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Propagating Belief Functions in AND-Trees

ABSTRACT

We describe a simple method for propagating belief functions in AND-trees. We exploit

the properties of AND-trees to make our method simpler than the general method discussed by

Shenoy and Shafer, and Dempster and Kong. We illustrate our method for aggregation of

evidence in a financial audit.

Key Words: Aggregation of evidence, propagation of belief functions in AND-trees

I. INTRODUCTION

The main goal of this article is to describe a simple method for propagating belief functions

in AND-trees. The propagation of belief functions in general networks has been discussed by

several researchers (see, e.g., Shenoy and Shafer [1], Shafer, Shenoy and Mellouli [2], Dempster

and Kong [3], Shenoy and Shafer [4], and Shenoy [5]). There are several computer

implementations of these methods (see, e.g., Zarley, Hsia and Shafer [6], Hsia and Shenoy [7],

Almond [8], Saffiotti and Umkehrer [9], and Xu [10]). The general propagation method is quite

complex for numerical computations without the aid of a computer system. As described in this

article, the general method can be simplified when the network is an AND-tree. The

simplification is achieved by exploiting certain properties of AND-trees.

AND-trees occur frequently in financial auditing. In this domain, we have a main objective

which is met if and only if several sub-objectives are met. Figure 1 shows a simple evidential

AND-tree in a financial audit. A box with rounded corners represents a variable node, and a

rectangular box represents an evidence node. Edges connecting an evidence node to variable

nodes indicates the domain of the evidence. A circle with the symbol & represents an AND node.

An AND-tree is a rooted tree consisting of variable nodes and AND nodes. Variables in

AND-trees are assumed to be binary, i.e., a variable that has only two possible values. For
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example, an account on the balance sheet is either fairly stated or materially misstated, and an

audit objective of an account is either met or not met. Such binary variables are common in

auditing.

Each AND node has exactly one edge leading to it. An AND node implies that the variable

on the left (toward the root) is true if and only if the variables on the right (away from the root)

are true. Furthermore, we assume each item of evidence bears on only one variable node in the

AND-tree.

Figure 1. An Evidential AND-Tree for Accounts Receivable with only Two Audit Objectives
(Procedures 1-7 are described in Table 1).

&

Procedure 1
AR Existence

Sales Existence

&
Cash Receipt
Completeness

Procedure 3

Procedure 2

Procedure 4

&

Sales Valuation

Cash Receipt
Valuation

AR Valuation

Procedure 5

Procedure 7

Procedure 6

Accounts
Receivable (AR)

{ar, ~ar}

{e, ~e}

{v, ~v}

{se, ~se}

{sv, ~sv}

{cc, ~cc}

{cv, ~cv}
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Table 1. Procedures used in Figure 1 (see Arens and Loebbecke [11] for details)

Procedure 1 - Review accounts receivable trial balance for large and unusual receivables. Also,
calculate ratios indicated in carry-forward working papers and follow up on any
significant changes from prior years.

Procedure 2 - Confirm accounts receivable using positive confirmations. Confirm all amounts
over $5,000 and a nonstatistical sample of the remainder to see whether these
accounts exist.

Procedure 3 - (i) Trace sales journal entries to duplicate sales invoices and shipping documents.
(ii) Trace shipping documents to entry of shipments in perpetual inventory
records. (iii) Trace sales journal entries to sales orders for credit approval and
shipping authorization.

Procedure 4 - Trace from remittance or prelisting to cash receipt journal.

Procedure 5 - (i) Recompute information on sales invoices. (ii) Trace details on sales invoices to
price lists, and customers' orders.

Procedure 6 - Perform proof of cash receipts.

Procedure 7 - Discuss with the credit manager the likelihood of collecting older accounts.
Examine subsequent cash receipts and the credit file on all accounts over 120
days and evaluate whether the receivables are collectible. Also, evaluate whether
the allowance is adequate after performing other audit procedures relating to
collectibility of receivables.

In general, uncertainties involved with audit evidence can be expressed in terms of belief

functions (see, e.g., Shafer, Shenoy, and Srivastava [12], Shafer and Srivastava [13], Srivastava

and Shafer [14]). Aggregation of audit evidence is, in fact, a problem of propagating belief

functions in a network (see, e.g., Srivastava [15]). For propagating belief functions, we convert

the evidential network into a network of only the variables with the respective belief functions on

each variable arising from the corresponding item of evidence. Figure 2 shows such a network

for Figure 1.
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Figure 2. The AND-Tree in Figure 1 with m-values at Each Node. (These m-values represent
only the evidence bearing directly on each node.)
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ΘSE={se,~se}

ΘCC={cc,~cc}

ΘSV={sv,~sv}

ΘCV={cv,~cv}

ΘE={e,~e}

ΘV={v,~v}

ΘAR={ar,~ar}

mSE = (0.8, 0, 0.2)

mE = (0.7, 0, 0.3)

mCC = (0.9, 0, 0.1)

mSV = (0.9, 0, 0.1)

mCV = (0.8, 0, 0.2)

mV = (0.8, 0, 0.2)

mAR = (0.4, 0, 0.6)

&

The remainder of this paper is divided into three sections. In section II, we provide the

general formula for propagating belief functions in AND-trees and discuss the results. In section

III, we use the general results of Section II to show how they can be used to aggregate evidence

in a financial audit. In Section IV, we summarize the results and provide a conclusion. Finally, in

Section V, we provide proofs of the two propositions described in Section II.
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II. PROPAGATION OF BELIEF FUNCTIONS IN AND-TREES

In order to derive the general results, consider a simple evidential network of three

variables X, O1 and O2, as shown in Figure 3. Assume that these variables are binary. We will

use upper-case letters to represent names of variables and lower-case letters in script to represent

their values. For example, X is the name of a variable and x, and ~x are its two values; x means

that X is true and ~x means that X is not true. Thus, the corresponding frames are: ΘX = {x,~x},

ΘO1 = {o1,~o1}, and ΘO2 = {o2,~o2}. As shown in Figure 3, we assume that the two variables,

O1 and O2, are related to the variable X through an AND node, i.e., X = x if and only if O1 = o1

and O2 = o2. This relationship is incorporated in our analysis by assuming that the frame of the

relational node R is ΘR = {(x,o1,o2), (~x,~o1,o2), (~x,o1,~o2), (~x,~o1,~o2)}.1

Figure 3. An Evidential AND-Tree with Three Variable Nodes

(R)

Evidence 1
Evidence 2

Evidence 3

Subobjective 1
(O1)

(O2)

ΘO2 = {o2,~o2}

ΘO1 = {o1,~o1}

Subobjective 2

ΘX = {x,~x}

Main Objective
(X)

x is true if and
only if o1 and

o2 are true

ΘR = {(x&o1&o2),(~x&~o1&o2),
          (~x&o1&~o2),(~x&~o1&~o2)}
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Evidence for a variable is represented by a basic probability assignment (bpa) function. For

a binary variable X with frame {x, ~x}, a bpa function m is completely defined by three non-

negative numbers that add to 1, m({x}), m({~x}), and m({x, ~x}). We refer to these numbers as

m-values. To simplify notation, we write m(x) instead of m({x}), and m(~x) instead of m({~x}).

In the figures, a bpa function m for X is shown as a 3-vector (m(x), m(~x), m({x, ~x})).

In our examples, we have assumed one item of evidence for each variable. Thus, we have

one set of m-values for each variable (see Figures 2, 5, 6, and 7). For propagation purposes, once

we determine the m-values representing evidence at different nodes, we represent the network

without the evidence nodes as shown in Figure 4. In general, we can assume more than one item

of evidence for each node. In such cases, we needs to first combine the items of evidence at each

node before doing the propagation.

Figure 4. An AND-Tree with Three Nodes.

 ar if and
  only if
  e and v

(R)

mR(ΘR) = 1

Subobjective 1
ΘO1 = {o1,~o1}

ΘX = {x,~x}

Main Objective x is true if and
only if o1 and

o2 are true

ΘO2 = {o2,~o2}

Subobjective 2

mO1

mO2

mX
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Notice that Evidence 1 bearing directly on node X will impact indirectly both nodes, O1

and O2. Similarly, Evidence 2 and Evidence 3 together will impact node X but neither Evidence

2 nor Evidence 3 by themselves will affect X because of the AND relationship. Also, since O1

and O2 are connected to X through AND, evidence at O1 alone will not affect O2 and evidence at

O2 alone will not affect O1. These properties are the special features of AND-trees. In general

trees, each node is indirectly affected by the evidence at the other nodes.

In order to describe the propagation process, we need some notation. Suppose X is a

variable in an AND-tree. Then, mX denotes the bpa function representation of evidence that

bears on X.

mt
X is a bpa function for X representing the marginal of the combination of all evidence in

the AND-tree, i.e.,  mt
X = (⊕{mY | Y is a variable in the AND-tree})↓X

. Our goal is to compute

mt
X for all nodes X given mY for all nodes Y in the AND-tree.

Finally, mX←{O1, ... On} denotes the bpa function for X representing the marginal of the

combination of bpa functions mOi
 for i = 1, ..., n. To keep our notation short, we will abbreviate

mX←{O1, ... On} to mX←all O’s. And in an AND-tree with variables X, O1, ..., On, we will

abbreviate mOi←{X, O1, ... Oi–1,Oi+1, ..., On} by mOi←X&all other O’s.

Proposition 1 (Propagation of m-values from sub-objectives to the main objective ): The
resultant m-values propagated from n sub-objectives (Oi, i = 1, 2, . . . n) to the
main objective X in an AND-tree are given as follows.

mX← all O's(x) = mOi(oi)∏
i=1

n

(1)

  
m

X←all O' s
(~x ) = 1 – 1 – mOi

(~o i )[ ]
i =1

n

∏∏∏∏
(2)

and

mX←all O’s({x, ~x}) = 1 – mX←all O’s(x) – mX←all O’s(~x) (3)

The above results conform to our intuition. Equation 1 states that the degree of belief that

the main objective is met is the product of the beliefs of the sub-objectives. This is a
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consequence of the AND relation between the main objective and the sub-objectives. This

formula corresponds to the product rule in probability theory. Equation 2 can be explained as

follows. Notice that 1 − mOi
(~oi) is the degree of plausibility that sub-objective i is met. Equation

(2) states that the degree of belief that the main objective is not met is 1 minus the product of the

plausibilities that the sub-objectives is met. This is again a consequence of the AND relation.

The main objective is not met if and only if sub-objective 1 is not met OR sub-objective 2 is not

met, etc. Again, this rule corresponds to the product rule in probability theory.

Proposition 2 (Propagation of m-values to a given sub-objective from the main objective
and the other sub-objectives ): The resultant m-values propagated to a given
sub-objective Oi from the main objective X and the other n-1 sub-objectives in
an AND-tree are given as follows.

mOi←X&All other O's(oi) = Ki
-1mX(x) [1 - mOj(~oj)]∏

j≠i
, (4)

mOi←X&All other O's(~oi) = Ki
-1mX(~x)  mOj(oj)∏

j≠i
, (5)

mOi←X&All other O's({oi, ~oi}) = 1 – mOi←X&All other O's(oi)

– mOi←X&All other O's(~oi). (6)

where Ki is the renormalization constant which is given by Ki = [1- mX(x)Ci], where Ci is given

by
Ci = 1 - [1 - mOj

(~oj)]∏
j≠i

  . (7)

Again, the above results are intuitive. Equation (4) suggests that sub-objective Oi is met

when the main objective is met and the other sub-objectives are either met or we do not know

whether they are met. Equation (5) means that sub-objective Oi is not met when the main

objective is not met and all other sub-objectives are met. The conflict term, mX(x)Ci, in Ki is

also intuitive. It suggests that a conflict exists when the main objective is met and at least one of

the other sub-objectives (other than Oi) is not met (see Equation (7)).
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Discussion of the General Results

We have discussed two types of propagation of m-values in a AND-trees. The first one is

from the sub-objectives to the main objective. The second one is to a given sub-objective from

the main objective and the other sub-objectives. These results conform to our intuition. For

example, in the first case, when individual sub-objectives are each true with a certain degree of

assurance, then the product of all these values should give the assurance for the main objective to

be true (Equation 1). As mentioned earlier, this is similar to the product rule in probability

theory.

The second case is interesting. It suggests that the effects on a given sub-objective of m-

values at the main objective will depend on the type and strength of evidence (m-values) for the

rest of the sub-objectives. For example, if all other sub-objectives have positive support, i.e.,

mOj
(oj) > 0 for all j ≠ i, then any evidence that the main objective is not met (i.e., mX(~x) > 0)

will provide positive support that the sub-objective Oi is not met (5). However, when we have no

evidence that other sub-objectives have been met (mOj
(oj) = 0), the evidence that the main

objective is not met (mX(~x) > 0) would provide no support for the objective Oi not being met,

i.e., mOi←X&All other O's(~oi) = 0. Both the cases will be used in Section III for combining audit

evidence.

III. AGGREGATION OF AUDIT EVIDENCE IN AND-TREES

In this section, we illustrate how the two propositions discussed in Section II can be used to

combine evidence in an audit for planning and evaluation. For simplicity of computations we

will use the structure of evidence presented in Figure 1. We assume that the accounts receivable

account in Figure 1 has only two audit objectives: Existence (E) and Valuation (V), and only one

item of evidence for each node.2 Thus, we have seven nodes and seven items of evidence. In fact,

these items of evidence can be considered to be the procedures performed by the auditor (see

Table 1 for details). Let us assume that the auditor has made judgments about the level of support
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obtained from these procedures for the respective nodes. We represent these values just below

the respective nodes in Figure 2.

We want to determine the overall support for each node in Figure 2 as a result of

aggregating all the evidence. For this purpose, we need to propagate m-values defined at each

node through the entire tree and combine the m-values received by each node from its neighbors

with the m-values defined at the node. The following sub-sections provide the results of

aggregation at three different levels.

Level of Support for Accounts Receivable

In order to determine the overall assurance that the accounts receivable balance is fairly stated,

i.e., ar is true (Figure 2), we must aggregate all the evidence gathered, evidence at the account

level, at the audit objectives level, and at the sales and cash receipts levels (Procedures 1 - 7 in

Table 1). This is achieved by propagating m-values from the sub-objectives to the main objective

'AR' in steps. First, we propagate m-values from SE and CC to E , and from SV and CV to V

using Proposition 1. This yields mE←{SE,CC} and mV←{SV,CV} as listed under the respective

nodes in Figure 5.
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Figure 5. Overall Support for Accounts Receivable.

&

&

Sales Existence (SE)

AR Existence (E)

CR Completeness (CC)

Sales Valuation (SV)

AR Valuation (V)

CR Valuation (CV)

Accounts 
Recievable (AR)

ΘSE={se,~se}

ΘCC={cc,~cc}

ΘSV={sv,~sv}

ΘCV={cv,~cv}

ΘE={e,~e}

ΘV={v,~v}

ΘAR={ar,~ar}

mSE = (0.8, 0, 0.2)

mE = (0.7, 0, 0.3)

mCC = (0.9, 0, 0.1)

mSV = (0.9, 0, 0.1)

mCV = (0.8, 0, 0.2)

mV = (0.8, 0, 0.2)

mAR = (0.4, 0, 0.6)

&

mAR
t  = (0.919, 0, 0.081)

mE←{SE,CC} = (0.72, 0, 0.28)

mE←{E,SE,CC} = (0.916, 0, 0.084)

mV←{SV,CV} = (0.72, 0, 0.28)

mV←{V,SV,CV} = (0.944, 0, 0.056)

mAR←{E,SE,CC,V,SV,CV}  

= (0.865, 0, 0.135)

The second step is to combine mE←{SE, CC} with mE, and mV←{SV, CV} with mV. We use

Dempster's rule to combine the two sets of bpa functions. The resulting m-values, mE←{E,SE,CC}

and mV←{V,SV,CV}, are given in rectangular boxes under the respective nodes. The third step is

to take these bpa functions and propagate them to AR. We use again Proposition 1 to determine

the m-values received by AR. These m-values are represented by mAR←{E,V,SE,CC,SV,CV}

below AR node in Figure 5. Finally, we use again Dempster's rule to combine
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mAR←{E,V,SE,CC,SV,CV} with mAR. The resulting (total) bpa function is as given in the

rectangular box under AR (Figure 5):
mt

AR = (0.919, 0, 0.081).

By definition, the corresponding belief function is:

BeltAR[ar] = 0.919, BeltAR[~ar] = 0, and BeltAR[{ar, ~ar}] =1.

This result suggests that when all the evidence with their respective strengths is aggregated,

the overall assurance that the accounts receivable balance will be fairly stated, i.e., ar will be

true, would be 0.919. Given the inputs, there is no support for ~ar. Support for ~ar would result,

however, if there were evidence against any of the objectives.

Support at the Audit Objective Level

In this subsection, we determine the overall level of support for each audit objective, E and V.

Again the evidence collected at the account level and the transaction level will be relevant.
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Figure 6. Overall Support at the Audit Objective Level (Nodes E and V).
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CR Valuation (CV)

Accounts 
Recievable (AR)

ΘSE={se,~se}

ΘCC={cc,~cc}

ΘSV={sv,~sv}

ΘCV={cv,~cv}

ΘE={e,~e}

ΘV={v,~v}

ΘAR={ar,~ar}

mSE = (0.8, 0, 0.2)

mCC = (0.9, 0, 0.1)

mSV = (0.9, 0, 0.1)

mCV = (0.8, 0, 0.2)

mAR = (0.4, 0, 0.6)

&

mE
t  = (0.9496, 0, 0.0504)

mV
t  = (0.9664, 0, 0.0336)

mE←{SE,CC} = (0.72, 0, 0.28)

mE = (0.70, 0, 0.30)

mE←{AR,V,SV,CV} = (0.40, 0, 0.60)

mV←{SV,CV} = (0.72, 0, 0.28)

mV←{AR,E,SE,CC} = (0.40, 0, 0.60)

mV = (0.80, 0, 0.20)

Figure 6 represents the propagation results for this case. As one can see, m-values from AR

and V will be propagated to E and from AR and E to V using Proposition 2. Also, m-values from

SE and CC will be propagated to E, and from SV and CV to V using Proposition 1. We have

listed the resulting m-values (mE←{AR,V,SV,CV}, mV←{AR,E,SE,CC}, mE←{SE,CC}, and
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mV←{SV,CV}) under the respective nodes in Figure 6. Now, we combine the three m-values at

each audit objective and obtain the following result:

AR Existence node: mt
E = (0.9496, 0, 0.0504).

AR Valuation node: mt
V = (0.9664, 0, 0.0336).

The corresponding belief functions are given by:

BeltE[e] = 0.9496, BeltE[~e] = 0, and BeltE[{e, ~e}] =1.
and

BeltV[v] = 0.9664, BeltV[~v] = 0, and BeltV[{v, ~v}] =1.

Support at the Transaction Level

In this subsection, we discuss the aggregation of evidence at the transaction level in Figure 7. As

evident from Figure 7, as a first step, we propagate m-values from AR and V to E and from AR

and E to V. We used Proposition 2 earlier for this part and obtained mE←{AR,V,SV,CV} and

mV←{AR,E,SE,CC}.
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Figure 7. Overall Support at the Sales and Cash Receipts levels.

&

Sales Existence (SE)

AR Existence (E)

CR Completeness (CC)

Sales Valuation (SV)

AR Valuation (V)

CR Valuation (CV)

Accounts 
Recievable (AR)

&

ΘSE={se,~se}

ΘCC={cc,~cc}

ΘSV={sv,~sv}

ΘCV={cv,~cv}

ΘE={e,~e}

ΘV={v,~v}

ΘAR={ar,~ar}

mSE = (0.8, 0, 0.2)

mE = (0.7, 0, 0.3)

mCC = (0.9, 0, 0.1)

mSV = (0.9, 0, 0.1)

mCV = (0.8, 0, 0.2)

mV = (0.8, 0, 0.2)

mAR = (0.4, 0, 0.6)

mSE
t  = (0.964, 0, 0.036)

mCC
t  = (0.982, 0, 0.018)

mSV
t  = (0.988, 0, 0.012)

mCV
t  = (0.976, 0, 0.024)

&

mE←{AR,V,SV,CV} = (0.40, 0, 0.60)

mE←{E,AR,V,SV,CV}

= (0.82, 0, 0.18)

mV←{AR,E,SE,CC} = (0.40, 0, 0.60)

mV←{V,AR,E,SE,CC}

= (0.88, 0, 0.12)

mSE←{CC,E,AR,V,SV,CV}= (0.82, 0, 0.18)

mCC←{SE,E,AR,V,SV,CV}= (0.82, 0, 0.18)

mSV←{CV,V,AR,E,SE,CC}= (0.88, 0, 0.12)

mCV←{SV,V,AR,E,SE,CC}= (0.88, 0, 0.12)

As the second step, we combine the two sets of m-values, mE and mE←{AR,V,SV,CV} at E, and,

mV and mV←{AR,E,SE,CC} at V. This step yields mE←{E,AR,V,SV,CV} and mV←{V,AR,E,SE,CC},

respectively, as given in rectangular boxes below the corresponding objectives. In the third step,

to obtain the total m-values at SE, we combine mE←{E,AR,V,SV,CV} at E with mCC at CC and

propagate to SE using Proposition 2. This yields mSE←{CC,E,AR,V,SV,CV}. Finally, we combine

mSE with mSE←{E,AR,V,SV,CV,CC} to obtain mt
SE, at SE. Similar procedures are performed in
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step three for other nodes at the transaction level. The resulting mt-values for each transaction

node are given in a box below the node.

IV. CONCLUSION

We have stated two propositions for propagating belief functions in AND-trees and have

illustrated the use of these propositions in aggregating various items of evidence in a financial

audit. The method discussed in the article can be easily programmed using a spreadsheet to

automate computations. This method is simpler than the general method described by Shenoy

and Shafer [1] and Dempster and Kong [3].

V. PROOFS

Proof of Proposition 1

We will use the network in Figure 4 to demonstrate how the general results can be

obtained. As mentioned earlier, the two sub-objectives O1 and O2 in Figure 4 are connected to

the main objective X through an AND node.

The m-values defined at node O1 are:

mO1(o1), mO1(~o1), and mO1({o1, ~o1}).

The vacuous extension of these m-values onto the frame of node R yields the m-values

being sent to node R from node O1:3

mR←O1({(x,o1,o2), (~x,o1,~o2)}) = mO1(o1),

mR←O1({(~x,~o1,o2), (~x,~o1,~o2)}) = mO1(~o1),

mR←O1(ΘR) = mO1(ΘO1), (8)

and m-values for all other subsets of ΘR are zero.

Similarly, m-values at node O2 is vacuously extended onto the frame of node R yielding

the m-values being sent to node R from node O2:
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mR←O2({(x,o1,o2), (~x,~o1,o2)}) = mO2(o2),

mR←O2({(~x,o1,~o2), (~x,~o1,~o2)}) = mO2(~o2),

mR←O2(ΘR) = mO2(ΘO2), (9)

and, again, m-values for all other subsets of ΘR are zero.

Now, the three sets of m-values at R, one defined at R (mR(ΘR) = 1) and the other two

received from O1 and O2 (Equations 8 and 9) are combined using Dempster’s rule [16]. The

resulting m-values are marginalized onto the frame of node X. This represents the combined m-

values obtained by X from O1 and O2. Since mR(ΘR) = 1, the combination of mR, mR←O1, and

mR←O2 will be the same as the combination of mR←O1 and mR←O2. Thus, using Dempster's

rule to combine mR←O1, and mR←O2, one obtains the resulting m-values at R as given below:

mR←{O1,O2}(x,o1,o2)

= mR←O1({(x,o1,o2), (~x,o1,~o2)}) mR←O2({(x,o1,o2), (~x,~o1,o2)})

= mO1(o1)mO2(o2),

mR←{O1,O2}(~x,o1,~o2)

= mR←O1({(x,o1,o2), (~x,o1,~o2)}) mR←O2({(~x,o1,~o2), (~x,~o1,~o2)})

= mO1(o1)mO2(~o2),

mR←{O1,O2}({(x,o1,o2), (~x,o1,~o2)})

= mR←O1({(x,o1,o2), (~x,o1,~o2)}) mR←O2(ΘR)

= mO1(o1)mO2(ΘO2),

mR←{O1,O2}(~x,~o1,o2)

= mR←O1({(~x,~o1,o2), (~x,~o1,~o2)}) mR←O2({(x,o1,o2), (~x,~o1,o2)})

= mO1(~o1)mO2(o2),

mR←{O1,O2}(~x,~o1,~o2)

= mR←O1({(~x,~o1,o2), (~x,~o1,~o2)})mR←O2({(~x,o1,~o2),(~x,~o1,~o2)})

= mO1(~o1)mO2(~o2),
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mR←{O1,O2}({(~x,~o1,o2), (~x,~o1,~o2)})

= mR←O1({(~x,~o1,o2), (~x,~o1,~o2)})mR←O2(ΘR)

= mO1(~o1)mO2(ΘO2),

mR←{O1,O2}({(x,o1,o2), (~x,~o1,o2)})

= mR←O1(ΘR)mR←O2({(x,o1,o2), (~x,~o1,o2)})

= mO1(ΘO1)mO2(o2),

mR←{O1,O2}({(~x,o1,~o2), (~x,~o1,~o2)})

= mR←O1(ΘR)mR←O2({(~x,o1,~o2), (~x,~o1,~o2)})

= mO1(ΘO1)mO2(~o2),

mR←{O1,O2}(ΘR) = mR←O1(ΘR)mR←O2(ΘR) = mO1(ΘO1)mO2(ΘO2).

After marginalizing the above m-values onto the frame of X, we obtain the m-values being

sent to node X from node R which, in fact, is the result of m-values coming from nodes O1 and

O2:4

mX←{O1,O2}(x) = mO1(o1)mO2(o2), (10)

mX←{O1,O2}(~x) = mO1(~o1)mO2(o2) + mO1(o1)mO2(~o2) + mO1(~o1)mO2(~o2)

+ mO1(~o1)mO2(ΘO2) + mO1(ΘO1)mO2(~o2), (11)

mX←{O1,O2}({x, ~x}) = mO1(o1)mO2(ΘO2) + mO1(ΘO1)mO2(o2) + mO1(ΘO1)mO2(ΘO2). (12)

The above results are intuitive. Equation (10) suggests that if both sub-objectives have been

met then the main objective is met as expected from the AND relationship that x is true if and

only if o1 and o2 are true. Equation (11) suggests that the main objective is not met under the

following conditions: (i) when one of the sub-objectives is not met and the other sub-objective is

met, (ii) when both sub-objectives are not met, and (iii) when one of the sub-objectives is not

met and for the other we have no knowledge whether it is met. Equation (12) suggests that we

have no knowledge about the main objective whether it is met under the following conditions: (i)
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when one of the sub-objectives has been met and for the other we have no knowledge that it is

met, and (ii) when for both sub-objectives we have no knowledge that they are met.

Simplifying further, equations (10-12) can be rewritten as:

mX←{O1,O2}(x) = mOi(oi)∏
i=1

2

, (13)

∏∏∏∏
  
m

X←all O' s
(~x ) = 1 – 1 – mOi

(~o i )[ ]
i =1

2

, (14)

mX←{O1,O2}({x, ~x}) = 1 – mX←{O1,O2}(x) – mX←{O1,O2}(~x) (15)

We have shown that equations (1–3) hold for the case of n = 2. By induction one can show

that the results in (1–3) are true for any n. ♦

Proof of Proposition 2

Consider the propagation of m-values from nodes X and O1 to node O2 in Figure 4. The

first step is to receive the m-values at the relational node R from nodes X and O1. We combine

these m-values with mR using Dempster's rule and then marginalize it onto the frame of node

O2. This process yields the m-values at the sub-objective O2. The m-values received by R from

X is obtained by vacuously extending mX to node R. The result is:

mR←X(x,o1,o2) = mX(x),

mR←X({(~x,~o1,o2), (~x,o1,~o2), (~x,~o1,~o2)}) = mX(~x),

mR←X(ΘR) = mX(ΘX). (16)

m-values for all other subsets of ΘR are zero. The m-values received by node R from O1 are

given in (8).

For propagating m-values to node O2, we need to combine mR←X, mR←O1, and mR, all

defined at node R. Since mR(ΘR) = 1, the resultant m-values will be the same as the combination

of mR←X and mR←O1. Combining mR←X and mR←O1 (Equations 8 and 16) yields mR←{X,O1}

as given below.

The renormalization constant K in Dempster's rule is given by:

K = 1 - mR←X(x,o1,o2)mR←O1({(~x,~o1,o2), (~x,~o1,~o2)})

= 1 - mX(x)mO1(~o1).
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The non-zero values of mR←{X,O1} are:

mR←{X,O1}(x,o1,o2)

= K-1 mR←X(x,o1,o2) [mR←O1({(x,o1,o2), (~x,o1,~o2)}) + mR←O1(ΘR)]

= K-1 mX(x)[mO1(o1) + mO1(ΘO1)],

mR←{X,O1}(~x,o1,~o2)

= K-1 mR←X({(~x,~o1,o2), (~x,o1,~o2), (~x,~o1,~o2)})

 x mR←O1({(x,o1,o2), (~x,o1,~o2)})

= K-1 mX(~x)mO1(o1),

mR←{X,O1}({(~x,~o1,o2), (~x,~o1,~o2)})

= K-1 [mR←X({(~x,~o1,o2), (~x,o1,~o2), (~x,~o1,~o2)})

+ mR←X(ΘR)] mR←O1({(~x,~o1,o2), (~x,~o1,~o2)})

= K-1 [mX(~x) + mX(ΘX)] mO1(~o1),

mR←{X,O1}({(~x,~o1,o2), (~x,o1,~o2), (~x,~o1,~o2)})

= K-1 [mR←X({(~x,~o1,o2), (~x,o1,~o2), (~x,~o1,~o2)}) mR←O1(ΘR)]

= K-1 mX(~x) mO1(ΘO1),

mR←{X,O1}({(x,o1,o2), (~x,o1,~o2)})

= K-1 mR←X(ΘR) mR←O1({(x,o1,o2), (~x,o1,~o2)})

= K-1 mX(ΘX)mO1(o1),

mR←{X,O1}(ΘR) = K-1 mR←X(ΘR) mR←O1(ΘR) = K-1 mX(ΘX) mO1(ΘO1).

 After marginalizing the above m-values, mR←{X,O1}, onto the frame of O2 and

simplifying, we obtain the following set of m-values propagated to node O2 from nodes X and

O1:

mO2←{X,O1}(o2) = mR←{X,O1}(x,o1,o2) = K-1 mX(x)[mO1(o1) + mO1(ΘO1)]

= K-1 mX(x)[1 - mO1(~o1)],
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mO2←{X,O1}(~o2) = mR←{X,O1}(~x,o1,~o2) = K-1 mX(~x)mO1(o1),

mO2←{X,O1}({o2, ~o2}) = 1 – mO2←{X,O1}(o2) – mO2←{X,O1}(~o2).

We have shown that equations (4–7) hold for the case of n = 2. By induction one can show

that the results in (4–7) are true for any n. ♦

ENDNOTES

1  In general, the frame of a node with three variables, X, O1 and O2, is the Cartesian product of

the frames of the variables, i.e., ΘR = ΘX×ΘO1×ΘO2 = {(x,o1,o2), (x,o1,~o2), (x,~o1,o2),

(~x,o1,o2), (x,~o1,~o2) (~x,o1,~o2), (~x,~o1,o2), (~x,~o1,~o2)}. If we assume that O1 and O2 are

related to X through an AND relationship, then we can represent this by a categorical bpa

function m given by:

m({(x,o1,o2), (~x,o1,~o2), (~x,~o1,o2), (~x,~o1,~o2)}) = 1,

and all other m-values to be zero. Alternatively, we can represent the AND relationship by

assuming that the frame of the relational node ΘR = ({(x,o1,o2), (~x,o1,~o2), (~x,~o1,o2),

(~x,~o1,~o2)}). In the latter case, we don’t need a bpa function to represent the AND relation.

Thus the only bpa functions in an AND-tree are those that represent evidence.

2  The American Accounting Association has established seven audit objectives: Validity, Completeness,

Ownership, Valuation, Cutoff, Mechanical Accuracy, and Disclosure. The auditor collects evidence to establish that

these objectives have been met for each account and thus establishes that each account is fairly stated (see, e.g.,

Arens and Loebbecke [7]).

3  Vacuous Extension: Whenever a set of m-values is propagated from a smaller node (fewer variables) to a bigger

node (more variables), the m-values are said to be vacuously extended onto the frame of the bigger node. As an

illustration, suppose we have the following m-values on node O1 with frame ΘO1 = {o1, ~o1}.

mO1(o1) = 0.7, mO1(~o1) = 0, mO1({o1,~o1}) = 0.3

We want to vacuously extend them to a bigger node consisting of objectives O1 and O2.

The entire frame of this combined node is obtained by multiplying the two individual frames,

ΘO1 = {o1, ~o1} and ΘO2 = {o2, ~o2}. The resulting frame is ΘO1O2 = ΘO1xΘO1 = {(o1,o2),
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(o1,~o2), (~o1,o2), (~o1,~o2)}. The vacuous extension of the above m-values from frame ΘO1 =

{o1, ~o1} to frame ΘO1O2 is as follows:

m({(o1,o2), (o1,~o2)}) = mO1(o1) = 0.7

m(ΘO1O2) = mO1(ΘO1) = 0.3

and m-values for other subsets of ΘO1O2 are zero.

4  Marginalization: Propagating m-values from a node to a smaller node is called marginalization. Let us consider

the above example of Footnote 3 with slightly different m-values. Suppose we have the following m-values at

Θ{O1,O2} which is the frame of the combined nodes O1 and O2:

m(o1,o2) = 0.4,

m({(o1,o2), (o1,~o2)}) = 0.2,

m(ΘO1O2) = 0.4,

all other m-values are zero.

Let us first marginalize onto the frame ΘO1 = {o1, ~o1}. Similar to marginalization of

probabilities, we will sum all the m-values over the elements of frame ΘO2 = {o2, ~o2} for a

given set of elements of frame ΘO1 = {o1, ~o1}, i.e.,

m(o1) = m(o1,o2) + m({(o1,o2), (o1,~o2)}) = 0.4 + 0.2 = 0.6,

m(~o1) = 0,

m({o1,~o1}) = m(ΘO1O2) = 0.4.

Marginalizing onto the frame ΘO2 = {o2, ~o2} yields the following values:

m(o2) = m(o1,o2) = 0.4,

m(~o2) = 0,

m({o2,~o2}) = m({(o1,o2),(o1,~o2)}) + m(ΘO1O2) = 0.2 + 0.4 = 0.6.
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