fibroblast cells 

were plated at the concentration of 1.2 x 10
5
 cells/mL in RPMI (Mediatech, Inc.) containing 10 

μg/mL Gentamycin and 5 % FBS. ~90% of the plated host cells were infected C. trachomatis 

L2/434/Bu and fixed using methanol at 18 hpi, 30 hpi and 48 hpi. Fixed samples were stained 
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using specific primary and secondary antibodies for visualization. Fixed cells were incubated 

with purified primary rabbit anti-MreB antibodies and diluted to 1:10 in PBS and mouse anti-

MOMP antibodies (diluted to 1:500 in PBS) for 1 hour at RT. Cells were washed 3 times for 10 

minutes each with PBS and then incubated with Alexa fluor 568-labeled (Life Technologies) 

goat anti-rabbit secondary antibody (diluted 1:1000), and Alexa fluor 488-labeled 

(LifeTtechnologies) anti-mouse secondary antibody (diluted 1:1000) for one hour at RT in dark. 

Cells were then washed 3 times with PBS for 10 minutes each to remove excess secondary 

antibodies. Cells were then stained with DAPI (diluted 1:1000) using Vectashield Mounting 

Medium for Fluorescence with DAPI (Vector Laboratories) for 10 minutes at RT. Samples were 

visualized using Olympus/3I Spinning Disk Confocal microscope (MAI facility, KU). 

 

Expression profiling: 

RT-PCR (Quantitative gene expression): 

Total RNA was isolated from C. trachomatis L2/434/Bu-infected L929 cells every 6 hpi 

through 36 hpi using TRIzol® Reagent (Life Technologies, Grand Island, NY).  Isolated RNA 

was treated with DNase using the TURBO DNA-free kit (Life Technologies) according to the 

manufacturer’s protocol.  Concentration of RNA samples were determined by 

spectrophotometry. For each RNA sample, cDNA was synthesized using the High Capacity 

RNA-to-cDNA kit (Applied Biosystems, Carlsbad, CA) following the manufacturer’s 

instruction.  Primer pairs for each gene target (Table 1) were designed and verified for efficiency 

using serially diluted cDNA as a template for PCR.  Resulting CT values were used to generate 

standard curves using the StepOnePlus software (Applied Biosystems, Life Technologies) and 

confirmed that primer efficiency was suitable for relative quantification using the comparative  
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Table 1: Oligonucleotide sequences used in real time RT-PCR amplification.  

Gene Forward Primer sequence Reverse Primer sequence 

CT009 (rodZ) 5’-AAGCAGGACATCTCGGGAAA-3’ 5’-TCAGCAATCTATCCCCATCCA-3’ 

CT046 (hctB) 5’-AGTAGCTTCAACAAAAAAATCTTCC-3’ 5’-CCAACTGTGAGCTGTACGAGAAC-3’ 

CT190 (gyrB) 5’-ATCACGGTCATCTTCAAAAACAATC-3’ 5’-CGACTTTACAGGTGCTTGGTCC-3’ 

CT510 (secY) 5’-GGACGAATGACACGGCTTTTTAC-3’ 5’-TACCCAAGGCACTCCAAACAGC-3’ 

CT709 (mreB) 5’-TTCCGGGAATGTTGGTATCG-3’ 5’-GCCACAACGGAAGGTTCACT-3’ 

CT726 (rodA) 5’-CCCTTCCAACCATCACCAAA-3’ 5’-TCGCCAGATTTCCATCCTTG-3’ 

CT075 (dnaN) 5’-CTTTTCCCCTGTGATCTCCA-3’ 5’-GAAAAGGGCCACTTGTTTGA-3’ 

CT545 (dnaE) 5’-CGATCACGGGAATTTGTTTGGC-3’ 5’-GTTGGCAACTCGGCTTTTTC-3’ 

CT507 (rpoA) 5’-ACCAAAAGCAACTCGCAACAT-3’ 5’-CTTTTGAAGCGGTCAATCCTG-3’ 
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CT method (2
-∆∆C

T) (42).  Applied Biosystem’s StepOnePlus Real-time PCR system was 

used for relative quantification of target genes. To verify that RNA samples were free of 

contaminating  

DNA, real-time PCR was performed using respective RT-negative reactions for each 

RNA sample. Relative quantification was performed for each gene target and for each time point 

using the comparative CT method provided by the StepOnePlus (Applied Biosystems).  

Reactions were set up in duplicate with each mixture containing 500 nmol of each primer and 

Fast SYBR Green Master Mix (Applied Biosystems). Endogenous control, secY (CT510) (43), 

was used as the internal sample normalizing control for all target genes and to reveal patterns of 

expression throughout the developmental cycle, relative quantification values were calibrated 

against the 6-hpi time point for each gene target. 

Forward genetics: 

EMS mutagenesis: 

L929 mouse fibroblast cells were plated at a concentration of 4.9 X 10
6 

cells/mL in a T75 

flask with 10 mL RPMI (Mediatech Inc, Manassas, VA) supplemented with 10 μg/mL 

gentamycin and 5 % FBS. Cells were infected with C. trachomatis L2 and at 19 hpi were treated 

with EMS (diluted in PBS) for an hour at RT. The concentrations of EMS used were 4 mg/mL, 

12 mg/mL, 18 mg/mL and 20 mg/mL. After washing with PBS 3 times, 10 mL of RPMI 

(Mediatech Inc) containing 10 μg/mL gentamycin and 5 % FBS was added and incubated at 

37
0
C to recover for 48 hours. 
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RESULTS: 

1. Purification of recombinant chlamydial MreB: 

To study the potential polymerization properties of the actin-like chlamydial protein 

MreB, recombinant MreB was expressed in E. coli and purified using Ni-NTA resin. Native 

purification of MreB was not possible as most of the overexpressed protein remained in the 

insoluble fraction. Also obtaining nucleotide free MreB was necessary for studying its 

polymerization properties. Using the denaturation-renaturation protocol, nucleotide free protein 

could be purified. 

          In the presence of 6 M Guanidine hydrochloride, MreB was obtained in the denatured 

form and potentially refolded by subsequent removal of the denaturing agent by dialysis. Distinct 

band of the recombinant MreB was observed by Coomassie blue staining of the SDS-PAGE gel 

(Fig 3A and 3B). Expected band was observed around 45,000 kDa. Fig 3A shows the MreB 

expressed using the pT7HMT construct while Fig 3b shows recombinant C-terminal His-tagged 

MreB and N-terminal His-tagged MreB expressed from the vector pET21b. Upon refolding, 

MreB was found to pellet when subjected to high speed centrifugation suggesting that MreB 

might be forming polymers/aggregates on refolding even in the absence of any nucleotide. The 

purified protein samples were centrifuged and the supernatant potentially containing monomeric 

MreB was used for further polymerization assays. 

2. MreB forms oligomers in-vitro: 

Prokaryotic MreB has been shown to form protofilaments in-vitro using electron microscopy 

in T. maritima (44). The only crystal structure of MreB available is from T. maritima. 

Monomeric MreB in T. maritima is known to form long rigid polymers in-vitro which are a ~3.3 
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Figure 3: Protein Purification of recombinant MreB. 

Recombinant MreB purifies as a monomer but can form polymers easily. A) MreB purified from 

pT7HMT vector. Lane 1 shows protein marker while Lane 2 shows purified recombinant MreB 

B) MreB purified from pET21B. Lane 1 shows the protein marker, Lanes 2-4 show different 

aliquots of C-terminal His-tagged MreB, and Lanes 5-7 show different aliquots of N-terminal 

His-tagged MreB. 
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Figure 4: Recombinant MreB purifies as an oligomer.  

To determine the in vitro oligomeric state of the purified recombinant MreB 

(before centrifugation), analytical size exclusion chromatography was used. The 

protein was eluted at a high molecular size that was much larger than the 

monomeric size of the protein, i.e. 45 kDa. 
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µm in length and these protofilaments are also known to form sheets through lateral contact in 

organisms like (44).When purified recombinant full length MreB (before centrifugation) was 

subjected to size exclusion chromatography, the protein was observed to form oligomer of a 

much larger molecular weight (Fig 4). Monomeric full length MreB has a molecular weight of ~ 

40 kDa and the His-tag with the linker was ~5 kDa. These oligomers were observed to be more 

than 180 kDa which would contain about 4-5 monomeric MreB. 

 

3. MreB shows time dependent increase in light scattering: 

Recently, in-vitro polymerization studies with MreB from Chlamydia pneumoniae 

showed that chlamydial MreB has the ability to polymerize in solution (45). MreB has also been 

shown to form filamentous polymers in vitro from other organisms as well.   

To investigate the role of MreB in Chlamydia trachomatis, standard polymerization assay 

with slight modifications were used to study its polymerization properties.  Polymerization was 

performed at pH 7.4 using standard conditions at room temperature, and polymerization was 

observed using laser light scattering (B&W TEK INC.) The wavelength of laser was 535nm. 

Laser was controlled using the Flex v2.10 software, and the images were captured using 

Measurements and automation explorer (version 3.1). Light scattering was quantified every two 

minutes using Adobe Photoshop and graph was plotted with time on X-axis and light scattering 

units (a.u.) on the Y-axis. Buffer without MreB was the negative control for light scattering. An 

increase in the light scattering units was observed when MreB was added to this polymerization 

reaction with ATP (Fig 5). Increase in light scattering was also observed without adding ATP. 

Such a property of MreB to polymerize in vitro in the absence of a nucleotide has been 

previously reported in other organisms including Chlamydia pneumoniae (45). 
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Figure 5: MreB polymerizes in-vitro 

Laser light scattering assays were performed at 532 nm using 5 μM chlamydial 

MreB in vitro. Light scattering was measured in arbitrary units (a.u.) 
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4. MreB polymerization is not inhibited by S-(3,4-dichlorobenzyl) isothiourea (A22): 

A22 is a compound which converts rod-shaped E. coli cells into spherical shaped 

cells (46) It also has been shown to inhibit the polymerization of MreB in T. maritima, which 

is ATP dependent in vitro (38). Recently it was found that A22 couldn’t inhibit the 

polymerization of MreB of C. pneumonia in vitro (45). 

We studied the effect of different concentrations of A22 on MreB polymerization in 

vitro from C. trachomatis using laser light scattering. As seen in C. pneumonia previously 

(45), MreB polymerization wasn’t impaired in C. trachomatis by A22 in vitro (Fig 6). On the 

contrary, it was observed that the rate of polymerization increased as the concentration of 

A22 increased. To test whether the presence of A22 is the cause of light scattering, an A22 

control (polymerization buffer with 300 µM A22 and no protein) was used. It was observed 

that A22 doesn’t increase light scattering with time. As a positive control, polymerization of 

MreB was observed in the presence of ATP and in the absence of A22. 

 

5. TEM imaging reveals MreB polymerizes in-vitro: 

Refolded MreB was observed to form oligomers in vitro using size exclusion 

chromatography and it has been difficult to differentiate aggregates from polymers. To 

confirm the state of oligomers, transmission electron microscopy was used to determine the 

ultrastructure of MreB in-vitro. 

TEM processing and imaging were used to prepare samples and test MreB polymers 

versus aggregates in vitro. MreB has been seen to form aggregates as well as filaments 

ranging between 40-50 nm in length and about 10 nm in width in Caulobacter crescentus 

(47). MreB polymers observed in T.maritima were about 3.3 µm in length.   
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Figure 6: A22 doesn’t inhibit MreB polymerization in vitro 

Influence of increasing concentrations of A22 was observed on MreB 

polymerization in vitro. 
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 Figure 7: TEM images reveal MreB polymers 

Electron microscopy of refolded MreB on carbon-coated copper grids was 

performed. A) At the concentration of 3 µM of refolded MreB, filaments were 

observed ranging from 40-80 nm in length, at low magnification. The protein 

sample contained 500 mM NaCl and no ATP. B) At higher magnitude the 

filaments were seen to form a number of bundled protofilaments.  

 

 

 

 

 

 

 

 

 

 

 



 

31 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

A B 



 

32 
 

Aggregate like structures were at times observed on the EM grids. But one of the samples 

at the concentration of 3µM revealed rod-like polymeric structures which were 40-80 nm in 

length and ~8 nm in width (Fig 7). The buffer contained no ATP and 500 mM NaCl at pH 

7.4 and the sample was prepared at RT using aforementioned TEM sampling protocol. These 

observed polymers were shorter than those observed in T. maritima. MreB polymers also 

exhibited branched structures and protofilaments in lateral conformation forming sheet-like 

structures. These polymers were only observed once although multiple attempts with the 

same conditions and the protein concentration were used.  

Previous MreB polymerization studies done in Chlamydia pneumoniae were 

performed using light scattering experiments. Techniques like transmission electron 

microscope haven’t been used to verify if these light scattering studies were due to 

polymerization or aggregation. Here our aim was to verify these polymerization properties of 

MreB not just using laser light scattering but also using TEM to visualize these 

polymers/aggregates. Though the initial attempt to visualize such polymers was successful, 

we were not successful in observing any polymers using TEM in any of the consecutive 

samples. Another possibility for the lack of visualization of polymers by TEM could also be 

optimization of the technique of attachment of the protein to the grid, uranyl acetate staining, 

or TEM imaging.  

6. Chemical mutagenesis yields isolates with lower sensitivity to A22: 

 Alternatively, a genetic approach was used to isolate MreB mutants using 

chemical mutagenesis. Chemical mutagenesis using EMS (ethyl methyl sulfonate) has 

been previously used to induce random mutations in Chlamydia (48). Chlamydia 

trachomatis was treated with EMS between 18-19 hpi, when RBs start replicating. After 
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undergoing 72 hours of recovery and replication, selective pressure was used to isolate 

A22 resistant organisms in the presence of the drug. Two different concentrations of A22 

at which inhibition of progeny formation was observed were used. It was observed that at 

higher concentration of A22 (50 µM) no chlamydial inclusions were observed. At 25 µM 

A22, a few chlamydial inclusions were observed, which were subjected to multiple 

passaging in presence of A22. Using glass beads, cell lysis was performed and these 

isolates were purified and stored at -80
0
C. These isolates were then used to detect any 

alterations in the mreB sequence. mreB specific primers were used to amplify this gene 

and was detected on a 1.5 % agarose gel (Fig 8). The amplified gene was sequenced. 

When the sequence of the mutant and the wild type were compared, a single amino acid 

substitution was found (E273K). This mutant doesn’t propagate in the presence of higher 

amount of A22 (50 µM). It is possible that these organisms growing and propagating in 

the presence of 25 µM A22 were not resistant but tolerant to the drug.  
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Figure 8: PCR amplification of A22 tolerant Chlamydia trachomatis 

Lysates from EMS treated A22 tolerant infections were used to amplify the mreB gene and 

checked on a 1.5% agarose gel. The 1100 bp fragment was observed in the L2 cDNA (positive 

control) and the 25 µM lysate. The amplified fragment was further sequenced for mutations.  
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This mutation was found to be in helix 8 (H8) of MreB. This helix is known to be 

associated with lateral contact between MreB protofilaments. The resistance/tolerance to A22 

could also be attributed to a target other than MreB, and genome-wide sequencing of these 

mutants would give a better idea of the A22 targets in Chlamydia trachomatis.  

7. MreB detected by immunoblotting 

Immunoblotting (western blotting) is an assay used to detect the presence of specific 

proteins using antibodies (49). To check the specificity of the purified anti-MreB antibodies, 

a western blot analysis was performed with E. coli lysates of recombinant chlamydial MreB 

and native MreB in EB lysate. These rabbit anti-MreB antibodies were purified from the anti-

MreB antiserum using affinity purification and coupling resin protocols as mentioned in 

materials and methods. Antibodies purified using both protocols showed similar reactivity.  

A distinct MreB band was observed in the EB lysate at a molecular weight of 40 kDa 

(Fig 9.  A bright band was detected with the recombinant MreB protein overexpressed in E. 

coli cells. Different dilutions of the purified antibodies were used, and 1:50 (Anti-MreB 

antibodies: PBS) was found to be the appropriate dilution. This dilution was further used for 

immunofluorescence assay. 

8. MreB appear as distinct puncta 

Immunofluorescence assay has been used to detect proteins in cell culture using 

antibodies specific to protein of interest (50). There are limitations to visualize localization of 

proteins in Chlamydia using immunofluorescence given the size. Nevertheless localization of 

the protein of interest within an inclusion is possible. Also, using commercially available 

antibodies against known outer membrane proteins in Chlamydia, protein of interest could be  
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Figure 9: Western blot with Anti-MreB antibodies show specificity to recombinant 

as well as native MreB  

Anti-MreB antibodies were purified and used to study specificity to recombinant and 

native MreB. Lane 1 shows cell lysate from E. coli cells over-expressing recombinant 

chlamydial MreB. Lane 2 shows native MreB from EB lysate which was detected by the 

purified antibodies. 
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studied for co-localization analysis.  

Using IFA and confocal imaging at 100X magnification, it was observed that 

chlamydial MOMP (major outer membrane protein) and MreB don’t co-localize (Fig 10). 

This shows that MreB might be localizing to an area other that the outer membrane. 

Samples fixed at a later time point in infection (30-40 hpi) showed MreB to be more 

concentrated in the center of the inclusion as opposed to MOMP which was brighter at 

the periphery. MreB appeared as puncta while MOMP appeared as distinct spherical 

entities (Fig 10 A-E). Also inclusions at an early time point (18 hpi) showed MOMP 

stained RBs but relatively lesser MreB staining (Fig 10 F). Hence this complies with the 

observation that MreB levels increase at a later time point in the chlamydial 

developmental cycle. 

9. Relative quantitation expression pattern of MreB 

The role of MreB in most other bacteria appears to be associated with 

peptidoglycan synthesis during elongation of rod shaped bacteria (26). This is typically in 

concert with RodZ and other peptidoglycan machinery. Bacterial two-hybrid analysis 

supports chlamydial RodZ interacting specifically with MreB (observations by Kyle 

Kemege). To elucidate the possible role of MreB in Chlamydia, the expression pattern of 

mreB was studied using quantitative RT-PCR. 
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Figure 10: Immunofluorescence assay to detect MreB  

IFA performed at 100X magnification with purified anti-MreB antibodies and anti-MOMP show 

no co-localization. MreB (red) appear as puncta while MOMP (green) appears to be spherical 

shaped structures. Also MreB was observed to be concentrated mostly in the center of the 

inclusion (A-E). IFA at an earlier time point showed smaller inclusion with more MOMP 

staining than MreB (F). 
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Gene expression analysis was performed on Chlamydia-infected L929 cells at 6-hour 

increments for 36 hpi to study the transcription patterns of MreB and associated throughout the 

chlamydial developmental cycle. A 4-fold increase in mreB transcription was revealed between 

12 to 24 hpi. Similarly, CT009 (rodZ) was expressed at 12 hpi and upregulated 4-fold by 24 hpi. 

Expression levels remained relatively constant during the late stage of development (24-36 hpi) 

for both these genes. rodA, which is a cell membrane protein in other bacteria, is upregulated by 

2-fold between 6-18 hpi and stays constant throughout the rest of the developmental cycle. hctB, 

which is expressed late in the developmental cycle and has been known to be involved in the RB 

to EB conversion process, was observed to be expressed at high levels at 24 hpi and remains 

fairly constant through 36 hpi, as expected. Controls for constitutive gene expression patterns of 

genes associated with transcription (rpoA) and genes associated with DNA replication (gyrB, 

dnaN and dnaE) were used (Fig 11).  

These qRT-PCR values are normalized to the expression levels of secY which is an inner 

cell membrane protein and is known to be constitutively expressed throughout the chlamydial 

developmental cycle. Hence these qRT-PCR values are not indicative of quantity of expression  

of individual gene transcripts but pattern of expression of each gene transcript relative to its 

expression at 6 hpi and to the expression at secY transcript levels. It was observed that the 

expression pattern of mreB was upregulated at later time points indicating a possible role in BR 

to EB conversion. 
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Fig 11:  Quantitative gene expression analysis 

Total RNA was isolated at 6, 12, 18, 24, 30, and 36 hours post-infection from L929 cells infected 

with Chlamydia trachomatis L2. Complimentary DNA was synthesized and used as a template 

for relative gene expression quantification of CT009 (rodZ), mreB, and rodA. Transcript quantity 

was transformed to a log2 ratio. The constitutive control secY (CT510) was used to normalize 

expression. The constitutively expressed gene, gyrB (CT190) and the hctB (CT046) (RB-to-EB 

conversion associated control) were included. Expression patterns of dnaN, dnaE (associated 

with DNA replication) and rpoA (associated with transcription) were used as constitutive 

controls for different cellular functions. 6-hpi time point for each gene was used to calibrate 

expression ratios. Error bars represent the standard deviation of duplicate samples.  
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Discussion: 

The aim of this project was to study the role of MreB in Chlamydia trachomatis 

L2/434/Bu. MreB is known to form polymers or aggregates in vitro. During purification of 

recombinant MreB, it was observed that the overexpressed protein stayed in the pellet and wasn’t 

soluble. Hence denatured form of recombinant MreB had to be purified followed by refolding 

(Fig 3).  MreB contains a nucleotide binding pocket, and there is a possibility that recombinant 

MreB purified under native conditions could already be in the nucleotide bound conformation. 

Thus denatured purification ensured that the purified MreB was not in its nucleotide bound state. 

MreB polymers are known to scatter light and polymerization was studied using laser 

light scattering technique. MreB was observed to be temperature sensitive and as the temperature 

increased from 4
0
C to room temperature, MreB started forming visible precipitates. To confirm 

that these precipitates were polymers and not aggregates, TEM was used to visualize these 

structures (Fig 5). Polymers were observed to be ~8 nm in width and 40-80 nm in length. 

Previously similar sized structures were seen with Caulobacter MreB (47) but much larger 

polymers were observed with T. maritima MreB. Even at 4
0
C, MreB tends to form an oligomer 

observed by analytical size exclusion chromatography. Standard polymerization reaction 

conditions were used in the polymerization experiments and time dependent polymerization was 

observed in presence of ATP (200 µM). Surprisingly polymerization was also observed in 

absence of ATP but at a slightly lower rate.  

Even though more than 50% identity is seen between MreB sequences of Chlamydia 

trachomatis, Bacillus subtilis and Thermogota maritima, they show different dependence on 

nucleotides for polymerization and also their susceptibility to A22 which is known to be an 
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inhibitor of MreB polymerization. Though MreB from Thermogota maritima has been seen to 

polymerize in the presence of ATP (41), MreB from Caulobacter crescentus (47), Bacillus 

subtilis (51) and Chlamydia pneumoniae (45) was seen to polymerize independent of ATP in 

vitro. Studies in Chlamydia pneumoniae (45) also suggest that MreB polymerization changes 

with cation (MgCl2) concentration. This is indicative of the possibility that stability of MreB 

must be dependent on cellular conditions like pH, cation availability and interactions with other 

proteins involved in similar processes as MreB. Actin bound to Mg-ATP under normal 

physiological conditions is known to have a stable conformation and the equilibrium shifts from 

a monomer to polymers when exposed to internal/external stimuli and cellular events.  

Studies in Caulobacter crescentus also show that energy input or ATP hydrolysis is not 

required for MreB’s contribution to cell wall synthesis or its assembly into clusters on the 

membrane(52). MreB belongs to the superfamily of Hsp70 and one of the features of this 

superfamily is that the proteins have retained the nucleotide binding pocket but for functions 

other than polymerization. One of the properties of this family of proteins is that ATP binding 

and hydrolysis triggers conformational changes that mediate the interaction with other proteins 

involved in the same function (53). It is possible that MreB uses ATP not to polymerize but to 

interact with other proteins. 

A22 is known to competitively bind to the nucleotide binding pocket of MreB, thus 

inhibiting its polymerization in T. maritima in vitro (38). Susceptibility of A22 to MreB changes 

for different organisms. E. coli lose their rod shape and become coccid on treatment with A22, 

which also results in slow growth of the organism (46). MreB from B. subtilis shows 

susceptibility to A22 only at a very high concentration (51) while Caulobacter crescentus 

doesn’t show any inhibition by A22 (47). Polymerization of chlamydial MreB too doesn’t seem 
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to be affected by the presence of A22 but appears to promote it with an increasing concentration 

of A22 (Fig 7) even though we’re not entirely ruling out the possibility that these might be MreB 

aggregates and not structured polymer. It has been observed that A22 could bind to MreB in a 

non-specific manner, inducing aggregation in vitro (38). If chlamydia MreB is not a target for 

A22, it is possible that A22 binds non-specifically, which would result in increased light 

scattering. MreB is known to interact with other proteins and hence these in vitro studies might 

not be an accurate representation of its functions in vivo. 

When sequences of MreB were compared from different organisms, a few amino acid 

substitutions were seen in Chlamydia trachomatis as compared to the conserved sequences in 

other organisms. The D/E at positions 346 and 347 in Chlamydia trachomatis is replaced by a 

Proline (P) and a Histidine (H) respectively. These amino acid substitutions are in the beta sheet 

structure of the protein right next to the nucleotide binding site which is also one of the A22 

binding sites. Proline is known to induce kinks or bulges in a protein structure and it is possible 

that this substitution changes the nucleotide binding pocket interactions, affecting nucleotide 

binding or A22 binding. 

 

Oxidative stress is known to disrupt actin structure in eukaryotes by modifying the 

sulfhydryl group of the cysteine residue (54).  The alanine residue is substituted by a cysteine at 
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position 353 in Chlamydia trachomatis. This residue might be responsible for disulphide 

linkages which change the structure or the interaction of MreB with the nucleotides or with A22.  

It was observed in Caulobacter crescentus that one of the A22 mutants had an amino acid 

substitution E213G (E212 in E. coli) (52) and this mutations is in the nucleotide binding pocket 

in the T. maritima MreB crystal structure. This amino acid present on the subdomain II is known 

to form a salt bridge with K49 on subdomain I on the opposite side of the nucleotide binding 

cleft in T. maritima.  

 

          These in vitro studies gave some interesting results though the role of MreB in Chlamydia 

trachomatis could still not be elucidated. Looking at alternate functions of MreB in other 

organisms like involvement in spore formation, it could be hypothesized that MreB in Chlamydia 

trachomatis could also play a role in formation of the spore-like EB. Quantitative RT-PCR is a 

technique to study gene expression patterns and has been applied to study expression patterns in 

Chlamydia. The developmental cycle of Chlamydia trachomatis has been divided into three 

temporal classes of gene expression i.e. i) early genes (6-12 hpi), ii) mid-cycle genes (12-24 hpi) 

and iii) late genes (post 24 hpi) (55) (56). The early genes are mostly involved in the EB to RB 

conversion, few genes in the mid-cycle associated with the RB growth and cell division and 

many of the late genes in converting the RBs back to EBs.  
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To hypothesize the possible function of mreB in Chlamydia, expression patterns of this 

gene transcript was compared to that of other genes involved in different cellular functions like 

cell division, transcription, DNA replication and RB to EB conversion (Fig 11).  hctB transcript 

levels are upregulated at 24 hpi and are exclusively known to be involved in RB to EB 

conversion. This represents the time-point where morphological changes occur from RBs to EBs. 

Strikingly, CT009 and mreB are upregulated by 4-fold between 12-30 hpi. Whereas other gene 

transcripts like gyrB, which is a part of the replication machinery; dnaN, which is a part of the 

DNA polymerase III and dnaE, a catalytic α subunit of DNA polymerase III acting as a DNA 

helicase, are constitutively expressed throughout the developmental cycle. rpoA encodes the α-

subunit of RNA polymerase involved in transcription and is expressed constitutively as well. 

Cellular processes such as DNA replication, transcription, translation and protein processing are 

active early in the infectious process and are expressed throughout the life cycle in Chlamydia 

(57). Hence the levels of these proteins involved in these processes show constitutive expression 

when compared to the endogenous control gene, secY. These data supports the possibility that 

mreB might be a part of cellular processes involved in the conversion of RBs to EBs.  

A recent report suggests a lateral transfer of the peptidoglycan synthesis related genes 

between Chlamydiae and Streptomyces (58). Streptomyces coelicolor use MreB to generate 

infectious particles, i.e. spores (59). In Streptomyces, MreB and RodZ are known to interact and 

are a part of the cell morphogenic complex involved in spore cell wall formation. Studying the 

pattern of relative gene expression of mreB and CT009 (rodZ) in Chlamydia, it is possible that 

these protein a part of the cell envelope and are involved in EB formation. MreB and RodZ are 

known to be a present in rod shaped organisms and some chlamydial relatives like the 

Rhabdochlamydia spp. produce rod-shaped EBs (1). Hence it is possible that these proteins are 
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conserved and assigned a different function like the process of EB formation, even though EBs 

of Chlamydia trachomatis are not rod-shaped. Vibrio parahaemolyticus remodels MreB by 

breaking the filaments into fragments to form spherical stationary phase cellular structures under 

stressful conditions (60).  

Even though peptidoglycan has not been detected in Chlamydia, the presence of some 

proteins involved in the peptidoglycan machinery is intriguing. MreB in some organisms is 

known to scaffold the peptidoglycan machinery during cell wall formation and it is possible that 

MreB in chlamydia might be a part of the peptidoglycan synthesis machinery facilitating the 

conversion from RB to EB.  RodA is known to be a cell integral membrane protein in many rod-

shaped bacteria, which is also involved in cell division, but its role in Chlamydia is unclear. rodA 

transcripts were observed to be expressed at 18 hpi and to remain constant through 36 hpi. These 

comply with the expected observation of cell division proteins to be constitutively expressed in 

this analysis. Thus comparing the relative gene expression pattern of mreB to other genes 

involved in different cellular functions suggests these possible multiple roles in the chlamydial 

life cycle.  

Compiling the data, we hypothesize would be that Chlamydia could have an altered 

MreB structure which forms short polymers in the absence of ATP. These short polymers could 

be responsible for EB formation. This phenomenon could be a possible mechanism used by 

Chlamydia to form the infectious particles (EBs). As observed, MreB could form polymers even 

in the absence of ATP and hence might be an adaptation to form short MreB polymers in EBs 

during an energy deficient environment. We observed that A22 enhances the 

polymerization/aggregation of chlamydial MreB in vitro, which might be a representation of 

formation of long MreB polymers or aggregates in vivo. These might not desirable for EB 
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formation hence stalling the developmental cycle at the aberrant RB stage and inhibiting the 

production of any progeny (EBs). The other hypothesis could be that ATP hydrolysis alters the 

conformation of MreB and hence its interaction with other proteins involved in the process of 

RB to EB conversion. These possible roles of MreB in Chlamydia can be examined by further 

investigations.   
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Alternative sigma factor RpoN: 

Introduction: 

1. Bacterial sigma factors: 

Bacterial transcription is mediated by DNA-dependent RNA polymerase comprising of a 

core enzyme with 2 α and 2 β subunits along with a sigma factor, which facilitates specific 

promoter recognition. While σ
70

 (the major sigma factor) is linked to recognition of promoters of 

majority of the genes during exponential growth of most of the organisms (61), alternative sigma 

factors often regulate transcription of certain genes influenced by environmental conditions (62). 

σ
54

, an alternative sigma factor, is known to be associated with processes like nitrogen 

regulation, formate and acetoacetate catabolism, amino acid transport, etc.(63). In many bacterial 

pathogens it plays an important role in virulence and pathogenesis (64). It has also being 

assigned to various other functions like electron transport, chemotaxis, heat shock and 

flagellation (65). 

 σ
54 

is known to have a unique mechanism of regulation (66), where the σ
54

-holoenzyme 

occupies a promoter and is transcriptionally inactive and needs an activator to initiate 

transcription (67). In some organisms, σ
54 

binds to its promoters even in the absence of RNA 

polymerase core enzyme (68). Activators of σ
54 

belong to the NtrC subfamily of phosphorylated 

response regulators (69). In the two-component system of response regulators, NtrB 

autophosphorylates in response to environmental limitations and transfers this phosphate group 

to NtrC, which activates the NtrC oligomer and binds to an enhancer region upstream of the σ
54 

promoter site (70) (71). The physical bending of DNA enables NtrC to interact with the σ
54

-

holoenzyme (72), and the activated NtrC catalyzes ATP hydrolysis to form an open complex 
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which initiates transcription (73). σ
54 

promoters have a consensus binding sequence across 

microbial species (65) i.e. TGGCAC-N5-TTGCA located -24 to -12 upstream of the 

transcriptional start site of the genes transcribed by σ
54

 (74).   

2. Chlamydial sigma factors: 

Based on homology to other organisms, σ
54 

in Chlamydia is known to have three 

conserved regions (75). Chlamydial σ
54

 has conserved sequences except for certain deletions in 

region II (Fig. 12). Klebsiella pneumoniae lost its ability to bind DNA in absence of RNA 

polymerase core enzyme when this region was partially deleted (76). Thus this deletion in region 

II could be contributed to the loss of DNA binding ability of C. trachomatis in absence of RNA 

polymerase core enzyme. 

 

 

 

 

 

 

 

 

 

 

 

 



 

54 
 

 

 

 

 

 

 

 

Figure 12: Chlamydial σ
54

  

Chlamydial σ
54 

showing conserved sequences except for certain deletions in region II. [Adapted 

from Wan, C (2004) Bioinformatic Identification and Functional Characterization of sigma 54 

Promoters in Chlamydia trachomatis] 
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Three major classes of transcription factors are detected in Chlamydia i) RpoD or Sigma 

66 (homolog of sigma 70), ii) RpsD or Sigma 28 and iii) RpoN or sigma 54. In Chlamydia 

trachomatis L2, CT267 which is a transcriptional factor, has been characterized to be 

homologous to the integration host factor in other bacteria (77) and through genome sequencing 

we now know that Chlamydia retains most of the components required in assembly of 

polymerase and transcription. The genome sequence of C. trachomatis revealed σ
54 

as a part of 

the RNA polymerase machinery along with the activators of σ54, CtcB-CtcC (two-component 

system homologous to NtrB/NtrC in other bacteria) (30).  CtcB exhibited autophosphorylation 

and this phosphate is transferred to CtcC, which shows pathway conservation (78).  

 Though the role of σ
54 

is unknown in chlamydial species, promoters of two gene targets 

i.e. CT652.1 and CT683 have been identified using computational prediction. Both are 

designated to code for hypothetical proteins and hence studying the function of σ
54 

in chlamydial 

gene regulation remains to be determined.  

 Recently a shuttle vector based on a chlamydial plasmid was developed, which contained 

the GFP (green fluorescent protein) as a positive control for expression (79). Recent work in our 

laboratory has been focused on developing genetic and molecular tools for precise control of 

gene expression in Chlamydia. Using these tools widespread functional and biological studies 

could be performed in Chlamydia and allow for a better understanding of its developmental cycle 

 Thus, the aim of this project was to carry out in vitro studies confirming the binding of σ
54

 

holoenzyme to its predicted promoters and in vivo analysis by designing and isolating 

transformants expressing a dominant negative CtcC and studying the change in the pattern of 

different genes associated with σ
54

. 
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MATERIALS AND METHODS 

In vitro analysis: 

Construction of expression vectors pET21b: 

To overexpress the recombinant chlamydial RpoN (σ
54

), pET21b was digested with BamHI and 

HindIII restriction enzymes and then ligated with full length σ
54 

sequence. (This work was done 

by Yamini Mutreja). The plasmid was then transformed into Acella™ Chemically Competent 

Cells (Edge Biosystems) using the infusion kit (Clontech, USA). Plasmid was isolated using the 

Miniprep Kit (Qiagen,Valencia Ca) and sequenced. Isogenic clone was determined and used for 

overexpression and purification of recombinant RpoN. 

Expression and protein purification by denaturation-renaturation protocol: 

Cultures grown at 37
0
C in Luria Broth with 100 µg/mL ampicillin were induced with IPTG of 

final concentration of 1 mM at OD600 of 0.6 and grown overnight at 15
º 

C. Overexpressed 

recombinant protein was purified under denaturing conditions as it was found in the insoluble 

fraction. Pellets of induced bacterial cells were obtained by centrifugation at 8000 x g for 10 

minutes.  The resuspended pellet in 50 mL wash buffer (10mM HEPES, pH 7.2, 5mM EDTA 

and 0.1% Triton X-100) was sonicated on ice for 2 minutes and centrifuged at 15,000 x g for 30 

minutes. The pellet was then washed 3 times with wash buffer and resuspended in 5 mL 

phosphate buffer (pH 6.8) with 6 M guanidine hydrochloride for 1 hour on ice. The supernatant 

containing the desired recombinant protein was obtained after a final centrifugation at 39,000 x g 

for 20 minutes. The protein was purified from this supernatant using a cobalt resin column, 

washed and eluted according to the manufacturer’s instructions (TALON His-Tag Purification 

Resin, Clontech). The denatured protein was refolded by step wise dialysis in refolding buffer 

(30mM Tris-HCl pH 7.6, 200 mM KCl, 1mM EDTA, 5 mM DTT, 10% [v/v] glycerol) with 
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decreasing concentrations of urea (6, 3, 2, 0.5, 0, 0 M) for 4 hours each at 4
º 
C. Refolded protein 

was divided into 100 µl aliquots and stored at -20
º 
C. Alternatively, the rapid-refolding was used 

where denatured protein was diluted ten times, rapidly, by injecting it into a beaker with 

constantly  stirring refolding buffer (20 mM Tris-HCl pH 8, 500 mM NaCl) and then loaded on 

the Ni-NTA resin to purify the recombinant protein using manufacturer’s instructions (GE 

healthcare). 

SDS PAGE analysis: 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was 

carried out in a Mini-PROTEAN Tetra Cell System (Bio-Rad Laboratories, Hercules, CA) using 

a 12% separating gel and 5% stacking gel. 

Analytical size exclusion chromatography: 

About 0.1 mg/mL of refolded RpoN was applied to a Sephacryl S200 BIORAD equilibrated with 

20 mM Tris-HCl (pH 8) and 500 mM NaCl. Previously, to generate a standard curve, a protein 

standard containing thyroglobin (670 kDa), IgG (158 kDa), chicken ovalbumin (44 kDa), horse 

myoglobin (17 kDa), and B12 (13.5 kDa) (BIO-RAD, Hercules, CA) were used. 

 

Circular Dichroism analysis: 

Recombinant RpoN was dialyzed into the CD buffer (30mM Tris pH 7.6, 500mM NaF, 1mM 

EDTA and 5mM DTT). The protein was used at a concentration of 0.3 mg/mL. Circular  

dichroism spectra was acquired using JASCO J-815 Spectropolarimeter. Wavelength scans were 

collected at a scan rate of 50 nm/min between the ranges of 190-260 nm. JASCO secondary 

structure estimation software was used to calculate secondary structures.  
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Electrophoretic Mobility Shift Assay:  

To detect DNA binding ability of RpoN in the presence of core polymerase, 

electrophoretic mobility shift assay was performed. Promoter sequences of CT683 (Forward 

Primer 5’IRD800/TCG TGA TTG GCA TGG TTT TTG CTC CTG TAA AAG GTA AGG 

TAT, Reverse primer ATA CCT TAC CTT TTA CAG GAG CAA AAA CCA TGC CAA TCA 

CGA) and CT652.1 (Forward Primer 5’IRD800/GTT ATT AAT TAG AGC TGG CAC ACT 

TTT TGC TCC TAG TAA AGA TGA, Reverse primer TCA TCT TTA CTA GGA GCA AAA 

AGT GTG CCA GCT CTA ATT AAT AAC) were labeled with IR800 and annealed to obtain 

double-stranded oligonucleotides. The DNA binding reaction was performed with 10 ng of DNA 

in 40 mM Tris-HCl (pH 8.0) 0.1 mM EDTA, 100 mMNaCl, 250 mM KCl, 1 mM DTT and 10% 

glycerol and incubated at 37
0
C for 5 minutes. 10 µM of purified recombinant σ

54
 and 2 µM of E. 

coli core RNA polymerase (Epicentre Biotechnologies, Chicago) was added to this reaction and 

further incubated for 10 minutes at 37
0
C. The reaction was analyzed on a 6% TBE gel 

(INVITROGEN) in 0.5X TBE buffer at 150 V. The DNA was visualized using an Odyssey 

Infrared Imaging System (LI-COR Biosciences, Lincoln, NE).  

Expression profiling: 

RT-PCR (Quantitative gene expression):   

Total RNA was isolated from C. trachomatis-infected L929 cells every 6 hpi through 36 

hpi using TRIzol® Reagent (Life Technologies, Grand Island, NY).  Isolated RNA was treated 

with DNase using the TURBO DNA-free kit (Life Technologies) according to the 

manufacturer’s protocol.  Concentration of RNA samples were assessed by spectrophotometry. 

For each RNA sample, cDNA was synthesized using the High Capacity RNA-to-cDNA kit 

(Applied Biosystems, Carlsbad, CA) following the manufacturer’s instruction.  Primer pairs for  
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Table 2: Oligonucleotide sequences used in real time RT-PCR amplification. 

Gene Forward Primer sequence Reverse Primer sequence 

CT046 (hctB) 5’-AGTAGCTTCAACAAAAAAATCTTCC-3’ 5’-CCAACTGTGAGCTGTACGAGAAC-3’ 

CT190 (gyrB) 5’-ATCACGGTCATCTTCAAAAACAATC-3’ 5’-CGACTTTACAGGTGCTTGGTCC-3’ 

CT510 (secY) 5’-GGACGAATGACACGGCTTTTTAC-3’ 5’-TACCCAAGGCACTCCAAACAGC-3’ 

CT609 (rpoN) 5’-TAGGCAACCTCTCCCCAGAA-3’ 5’-GGAAAAGGTGTTCGGAGACG -3’ 

CT652.1 5’-GCAGTCGGAAAGAGCGTACA-3’ 5’-GCTATCGCGGCTATCGTC-3’ 

CT683 5’GGAAGAGGCGGAAAAGCA-3’ 3’-AGCCCAGCTTCCGAGTCTAA-3’ 
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each gene target were designed (Table 2) and were verified for efficiency using serially diluted 

cDNA as a template for PCR.  Resulting CT values were used to generate standard curves using 

the StepOnePlus software and confirmed that primer efficiency was suitable for relative 

quantification using the comparative CT method (2
-∆∆C

T) (42).  Applied Biosystem’s StepOnePlus 

Real-time PCR system was used for relative quantification of target genes. To verify that RNA 

samples were free of contaminating DNA, real-time PCR was performed for the housekeeping 

gene, secY (CT510), using respective RT-negative reactions for all samples. Relative 

quantification was performed for each gene target and for each time point using the comparative 

CT method provided by the StepOnePlus software.  Reactions were set up in duplicate with each 

mixture containing 500 nmol of each primer and Fast SYBR Green Master Mix (Applied 

Biosystems). Endogenous control, gyrB (CT190), was used to normalize ratios for all the target 

genes and relative quantification values were calibrated against the 6-hpi time point for each 

gene target. 

 

In vivo functional analysis: 

Cloning of CtcC wild type in pTL2E: 

Primers were designed named 315 [5’-CTT TAA GAA GGA GAT ACC GGT ATG TCG ATA 

GAA CAC ATT CTT ATT ATT G-3’] and 316 [5’-TCA CTT CAC AGG TCA ACC GGC CGT 

TAT AAG AGA GCG AGC ATA GAA GG-3’]. Using the Finzyme PCR program [98
º 
C (15 

seconds); 60
º 
C (30 seconds); 72

º 
C (1 minute)] and Phusion High Fidelity PCR reagents (New 

England BioLabs), CtcC WT gene (CT468) from Chlamydia trachomatis L2/434/Bu was 

amplified. The size of the PCR product was confirmed using gel electrophoresis and PCR 

product was purified using the PCR purification kit (QIAquick, QIAGEN). The plasmid pTL2E 
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(designed by Dr. Jason Wickstrum) was cut using the restriction enzyme EagI. The CtcC WT 

gene was ligated into the vector pTL2E using the IN-FUSION PCR cloning kit (Clontech) and 

transformed into alpha-select gold efficiency competent cells (Bioline). Positive clones were 

identified using PCR with primers 100 

(NNNNNNGGGCCCTTTAGAGCTTGACGGGGAAAGCCGG) and 126 

(GAGTTATTTTACCACTCCCT) (from Dr. Jason Wickstrum) to identify clones with CtcC WT 

gene inserts. Plasmids were isolated using the miniprep kit (QIAquick, QIAGEN) and 

sequenced. Colony #6 was chosen for further experiments and glycerol stocks were prepared.  

Site directed mutagenesis of CtcC gene: 

Primers were designed for site-directed mutagenesis of CtcC WT gene. The sequence of the 

primers were CtcC (CT468) mutagenesis Forward Primer 5’CTT TCG ATC TGA TTA TTT 

CCG CTA TGA ATA TGC CTG ATG GTT C-3’and CtcC (CT468) mutagenesis Reverse 

Primer 5’- GAA CCA TCA GGC ATA TTC ATA GCG GAA ATA ATC AGA TCG AAA G-

3’. PCR was performed using the QuickChange II XL site-directed mutagenesis kit (Stratagene, 

Cedar Creek) by following the manufacturer’s instructions. The aspartic acid (D) residue 54 of 

CtcC in the wild-type gene was replaced with an alanine (A). The CtcC WT gene cloned into 

pTL2E was used as the template for mutagenesis. These plasmids were transformed into XL10-

Gold ultracompetent cells (Agilent technologies) and mutation was confirmed by sequencing. 

Mutant #3 was selected for further experiments and glycerol stocks were made. 

 

Transformation of CtcC WT and CtcC D54A mutant in Chlamydia trachomatis L2/434/Bu: 

Transformation reaction was set up using C. trachomatis L2 seed. 3 µg of plasmid prep in sterile 

water was mixed with 50 µLs of 2X CaCl2 (20mM Tris pH7.4, 100mM CaCl2) buffer and final 
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volume was made up to 100 µLs using sterile water. This reaction was incubated at RT for 30 

mins. Host cells were resuspended in 1X CaCl2 (10mM Tris pH7.4, 50mM CaCl2) buffer at a 

final concentration of 2 X 10
7
 cells/mL. 100 µLs of these cells were added into the reaction 

mixture and incubated at RT for 20 minutes. This transformation reaction was added to a 6-well 

plate (100 µLs per well) along with 2 mLs of RPMI (with 5% FBS and 10 µg/mL gentamycin). 

The reaction was incubated at 37
0
C, 5% CO2 for 40-48 hours. The cells were further scraped 

using 1X SPG buffer and lysed by vortexing with glass beads for 45 seconds. The lysate was 

centrifuged at 1380 X g 5 minutes, and the supernatant was used to infect the next round of host 

cells and incubated for 2 hours at RT. After aspirating the inoculant, RPMI (with 5%FBS and 10 

µg/mL gentamycin, 1 µg/mL Ampicillin and 1 µg/mL cyclohexamide) was added, and the 

reaction was incubated at 37
0
C, 5% CO2 for 30-40 hpi. The protocol was repeated for 5 more 

passages to further select for transformants.  
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Results: 

1. Expression and Purification of recombinant RpoN using denaturation-renaturation 

protocol 

To characterize the function of RpoN in Chlamydia, recombinant RpoN was 

expressed in E. coli and purified using Ni-NTA resin. As the recombinant RpoN remained in 

the insoluble fraction, denaturation-renaturation protocol was used.  

In the presence of 6 M Guanidine hydrochloride, RpoN was obtained in the denatured 

form and then refolded by gradual removal of guanidine hydrochloride by dialysis. 

Commassie staining of SDS-PAGE was used to visualize the purified RpoN (Fig. 13) and a 

50 kDa band was observed. Refolded protein maintained solubility and was further purified 

using FPLC and assessed for secondary structure using CD spectrometry. 

2. RpoN purifies as a monomer 

RpoN is a protein with an estimated mass of 48,000 Da and is expected to be present 

as a monomer. Purified refolded recombinant RpoN was subjected to size exclusion 

chromatography. A peak was obtained corresponding to 50 kDa, confirming the expected 

size of the purified protein (Fig. 14). Protein samples from corresponding wells were 

collected and used for functional assays. 

3. CD spectroscopy confirms proper refolding of recombinant RpoN 

Recombinant RpoN was purified using the denaturation-renaturation protocol, and it 

was important to determine its secondary structure to ensure proper refolding of the protein. 

The CD spectrometry showed that recombinant RpoN purified from Chlamydia  
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Figure 13: Protein Purification of recombinant RpoN. 

Lane 1 shows the broad range protein molecular marker (Promega). SDS-PAGE 

analysis of refolded RpoN stained using Commassie blue shows a 50 kDa band in 

Lane 2. 
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Figure 14:  RpoN purifies as a monomer in vitro 

Analytical size exclusion chromatography was used to further purify 

recombinant RpoN based on the molecular weight. The protein was eluted 

at a molecular size of ~50 kDa, which is its expected molecular weight. 
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Figure 15: CD spectroscopy reveals secondary structure of chlamydial RpoN 

Circular dichroism spectra of purified refolded recombinant RpoN was used to 

predict the secondary structure.  Proportions were calculated based on the CD 

profile obtained using the JASCO secondary structure estimation software.   
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trachomatis L2 had 32.8% α-helix, 20.3% β-sheets, 15.3% turns and 31.5% random coils (Fig 

15). The alternative sigma factor (RpoN) from K. pneumoniae was considered as a reference for 

comparison of the secondary structure (80). The secondary structure of RpoN from K. 

pneumonia estimates about 35% of α-helices and β-sheets with 30% of β-turns and random coils. 

The purified chlamydial RpoN showed significant structural similarity and it could be said that 

the refolding was successful with stable protein available for functional studies.  

4. Predicted promoters of chlamydial σ
54

 show a shift with sigma 54-holoenzyme 

The function of σ
54

 in Chlamydia spp. is yet unknown. The promoter region of the two  

hypothetical proteins CT652.1 and CT683, located 100 bps upstream of the TSS, contained the 

σ
54

 consensus binding sequences (81). To test if these promoters bind to the recombinant σ
54

-

holoenzyme from Chlamydia trachomatis, EMSA was performed in presence of E. coli RNA 

core polymerase (Epicentre Biotechnologies, Madison, WI). Chlamydial σ
54

 did not result in 

mobility shift of CT652.1 or CT683, whereas σ
54

-holoenzyme produced shifts for both promoters 

(Fig 16). Hence these results suggest that chlamydial sigma 54 is capable of binding to these 

promoters only in the presence of RNA core polymerase. An oligomeric sequence with no RNA 

core polymerase binding sequence was used as a negative control. No shift was observed when 

σ
54

-holoenzyme was added to the negative control.  

5. Quantitative RT-PCR: 

Previously microarray analysis was performed to study the global effects of different 

genes in Chlamydia (55). These studies give us a good idea of the relative expression of many 

genes and hence their pattern of expression in the chlamydial developmental cycle can be 

determined.  
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Figure 16: RpoN binds to DNA in presence of RNA core polymerase 

EMSA to test chlamydial RpoN binding to promoter sequences of CT652.1 and CT683. A) Lane 

1 shows promoter sequence of CT652.1, Lane 2 shows core polymerase bound to the promoter, 

Lane 3 shows promoter with sigma 54 and Lane 4 shows promoter bound to σ
54

-holoenzyme. B) 

Lane 1 shows promoter sequence of CT683, Lane 2 shows core polymerase bound to the 

promoter, Lane 3 shows promoter with σ
54

 and Lane 4 shows promoter bound to σ
54

-

holoenzyme. c) Negative control showing no shift with RNA core polymerase, σ
54

 or with σ
54

-

holoenzyme. Random oligomeric sequence with no core binding region was used as a control. 
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Figure 17: Quantitative gene expression analysis 

 Total RNA was isolated at 6, 12, 18, 24, 30 and 36 hours post-infection from L929 cells infected 

with Chlamydia trachomatis L2 using TRIzol® Reagent.  Complimentary DNA was synthesized 

and used as a template for relative gene expression quantification. Transcript quantity was 

transformed to a log2 ratio. The endogenous control gyrB (CT190) was used to normalize 

expression. The constitutively expressed gene secY (CT510), and hctB (CT046) (RB-to-EB 

conversion associated control) were included. 6-hpi time point for each gene was used to 

calibrate the ratio of expression. Error bars represent the standard deviation of duplicate samples. 
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Relative gene expression levels were studied of rpoN, and its predicted targets CT652.1 and 

CT683 (Fig 17).  Data revealed rpoN to be expressed constitutively with the exception of 12-24 

hpi, where the expression seemed to be repressed. CT652.1 contains a predicted σ
54

 promoter 

and shows elevated gene transcript levels (6 fold) at 24 hpi and remains fairly constant through 

36 hpi. The other predicted σ
54 

promoter, CT683, is upregulated 8-folds at 24 hpi. CT683 is 

known to code for a tetratricopeptide-motif-containing protein. 

6. CtcC WT and D54A mutant shuttle vectors: 

CtcB-CtcC are known to be encoded by the C. trachomatis genome and are hypothesized to 

be a part of the two-component response regulators responsible for σ
54

 activation. In vitro studies 

have revealed that CtcB has the ability to autophosphorylate and transfer this phosphate group to 

CtcC which then activates the transcription of genes regulated by σ
54

. CtcC in C. trachomatis 

lacks the DNA binding domain. It has been shown that replacing the Aspartic acid (D) residue 54 

in the predicted phosphorylation site of CtcC in the wild-type gene with an Alanine (A), failed to 

transfer this phosphate group from CtcB to CtcC (78).  

Thus the aim of this study was to induce similar mutation in the CtcC WT gene and by 

incorporating this into the shuttle vector, study its effects in vivo. The CtcC WT gene from C. 

trachomatis L2 was integrated into the modified shuttle vector designed by Dr. Jason Wickstrum 

(Fig. 18). This shuttle vector with the CtcC WT gene was then used to obtain the CtcC D54A 

mutant using the site-directed mutagenesis kit as mentioned earlier. The shuttle vector contains a 

gene for ampicillin resistance as a selection marker for transformation. It is expected that in the 

presence of anhydrous tetracycline the CtcC gene would be transcribed. 
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Figure 18: Genetic manipulation of CtcC in Chlamydia trachomatis   

CtcC wild-type gene was ligated into pTL2E with an EagI restriction site. The vector contains an 

Ampicillin resistance gene, which is the marker for selection of transformants. In the presence of 

anhydrous tetracycline, the CtcC gene is transcribed and expressed. Point mutation in the CtcC 

WT gene was obtained by using the site-directed mutagenesis kit. 
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Hence the pTL2E-CtcC wild type and pTL2E-CtcC D54A mutant were obtained in E. 

coli (α-select cells). Attempts at transforming Chlamydia with these vectors haven’t been 

successful but further attempts with minor changes would be made in the future. pBR325::L2 

with constitutive GFP expression was used as a positive control for the transformation 

protocol/conditions. GFP positive Chlamydia transformed with this vector could be obtained but 

no transformants could be seen for both CtcC WT and CtcC mutants under the same conditions. 

Discussion: 

 Previously, the major sigma factor σ
66

 was characterized (82) and recent sequencing of 

the Chlamydia trachomatis genome revealed two alternative sigma factors: σ
54

 and σ
28

 (30). σ
28 

has been linked to the RB to EB conversion as it has been demonstrated to transcribe two middle 

to late stage genes in Chlamydia like hctB (83). In contrast to the identified σ
28

 gene targets, little 

is known about the σ
54

 gene targets. The only literature available is based on prediction of 

promoters upstream of two genes i.e. CT652.1 and CT683 (81).  

 Cloning of RpoN from Chlamydia trachomatis L2/434/Bu was carried out to express the 

recombinant protein and then purify it for further functional assays. As the purified protein was 

found to be in the insoluble fraction, denaturation procedure was adopted to purify the protein 

(Fig 13). Hence CD spectroscopy was used to ensure proper refolding of the protein. The CD 

spectroscopy analysis revealed 32.8% α-helix, 20.3% β-sheets, 15.3% turns and 31.5% random 

coils (Fig. 15), which was a good indication of the secondary structure of the refolded RpoN. CD 

analysis of K. pneumoniae revealed similar percentages of predicted secondary structure (80), 

hence reassuring the refolding of the purified RpoN (sigma 54). Size exclusion chromatography 

revealed that the purified RpoN was present in a monomeric form at the size of 50 kDa (Fig 14) 
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and helped to determine whether the purified recombinant protein was monomeric, which was 

further used in functional studies.  

 EMSA is a traditionally used technique to study protein-DNA binding. Studying in vitro 

transcription assays with proteins like σ
54

 (RpoN), which need a two-component system of 

activators for transcription, failed to work. Thus, EMSA is a good alternative to study molecular 

interactions of proteins with DNA.  As stated earlier, the region II in Chlamydia is missing, 

which is also observed in other organisms like Aquifex aeolicus, Rhodobacter capsulatus (84, 

85). Although these organisms lack the region II and are less efficient in the promoter DNA 

melting, they have been shown to be functionally active (86).  

 The EMSA with promoters of two genes, CT652.1 and CT683, showed no shift when 

sigma 54 was added but sigma 54 was able to only recognize and bind to these promoters in the 

presence of E. coli RNA polymerase core enzyme (Fig. 16). CT652.1 codes for a protein which 

is conserved through Chlamydia spp. but has unknown function. CT683 is also conserved 

through Chlamydia spp. and has been classified as O-linked N-acetylglucosamine transferase and 

a type III secretion chaperon (30) and contains 3 tetratricopeptide domains. Tetracopeptide 

repeat domains are known to be involved in protein-protein interactions associated with protein 

transport.  

 Relative gene expression levels were compared between rpoN and its predicted targets 

CT652.1 and CT683.  Data showed rpoN to be almost constitutively expressed except for 12-18 

hpi, where it seems to be repressed. CT652.1 contains a predicted sigma 54 promoter and shows 

elevated gene transcript levels (6 fold) at 24 hpi and remains almost constant through 36 hpi. The 

other predicted σ
54

 target, CT683, is upregulated 6-fold between 12-24 hpi. CT683 codes for a 
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TPR-motif-containing protein. Proteins with TPR domains have been shown to have diverse 

cellular functions and many have been demonstrated to play a role in cell cycle control, signal 

transduction, protein transport, chaperone function, and transcription (87). Proteins with TPR 

domains have also associated with type three secretion systems (TTSS). σ
54

 is also known to be 

associated with bacterial exterior and virulence in other organisms and hence might be associated 

with any of these functions in Chlamydia (88). The pattern of expression of CT652.1 and CT683 

seem to be quite similar confirming its regulation by a common sigma factor.  

 In vitro studies are insufficient to assign any function to RpoN because the predicted gene 

targets code for hypothetical proteins. Thus with recent advancements in manipulating 

chlamydial genes has made it possible to construct shuttle vectors and induce targeted gene 

mutations in Chlamydia (79). The modified shuttle vector (pTL2E) with CtcC wild type and the 

D54A mutant, if expressed in chlamydial cells, would be expected to affect the normal 

functioning of RpoN, therefore affecting its transcriptional targets. This vector obtained from E. 

coli cells are transformed into Chlamydia and is under a transcriptional regulation of anhydrous 

tetracycline. Controlled overexpression of the wild type CtcC and the dominant negative mutant 

of CtcC (D54A) would assist in studying the possible function of CtcC and thus RpoN. Using the 

inducible expression of the gene of interest in the presence of anhydrous tetracycline, dominant 

mutant CtcC could be expressed at different time points in the chlamydial developmental cycle. 

Changes in the phenotype or in the developmental cycle would thus suggest a role of RpoN in 

Chlamydia. Though several attempts to acquire these transformants haven’t been successful yet, 

some modifications maybe required. Also a possible reason could be that the modified shuttle 

vector at times shows leaky expression of the targeted protein even in the absence of anhydrous 

tetracycline and this minute level of the protein could be toxic for the cell. Another reason could 
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be the difference in the methylation pattern on the shuttle vector because it is produced in E. coli 

and then transformed into chlamydial cells. Thus these methods need to be refined to better 

understand the role of RpoN in Chlamydia. 
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