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Abstract 

 
 A wing mounted ice penetrating radar array for remote sensing is presented. The 

structure is designed to carry radar antennas on a representative unmanned aircraft to enable 

airborne sounding and imaging of ice sheets in cryospheric climates. Current unmanned aircraft 

are presented and representative aircraft characteristics are selected based on currently fielded 

aircraft. A brief structural analysis of the possible platforms is presented to assess the relative 

wing flexibility of such platforms, and thus to establish the interface boundary displacement 

and rotation conditions associated with a wing curvature that the wing mounted array must 

withstand during flight. The aircraft characteristics and wing curvature are used to develop a 

sizing condition for the wing mounted array. The sized array is presented component by 

component with geometry and stress information. A modal analysis is also presented to ensure 

that the structure is safe from possible sources of vibration. The aircraft performance impacts 

are then explored to verify the feasibility of the platform.  A three antenna array pylon mounted 

array near each wing root is shown to be feasible in preliminary design, though service issues 

associated with icing, vortex shedding and downstream performance effects on the pusher-

propeller configuration must be examined in greater detail. 
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PylonDC  Pylon Drag Coefficient (~) 
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1 Introduction 

 

 Oceans cover approximately 71.1% of the Earth's surface [1] but that number has not 

always been the same and will probably change in the future. One of the largest mysteries is 

how changes in the global climate will affect the rise and fall of the ocean. Historical trends 

give us accurate predictions of how global populations will grow and people will migrate. We 

also have detailed topological geography of the world so we know how rises and falls in sea 

level will change the face of the planet. But, what we currently do not have high confidence in 

is how fast the ice on the surface of the planet is changing and how those changes are affecting 

sea level rise (SLR). To put it very simply we know how large the bathroom tub is and we 

know what will happen if it overfills but we are not entirely sure how fast water is flowing into 

the tub of the world oceans. 

 To address this issue, NASA has designed a research campaign called Operation Ice 

Bridge (OIB) which is the largest airborne research campaign ever flown in the polar regions. 

The goal of this mission is to monitor the effects of climate change on ice sheets in Greenland 

and Antarctica. The changes in these sheets will affect global sea levels. What makes this 

research critical now is the dramatic trend of changing SLR rates. Since 1990, the SLR rates 

have doubled in comparison to the last 50 years [2], [3]. During this time the polar ice sheets 

have been steadily shrinking, but recent data points to that changing. Instead of a steady retreat, 

new data [4], [5] shows a possible exponential loss in the last decade. Studies also indicate that 

when the sheets thaw the melt water penetrates beneath the ice sheet and accelerates the 

melting process [6],[7] as well as the flow rate.   

 If sea levels continue to rise then there will be global economic impacts. As water levels 

rise areas which used to be populated will be underwater. This effect is more prominent in less 
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developed countries across the word where significant population centers are located in river 

deltas and other low lying areas which will first experience flooding. According to the 

Intergovernmental Panel on Climate Change more than one million people will be directly 

affected by flooding in each of the Ganges, Mekong and Nile river deltas [8]. The rising water 

will flood ecosystems, displace millions of people, and necessitate billions of dollars of 

spending to protect land from the rising water. A plot of this data is shown in Figure 1. 

 

Figure 1: Sea level Effects [8] 

To fully understand the sea level rise scenarios we need to better understand the conditions of 

the ice sheets, especially at the ice/bed or ocean/bed interface, but the current methods of 
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predicting ice sheet behavior contain significant gaps and uncertainties [9]. To fill these gaps 

and uncertainties with data would require a sustained airborne remote sensing campaign of the 

primary glaciers of Greenland and Antarctica, and in particular the faster-moving outlet 

glaciers. Due to the large geographic extent of these glaciers, the remote and unpopulated 

characteristics of the regions, the sparse ground and basing infrastructure, range limitations of 

available manned platforms, the cost of fuel and other logistics, and the repetitive nature of the 

mission, operation from an unmanned platform has merit.  This why the research platform in 

this paper has been presented, as a feasibility study for a potential future mission. 

 What is presented is an array of ice penetrating radar antennas mounted below the wing 

of an unmanned remote sensing aircraft which can collect imaging information of the ice sheets 

simply by flying over them. The aircraft selected for this mission is based on currently 

available unmanned aerial vehicles (UAVs). Unmanned aerial vehicles can collect this data 

without having to place pilots in dull mission scenarios in these remote regions and operate at 

reduced fuel consumption to typical manned aircraft. . The on-board autopilot and avionics in a 

UAV do not need rest, and ground crews may be more readily swapped, so mission endurance 

times can be in excess of 24 hours. This paper explores whether it is structurally feasible to 

integrate a wing-mounted array into the current generation of unmanned aircraft and if it can do 

so without significantly reducing the performance of the aircraft. 
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2 Related Work  

 

There are several UAV platforms that are currently being fielded by the international military 

complex and there is also current work being done for remote sensing of ice sheets.  As of now 

these two fields have not been brought together in the class of UAV that is explored herein. The 

current work that is related is presented below. 

2.1 Remote Sensing 

 

The first thing that will be explored is what is currently being done to gather scientific data for 

the ice sheets in Greenland and Antarctica.  The critical data is at the interface between the ice 

sheet and the bed and the simplest way used to collect that data is to dig boreholes down to the 

base of the ice sheet and install sensors there. Many of these boreholes have been drilled [10] 

but to use this method to track entire ice sheets is impractical. The next step in sensing was to 

develop a radar system which could be run over the ice surface to collect the information. The 

radar can be calibrated by borehole information and then enable much larger ice sheets to be 

monitored. These radar systems were first mounted to sleds behind tracked vehicles and driven 

over the ice sheets to gather data [11]. The next step to gather larger amounts of data was to 

move the radar from a tracked vehicle and onto an aircraft. UAV's have started to fill this role 

in similar missions. Low-altitude long-endurance (LALE) UAV's have been equipped with 

LIDAR instrumentation to retrieve surface topography in a cyrosphere environment [12].The 

NSF Center for Remote Sensing of Ice Sheets (CReSIS) has developed a variety of ice 

penetrating radar systems to collect ice depth and layering information. A radar altimeter that 

operates in the 13 to 17 GHz range has been used to take precision surface measurements of the 

ice sheets [13]. The Multichannel Coherent Radar Depth Sounder (MCoRDS) system has been 
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adapted for a variety of NASA aircraft including the P-3 and DC-8 [14] [15] [16]. The 

Synthetic Aperture Radar (SAR) was developed as an eight-channel wideband radar that does 

bed imaging and sounding to 1 meter depth resolution. The radar operates in the 120 to 230 

MHz spectrum. To analyze the upper layer of the ice sheet an Accumulation Radar was 

developed [17]. This radar operates in the 600-900 MHz spectrum and gives 28 cm resolution. 

This accuracy allows the radar to differentiate the variation in the annual accumulation layers 

on the ice sheet. A Snow Radar was developed over the 2 to 8 GHz spectrum which maps the 

near surface internal layers in the sheet [17]. This radar has also been adapted to measure snow 

on top of sea ice [13].  

  

2.2 Unmanned Aerial Vehicles (UAVs) 

 

 

The primary customers in the UAV market are militaries across the globe. The United States 

military alone has purchased a large variety of aircraft varying in weight from less than one 

pound to over 40,000 pounds and varying in cost from a few thousand dollars to tens of 

millions of dollars. [18]. Many of these UAVs are for surveillance missions that require high 

endurance and/or high range, and missions are typically at high altitude. The qualities which 

make for an effective surveillance platform match fairly well with the requirements for a 

scientific platform. One of the classes of UAVs which match well with the mission 

requirements of a cryospheric research platform is the MALE (Medium Altitude Long 

Endurance) class of unmanned aircraft. There are several aircraft in this class that are deployed 

worldwide. Three of them are presented here.  
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 The first UAV shown is the MQ-1 Predator. This vehicle designed by General Atomics 

is one of the first widely adopted MALE UAVs and remains in service today. It was originally 

constructed as a reconnaissance platform but was later modified and fitted with hard points and 

munitions. It was the first UAV to be weaponized [19]. A three view of the aircraft is shown in 

Figure 2. 

 

Figure 2: MQ-1B MALE UAV [18] 

  

While this aircraft is considered to fall into the MALE class of UAVs it is on the bottom end of 

the class in terms of payload, service ceiling, and speed. Its endurance capability falls in line 

with the other aircraft and is included since it pioneered the field and still serves as a capable 

platform. MQ-1B vehicle characteristics are presented in Table 1. 

Table 1: MQ-1B Characteristics  [18], [19] 

MQ-1B 

Length 26.7 ft Payload 450 lbs 

Gross Weight 2,250 lbs Power  115 hp 

Fuel Capacity 665 lbs Endurance 24+ hrs  

Engine Rotax 914F Ceiling 25,000 ft 

Wing Span 48.7 ft Max/Loiter Speed 118/70 kts 

Aircraft Cost $2.7 M   

 

The next UAV included is the evolution of the MQ-1B presented above. The MQ-9A Reaper is 

the big brother that has evolved from the MQ-1B. The aircraft is significantly larger in both 

length and wingspan. The propulsion system was changed from a conventional Avgas fueled 
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reciprocating engine to the Honeywell TPE-331 heavy-fueled turbine engine powering the 

pusher turbo-prop. General Atomics changed the empennage design, but otherwise the MQ-9A 

is very similar to the MQ-1B.  The design planned for munitions from the beginning so there is 

significantly more payload capacity in this aircraft. A three view of the aircraft is shown in 

Figure 3. 

 

 

Figure 3: MQ-9A MALE UAV [18] 

 

The characteristics of the MQ-9A Reaper are presented below in Table 2 

 

 

Table 2: MQ-9A Characteristics [18], [20] 

MQ-9A Reaper (Predator B) 

Length 36 ft Payload 3850 lbs 

Gross Weight 10,500 lbs Power  940 hp 

Fuel Capacity 4,000 lbs Endurance 32 hrs  

Engine TPE-331-10 Ceiling 50,000 ft 

Wing Span 66 ft Max/Loiter Speed 225/160 kts 

Aircraft Cost $5.2 M   

 

Several countries outside the United States have companies developing and operating excellent 

UAV platforms also. The one presented for comparison below is the Heron TP Eitan. This 

MALE UAV was developed in Israel by Israel Aerospace Industries (IAI). The design features 

a pusher prop similar to the other designs but the empennage is significantly different from the 

American designs. A view of the Eitan taxiing is shown in Figure 4. 
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Figure 4: Eitan [21] 

 

The maximum takeoff weight of the Eitan and the Reaper are almost identical but the Israeli 

aircraft has significantly more power and is a longer aircraft from nose to tail. 

 

Table 3: Heron TP Characteristics [21] 

Heron TP Eitan 

Length 46 ft Payload 2204 lbs 

Gross Weight 10,251 lbs Power  1200 hp 

Engine PT6A-67 Endurance 36 hrs  

Wing Span 85 ft Ceiling 45,000 ft 

 

 

2.3 Summary 

 

The current environment is ripe for unmanned aircraft and remote sensing technologies to be 

combined into a package for scientific research. Efforts to combine these two have already 

begun on a smaller scale. The Meridian UAV is an unmanned aircraft designed to carry its own 

eight channel radar to provide sounding information as well as SAR imaging of the ice-bed 

boundary. The Meridian has a payload 50 lbs and a range of around 900 nm [see Ref in note] 

and has flown domestically as well as in Greenland and Antarctica. The payload and range 

capabilities of the MALE class of UAVs could supplement the other scientific aircraft already 

in operation and greatly expand the available ground track survey lines.
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3 Sizing of Array 
 

3.1 Description of the Problem 

 

One of the challenges involved with the current generation of MALE UAVs is their close 

integration with the military, and the potential limitations on their use as imposed by 

International Traffic in Arms (ITAR) regulations. This severely restricts the information 

publically available on the platforms since many of them are currently involved in military 

conflicts across to the globe. In addition, if specific information on the structural arrangement 

of the platforms is acquired any work based on that information will likely fall under the same 

publication restrictions. With that in mind, instead of designing an array for one specific 

aircraft a representative array has been designed for the spectrum of MALE aircraft. Aircraft 

information is required to develop the loads which size the array so a representative design was 

chosen. The aircraft specifications for the representative UAV are shown in Table 4. 

Table 4: Aircraft Specifications 

Parameter Value Units 

Weights     

Max WTO 10,500 lbs 

WEmpty 4,400 lbs 

WFuel 4,000 lbs 

Max WPayload 4,000 lbs 

Cruise Speed 160 kts 
   

Wing Geometry   

Area 271.6 ft
2
 

Span 66 ft 

Aspect Ratio 16.04 ~ 

Taper Ratio 0.52 ~ 

mgc 4.25 ft 
   

Engine Data   

Propeller Efficiency 0.8 ~ 

s.f.c 0.53 lbs/hp-hr 
Engine TPE-331 ~ 
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The engine selected was a TPE-331 turbo-prop engine. This engine was chosen because of its 

use in the field and also because of the availability of engine performance data. The heavy-fuel 

is known to be compatible with the mission and available in the field, and the combustion 

ignition cycle is known to be compatible with the electromagnetic and radio frequency 

interference requirements of the ice penetrating radars. The wing geometry includes a high 

aspect ratio due to the low drag requirements of a high endurance aircraft. The representative 

wing layout is shown in Figure 5. 

 

Figure 5: Representative Wing Planform 

 

  

All of the MALE designs presented included a pusher prop so that configuration was also 

selected for the representative UAV. A computer-aided design (CAD) image of the 

representative UAV is shown in Figure 6. This model was developed in NX version 6 and was 

based upon three view drawings, pictures, and images largely from the UAV roadmap and 

Jane's aircraft of the MQ-9 Reaper [18, 20]. The critical information for the model like wing 

span and aircraft length listed in these sources. Things such as the chord length and thickness of 

the wing could be determined in comparison to given lengths. When a geometric detail could 

not be determined from those methods then a standard value for similar configurations was 

chosen.  Since exact technical data of the aircraft was not used it is likely that there are several 
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slight differences with the real aircraft and the representative model but for the comparisons 

that are being investigated in this paper the model should be sufficient.  

 

Figure 6: Representative UAV 

 

With the platform selected the next step is to select a radar system. A 15 element MCoRDS 

array has been flown on NASA's P-3 research aircraft [22]. This design utilizes the hardpoints 

which were originally designed for munitions, allowing this platform to carry research 

instruments without significant work needing to be done to modify the aircraft wing. This 

method holds potential since many MALE UAVs also have wing mounted hard points for 

munitions. This paper will focus on the integrations of a wing-mounted MCoRDS system, but 

the high payload capacity of the MALE UAVs means that it is also possible for other radar 

systems such as a snow or accumulation radar to be included in the fuselage of the aircraft. An 

integration like this would need specific information on the fuselage layout and payload bays 

and thus while it is not explored further in this paper it is worth noting that the MALE UAV 

platform has potential beyond an MCoRDS array.    
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 Since the mission of the array is very similar, the geometry of the fairing for the array is 

also very similar to the outboard fairing design for the P-3 array presented in Reference 22. A 

CAD image of the previous array is shown in Figure 7  

 

Figure 7: Original P-3 Array  

 

For that fairing a computational fluid dynamics (CFD) aerodynamic study was conducted to 

develop loads and determine the impact of the structure on the aircraft performance. Since the 

P-3 flies significantly faster than our representative UAV the aerodynamic loads cannot be used 

directly, however these results can be used to establish pressure regions and anticipate the local 

variations in the loading of the structure. The flight conditions of the P-3 aerodynamic study 

and the representative aircraft are known and are shown in Table 5. This information was used 

to estimate a pressure loading profile for the representative unmanned aircraft, using the 

detailed CFD results available for the similar P-3 array, and scaling the total pressures by the 

ratio of the dynamic pressures.  

Table 5: Array Aerodynamic Conditions 

 Altitude Speed Dynamic Pressure Temperature Offset 

P-3 8,000 ft 420 kts 550 psf -75 Fahrenheit 

Representative UAV 2,000 ft 240 kts 220 psf -75 Fahrenheit 
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220
.4

550

newq psf
pressure

old q psf
     

As shown above the change in altitude and airspeed results in a drop to 40% of the original 

aerodynamic loads when compared to the P-3 fairing. An image from the original aerodynamic 

study is shown in Figure 8.  This method was used to develop the aerodynamic loads for the 

fairing for the radar array. The other predominate form of load which derives from vehicle 

flexibility is described in the next section.  

 
Figure 8: Pressure Distribution for Similar Array in Prior Aerodynamic Study [22] 

 

3.2 Curvature Model and Loads Development 

 

3.2.1 Curvature Model Description and Material Properties 

 

 The other major source of loads for the fairing is that induced from the platform itself. 

When aerodynamic loads are applied to the UAV the wing deflects and curves which increases 

the distance between the hardpoints. Since the fairing connects these hardpoints at a significant 

distance below the wing, as shown in Figure 9, the fairing then experiences an extensional load 
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as the wing flexes. As such, any preliminary sizing of the array structure will require a 

representative model of the expected wing curvature for this class of aircraft. 

 
Figure 9: Wing Mounted Array 

Background information [20] indicated that the example UAVs used advanced composites in 

their construction, so carbon composites were chosen for the representative UAV. Table 6 

shows the material properties assumed for the uniaxial composite chosen for the wing structure.  

In addition to uniaxial composites a core material was used to stiffen parts of the structure. The 

material properties of the core are shown in Table 7 

Table 6: Curvature Model Material 

Intermediate Modulus Carbon-Epoxy 

1E  22,800,000 psi 

2E  1,290,000 psi 

12v  0.3 (~) 

12G  790,000 psi 

1

T  0.0128 (~) 

1

C  0.0111 (~) 

2

T  0.00702 (~) 

2

C  0.0132 (~) 

12  0.0292 (~) 

t .005 in 
  0.059 lb/in3 
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Table 7: Curvature Model Core 

Honeycomb Core 

1E  91 psi 

2E  45.5 psi 

12v  0.3 (~) 

23G  3100 psi 

13G  5700 psi 

  0.007 lb/in3  

 

Since the exact curvature of the wing was not known structural designs were investigated to 

develop a possible range of curvatures. These designs are not fully mature designs, but instead 

are only first cut models designed to provide a good estimate of the wing curvature expected 

across a range of substructure configurations. Any subsequent details design would require 

knowledge of the wing details for the selected platform, and ideally flight test data confirming 

actual wing curvature. 

3.2.2 Curvature Model Loading 

 

 The loading scenario chosen for the wing models was a 3.95G dive condition at the 

maximum aircraft weight of 10,500 lbs. A safety factor of 1.5 was applied to this loading 

condition, resulting in a total ultimate lift of 1.5*2.95*10,500 = 62,200 lbs. This load was 

distributed over the wing to try to imitate the pressure distribution of the wing. This wing was 

divided into nine pressure regions and their boundaries can be seen in Figure 10. 

 

Figure 10: Loading Regions 
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The actual loadings for these regions are shown in Table 8. These loads were applied across the 

upper and lower skins in these regions. These same loads were applied to all of the different 

structural designs investigated.  

Table 8: Curvature Model Loading 

Region Load (lbs) Region Load (lbs) Region Load (lbs) 

1 12471 4 8813 7 5515 

2 1467 5 1037 8 607 

3 734 6 518 9 303 

 

3.2.3 Curvature Model Geometry 

 

Three designs were chosen, representing a three spar, five spar, and seven spar structure. All of 

the wings were split into three different regions along the half-span since the total load 

decreases traveling outboard. The wing design includes three hardpoints in region 1 spaced 30'' 

apart. This requirement decreases the rib spacing to 15''. In the other bays the ribs are spaced 

20'' apart. This rib pattern is repeated in all three designs.  These regions are shown in Figure 

11 on the three spar design.  

 

Figure 11: 3 Spar Structure 

 

The skin and spars were also analyzed and sized into forward and aft layups since the loading 

of the wing is higher toward the forward part of the wing, with a maximum near the quarter-
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chord. The layups for the forward two spars and the skin forward of the middle spar is shown in 

Table 9. The aft spar and aft skins are shown in Table 10. Core is utilized in regions 1 and 2 

where it is necessary. 

Table 9: Forward 3 Spar Layups 

  Skin Spar 

Region 1 
54/41/4 - 48 Layers 
1/4'' Core in Bays 

55/35/11 - 150 Layers  

Region 2 
40/40/20 -10 Layers 
1/4'' Core in Bays 

53/39/8 - 72 Layers 

Region 3 40/40/20 -10 Layers 40/40/20 - 10 Layers 

 

Table 10: Aft 3 Spar Layups 

  Skin Spar 

Region 1 
53/42/5 -38 Layers 
1/4'' Core in Bays 

29/57/14 - 14 Layers 

Region 2 25/50/25 - 8 Layers 25/50/25 - 8 Layers 

Region 3 25/50/25 - 8 Layers 25/50/25 - 8 Layers 

 

 

Figure 12: 5 Spar Structure 

 

The five spar design uses similar regions to the three spar design. The substructure and regions 

can be seen in Figure 12. Core is utilized in regions 1 and 2 where it is needed. The forward 
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three spars and the forward skin layups are shown in Table 11 and the aft two spars and aft skin 

are shown in Table 12. 

Table 11: Forward 5 Spar Layups 

 Skin Spar 

Region 1 
42/50/8 - 24 Layers 
1/4'' Core in Bays 

58/35/8 - 80 Layers 

Region 2 
29/57/14 -14 Layers 
1/4'' Core in Bays 

50/4378 - 28 Layers 

Region 3 25/50/25 - 8 Layers 25/50/25 - 8 Layers 

 

 

 

Table 12: Aft 5 Spar Layups 

  Skin Spar 

Region 1 
29/57/14 -14 Layers 
1/4'' Core in Bays 

50/43/7 - 28 Layers 

Region 2 25/50/25 - 8 Layers 38/50/13 - 16 Layers 

Region 3 25/50/25 - 8 Layers 25/50/25 - 8 Layers 

 

 

Figure 13: 7 Spar Structure 

 

The seven spar design uses the regions shown in Figure 13. One difference is that since the 

spars are so close together it does not use core in any of the bays. The composite families are 
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shown in Table 13 for the forward four spars and skins and the families for the aft three spars 

and skin are shown in Table 14. 

Table 13: Forward 7 Spar Layups 

  Skin Spar 

Region 1 38/50/13 - 16 Layers 56/35/9 - 68 Layers 

Region 2 29/57/14 -14 Layers 53/40/7 - 30 Layers 

Region 3 25/50/25 - 8 Layers 50/33/17 - 12 Layers 

 

 

 

Table 14: Aft 7 Spar Layups 

  Skin Spar 

Region 1 29/57/14 -14 Layers  50/43/7 - 28 Layers 

Region 2 25/50/25 - 8 Layers 38/50/13 - 16 Layers 

Region 3 40/40/20 - 10 Layers 25/50/25 - 8 Layers 

 

3.2.4 Curvature Model Deflections 

 

 The displacement results from the three different designs are shown in Figure 14, Figure 

16, and Figure 18. While all three designs resulted in different curvatures they all were fairly 

similar, and especially so in the five and seven spar designs. Table 15 shows the maximum tip 

deflection and the amount of deflection across the hardpoint locations. Table 16 and Table 17 

show the deflection results in comparison to one another. Despite different structural 

arrangements the curvature varied less than around 15% in tip deflection and less than 20% in 

the deflections across the hardpoints. The five spar and seven spar designs differed by less than 

2% across the hardpoints. Figure 14 through Figure 19 show the displacements graphically 

across the wing and across the hardpoint locations from a top view. 

 



  

 20 

Table 15: Deflection Results 

  Tip Deflection (in.) Hardpoint Deflection (in.) 

Three Spar 37.1 2.24 

Five Spar 46.7 2.72 

Seven Spar 43.7 2.76 

  

Table 16: Tip Deflection 

  
Tip Deflection in % of 

Half Span 
% Change from 

Seven Spar 

Three Spar 9.4% -15.1% 

Five Spar 11.8% 6.9% 

Seven Spar 11.0% - 

 

Table 17: Hardpoint Deflection 

  
Tip Deflection in % of 
Hardpoint Locations 

% Change from 
Seven Spar 

Three Spar 3.7% -18.8% 

Five Spar 4.5% -1.4% 

Seven Spar 4.6% - 

 

 
Figure 14: Three Spar Wing Displacement 
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Figure 15: Three Spar Hardpoint Displacements 

 

 
Figure 16: Five Spar Wing Displacement 
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Figure 17: Five Spar Hardpoint Displacements 

 

 

 

 
Figure 18: Seven Spar Wing Displacement 
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Figure 19: Seven Spar Hardpoint Displacements 

 

The results showed the seven spar design had the largest deflection across the aircraft hardpoint 

locations. This curvature was used to size the fairing for the representative UAV, since the 

larger curvature induces a conservatively higher load on the wing-mounted fairing and pylons. 

It is important to note that these are clearly representative curvatures, since a preliminary sizing 

of three different skin and substructure arrangements resulted in displacements and curvatures 

within ~20% of one another.  Since only the seven spar model was used and the methodology 

for sizing the other models was the same only the seven spar design sizing will be presented.  

3.2.5 Curvature Model Verification 

 

 As stated above the total aerodynamic loads applied to the aircraft should be just over 

sixty-two thousand pounds of lift. Since only one of the wings of the aircraft is modeled half of 

that weight should be applied to the wing. The verified reaction load from the model is shown 
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in Figure 20. For this analysis drag is ignored. This is done since the exact drag isn't known and 

since the desired result is wing curvature. With reasonable torsional rigidity the drag 

component of the load is unnecessary. A representative rib spacing was chosen and 

conventional design was chosen to ensure that the torsional strength is sufficient.   

  

 
Figure 20: Curvature Model Reaction Load 

 

The spars, skins and ribs were all modeled as 2D shell elements since all are expected to 

undergo axial, shear, and bending loads. To improve accuracy quad elements were used 

throughout the model unless element angles or aspect ratios necessitated triangular elements 

but these were used sparingly and never in critical regions. The model contains 75,886 

elements of which only 242 are triangular elements. This results in an estimated 307,620 

degrees of freedom in the model 

 

3.2.6 Curvature Model Boundary Conditions 

 

The boundary conditions for the model are shown in Figure 21. To simulate the fuselage wing 

interaction a plate was added around the wing at the fuselage location. The edges of this plate 

and the root section of the spars were fixed to provide the boundary conditions for the curvature 

model.  
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Figure 21:Boundary Conditions 

 

To verify the accuracy of the model several things were checked. First, as shown above, the 

total loads were checked against expected values. Secondly a unit displacement check was 

done. The results are shown in Figure 23 through Figure 25. Next the displacements of the 

model were plotted. These displacements were compared with images of the MQ-1B in flight. 

The tip rotation angle and total tip displacement of real life vehicle in flight appeared to agree 

with the stiffness of the curvature model generated here. Since these values seem reasonable 

the epsilon value of the model was verified. Since the epsilon value shown in Figure 22 is low 

it suggests the model is acceptable.  

 

 
Figure 22: Model Epsilon Value 
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Figure 23: X Unit Displacement Check 

 

 
Figure 24: Y Unit Displacement Check 

 

 
Figure 25: Z Unit Displacement Check 
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3.2.7 Curvature Model Sizing 

 

The sizing for the representative UAV is presented below component by component. The 

material properties and margins described above were used along with a first ply failure 

method. The only other additional requirement placed on the design was to limit the 

compressive on-axis strain to .005 in/in. This was done to preserve the reparability of the 

structure, by designing to a strain limit tolerant of local impact damage, or holes associated 

with drilled repair.  

3.2.7.1 Skins 

 

The sizing for skin section is presented below. The plots are presented in element coordinate 

systems unless otherwise indicated. The coordinates for the elements are shown in Figure 26. 

Composite materials were aligned with the global Y axis in the model. 

 

Figure 26: Wing Element Coordinate System 
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The margins of safety for the failure methods examined for the upper skin are presented in 

Table 19. The critical margin of safety for each region has been highlighted in yellow and the 

wings critical margin is highlighted in orange.  

Table 18: Curvature Skin Strains 

M.S Region 1 Region 2 Region 3 

1

C  -0.00470 -0.00446 -0.00408 

1

T  0.00463 0.00455 0.00498 

12  0.00569 0.00569 0.00484 

2

C  -0.00452 -0.00452 -0.00478 

2

T  0.00445 0.00434 0.00430 

 

Table 19: Curvature Skin Margins 

M.S Region 1 Region 2 Region 3 

1

C  0.065 0.122 0.226 

1

T  1.766 1.814 1.571 

12  4.132 4.133 5.033 

2

C  0.105 0.106 0.050 

2

T  0.579 0.618 0.632 

 

 

Each of these failure methods will be examined and the strains for each failure method will be 

presented next. 

3.2.7.1.1 Primary Material Axis Compressive Strain 

 

The on axis compressive strain for the upper skin is presented in Figure 27 and the lower skin is 

shown in Figure 28. The upper skin is expected to see the most compression but the lower skin 

is also verified. The boundary regions between the three regions are clearly visible. The 

bending load down the wing drops fairly linearly but the stiffness of the structure drops at the 

region boundaries and then remains constant until the next region boundary is reached.  As 
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previously mentioned this is the failure method where strain was limited to allow the structure 

to be repairable. As expected the upper skin plies experience more compressive load so the 

critical region is found in the upper skin in region 3 and shown in Figure 29. The highest 

loaded areas in the other regions are presented below. Local boundary effects are seen near the 

root of the wing. Some of these boundary effects should be expected since the wing fuselage 

interaction will cause the load in these regions to rise. A fair amount of the stress concentration 

is real and to be expected but some of it is artificial. Since the model is sized to withstand this 

concentration this increases the stiffness of the wing and decreases the curvature in this section 

of the curvature model.  

 
Figure 27: Upper Skin ε1 Component Compressive Strains 
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Figure 28: Lower Skin ε1 Component Compressive Strain Distribution 

  

 

 

 

 
Figure 29: Upper Skin ε1 Component Compressive Critical Region 1 
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Figure 30: Upper Skin ε1 Component Compressive Critical Region 2 

 
Figure 31: Upper Skin ε1 Component Compressive Critical Region 3 

 

 
Figure 32: Upper Skin ε1 Component Compressive Critical Strains Region 1 
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Figure 33: Upper Skin ε1 Component Compressive Critical Strains Region 2 

 

 
Figure 34: Upper Skin ε1 Component Compressive Critical Strains Region 3 

 

 

 

Figure 32 shows the maximum ε1 component strain of .0047 in the upper skin captured from 

the results file at region 1. Since the material is aligned with the Y axis and the fringe plot is 

aligned with the element X axis there is some disparity between the plot and the .f06 result. The 

taper in the wing causes these vectors not to match. As previously mentioned the loading for 

the curvature model has the factor of safety applied to the load. This simplifies the calculation 

for the margin of safety shown below.  

 

 

.005 /
1 1 .050

.00407781 /

allowable

actual

in in
MS

in in




      
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3.2.7.1.2 Primary Material Axis Tensile Strain  

 

The on axis tensile strain for the upper skin is presented in Figure 35 and the lower skin is 

shown in Figure 36. Overall the lower skin plies experience more tensile load thus the critical 

region is found in the lower skin at the at region 3. This  is shown in Figure 39 and the highest 

loaded areas in the other regions are presented below. 

 
Figure 35: Upper Skin ε1 Component Tensile Strain 

 

 
Figure 36: Lower Skin ε1 Component Tensile Strain 
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Figure 37: Lower Skin ε1 Component Tensile Strain Critical Region 1 

 

 

 

 

 

 
Figure 38: Lower Skin ε1 Component Tensile Strain Critical Region 2 
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Figure 39: Lower Skin ε1 Component Tensile Strain Critical Region 3 

 

 
Figure 40: Lower Skin ε1 Component Tensile Critical Strain Region 1 

 

 
Figure 41: Lower Skin ε1 Component Tensile Critical Strain Region 2 

 

 
Figure 42: Lower Skin ε1 Component Tensile Critical Strain Region 3 

 

Figure 42 shows the maximum ε1 component strain of .00498 in the lower skin captured from 

the results file at region 3. The difference in vectors between the Y global axis and the ε1 
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material axis are evident here also. The taper of the wing causes these vectors to not be aligned 

and causes the differences between the two values. The margin of safety for this method of 

failure is shown below: 

 

 

 

.0128 /
1 1 1.571

.00497885 /

allowable

actual

in in
MS

in in




      

 

 

3.2.7.1.3 Secondary Material Axis Tensile Strain  

 

The off axis tensile strain for the upper skin is presented in Figure 43 and the lower skin is 

shown in Figure 44. The boundary conditions at the root dominate this load condition also. The 

highest loaded region is in wing region one and is shown in Figure 45. The highest loaded areas 

in the other regions are presented below 

 
Figure 43: Upper Skin ε2 Component Tensile Strain 
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Figure 44: Lower Skin ε2 Component Tensile Strain 

 

  
Figure 45: Lower Skin ε2 Component Tensile Strain Region 1 

 

 
Figure 46: Lower Skin ε2 Component Tensile Strain Region 2 
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Figure 47: Lower Skin ε2 Component Tensile Strain Region 3 

  

 
Figure 48: Lower Skin ε2 Component Tensile Strain Critical Stress Region 1 

 

 
Figure 49: Lower Skin ε2 Component Tensile Strain Critical Stress Region 2 

 

 
Figure 50: Lower Skin ε2 Component Tensile Strain Critical Stress Region 3 
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Figure 48 shows the maximum ε2 component strain of .00444 in the lower skin captured from 

the results file in region one. The margin of safety for this method of failure is shown below: 

 

 

 

 
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in in
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
      

3.2.7.1.4 Secondary Material Axis Compressive Strain  

 

The off axis compressive strain for the upper skin is presented in Figure 51 and the lower skin 

is shown in Figure 52. The critical region for this failure case is in wing region three is shown 

in Figure 55 and the highest loaded areas in the other regions are presented below. 

  
Figure 51: Upper Skin ε2 Component Compressive Critical Strain 
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Figure 52: Lower Skin ε2 Component Compressive Strain Distribution 

 

 

 

 
Figure 53: Upper Skin ε2 Component Compressive Critical Region 1 
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Figure 54: Upper Skin ε2 Component Compressive Critical Region 2 

 
Figure 55: Upper Skin ε2 Component Compressive Critical Region 3 

 

 
Figure 56: Upper Skin ε2 Component Compressive Critical Strain Region 1 
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Figure 57: Upper Skin ε2 Component Compressive Critical Strain Region 2 

 

 
Figure 58: Upper Skin ε2 Component Compressive Critical Strain Region 3 

  

 

Figure 56 shows the maximum ε2 component strain of .00452 in the upper skin captured from 

the results file. The margin of safety for this method of failure is shown below: 

 

 

 

 

.005 /
1 1 .105

.00452454 /

allowable

actual

in in
MS

in in




      



  

 43 

3.2.7.1.5 Shear Stress  

 

The shear strains for the upper skin is presented in Figure 59 and the lower skin is shown in 

Figure 60. The critical region is found in the second bay in the lower skin and is shown in 

Figure 62 and the highest loaded areas in the other regions are presented below. 

  
Figure 59: Upper Skin γ12 Component Shear Strain Distribution 

 

 
Figure 60: Lower Skin γ12 Component Shear Strain Distribution 
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Figure 61: Lower Skin γ12 Component Shear Strain Distribution Region 1 

 

 

 

 

  
Figure 62: Lower Skin γ12 Component Shear Strain Distribution Region 2 
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Figure 63: Lower Skin γ12 Component Shear Strain Distribution Region 3 

 

 
Figure 64: Lower Skin γ12 Component Critical Shear Strain Region 1 

  

 
Figure 65: Lower Skin γ12 Component Critical Shear Strain Region 2 

 

 

 
Figure 66: Lower Skin γ12 Component Critical Shear Strain Region 3 
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Figure 65 shows the maximum shear strain of .0057 in the lower skin captured from the results 

file. The margin of safety for this method of failure is shown below: 

 

 

 

 

 

.0292 /
1 1 4.133

.00568877 /

allowable

actual

in in
MS

in in




      

3.2.7.2 Spars 

 

In this section the charts are all presented in material coordinate systems. The material is 

defined by the global Y vector which goes down the wing. The margins of safety for the failure 

methods examined for the spars are presented in Table 20. The critical margin of safety has 

been highlighted orange.  

 

Table 20: Curvature Spar Critical Strains 

 Region 1 Region 2 Region 3 

1

C  0.00629 0.00456 0.00329 

1

T  0.00633 0.00430 0.00325 

12  0.00372 0.00606 0.00394 

2

C  0.00487 0.00444 0.00313 

2

T  0.00517 0.00417 0.00317 

 

 

Table 21: Curvature Spar Critical Margins 

 Region 1 Region 2 Region 3 

1

C  0.765 1.436 2.372 

1

T  1.022 1.977 2.938 

12  6.841 5.580 8.343 

2

C  1.713 1.975 3.223 

2

T  0.357 0.683 1.215 
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Each of these failure methods will be examined and the strains for each failure method will be 

presented next. 

3.2.7.2.1 Primary Material Axis Tensile Stress 

 

The on-axis tensile strains for the spars are presented in Figure 67. The lower spar cap 

experiences the highest strain in wing region one and the critical region is shown in Figure 68. 

The highest loaded areas in the other regions are also presented below. 

 
Figure 67: Spars ε1 Component Tensile Strain Distribution 
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Figure 68: Spars ε1 Component Tensile Strain Critical Region 1 

 

 

 

 

 

 

 

 

 
Figure 69: Spars ε1 Component Tensile Strain Critical Region 2 
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Figure 70: Spars ε1 Component Tensile Strain Critical Region 3 

 

 

 
Figure 71: Spars ε1 Component Tensile Critical Strain Region 1 

 

 

 
Figure 72: Spars ε1 Component Tensile Critical Strain Region 2 
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Figure 73: Spars ε1 Component Tensile Critical Strain Region 3 

 

  

 

Figure 71 shows the maximum ε1 component strain of .006326 in the spar captured from the 

results file. The margin of safety for this method of failure is shown below: 
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3.2.7.2.2 Secondary Material Axis Tensile Strain 

 

 The off axis tensile strains for the spars are presented in Figure 74. The lower spar cap 

experiences the highest strain in region one and the critical region is shown in Figure 75. The 

highest loaded areas in the other regions are also presented below. 

 

 
Figure 74: Spars  ε2 Component Tensile Strain Distribution 

 

 
Figure 75: Spars ε2 Component Tensile Strain Critical Region 1 
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Figure 76: Spars ε2 Component Tensile Strain Critical Region 2 

 

 

 

 

 

 

 

 
Figure 77: Spars ε2 Component Tensile Strain Critical Region 3 
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Figure 78: Spars ε2 Component Tensile Critical Strain Region 1 

 

 
Figure 79: Spars ε2 Component Tensile Critical Strain Region 2 

 

 
Figure 80: Spars ε2 Component Tensile Critical Strain Region 3 

  

 

Figure 78 shows the maximum ε2 component strain of .00517 in the spar captured from the 

results file. The margin of safety for this method of failure is shown below: 

 
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3.2.7.2.3 Secondary Material Axis  Compressive Strain 

 

 The off axis compressive strains for the spars are presented in Figure 81. The upper spar 

cap experiences the highest strain in wing region one and the critical region is shown in Figure 

82. The highest loaded areas in the other regions are also presented below. 

 

  
Figure 81: Spars ε2 Component Compressive Strain Distribution 

 

 
Figure 82: Spars ε2 Component Compressive Strain Critical Region 1 
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Figure 83: Spars ε2 Component Compressive Strain Critical Region 2 

 

 

 

 

 

 

 

 
Figure 84: Spars ε2 Component Compressive Strain Critical Region 3 
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Figure 85: Spars ε2 Component Compressive Critical Strain Region 1 

 

 
Figure 86: Spars ε2 Component Compressive Critical Strain Region 2 

 

 
Figure 87: Spars ε2 Component Compressive Critical Strain Region 3 

  

 

Figure 85 shows the maximum ε2 component strain of .00487 in the spar captured from the 

results file. The margin of safety for this method of failure is shown below: 
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 57 

3.2.7.2.4 Primary Material Axis Compressive Strain  

 

 The on-axis tensile strain for the spars are presented in Figure 88. The upper spar cap 

experiences the highest strain in region one and the critical region is shown in Figure 89. The 

highest loaded areas in the other regions are also presented below. Since this structure is within 

the skins of the aircraft it was not limited to a strain of .005 since it is protected from damage 

with the aircraft, and is not expected to tolerate a bolted repair. 

  
Figure 88: Spars ε1 Component Compressive Strain Distribution 

 

 
Figure 89: Spars ε1 Component Compressive Strain Critical Region 1 
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Figure 90: Spars ε1 Component Compressive Strain Critical Region 2 

 

 
Figure 91: Spars ε1 Component Compressive Strain Critical Region 3 

  

 
Figure 92: Spars ε1 Component Compressive Critical Strain Region 1 
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Figure 93: Spars ε1 Component Compressive Critical Strain Region 2 

 

 
Figure 94: Spars ε1 Component Compressive Critical Strain Region 3 

  

Figure 92 shows the maximum X component strain of .0063 in the upper skin captured from 

the results file. In this case the difference between the plot and the .f06 file comes from the 

averaging definition within the plotter. The margin of safety for this method of failure is shown 

below: 
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3.2.7.2.5 Shear  

 

The shear strains for the spars are presented in Figure 95. The lower spar cap experiences the 

highest strain in region two and the critical region is shown in Figure 96. The highest loaded 

areas in the other regions are also presented below. 
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Figure 95: Spars γ12 Component Shear Strain Distribution 

  

 

 
Figure 96: Spars γ12 Component Shear Strain Critical Region 1 
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Figure 97: Spars γ12 Component Shear Strain Critical Region 2 

 

 

 
Figure 98: Spars γ12 Component Shear Strain Critical Region 3 

 

 
Figure 99: Spars γ12 Component Shear Critical Strain Region 1 
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Figure 100: Spars γ12 Component Shear Critical Strain Region 2 

 

 
Figure 101: Spars γ12 Component Shear Critical Strain Region 3 

 

Figure 99 shows the maximum γ12 shear strain of .00372 in the upper skin captured from the 

results file. The margin of safety for this method of failure is shown below: 
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3.2.8 Summary of problem 

 

In summary a representative UAV was imagined and design characteristics of the aircraft were 

selected. The selection of an aircraft also resulted in cruise altitude and airspeeds being 

selected. These airspeeds were used to adjust and scale previous aerodynamic pressure 

distributions for a similar fairing such that they are applicable to the proposed array and 

aircraft. A fairing mounted below the wing, such as that shown in Figure 102, will extend and 

flex as the wing curves under positive G's. Thus to size the fairing structure, which is the 

primary focus of this thesis, it was necessary to model and develop a range of deflections and 

curvatures for the representative aircraft wing. Three wing designs were investigated and the 

design with the largest curvature was used to size the fairing structure. This approach 

recognizes a limitation in the preliminary wing sizing, with the likely outcome of an artificially 

high stiffness resulting from structures with high positive margins of safety. Optimal wing 

structures would have low margins of safety, and thus the wing curvatures would be higher. 

Curvatures and displacements presented in this section however, are believed to be a reasonable 

approximation in the root section of the representative aircraft, where the fairing is assumed to 

be located. In addition, overall tip displacements appear to agree with those referenced for the 

representative aircraft [20]. Next in Section 3.3 the geometry of the fairing is introduced. 

Section 3.4 details the finite element model and also introduces the glass composite and 

metallic materials used. Section 3.5 details the stress and critical margins in each of the 

designed structures as well as the buckling characteristics of the structure. Section 3.6 shows 

the fasteners required to hold the structure together. Section 3.7 shows a modal analysis of the 

structure and compares it to hypothetical sources of vibration.  
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Figure 102: Array on Representative UAV 

 

3.3 Geometry 

 

This section details the geometry of the fairing used to carry the MCoRDs array for the 

representative UAV. Each component of the array is presented separately for clarity. A view of 

the design with transparent upper skins is shown in Figure 103. The three antennas it is 

designed to carry can be seen in red. The total weight of the pylon and fairing structure was 

found to be 85.7 lbs. Two are mounted on the aircraft for a total added weight of 171.4 lbs.  

 
Figure 103: Transparent Upper Skin Reveals Internal Antenna Elements and Ribs 

 

Figure 104 shows the skins for the fairing structure. The images in this section are color coded 

so that metallic structure is orange and composite structure is blue. The pylon skins are made of 

2024-T3 aluminum that is .032'' thick.  
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Figure 104: Fairing Skins 

The fairing skins are glass composite and are split into four sections. These skin sections are 

identified in Figure 105. 

 

 
Figure 105: Fairing Skin Sections 

 

The composite layups emphasize damage tolerance in the leading edge which is the surface 

most likely to be hit during flight. The upper, lower, and trailing edge skins emphasized getting 

as much bending stiffness as possible out of the skin at the expense of damage tolerance. This 

was deemed acceptable since they are protected by the leading edge. If the an array was to be 

fielded with a crew more likely to drop tools and other items on the array the design philosophy 

of these skins would need to change and additional layers of composite would be needed to 
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protect the structure. The leading edge of the fairing is made of 8 layers of ACG 6781 S-2 glass 

composite. This makes the structure 0.081 inches thick. The layup for the composite is [-45, 0, 

0, 45]s. The design for the leading edge is a circular leading edge that flattens to allow it to be 

fastened to the forward spar. The trailing edge is made of 13 layers of ACG 6781 S-2 glass 

composite which makes the part 0.131 inches thick. The layup for the trailing edge is [0, 0, 0, -

45, 45, 0, 0]os. This skin is fastened into the aft spar. The upper skin is made of 8 layers of ACG 

6781 S-2 glass composite resulting in a skin that is 0.081 inches thick. They layup for the 

composite is [-45, 0, 0, 45]s. In between the pylons Rohacell 71 core is used increase the 

flexural stiffness of the skins. The skin is fastened to the forward and aft spars. The lower skin 

is made of 10 layers of ACG 6781 S-2 glass composite resulting in a skin that is 0.101 inches 

thick. At the rib attachment points additional bearing strength is needed so the structure is 

padded up to 17 layers. The layup for the skin is [0 0 -45 45 0]s which then pads up to [0 0 -45 

45 0 0 45 -45 0] s. The order of the ply drops is shown in Table 22.  

Table 22: Lower Skin Ply Drops from Pad Up 
Pad 
Up Ply Drops 

Lower 
Skin 

Drop 
Order 

0 0 0 0 0 0 0 0 0   

0 0 0 0 0 0 0 0 0   

-45 -45 -45 -45 -45 -45 -45 -45 -45   

+45 +45 +45 +45 +45 +45 +45 +45 +45   

0 0 0 0 0 0       5 

0 0 0 0 0 0 0 0 0   

+45 +45               1 

-45 -45 -45 -45 -45         4 

0 0 0 0 0 0 0 0   7 

-45 -45 -45 -45           3 

+45 +45 +45             2 

0 0 0 0 0 0 0 0 0   

0 0 0 0 0 0 0     6 

+45 +45 +45 +45 +45 +45 +45 +45 +45   

-45 -45 -45 -45 -45 -45 -45 -45 -45   

0 0 0 0 0 0 0 0 0   

0 0 0 0 0 0 0 0 0   
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The substructure of the pylons and array are shown in Figure 106. This provides the primary 

load paths throughout the array. The loads along the array are transferred into the two spars. 

One runs down the front and one down the back of the array. Loads are transferred into the ribs 

through the rib inserts. The ribs are located beneath all three pylons, but must bridge the center 

area of the lower skin in order to cross the antenna elements. The ribs transfer their load into 

the pylon substructures which are attached to the aircraft via 12 attachment plates. 

 
Figure 106: Fairing Structure 

 

To attach the fairing to the aircraft attachment plates are used as can be seen in Figure 107. 

These interface directly into the rib and spar structure of the metallic pylons. These are made of 

0.125 inch thick 7075-T6 Aluminum. At each of the hardpoint locations there are two forward 

and two aft attachment points for a total of 12 attachment locations. This is consistent with an 

assumption that existing hardpoints on these aircraft are likely to be singe clevis pins to which 

the fairings will attach via the double clevis formed by each pairs of attachment plates. 
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Figure 107: Attachment Plates 

 

The pylons consist of two aluminum closeout ribs with an additional center rib to prevent the 

aluminum skins from buckling. Forward and aft spars extend the full span of the pylon to 

connect to the fairing structure. All of these components are made of 0.063 2024 T-3 

extrusions. 0.063 2024 T3 aluminum gussets connect the bottom closeout rib and the spars. The 

rib and spar structure are U-channel structures attached via plates bolted on the inside of the 

structure.  The structure is shown in Figure 108.  

 
Figure 108: Pylon Substructure 

 

Three of the fairing ribs sit right below the pylon substructure. The others are at the ends of the 

array and are used to attach the upper and lower skins. To conserve the cost of tooling these 

will have an identical cross-sectional geometry as spars, but will have a lower cap section cut 

out to allow antennas to slide underneath. The curved cross section of these ribs make them 
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unsuitable to be an aerodynamic close out rib. To leave room for an aerodynamic closeout the 

ribs on the end of the fairing are positioned with the C facing inward. These act as the structural 

ribs but a closeout rib will be needed for aerodynamic reasons. They are made of 15 layers of 

ACG 6781 S-2 glass composite resulting in a rib that is 0.152 inches thick. They layup for the 

ribs is [-45, 0, 0, 45, 0, 0, -45, 0]os.  

 
Figure 109: Fairing Ribs 

 

The fairing rib inserts rest inside the ribs and extend forward into the spars. The inserts can be 

seen in Figure 110 and their interaction with the spars and ribs can be seen in Figure 111 These 

are made of 0.25 inch thick 6061-T651 square tubing. These are fastened and form a 

connection between the spars, ribs, and pylon substructure. Although full metallic ribs would 

disrupt the antenna array performance since they bridge the antenna elements, these metallic 

inserts are required to carry the fairing-pylon interaction loads. The inserts are forward and aft 

of the antenna element, and only the glass/epoxy rib crosses the antenna element. 

 
Figure 110: Fairing Rib Inserts 
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Figure 111: Rib Insert, Spar, and Rib Interaction 

 

The spars are shown in Figure 112 and are made of 15 layers of ACG 6781 S-2 glass composite 

resulting in a spar that is 0.152 inches thick. These are fastened to the upper and lower skins 

and the fairing rib inserts. 

 

 
Figure 112: Fairing Spars 

 

 

The last structures presented are the trailing edge ribs which can be seen in Figure 113. These 

are located at the same wing station as the ribs which are at the pylon locations. These prevent 

the trailing edge skin from buckling and are made of 0.072 thick 2024 T-3 aluminum. These 

ribs are extremely thick for buckling reasons. Dropping thickness here results in buckling 

before the desired load. An alternative approach would be to add thickness to the trailing edge 
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fairing skin. Doing so would likely add weight to the structure but the thickness added could be 

a protective angled ply which would improve the damage tolerance. 

 
Figure 113: Trailing Edge Ribs 
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3.4 FEM Model 

 

3.4.1 External Loads 

 

There are three primary external loads applied to the fairing. The first is the aerodynamic loads. 

These are applied as local pressures. At an angle of attack of zero this structure would result in 

a predominately global drag load since the structure is symmetric and generates no lift at. The 

load case tested includes a five degree angle of attack so the structure generates lift. These 

loads were defined by the aerodynamic study in reference 22 and as previously stated these 

loads were then reduced based on the dynamic pressure at the flight conditions of the array. To 

apply the load 17 pressure regions were developed for load boundaries. These are shown in 

Figure 264 through Figure 280 in Appendix A. An additional total load was applied uniformly 

to the entire model to adjust the total applied load to the expected values in Table 23. This 

correction is necessary because of the slight variations between the orientations of the 

discretized geometry and finite element model versus the 3D solid geometry used to develop 

the pressure distributions. The loads applied in this section differ from the curvature model in 

that they are now limit loads instead of ultimate loads. This means that the factor of safety must 

now be applied in the safety calculation. The reason for this change is that margin is not the 

same across all of the structures due to the NASA guidelines. A margin of safety of 3.0 was 

applied to composite structures and 2.25 was applied to metallic structures.  

Table 23: Aerodynamic Loads for Each Array 

Aerodynamic Loads 

Side Force 200 lbs 

Lift  1820 lbs 

Drag 660 lbs 
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 The second primary external load is the induced load from the wing flexure. As the 

wing flexes under load it extends and flexes the attached array beneath it, and also flexes the 

pylon mounts. This load has been greatly discussed above and the amount of curvature was 

based on the 7 spar representative wing in Section 3.2. 

 The third external load was the thermally induced load. In cyrospheric climates the air 

temperature can be extremely cold and this affects the structure. The assumed zero strain 

condition for the wing is the standard atmosphere ground temperature of 77°F. The applied 

temperature to the aircraft was -75°F. This is a total temperature change of 152°F. This shrinks 

the structure and directly opposes the wing curvature which is attempting to stretch out the 

structure. The structure must also endure a high temperature environment if it is to survive 

flying from the NASA Dryden flight facility in the California desert. Fortunately the expansion 

effect on the structure should be a reliving force in the air. It is worth noting that the material 

properties of the structure also are very different at different temperatures. The lower 

temperature properties of the material have a higher specific strength and stiffness. Conversely 

the high temperature and high moisture properties are much poorer than the room temperature 

properties. These reduced properties at high temperature could easily have a larger effect than 

the relieving strains from thermal expansion. The analysis presented applied the standard room 

temperature properties and did not take advantage of the higher strength at lower temperature 

but it is recommended to examine the effects temperature has in greater detail before installing 

a real world fairing. 

 Another load considered was an inertial load but this load was found to reduce stress in 

the primary structure. The inertial load pulls the structure down and back together. This 

opposes the curve of the wing. In future final sizing its recommended to look at this load again 
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for some of the attachment structure but for all of the skins examined this load was found to be 

relieving. If a 3.95g dive maneuver was performed and then pulled out of the inertial load 

would drop off faster than the wing curvature. This lag would cause the structure to see the load 

case presented and for this reason the inertial load was not included. 

 

3.4.2 Material Properties 

 

The material properties used in the structure are presented in Tables 22-28. The structures for 

which these materials are used can be found in Section 3.3. The properties for the S-2 glass 

have been reduced to account for the inclusion of fasteners, countersinks, and edge distances in 

the same way that was applied in previous NASA fairing installations [22]. 

 

Table 24: 2024-T351 Aluminum Extrusion [22] 

E  10800 ksi 
CE  11000 ksi 

G  4100 ksi 
  0.1 lb/in3 

v  0.33 ~ 

tuF  61 ksi 

suF  31 ksi 

 

Table 25: 2024-T3 Aluminum Sheet, RT, QQ-A-250/4 [22] 

E  10500 ksi 
CE  10700 ksi 

G  4000 ksi 

  0.1 lb/in3 

v  0.33 ~ 

tuF  65 ksi 

suF  40 ksi 
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Table 26: 6061-T6 Aluminum Extrusion, RT, QQ-A-200/3 [22] 

E  9900 ksi 
CE  10100 ksi 

G  3800 ksi 
  0.1 lb/in3 

v  0.33 ~ 

tuF  41 ksi 

tyF  38 ksi 

cyF  37 ksi 

suF  26 ksi 

 

 

Table 27: ACG S-2 Glass 6781/MTM45-1 [22] 

 -64F, Dry 75F, RTD 180F, Wet  

1

TE  4320 4220 3900 ksi 

1

CE  4350 4220 4090 ksi 

2

TE  4140 4070 3770 ksi 

2

CE  4240 4020 3940 ksi 

12G  710 550 340 ksi 

12v  0.14 0.14 0.12 ~ 

nomt  0.0101 0.0101 0.0101 in 

1  0.000009 0.000009 0.000009 / /in in F  

2  0.000009 0.000009 0.000009 / /in in F  

  0.0650 0.0650 0.0650 
3/flb in  

1

TF  38.9 32.1 24.4 ksi 

1

CF  37.0 37.0 26.3 ksi 

2

TF  38.0 30.8 20.1 ksi 

2

CF  31.6 31.6 20.1 ksi 

12F  12.3 9.2 5.6 ksi 
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Table 28: Rohacell 71 IG Properties [22] 

E  13.34 ksi 

G  4.205 ksi 
  0.0027 lb/in3 

tuF  0.406 ksi 

cuF  0.218 ksi 

suF  0.189 ksi 

 

 

 

Table 29: 7075-T651 Aluminum Plate [22] 

E  10300 ksi 
CE  10600 ksi 

G  3900 ksi 
  0.101 lb/in3 

v  0.33 ~ 

tuF  79 ksi 

tyF  70 ksi 

cyF  70 ksi 

suF  45 ksi 

 

 

Table 30: AN Bolt Allowables [22] 

  AN3 AN4   

Ultimate Tensile Strength 2210 4080 lbs 

Single Lap Shear Strength 2125 3680 lbs 

 

 

3.4.3 Elements and Boundary Conditions 

 

The pylon and fairing skins, spars and attachment plates are expected to undergo axial, shear 

and flexural stress so these were modeled as 2D shell elements. All of these elements were 

modeled as quad elements when possible while paying attention to element angles and aspect 

ratios. If necessary, triangular elements were used. The attachment bolts to the aircraft skins 

were modeled as 1D beam elements since they are expected to undergo axial and flexural loads. 
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The only bolted that were simulated like this were the ones which connect the fairing to the 

simulated wing. This does induce extreme stress concentrations on the node where the beam is 

attached but it also simulates the way the fairing interacts with the wing attachments. The false 

stress concentrations that this method induced are known and accounted for. The model 

contains 58,820 CQUAD4 elements, 64 CTRIA3 elements, and 12 CBAR elements. This 

results in an estimated 244,590 degrees of freedom. 

 The boundary conditions for the fairing are shown in Figure 114. To simulate the 

attachment to the wing a dummy wing was created above the pylon. This dummy wing is used 

to simulate actual boundary conditions by imposing local displacements and rotations 

consistent with those discovered from the wing curvature model. The stiffness of this dummy 

wing was based upon the wing in reference 22. Since the wing of the representative aircraft is 

assumed to be a composite wing this stiffness was increased. 

 

 
Figure 114: Fairing Boundary Conditions 
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3.4.4 Model Verification 

 

Before sizing each of the fairing components it is important to verify the accuracy of the FEM 

model. The first thing checked is that the loads match the expected applied loads. The applied 

loads are shown in Figure 115. These match the aerodynamic loads from Table 23 nearly 

exactly. 

 
Figure 115: Applied Loads 

 

Next the displacements of the structure were checked. This is plotted in Figure 116. The forced 

deflection of the wing dominates the displacement results as expected. The results fall within 

the expectations for the structure and add credibility to the model. A unit displacement check 

was also done and no errors were found. The results are shown in Figure 117 through Figure 

119. 

  
Figure 116: Displacement of the Fairing and Pylons 
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Figure 117: Fairing X Unit Displacement Check 

 

 
Figure 118: Fairing Y Unit Displacement Check 
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Figure 119: Fairing Z Unit Displacement Check 

 

 

 

Next the epsilon value for the FEA model was checked. This value is the error in strain energy 

norm of the finite element model. This error should be small and any values greater than 0.001 

should bring the results of the model into question. Since this value shown in Figure 120 is low 

this verification check is passed. 

 

 
Figure 120: Epsilon Verification 

 

The model contains 244,590 degrees of freedom which for its size indicates that the model is 

properly discretized. This judgment is based upon my previous experience with FEA models of 

this size. However a convergence study would add value to the model since several of the stress 

concentrations are due to local effects induced by the pylon-fairing interactions. More 

information on the convergence of this concentrations would be beneficial but the current 

model is more than sufficient. With that in mind the finite element model is well-behaved and 

passes all of verification checks. 
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3.5 Sizing 

 

The results of the sizing analysis are presented component by component with the exception of 

the buckling results which are presented first. The critical margins for all of the components are 

presented in Table 31. 

 

Table 31: Critical Margins by Component 

Structure Failure Type Margin 

Upper Skin Buckling 0.277 

Lower Skin Tensile on Axis 0.026 

Ribs Tensile on Axis .715 

Spars Tensile off Axis 0.085 

Rib Inserts Tensile 0.279 

Pylon Spars/ Ribs Tensile 0.071 

Pylon Skin Buckling 0.089 

Trailing Edge Buckling 0.007 

Pylon Plate Shear 0.221 

Trailing Edge Ribs Tensile .797 

 

3.5.1 Bucking Analysis 

 

Figure 121 through Figure 126 show the first six buckling locations in order of load factor. 

Metallic structures were not allowed to buckle until a load factor of 2.25 and composite 

structures were limited to a load factor of 3.0. These values were based upon the NASA 

requirements for the previous array which can be found in reference 22. These requirements 

resulted in the trailing edge ribs being added and were the critical margins of safety for the 

upper skin of the fairing, the trailing edge skin, and the pylon skins of the structure.  
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Figure 121: First Mode Buckling at Buckling Factor of 2.72 

 

 

 

 

 

 

 

 

 

 
Figure 122: Second Mode Buckling at Load Factor of 3.002 
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Figure 123: Third Mode Buckling at Load Factor of 3.2571 

 

 

 

 

 

 

 

 

 

 

 
Figure 124: Fourth Mode Buckling at Load Factor of 3.387 
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Figure 125: Fifth Mode Buckling at Load Factor of 3.389 

 

 

 

 

 

 

 

 

 

 

 
Figure 126: Sixth Mode Buckling at Load Factor of 3.8324 
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3.5.2 Lower Skins  

 

The most critical margin of safety for the lower skin is the tensile on-axis failure method as 

seen in Table 32. All of the failure cases are presented with the overall stress distribution first, 

then the critical region is shown, then the results from the NASTRAN output file are presented 

and lastly that result is turned into a margin of safety. 

 

Table 32: Lower Skin Failure Methods 

Stress Type Stress Margin Allowable Load Case 

Compressive on Axis -9.79 (ksi) 0.259 -12.3 (ksi) No Thermal 

Tensile on Axis 10.43 (ksi) 0.026 10.7 (ksi) Thermal 

Shear 0.92 (ksi) 2.353 3.1 (ksi) No Thermal 

Compressive off Axis -8.67 (ksi) 0.214 -10.5 (ksi) Thermal 

Tensile off Axis 9.08 (ksi) 0.131 10.3 (ksi) No Thermal 

 

 

3.5.2.1 Tensile Stress 

 

The lower skin's most critical region in tension on the material x axis is near the center rib 

attachment point. Figure 127 shows the overall stress distribution in the lower skin and Figure 

128 shows the region in the skin found to be the most critical with the critical element 

highlighted. The plots in this section are plotted on the material axes. The materials in the skins 

are aligned down the fairing heading outboard which is at a slight angle from the global y axis. 

This angle is due to the dihedral and the reduction in the chord along the wing of the 

representative aircraft.  
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Figure 127: Lower Skins σ1 Component Tensile Stress 

 

  
Figure 128: Lower Skins σ1 Component Tensile Critical Region 

 

 

Figure 129 shows the maximum σ1 component stress of 10.04 ksi in the lower skin captured 

from the results file. The stress peaks at the discontinuity from the lower skin pad up to the 

lower skin standard layup. This stress is artificially high since when produced there would be a 

taper region as these plies dropped. This is also in the region where the center rib attaches. This 
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attachment causes a stress concentration as it transfers the load from the wing curvature to the 

fairing. 

 
Figure 129: Lower Skins σ1 Component Tensile Critical Stress 

 

The margin of safety for this method of failure is shown below: 
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The lower skin's most critical region in tension on the σ2 axis is in one of the center bays 

between the pylons. Figure 130 shows the overall stress distribution in the lower skin and 

Figure 131 shows the region in the skin found to be the most critical with the critical element 

highlighted.  

 
Figure 130: Lower Skins σ2 Component Tensile Stress 
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Figure 131: Lower Skins σ2 Component Tensile Critical Region 

 

Figure 132 shows the maximum σ2 component stress of 9.08 ksi in the lower skin captured 

from the results file.  

 
Figure 132: Lower Skins σ2 Component Tensile Critical Stress 

 

The margin of safety for this method of failure is shown below: 
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3.5.2.2 Compressive stress 

 

The lower skin's most critical region in compression on the σ1 axis is near the inboard rib 

attachment point. Figure 133 shows the overall stress distribution in the lower skin and Figure 

134 shows the region in the skin found to be the most critical with the critical element 

highlighted. The stress in this region rises dramatically for several reasons. The first is that the 

lower skin is primarily a structure in tension so most of the skin should not see compressive 

stress at all. The ribs provide sources for local compressive effects but some of these effects are 

artificial from the modeling. Fortunately it is not critical to determine the percentage of the 

stress that is real since it is not a sizing failure condition. 

 

 

 

 
Figure 133: Lower Skins σ1 Component Compressive Stress 
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Figure 134: Lower Skins σ1 Component Compressive Critical Region 

 

 

 
Figure 135: Lower Skins σ1 Component Compressive Critical Stress 

 

Figure 135 shows the maximum σ1 compressive stress of 9.79 ksi in the lower skin captured 

from the results file at the critical region. The margin of safety for this method of failure is 

shown below: 
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The lower skin's most critical region in compression on the material σ2 axis is in the center of 

the bay between the two inboard attachment pylons. Figure 136 shows the overall stress 

distribution in the lower skin and Figure 137 shows the region in the skin found to be the most 

critical with the critical element highlighted.  
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Figure 136: Lower Skins σ2 Component Compressive Stress 

 

 
Figure 137: Lower Skins σ2 Component Compressive Critical Region 

 

 
Figure 138: Lower Skins σ2 Component Compressive Critical Stress 
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Figure 138 shows the maximum σ2 component compressive stress of 8.67 ksi in the lower skin 

captured from the results file at the critical region. The margin of safety for this method of 

failure is shown below: 
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3.5.2.3 Shear Stress 

 

The lower skin's most critical region in τ12 shear is near the outboard rib. To help determine the 

exact element where the stress peaked no averaging was used in the plots which makes them 

look more pixelated. Figure 139 shows the overall stress distribution in the lower skin and 

Figure 140 shows the region in the skin found to be the most critical with the critical element 

highlighted.  

 

 
Figure 139: Lower Skins τ12 Component Shear Stress 
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Figure 140: Lower Skins τ12 Component Shear Stress Critical Region 

 

 
Figure 141: Lower Skins τ12 Component Shear Critical Stress 

 

Figure 141 shows the maximum shear stress of .916 ksi in the lower skin captured from the 

results file at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.3 Upper Skins 

 

The most critical margin of safety for the upper skin is in buckling as seen in Table 32. The 

results are presented in the same order as the previous section. The outboard section of this 

component lacks a core insert so in several of the static sizing it looks like this region 

dominates the sizing since its a less effective structure. This is not the case since the structure is 

sized by buckling in the center bays which does not come into play with the outboard section of 

the array which is why it is possible to drop the core in this region. 

Table 33: Upper Skin Failure Methods 

Stress Type Stress Margin Allowable Load Case 
Compressive on Axis -7.74 (ksi) 0.593 -12.33 (ksi) Thermal 

Tensile on Axis 7.62 (ksi) 0.405 10.7 (ksi) No Thermal 

Shear 1.38 (ksi) 1.225 3.07 (ksi) No Thermal 

Compressive off Axis -4.66 (ksi) 1.258 -10.53 (ksi) Thermal 

Tensile off Axis 5.83 (ksi) 0.760 10.27 (ksi) Thermal 

Buckling 3.83 (ksi) 0.277 3  

 

 

3.5.3.1 Tensile Stress   

 

The upper skin's most critical region in tensile stress on the σ1 axis at the attachment point to 

the outboard pylon. This region has a higher stress distribution since it lacks core like the other 

skin regions.  Figure 142 shows the overall stress distribution in the upper skin and Figure 143 

shows the region in the skin found to be the most critical with the critical element highlighted.  
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Figure 142: Upper Skins σ1 Component Tensile Stress Distribution 

 
Figure 143: Upper Skins σ1 Component Tensile Stress Critical Region 

 

 
Figure 144: Upper Skins σ1 Component Tensile Critical Stress 
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Figure 144 shows the maximum σ1 component tensile stress of 8.29 ksi in the upper skin 

captured from the results file at the critical region. The margin of safety for this method of 

failure is shown below: 
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The upper skin's most critical region in tensile stress on the σ2 axis at the attachment point to 

the outboard pylon. This region has a higher stress distribution since it lacks core that is at the 

center of the other skin regions.  Figure 145 shows the overall stress distribution in the upper 

skin and Figure 146 shows the region in the skin found to be the most critical with the critical 

element highlighted.  

  
Figure 145: Upper Skins σ2 Component Tensile Stress Distribution 
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Figure 146: Upper Skins σ2 Component Tensile Stress Critical Region 

 

 

 
Figure 147: Upper Skins σ2 Component Tensile Critical Stress 

 

Figure 147 shows the maximum σ2 component stress of 4.80 ksi in the upper skin captured 

from the results file at the critical region. The margin of safety for this method of failure is 

shown below: 
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3.5.3.2 Compressive Stress 

 

The upper skin's most critical region in compressive stress on the σ1 axis at the attachment 

point to the center pylon. Figure 148 shows the overall stress distribution in the upper skin and 

Figure 149 shows the region in the skin found to be the most critical with the critical element 

highlighted.  



  

 98 

 
Figure 148: Upper Skins σ1 Component Compressive Stress Distribution 

 

 

 
Figure 149: Upper Skins σ1 Component Compressive Stress Critical Region 

 

 

 
Figure 150: Upper Skins σ1 Component Compressive Critical Stress 
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Figure 150 shows the maximum compressive stress of 6.05 ksi in the upper skin captured from 

the results file at the critical region. The margin of safety for this method of failure is shown 

below: 
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The upper skin's most critical region in compressive stress on the material σ2 axis at the 

attachment point to the middle pylon Figure 151 shows the overall stress distribution in the 

upper skin and Figure 152 shows the region in the skin found to be the most critical with the 

critical element highlighted.  

 

 
Figure 151: Upper Skins σ2 Component Compressive Stress Distribution 

 

 
Figure 152: Upper Skins σ2 Component Compressive Stress Critical Region 
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Figure 153: Upper Skins σ2 Component Compressive Critical Stress 

 

Figure 153 shows the maximum σ2 compressive stress of 4.87 ksi in the upper skin captured 

from the results file at the critical region. The margin of safety for this method of failure is 

shown below: 
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3.5.3.3 Shear Stress 

 

The upper skin's most critical region in τ12 shear is at the attachment point to the outboard 

pylon. This region has a higher stress distribution since it lacks core like the other skin regions.  

Figure 154 shows the overall stress distribution in the upper skin and Figure 155 shows the 

region in the skin found to be the most critical with the critical element highlighted.  

 

 
Figure 154: Upper Skins τ12 Component Shear Stress Distribution 
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Figure 155: Upper Skins τ12 Component Shear Critical Region 

 

 
Figure 156: Upper Skins τ12 Component Shear Critical Stress 

 

Figure 156 shows the maximum τ12 shear stress of 1.63 ksi in the upper skin captured from the 

results file at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.4 Trailing Edge Skin  

 

The most critical margin of safety for the trailing edge skin is in buckling as seen in Table 34. 

The plots in this section are presented in material space. The materials in the trailing edge skin 

are aligned down the fairing heading outboard which is at a slight angle from the global y axis. 

The results are presented in the same order as the previous section. 

Table 34: Trailing Edge Skin Failure Methods 

Stress Type Stress Margin Allowable Load Case 
Compressive on Axis -6.48 (ksi) 0.902 -12.3 (ksi) Thermal 

Tensile on Axis 4.11 (ksi) 1.602 10.7 (ksi) Thermal 

Shear 0.70 (ksi) 3.416 3.1 (ksi) No Thermal 

Compressive off Axis -6.41 (ksi) 0.642 -10.5 (ksi) No Thermal 

Tensile off Axis 6.18 (ksi) 0.661 10.3 (ksi) No Thermal 

Buckling (Load Factor)  3.02 0.007 3.0 No Thermal 

 

 

3.5.4.1 Tensile Stress 

 

The trailing edge skin's most critical region in tensile stress on the σ1 axis is in the inboard bay 

between the inboard and mid attachment points. Figure 157 shows the overall stress distribution 

in the trailing edge and Figure 158 shows the region in the skin found to be the most critical 

with the critical element highlighted.  
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Figure 157: Trailing Edge σ1 Component Tensile Stress Distribution 

 

  
Figure 158: Trailing Edge σ1 Component Tensile Stress Critical Region 

 

 
Figure 159: Trailing Edge σ1 Component Tensile Critical Stress 

 

Figure 159 shows the maximum σ1 component stress of  5.06 ksi in the trailing edge skin 

captured from the results file at the critical region. This is an extreme jump in stress which 

questions its validity. The trailing edge ribs, aft spar, and pylons all interact at this point which 
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should cause a local jump in stress. If this were a sizing condition the validity of the stress 

should be investigated but since buckling comes well before this region would fail it was not 

investigated. The margin of safety for this method of failure is shown below: 
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The trailing edge skin's most critical region in tensile stress on the material σ2 axis is in the 

inboard bay between the inboard and mid attachment points. Figure 160 shows the overall 

stress distribution in the trailing edge skin and Figure 161 shows the region in the skin found to 

be the most critical with the critical element highlighted.  

 

 
Figure 160: Trailing Edge σ2 Component Tensile Stress Distribution 
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Figure 161: Trailing Edge σ2 Component Tensile Stress Critical Region 

 

 
Figure 162: Trailing Edge σ2 Component Tensile Critical Stress 

 

Figure 162 shows the maximum tensile stress of  6.18 ksi in the trailing edge skin captured 

from the results file at the critical region. The margin of safety for this method of failure is 

shown below: 
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3.5.4.2 Compressive Stress 

 

The trailing edge skin's most critical region in compression on the material σ2 axis is in the 

inboard bay between the inboard and mid attachment points. Figure 163 shows the overall 

stress distribution in the trailing edge skin and Figure 164 shows the region in the skin found to 

be the most critical with the critical element highlighted.  

 

  
Figure 163: Trailing Edge σ2 Component Compressive Stress Distribution 

 

  
Figure 164: Trailing Edge σ2 Component Compressive Stress Critical Region 
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Figure 165: Trailing Edge σ2 Component Compressive Critical Stress 

 

Figure 165 shows the maximum σ2 component compressive stress of  6.41 ksi in the trailing 

edge captured from the results file at the critical region. The margin of safety for this method of 

failure is shown below: 
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The trailing edge skin's most critical region in compression on the σ1 axis is near the mid 

attachment points. Figure 166 shows the overall stress distribution in the trailing edge skin and 

Figure 167 shows the region in the skin found to be the most critical with the critical element 

highlighted.  

  
Figure 166: Trailing Edge σ1 Component Compressive Stress Distribution 
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Figure 167: Trailing Edge σ1 Component Compressive Stress Critical Region 

 

 

  
Figure 168: Trailing Edge σ1 Component Compressive Critical Stress 

 

Figure 168 shows the maximum σ1 compressive stress of  6.48 ksi in the trailing edge skin 

captured from the results file at the critical region. This again is a questionable stress 

concentration but since it is above the sizing condition it was conservatively assumed to be real. 

The margin of safety for this method of failure is shown below: 
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3.5.4.3 Shear 

 

The trailing edge skin's most critical region in τ12 shear is in the inboard bay between the 

inboard and mid attachment points. Figure 169 shows the overall stress distribution in the 

trailing edge skin and Figure 170 shows the region in the skin found to be the most critical with 

the critical element highlighted.  

 

 
Figure 169: Trailing Edge τ12 Shear Stress Distribution 

 

 
Figure 170: Trailing Edge τ12 Shear Stress Critical Region 
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Figure 171: Trailing Edge τ12 Shear Critical Stress 

 

Figure 171 shows the maximum shear stress of .70 ksi in the trailing edge skin captured from 

the results file at the critical region. The discrepancy between the fringe plot due to the plotter 

averaging method which is looking at nodes in the upper skin. In addition there is a bend in the 

skin and the spar affects the skin in this area. Despite these local stress effects the skin can take 

all of the real and artificial load. The margin of safety for this method of failure is shown 

below: 
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3.5.5 Spars 

 

The most critical margin of safety for the upper skin is in tensile off axis failure as seen in 

Table 35. The figures are all presented in material coordinate systems. The materials in the spar 

are aligned down the fairing heading outboard which is at a slight angle from the global y axis. 

The results are presented in the same method as the previous section. 

 

Table 35: Spar Failure Methods 

Stress Type Stress Margin Allowable Load Case 
Compressive on Axis -7.45 (ksi) 0.655  -12.3 (ksi) Thermal 

Tensile on Axis 8.25 (ksi) 0.297 10.7 (ksi) Thermal 

Shear 1.66 (ksi) 0.846 3.1 (ksi) No Thermal 

Compressive off Axis -9.42 (ksi) 0.118 -10.5 (ksi) Thermal 

Tensile off Axis 9.47 (ksi) 0.085 10.3 (ksi) Thermal 

Crippling -9.42 (ksi) 0.093 -10.3 (ksi) Thermal 

 

 

 

3.5.5.1 Compressive Stress 

 

The spar's most critical region in compressive stress on the σ1 axis is on the forward spar 

between the mid and outboard attachment points. Figure 172 shows the overall stress 

distribution in the spar and Figure 173 shows the region in the spar found to be the most critical 

with the critical element highlighted.  
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Figure 172: Spars σ1 Component Compressive Stress Distribution 

 
Figure 173: Spars σ1 Component Compressive Stress Distribution 

 

 
Figure 174: Spars σ1 Component Compressive Critical Stress 
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Figure 174 shows the maximum σ1 component compressive stress of 7.45 ksi in the spar 

captured from the results file at the critical region. The margin of safety for this method of 

failure is shown below: 
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The spar's most critical region in compressive stress on the σ2 axis is on the forward spar 

between the mid and outboard attachment points. Figure 175 shows the overall stress 

distribution in the spar and Figure 176 shows the region in the spar found to be the most critical 

with the critical element highlighted.  

 

 

  
Figure 175: Spars σ2 Component Compressive Stress Distribution 
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Figure 176: Spars σ2 Component Compressive Stress Critical Region 

 

 

 
Figure 177: Spars σ2 Component Compressive Critical Stress 

 

Figure 177 shows the maximum compressive stress of 9.42 ksi in the spars captured from the 

results file at the critical region. The margin of safety for this method of failure is shown below: 
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To determine the crippling failure point of the spars the equation below from Reference 23 was 

used. This equation is typically used on metallic spar caps and stiffeners but since the laminate 

is not an extreme family and contains a balanced amount of angled plies it was deemed to be 

sufficient. The values for the equation and their sources are shown in Table 36. 
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Table 36: Spar Crippling Terms 

Item Value Reference Item Value Reference 

  0.8 [23] E  4220 ksi Table 27 

n  0.6 [23] t  0.152 in Section 3.6 

v  0.14 Table 27 b  2.5 in Section 3.6 

c  31.6 ksi Table 27    
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The results for the crippling equation are shown above. They take very little off of the 

compressive allowable for the spar. A margin of safety for crippling is shown below.  
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3.5.5.2 Tensile Stress 

 

The spar's most critical region in tensile stress on the σ1 axis is on the forward spar between the 

mid and inboard attachment points. Figure 178 shows the overall stress distribution in the spar 

and Figure 179 shows the region in the spar found to be the most critical with the critical 

element highlighted.  
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Figure 178: Spars σ1 Component Tensile Stress Distribution 

 

 
Figure 179: Spars σ1 Component Tensile Stress Critical Region 

 

 

 
Figure 180: Spars σ1 Component Tensile Critical Stress 
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Figure 180 shows the maximum σ1 component tensile stress of 8.22 ksi in the spars captured 

from the results file at the critical region. The margin of safety for this method of failure is 

shown below: 
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The spar's most critical region in tensile stress on the material σ2 axis is on the forward spar 

between the mid and inboard attachment points. Figure 181 shows the overall stress distribution 

in the spar and Figure 182 shows the region in the spar found to be the most critical with the 

critical element highlighted.  

 

  
Figure 181: Spars σ2 Component Tensile Stress Distribution 
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Figure 182: Spars σ2 Component Tensile Critical Stress 

 

 

 
Figure 183: Spars σ2 Component Tensile Critical Stress 

 

Figure 183 shows the maximum σ2 component tensile stress of 9.4 ksi in the spars captured 

from the results file at the critical region. The margin of safety for this method of failure is 

shown below: 

30810
1 1 .093

3 9399

allowable

actual

psi
MS

FS psi




    

 
 

 

3.5.5.3 Shear 

 

The spar's most critical region in τ12 shear stress is on the forward spar between the mid and 

inboard attachment points. Figure 184 shows the overall stress distribution in the spar and 
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Figure 185 shows the region in the spar found to be the most critical with the critical element 

highlighted.  

 
Figure 184: Spars τ12 Shear Stress Distribution 

 

 
Figure 185: Spars τ12 Shear Stress Distribution 

 

 
Figure 186: Spars τ12 Shear Critical Stress 
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Figure 186 shows the maximum shear stress of 1.66 ksi in the spars captured from the results 

file at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.6 Ribs 

 

The most critical margin of safety for the ribs is in tensile failure as seen in Table 37. The 

figures are all presented in material coordinate systems. The materials in the ribs are aligned 

down the global x axis which goes down the fuselage stations of the fairing. The results are 

presented in the same order as the previous section. As previously mentioned to simplify 

tooling and reduce costs the ribs are made from spar cross sections which have been cut down. 

This made the ribs quite a bit stronger than what was required. This helped speed the analysis 

since the ribs are a complex structure with many local stress influences and instead of having to 

size for these complex interactions a thicker solution was chosen to cut time and save cost. For 

these reasons the margins of safety are quite high despite very conservative methods. 

Table 37: Rib Failure Methods 

Stress Type Stress Margin Allowable Load Case 

Compressive on Axis -5.85 (ksi) 1.107 -12.3 (ksi) No Thermal 

Tensile on Axis 6.24 (ksi) 0.715 10.7 (ksi) Thermal 

Shear 0.83 (ksi) 2.701 3.1 (ksi) Thermal 

Compressive off Axis -5.14 (ksi) 1.050 -10.5 (ksi) Thermal 

Tensile off Axis 6.08 (ksi) 0.688 10.3 (ksi) No Thermal 

 

 

3.5.6.1 Compressive Strength 

 

The rib's most critical region in compressive stress on the σ1 axis is on the rib near the lower 

skin at the inboard attachment point. Figure 187 shows the overall stress distribution in the ribs 

and Figure 188 shows the region in the ribs found to be the most critical with the critical 

element highlighted.  

 



  

 123 

  
Figure 187: Ribs σ1 Component Compressive Stress Distribution 

 

 
Figure 188: Ribs σ1 Component Compressive Stress Critical Region 

 

 
Figure 189: Ribs σ1 Component Compressive Critical Stress 

 

Figure 189 shows the maximum compressive stress of 5.85 ksi in the ribs captured from the 

results file at the critical region. The margin of safety for this method of failure is shown below: 
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The spar's most critical region in compressive stress on the σ2 axis is on the rib near the lower 

skin at the inboard attachment point. Figure 190 shows the overall stress distribution in the ribs 

and Figure 191 shows the region in the ribs found to be the most critical with the critical 

element highlighted.  

 

  
Figure 190: Ribs σ2 Component Compressive Stress Distribution 
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Figure 191: Ribs σ2 Component Compressive Stress Critical Region 

 

 
Figure 192: Ribs σ2 Component Compressive Critical Stress 

 

Figure 192 shows the maximum compressive stress of 5.14 ksi in the ribs captured from the 

results file at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.6.2 Tensile Strength 

 

The rib's most critical region in compressive stress on the σ1 axis is on the lower skin at the 

inboard attachment point. Figure 193 shows the overall stress distribution in the ribs and Figure 

194 shows the region in the ribs found to be the most critical with the critical element 

highlighted.  
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Figure 193: Ribs σ1 Component Tensile Stress Distribution 

 

 
Figure 194: Ribs σ1 Component Tensile Stress Critical Region 

 

 
Figure 195: Ribs σ1 Component Tensile Critical Stress 
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Figure 195 shows the maximum tensile stress of 6.24 ksi in the ribs captured from the results 

file at the critical region. The margin of safety for this method of failure is shown below: 
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The rib's most critical region in tensile stress on the σ2 axis is on the lower skin at the inboard 

attachment point. Figure 196 shows the overall stress distribution in the ribs and Figure 197 

shows the region in the ribs found to be the most critical with the critical element highlighted.  

 

 

 
Figure 196: Ribs σ2 Component Tensile Stress Distribution 
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Figure 197: Ribs σ2 Component Tensile Stress Critical Region 

 

 
Figure 198: Ribs σ2 Component Tensile Critical Stress 

 

 

Figure 198 shows the maximum σ2 tensile stress of 6.08 ksi in the ribs captured from the results 

file at the critical region. The margin of safety for this method of failure is shown below: 

 

 

30810
1 1 .688

3 6083.6

allowable

actual

psi
MS

FS psi




    

 
 

 

 

 

 

 

 



  

 129 

3.5.6.3 Shear 

 

The rib's most critical region in compressive stress on the τ12 axis is on the rib near the lower 

skin at the inboard attachment point. Figure 199 shows the overall stress distribution in the ribs 

and Figure 200 shows the region in the ribs found to be the most critical with the critical 

element highlighted.  

 

  
Figure 199: Ribs τ12 Shear Stress Distribution 
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Figure 200: Ribs τ12 Shear Stress Critical Region 

 

 

 
Figure 201: Ribs τ12 Shear Critical Stress 

 

Figure 201 shows the maximum shear stress of .83 ksi in the ribs captured from the results file 

at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.7 Rib Inserts  

 

The most critical margin of safety for the ribs is in tensile failure as seen in Table 38. The 

results are presented below in the same order as the previous section. 

Table 38: Rib Insert Failure Methods 

Stress Type Stress Margin Allowable Load Case 
Compressive -12.05 (ksi)  0.365 -16.4 (ksi) Thermal 

Tensile 13.21 (ksi) 0.245 16.4 (ksi) Thermal 

Shear 4.58 (ksi) 1.596 11.9 (ksi) Thermal 

 

3.5.7.1 Tensile Stress 

 

The rib insert's most critical region in tensile stress is in the forward insert at the inboard 

attachment point. Figure 202 shows the overall stress distribution in the insert and Figure 203 

shows the region in the insert found to be the most critical with the critical element highlighted.  

 
Figure 202: Ribs Inserts Tensile Stress Distribution 
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Figure 203: Ribs Inserts Tensile Stress Critical Region 

 

 
Figure 204: Ribs Inserts Tensile Critical Stress 

 

Figure 204 shows the maximum tensile stress of 13.21 captured from the results file. For this 

failure method local effects induced by the pylon substructure and skins have greatly increased 

the stresses in one of the nodes of the element. Since the actual stress from the pylon in this 

region will be more dispersed than the nodal stress from the finite element model the average 

element stress is used here instead of the nodal stress. This is a more aggressive approach but is 

necessary to keep the rib inserts from being unnecessarily large.  The margin of safety for this 

method of failure is shown below: 
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3.5.7.2 Compressive Stress 

 

The rib insert's most critical region in compressive stress is in the aft insert at the outboard 

attachment point. Figure 205 shows the overall stress distribution in the insert and Figure 206 

shows the region in the insert found to be the most critical with the critical element highlighted.  

 
Figure 205: Ribs Inserts Compressive Stress Distribution 

 

 
Figure 206: Ribs Inserts Compressive Stress Critical Region 
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Figure 207: Ribs Inserts Compressive Critical Stress 

 

Figure 207 shows the maximum compressive stress of 12.05 ksi in the insert captured from the 

results file at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.7.3 Shear Stress 

 

The rib insert's most critical region in shear stress is in the aft insert at the outboard attachment 

point. Figure 208 shows the overall stress distribution in the insert and Figure 209 shows the 

region in the insert found to be the most critical with the critical element highlighted.  

 

 
Figure 208: Ribs Inserts Shear Stress Distribution 
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Figure 209: Ribs Inserts Shear Stress Critical Region 

 

 

 

 

 
Figure 210: Ribs Inserts Shear Critical Stress 

 

 

Figure 210 shows the maximum shear stress of 4.58 ksi in the insert captured from the results 

file at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.8 Pylon Spar / Ribs 

 

The most critical margin of safety for the ribs is in tensile failure as seen in Table 39. The 

results are presented below in the same order as the previous section. 

 

Table 39: Pylon Substructure Failure Methods 

Stress Type Stress Margin Allowable Load Case 
Compressive -24.30 (ksi) 0.116 -27.1 (ksi) Thermal 

Tensile 25.32 (ksi) 0.071 27.1 (ksi) Thermal 

Shear 7.57 (ksi) 0.821 13.8 (ksi) Thermal 

 

 

3.5.8.1 Shear Stress 

 

 The pylon substructure's most critical region in shear stress is at the outboard aft 

attachment point. Figure 211 shows the overall stress distribution in the insert and Figure 212 

shows the region in the insert found to be the most critical with the critical element highlighted.  

 

 
Figure 211: Pylon Substructure Shear Stress Distribution 
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Figure 212: Pylon Substructure Shear Stress Critical Region 

 

 

 
Figure 213: Pylon Substructure Shear Critical Stress 

 

Figure 213 shows the maximum shear stress of 7.57 ksi in the substructure captured from the 

results file at the critical region. The stress in this region artificially rises due to the sharp 

corner of the structure along with the interactions to the attachment structure. Due to these 

reasons the centroid was used rather than the nodal stress value. The margin of safety for this 

method of failure is shown below: 
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3.5.8.2 Tensile Stress 

 

 The pylon substructure's most critical region in tensile stress is at the outboard aft 

attachment point. Figure 214 shows the overall stress distribution in the substructure and Figure 

215 shows the region in the structure found to be the most critical with the critical element 

highlighted.  

 
Figure 214: Pylon Substructure Tensile Stress Distribution 

 

 

 
Figure 215: Pylon Substructure Tensile Stress Critical Region 
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Figure 216: Pylon Substructure Tensile Critical Stress 

 

Figure 216 shows the maximum tensile stress of 25.3 ksi in the substructure captured from the 

results file at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.8.3 Compressive Stress 

 

The pylon substructure's most critical region in compressive stress is at the outboard aft 

attachment point. Figure 217 shows the overall stress distribution in the substructure and Figure 

218 shows the region in the structure found to be the most critical with the critical element 

highlighted.  

 
Figure 217: Pylon Substructure Compressive Stress Distribution 
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Figure 218: Pylon Substructure Compressive Stress Critical Region 

 

 
Figure 219: Pylon Substructure Compressive Critical Stress 

 

Figure 219 shows the maximum compressive stress of 24.30 ksi in the substructure captured 

from the results file. The margin of safety for this method of failure is shown below: 
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3.5.9 Pylon Plate 

 

The most critical margin of safety for the ribs is in tensile failure as seen in Table 40. The 

results are presented below in the same order as the previous section. 

Table 40: Pylon Plate Failure Modes 

Stress Type Stress Margin Allowable Load Case 
Compressive -22.16 (ksi) 0.404 -31.1 (ksi) Thermal 

Tensile 23.29 (ksi) 0.507 35.1 (ksi) Thermal 

Shear 16.38 (ksi) 0.221 20.0 (ksi) Thermal 

 

3.5.9.1 Compressive Stress 

 

The pylon attachment plate's most critical region in compressive stress is at the outboard aft 

attachment point. Figure 220 shows the overall stress distribution in the plate and Figure 221 

shows the region in the insert found to be the most critical with the critical element highlighted.  

 
Figure 220: Attachment Plates Compressive Stress Distribution 
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Figure 221: Attachment Plates Compressive Stress Critical Region 

 

 
Figure 222: Attachment Plates Compressive Critical Stress 

 

Figure 222 shows the maximum compressive stress of 22.2 ksi in the plate captured from the 

results file at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.9.2 Tensile Stress 

 

The pylon attachment plate's most critical region in tensile stress is at the outboard aft 

attachment point. Figure 223 shows the overall stress distribution in the plate and Figure 224 

shows the region in the plate found to be the most critical with the critical element highlighted.  
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Figure 223: Attachment Plates Tensile Stress Distribution 

 

 
Figure 224: Attachment Plates Tensile Stress Critical Region 

 

 
Figure 225: Attachment Plates Tensile Critical Stress 

 

Figure 225 shows the maximum tensile stress of 23.3 ksi in the plate captured from the results 

file at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.9.3 Shear Stress 

 

The pylon attachment plate's most critical region in shear stress is at the outboard aft 

attachment point. Figure 226 shows the overall stress distribution in the plate and Figure 227 

shows the region in the plate found to be the most critical with the critical element highlighted.  

 
Figure 226: Attachment Plates Shear Stress Distribution 

 

 
Figure 227: Attachment Plates Shear Stress Critical Region 
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Figure 228: Attachment Plates Shear Critical Stress 

 

Figure 228 shows the maximum shear stress of 16.38 ksi in the plates captured from the results 

file at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.10 Pylon Skins 

 

The most critical margin of safety for pylon skins is in buckling as seen in Table 41. The results 

are presented below in the same order as the previous section. 

Table 41: Pylon Substructure Failure Methods 

Stress Type Stress Margin Allowable Load Case 
Compressive -24.53 (ksi) 0.178 -28.9 (ksi) No Thermal 

Tensile 25.24 (ksi) 0.145 28.9 (ksi) Thermal 

Shear 8.44 (ksi) 1.105 17.8 (ksi) No Thermal 

 

 

3.5.10.1 Shear 

 

The pylon skin's most critical region in shear stress is on the inboard skin near the middle pylon 

rib. Figure 229 shows the overall stress distribution in the skin and Figure 230 shows the region 

in the skin found to be the most critical with the critical element highlighted.  
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Figure 229: Pylon Skins Shear Stress Distribution 

 

 
Figure 230: Pylon Skins Shear Stress Critical Region 

 

 

- 

Figure 231: Pylon Skins Shear Critical Stress 
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Figure 231 shows the maximum shear stress of 8.44 ksi in the skin captured from the results 

file at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.10.2 Tensile Stress 

 

The pylon skin's most critical region in tensile stress is on the inboard skin near the middle 

pylon rib. Figure 232 shows the overall stress distribution in the skin and Figure 233 shows the 

region in the skin found to be the most critical with the critical element highlighted.  

 
Figure 232: Pylon Skins Tensile Stress Distribution 
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Figure 233: Pylon Skins Tensile Stress Critical Region 

 

 
Figure 234: Pylon Skins Tensile Critical Stress 

 

Figure 234 shows the maximum tensile stress of 25.41 ksi in the skin captured from the results 

file at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.10.3 Compressive Stress 

 

The pylon skin's most critical region in compressive stress is on the inboard skin near the 

middle pylon rib. Figure 235 shows the overall stress distribution in the skin and Figure 236 

shows the region in the skin found to be the most critical with the critical element highlighted.  
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Figure 235: Pylon Skins Compressive Stress Distribution 

 

 

 

 

 

 

 
Figure 236: Pylon Skins Compressive Stress Distribution 
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Figure 237: Pylon Skins Compressive Critical Stress 

 

Figure 237 shows the maximum compressive stress of 24.53 ksi in the skin captured from the 

results file at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.11 Trailing Edge Ribs 

 

The most critical margin of safety for pylon skins is in tensile failure as seen in Table 42. The 

results are presented below in the same order as the previous section. 

 

Table 42: Trailing Edge Ribs Failure Modes 

Stress Type Stress Margin Allowable 

Compressive -5.60 3.837 -27.1 

Tensile 9.25 1.931 27.1 

Shear 3.05 3.521 13.8 

 

3.5.11.1 Compressive Stress 

 

The trailing edge rib's most critical region in compressive stress is at the outboard rib along the 

spar near the lower skin. Figure 238 shows the overall stress distribution in the rib and Figure 

239 shows the region in the rib found to be the most critical with the critical element 

highlighted.  

 

 
Figure 238: Trailing Edge Ribs Compressive Stress Distribution 
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Figure 239: Trailing Edge Ribs Compressive Stress Critical Region 

 

 

 
Figure 240: Trailing Edge Ribs Compressive Critical Stress 

 

Figure 240 shows the maximum compressive stress of 9.80 ksi in the rib captured from the 

results file at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.11.2 Tensile Stress 

 

The trailing edge rib's most critical region in tensile stress is at the outboard rib along the aft 

spar. Figure 241 shows the overall stress distribution in the rib and Figure 242 shows the region 

in the rib found to be the most critical with the critical element highlighted.  
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Figure 241: Trailing Edge Ribs Tensile Stress Distribution 

 

 
Figure 242: Trailing Edge Ribs Tensile Stress Critical Region 

 

 
Figure 243: Trailing Edge Ribs Tensile Critical Stress 
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Figure 243 shows the maximum tensile stress of 15.09 ksi in the rib captured from the results 

file at the critical region. The margin of safety for this method of failure is shown below: 
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3.5.11.3 Shear Stress 

 

The trailing edge rib's most critical region in shear stress is at the outboard rib along the aft 

spar. Figure 244 shows the overall stress distribution in the rib and Figure 245 shows the region 

in the rib found to be the most critical with the critical element highlighted.  

 

 
Figure 244: Trailing Edge Ribs Shear Stress Distribution 
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Figure 245: Trailing Edge Ribs Shear Stress Critical Region 

 

 

 
Figure 246: Trailing Edge Ribs Shear Critical Stress 

 

 

Figure 246 shows the maximum tensile stress of 7.12 ksi in the rib captured from the results file 

at the critical region. The margin of safety for this method of failure is shown below: 
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3.6 Fastener Sizing 

 

Fasteners were used to tie the components in the fairing. This was done to allow access to the 

antennas within the fairing. Ideally the fairing skin to spar and rib connections would be 

bonded to prevent the stress concentrations that fasteners induce but maintenance on the 

antennas do not allow this. To develop the fastener loads the nodal forces in the model were 

examined. All of these loads were assumed to travel through the fastener. Since the fastener 

spacing is larger than the nodal spacing multiple nodes were summed to develop a critical 

fastener load.  

3.6.1 Upper Skin Fasteners 

 

Figure 247 shows the nodal forces in the upper skin and Figure 248 shows the region found to 

be critical between the spar and trailing edge fasteners. 3/16th inch AN3 fasteners were used 

spaced at 3'' along this region. Since the nodal spacing is .5'' the fastener is forced to take the 

load of 6 nodes.  

 

 
Figure 247: Upper Skin Nodal Forces 
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Figure 248: Spar to Trailing Edge Fastener Critical Region 

 

The shear allowable for the bolts and bearing allowable for the skin are shown below. The 

bearing allowable for the skin is the critical margin of safety for the fasteners. 
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Figure 249 shows the region found to be critical between the spar and upper skin. 3/16th inch 

AN3 fasteners were used spaced at 3'' along this region. Since the nodal spacing is .5'' the 

fastener is forced to take the load of 6 nodes.  
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Figure 249: Spar to Upper Skin Critical Region 

 

The shear allowable for the bolts and bearing allowable for the skin are shown below. The 

bearing allowable for the skin is the critical margin of safety for the fasteners. 
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Figure 250 shows the region found to be critical between the spar and upper skin. 3/16th inch 

AN3 fasteners were used spaced at 1.25'' along this region. Since the nodal spacing is .5'' the 

fastener is forced to take the load of 3 nodes.  
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Figure 250: Ribs to Upper Skin Critical Region 

 

The shear allowable for the bolts and bearing allowable for the skin are shown below. The 

bearing allowable for the skin is the critical margin of safety for the fasteners. 

* 2125 0.9
1 1 2.592

2.5 (86.99 83.41 ) 1.25

shear allowable

shear actual

FF psi
MS

FS psi






    

   
 

 

31600 0.0101 8 .1875
1 1 .011

2.5 (86.99 83.41 ) 1.25

BRU

actual

t D psi in in
MS

FS P psi

     
    

   
 

 

 

 



  

 160 

3.6.2 Lower Skin Fasteners 

 

Figure 251 shows the nodal forces in the lower skin and Figure 252 shows the region found to 

be critical between the spar and leading edge fasteners. 3/16th inch AN3 fasteners were used 

spaced at 2.5'' along this region. Since the nodal spacing is .5'' the fastener is forced to take the 

load of 5 nodes.  

 

 
Figure 251: Lower Skin Nodal Forces 

 

 
Figure 252: Spar to Leading Edge Critical Region 
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The shear allowable for the bolts and bearing allowable for the skin are shown below. The 

bearing allowable for the skin is the critical margin of safety for the fasteners. 
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Figure 253 shows the region found to be critical between the spar and lower skin fasteners. 

3/16th inch AN3 fasteners were used spaced at 3'' along this region. Since the nodal spacing is 

.5'' the fastener is forced to take the load of 6 nodes.  

 

 
Figure 253: Lower Skin to Spar Critical Region 

 

The shear allowable for the bolts and bearing allowable for the skin are shown below. The 

bearing allowable for the skin is the critical margin of safety for the fasteners. 
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Figure 253 shows the region found to be critical between the spar and lower skin fasteners. 

3/16th inch AN3 fasteners were used spaced at 3'' along this region. Since the nodal spacing is 

.5'' the fastener is forced to take the load of 6 nodes.  

 

 
Figure 254: Lower Skin to Ribs Fasteners 

 

The shear allowable for the bolts and bearing allowable for the skin are shown below. The 

bearing allowable for the skin is the critical margin of safety for the fasteners. 
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3.6.3 Rib Fasteners 

 

Figure 255 shows the nodal forces in the ribs and Figure 256 shows the region found to be 

critical between the ribs and pylon substructure. 3/16th inch AN3 fasteners were used spaced at 

1.25'' along this region. Since the nodal spacing is .5'' the fastener is forced to take the load of 3 

nodes.  

 
Figure 255: Rib Nodal Stress Distribution  

 

 
Figure 256: Rib to Pylon Fasteners 
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The shear allowable for the bolts and bearing allowable for the rib are shown below. The 

bearing allowable for the rib is the critical margin of safety for the fasteners. 
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3.6.4 Pylon Fasteners 

 

Figure 257 shows the nodal forces in the ribs and Figure 258 shows the region found to be 

critical between the pylon substructure and pylon skins. 3/16th inch AN3 fasteners were used 

spaced at 1.25'' along this region. Since the nodal spacing is .5'' the fastener is forced to take the 

load of 3 nodes.  

 

 
Figure 257:Pylon Skin Nodal Forces 
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Figure 258: Pylon Fasteners Critical Region 

 

 

The shear allowable for the bolts and bearing allowable for the rib are shown below. The 

bearing allowable for the rib is the critical margin of safety for the fasteners. 
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3.7 Modal Analysis 

 

The fairing structure was also checked against possible sources of vibration. The only know 

source of vibration for the representative UAV is the engine. This produces two possible 

vibration frequencies which are the engine rpm and blade pass frequency. The engine selected 

for the representative UAV is a Honeywell TPE-331 turboprop engine with a three bladed 

propeller attached. Reference 24 indicated that the prop shaft rpm for that engine is 2000 rpm. 

This is equivalent to a frequency of 33.3 hz.  The calculation for the blade pass frequency is 

shown below. To be safe both frequencies of interest were avoided by at least 5 hertz. 

     2000 3
100

60 60

engine rpm number of blades rpm blades
Blade Pass Frequency hz    

 

Figure 259 through Figure 262 show the first four modes closest to the blade pass frequency to 

demonstrate the frequency is avoided. 

 

 
Figure 259: First Fairing Mode (76.29 Hz) 
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Figure 260: Second Fairing Mode (79.556 Hz) 

 

 

 

 

 

 

 

 
Figure 261: Third Fairing Mode (79.944 Hz) 
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Figure 262: Fourth Fairing Mode (111.24 Hz) 

 

 

The modeled structure meets the 5 hertz requirement since the closest mode to 100 hertz is at 

111.24 hertz and the closest mode to 33.3 hertz is at 76.29 hertz. However this model does not 

account for the energy that the fasteners will absorb so it likely over predicts the frequencies at 

which vibration occurs. This means that the fourth mode on a manufactured array could lie very 

close to 100 hertz. If in production this is found to be a problem adding core to the outboard 

region would be a low weight effective solution.



 

169 

4 Performance Comparison 

 

 The most important factor to the end user of the representative UAV is the performance 

capabilities of the platform. This section addresses the performance impacts of the radar array 

on the representative UAV.  

 To develop a baseline range for the representative UAV the Advanced Aircraft Analysis 

(AAA) software package was used. To develop a performance model the aircraft specifications 

in Table 4 for the representative UAV were added to the AAA model. One of the most 

important characteristics that the model was developed for was the aircraft drag equations. 

Table 43 shows the results of this analysis.  
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Table 43: Aircraft Clean Drag 

0 CleanDC  0.0316 

CleanDPB  0.0233 

 

 

With drag information and engine information it is possible to generate range performance for 

the representative UAV using the equation below. 
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Using this method AAA predicted a range of 4616 nm for the representative UAV. This 

number matches the currently existing MALE UAV's ranges nearly exactly. Next an accurate 

drag model of the arrays was needed. 
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 Ideally a CFD or wind tunnel study or both would be performed to determine the drag 

characteristics of the array. Fortunately a CFD study was conducted on a nearly identical array 

in Reference 22. This study was based upon an array which was mounted aboard a P-3 aircraft 

and was conducted at a dynamic pressure 60% higher than the pressure for the representative 

UAV.  Fortunately the study contains all of the lift and drag components as well as the 

geometry of the structure so it is easy to solve for the drag coefficient of the structure using the 

equation below.  

21

2
D DDrag F V C A   

 

The fairing is symmetric and flown at close to zero angle of attack. Thus very little induced 

drag is created and parasite drag dominates. The drag, DF , is given section by section in the 

report and 2v  is defined by the flight condition of the aircraft. The A  is given by the 

geometry. Simply rearranging the terms gives the equation below. The results are shown in 

Table 44. 
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Table 44: Drag Coefficients of Fairing Components 

Structure CD 

Pylon with Sharp Trailing Edge 0.108332 

Pylon with Circular Trailing Edge 0.433327 

Fairing with Sharp Trailing Edge 0.047693 

Fairing with Circular Trailing Edge 0.190772 

 

The components in Table 44 all have different reference areas so they are not directly 

comparable. To study the effects these components have they had to be normalized to the 
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aircraft reference area and then summed. New drag coefficients were summed for a variety of 

configuration using the method below. The results are shown in Table 45. 

Total Clean Aicraft Pylon fairing

Pylon Fairing

D D D D

Aircraft Aircraft

A A
C C C C

A A
    

Table 45: Drag Coefficient by Configuration 

Configuration 
0DC  

Clean Aircraft 0.0316 

All Sharp Trailing Edges 0.0357 

Circular Pylon Sharp Fairing 0.0390 

Circular Fairing Sharp Pylon 0.0444 

All Circular Trailing Edges 0.0478 

 

The aircraft range was then recalculated with the additional range and the added weight of the 

fairing. The results of those range calculations are shown in Table 46. 

Table 46: Range Comparison 

 Configuration  Range (nm) Range Preserved  

Clean Aircraft 4616.4 ~ 

All Sharp Trailing Edges 4136.521 89.6% 

Dirty Pylon Sharp Fairing 3838.989 83.2% 

Dirty Fairing Clean Pylon 3443.208 74.6% 

Dirty Aircraft 3234.269 70.1% 

 

Table 46 shows the importance of the trailing edges. Using more streamlined trailing edges 

results in an array that only decreases the aircraft's range by 480 nautical miles and around 90% 

of the aircraft range. The circular trailing edges result in almost triple the loss in range at 1380 

nautical miles and only 70% of the aircraft range is preserved. A visual representation of the 

range is shown in Figure 263 as an out and back mission.  
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Figure 263: Aircraft Range (Out and back) 

 

Next the takeoff performance of the aircraft was examined. Both the takeoff distance and 

required field length were examined. These were calculated using the equations from reference 

25 in AAA. The first equations shown below were used to calculate the takeoff flight path 

angle and the average thrust. 
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Next the takeoff distance and takeoff ground run were calculated. This was done using equation 

5.6 and 5.14 from Reference 25. The equations are shown below. All of the variables used in 

the calculations are shown in Table 47. 

 

 

max

max

2 1

3
.72

1.414

1

1 1.414

TO

TO TO

TO

D

g

TOS LTO

TO TO obs

LOF obs L LOF

CV W T

V S W C

S f h
h gC



  

                                
 

 
  

 

 

max

2

.72
TO

TO

LOF

TOG
D

g

LTO

V

g
S

CT

W C



 

  
 

 

 

 

Table 47: Takeoff Distance Variables 

Variable Value Source Variable Value Source 

TOf  1 (~) 
MIL-C-

005011B g  .02 (~) AAA Estimate 

obsh  50 ft 
MIL-C-

005011B TOP  900 hp Aircraft Specification 

PD  9.5 ft 
Aircraft 

Specification maxTOLC  .2 (~) AAA Estimate 

3

TOS

V

V
 1.15 (~) 

MIL-C-
005011B 

  0.00238 slugs/ft3 Standard Atmosphere 

W

S
 38.7 lb/ft2 

Aircraft 
Specification 

g  32.2 ft/s2 Standard Gravity 

AR 16.04 (~) 
Aircraft 

Specification 
  1 (~) Standard Atmosphere 
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To find the differences between the configurations the 
TODC variable was adjusted for the 

different fairing configurations. AAA was used to do these calculations. The AAA inputs and 

results are shown in Figure 288 through Figure 292 in Appendix B. The numerical results of 

this comparison are shown in Table 48.  

Table 48: Takeoff Distance Results 

Configuration 
Takeoff Ground  

Run (ft) 
Takeoff Field  

Length (ft) 
 Takeoff Field Length 

 Performance Preserved 

Clean Aircraft 1911 2219  - 

All Sharp Trailing Edges 1926 2230 99.50% 

Circular Pylon Sharp Fairing 1938 2239 99.10% 

Circular Fairing Sharp Pylon 1957 2254 98.40% 

All Circular Trailing Edges 1970 2264 98.00% 

 
 

 The results of this seem to indicate that the addition of the array does not greatly affect 

the takeoff performance of the aircraft. These calculations were performed under the 

assumption that the array does not interfere with the flaps of the aircraft. Since the pylon 

attachment points are located where it is possible to mount munitions to the aircraft this seems 

reasonable but this should be verified on an actual aircraft. A CFD analysis is also 

recommended on a real installation to ensure that the array does not aerodynamically interfere 

with the operation of the flaps.  

 Next the climb performance of the aircraft was examined. Equation 5.21 from 

Reference 25 was used to determine the climb performance of the aircraft and is shown below. 
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The difference in performance based on the configuration was analyzed similar to the takeoff 

performance. The 
DC  value for the different configurations was adjusted due to the different 

0DC  values of the configurations. Representative 
3

2
LC / DC  information could not be found so a 

value was assumed. With this assumption in mind the data is only comparable with itself. The 

results of these calculations are shown in Table 49. 

Table 49: Climb Performance Comparison 

Configuration Clean Performance Preserved 

Sharp Trailing Edges 99.3% 

Sharp Fairing Circular Pylons 93.8% 

Sharp Pylons Circular Fairing 92.9% 

All Circular 92.3% 
 

 The results seem to show a discrepancy with the takeoff distance and climb 

performance being affected very little by the changes in configuration of the design but the 

effect on the range of the aircraft is much more prominent. This is largely due to the design 

characteristics of the MALE UAV platform. The aircraft in this category have high thrust to 

weight ratios and have an abundance of available power. This means that the engine can likely 

overcome the addition of drag on takeoff or climb without too much difficulty. However if this 

drag is carried over the entire mission, and remembering we have selected high endurance 

aircraft, the range of the platform can be greatly reduced.  

 In addition to the range, takeoff, and climb performance other aircraft performance 

factors will have to be addressed if a wing mounted array concept is to be considered for an 

actual mission. For example the roll performance of the aircraft with the array will need to be 

examined. Since the array weighs less than the munitions for which the hardpoints were 

designed it is unlikely that the inertias of the array will be a problem. Also since the array is 

carried inboard away from the ailerons it is unlikely that they will interfere with their 
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performance. Nevertheless these performance issues should be investigated before a real life 

application is pursued. 
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5 Conclusions and Recommendations 

 

5.1 Conclusions 

 

 An MCoRDS array for a representative MALE UAV has been presented. To develop 

loads for the structure a range of wing structures were investigated to develop a range of 

representative wing curvatures. The wing curvatures were found to be consistent enough across 

the possible substructure arrangements that a structural sizing was pursued. The structural 

arrangement with the most substructure was found to have the greatest curvature so it was used 

as the model wing for later fairing structural analysis. Aerodynamic loading was found from 

utilizing previous CFD studies of a similar cross section at a different flight speed. These flight 

conditions were adjusted using the dynamic pressures in the free stream of the flight conditions. 

The design of the array was based on this previous design due to the success of the previous 

array and also the availability of these aerodynamic studies. 

 Using this information an array that housed three MCoRDs antennas was designed. It is 

attached to the wing at three pylon attachment points. The design utilizes glass composites in 

the two spars, ribs, and the skins of the fairing due to the requirement of avoiding electrically 

conductive structure in proximity to the radar antennas. The sizing analysis showed that an 

under wing radar array for this class of aircraft is feasible based upon likely weight limitations 

or wing harpoints intended for munitions. 

 Next the aircraft performance of the MALE UAV was examined to determine if the 

mission was feasible. To do this a performance model for the aircraft was created and the 

aerodynamic impact of the fairing components was examined from a predominately drag-based 

assessment. From this analysis it was determined that an array can be fielded to the 
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representative UAV with around 90% of the aircraft range preserved, and with acceptable take-

off and climb performance. A platform with these capabilities would offer significant  potential 

for Operation Ice Bridge and other future missions. 

5.2 Recommendations 

 

 Several things must be investigated further before an array is pursued for integration 

into an actual UAV. First, a new CFD analysis for the array must be conducted, and must use 

actual aircraft and fairing geometry. The current analysis is only sufficient for a preliminary 

sizing. Since the actual flight regime of the aircraft is likely considerably different than the one 

on which the original CFD analysis was conducted, then the resulting pressure distributions 

could differ from those assumed herein. Also while the shapes of the structures are similar there 

are some key differences. The length of the fairing is considerably shorter since the proposed 

array only houses three antennas. The original arrays housed four antennas. This was shortened 

since the hard point spacing on representative unmanned aircraft appeared tighter than the hard 

points of the much larger aircraft in Reference 22.  New CFD analysis should also be pursued 

to investigate how the pylons shed vortices and how those vortices interact with the aircraft. 

The representative aircraft shown has a pusher prop configuration. If the fairing sheds 

significant vortices these could interact with the propeller and do significant damage if not 

accounted for. Analyses should be performed to determine the strength and possible effects of 

these vortices. 

 Additionally, the communication method for the chosen aircraft must be examined. The 

mission that the aircraft is designed around requires operation in extreme latitudes near the 

poles. Some unmanned aircraft use satellite communication networks which do not have proper 
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coverage near the poles. This difficulty could eliminate several aircraft from consideration if a 

solution is not planned for. 

 Another consideration is the icing conditions for the scientific mission. Several UAV's 

are originally conceived for desert missions and generally avoid cold weather conditions. Cold 

weather conditions present additional challenges especially in the form of icing. The ice will 

not only accumulate on the wings but the fairing itself provides an ideal location for ice to 

accumulate. If the aircraft chosen is one with a pusher prop this ice could damage the prop as it 

falls off the aircraft and possibly into the propeller. Runway icing and field landing conditions 

should also be examined in greater detail. 

 It is also recommended to investigate additional load cases. The dive load case which 

was used for the majority of the sizing in this paper was based upon the predominate load case 

for the similar array from Reference 22 but in that analysis several other load cases were 

investigated to ensure that the structure was safe. Since the design is only based upon a 

representative aircraft it is impossible to know the exact flight conditions a future aircraft 

would encounter but if a specific unmannedaircraft is selected it will be important to examine 

the entire range of flight conditions for that aircraft. Those flight conditions will also give 

information on the cyclic loading of the platform which will also allow a fatigue study to be 

performed.   
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Appendix A: Aerodynamic Regions 

 

 
Figure 264: Center Fairing Region (-0.63817 lb/in

2
) 

 

 

 

 

 
Figure 265: Inboard Fairing Region (-1.36335 lb/in

2
) 
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Figure 266: Outboard Inboard Fairing Region (-1.2473246 lb/in

2
) 

 

 

 

 

 

 

 
Figure 267: Outboard Outboard Fairing Region (-0.89923 lb/in

2
) 



 

A-3 

 
Figure 268: Inboard Lower Triangle Fairing Region (-1.59542 lb/in

2
) 

 

 

 

 

 
Figure 269: Lower Trapezoid Fairing Region (-2.0885434 lb/in

2
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Figure 270: Outboard Lower Triangle Fairing Region (-1.3053401 lb/in

2
) 

 

 

 

 

 

 
Figure 271: Leading Edge Fairing Region (1.914498 lb/in

2
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Figure 272: Trailing Edge Fairing Region (-0.69618112 lb/in

2
) 

 

 

 

 

 

 

 

 

 

 

 
Figure 273: Forward Inboard Pylon Region (-0.43511 lb/in

2
) 
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Figure 274: Forward Outboard Pylon Region  (-1.45038 lb/in

2
) 

 

 

 

 

 

 

 

 

 

 
Figure 275: Aft Inboard Pylon Region (-1.01526 lb/in

2
) 
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Figure 276: Aft Outboard Pylon Region (-2.03053 lb/in

2
) 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 277: Leading Edge Pylon Region (0.69618112 lb/in

2
) 
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Figure 278: Aft Middle Pylon Region (-1.01526 lb/in

2
) 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 279: Forward Middle Pylon Region (-0.43511 lb/in

2
) 
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Figure 280: Trailing Edge Pylon Region (-1.1666255 lb/in

2
) 
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Appendix B: AAA Model Information 

 

Input Parameters

bw 66.00 ft

cr
w 5.40 ft

ct
w 2.83 ft

c/4
w 2.0 deg

Yof f set
w 0.00 ft

Output Parameters

Sw 271.59 ft
2

ARw 16.04

w 0.52

cw 4.25 ft

ymgc
w 14.78 ft

xmgc
w 0.80 ft

LE
w 3.1 deg

TE
w -1.3 deg

Straight Tapered Wing Geometry: Flight Condition 1

             Advanced Aircraft Analysis 3.2 Project          03/24/12          11:14 AM  
Figure 281: AAA Wing Geometry  

 

Input Parameters

ARv ee 14.20

Sv ee 41.40 ft
2

v ee 0.39

c/4
v ee 12.3 deg

Yof f set
v ee 0.00 ft

Output Parameters

cr
v ee 2.46 ft

ct
v ee 0.95 ft

bv ee 24.25 ft

cv ee 1.82 ft

ymgc
v ee 5.17 ft

xmgc
v ee 1.28 ft

LE
v ee 13.9 deg

TE
v ee deg

Straight Tapered V-Tail Geometry: Flight Condition 1

             Advanced Aircraft Analysis 3.2 Project          03/24/12          11:16 AM  
Figure 282: AAA Tail Geometry 
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Input Parameters

Sw 271.59 ft
2

Altitude 25000 ft

T 0.0 deg F

U1 165.00 kts

WCr 8400.0 lb

WF
Cr 4000.00 lb

CD
0
clean,M

0.0316

BDP
clean 0.0233

prop 0.800

cp 0.53
lb/hr

hp

T 0.0 deg

CL 5.9116 rad
-1

CL
o 0.3086

low 0.0 deg

high 8.0 deg

Output Parameters

Preq 223 hp

Pav ail 587 hp

2.52 deg

CL
1 0.5682

RCr
V=const 4616.4 nm

Airplane Range: Flight Condition 1

             Advanced Aircraft Analysis 3.2 Project          04/15/12          5:06 PM  
Figure 283: AAA Clean Aircraft Range Calculation 

 

 

 

Input Parameters

Sw 271.59 ft
2

Altitude 25000 ft

T 0.0 deg F

U1 165.00 kts

WCr 8571.4 lb

WF
Cr 4000.00 lb

CD
0
clean,M

0.0357

BDP
clean 0.0233

prop 0.800

cp 0.53
lb/hr

hp

T 0.0 deg

CL 5.9116 rad
-1

CL
o 0.3086

low 0.0 deg

high 8.0 deg

Output Parameters

Preq 248 hp

Pav ail 587 hp

2.66 deg

CL
1 0.5832

RCr
V=const 4136.5 nm

Airplane Range: Flight Condition 1

             Advanced Aircraft Analysis 3.2 Project          04/15/12          5:03 PM  
Figure 284: AAA Sharp Trailing Edges Ranges Calculation 
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Input Parameters

Sw 271.59 ft
2

Altitude 25000 ft

T 0.0 deg F

U1 165.00 kts

WCr 8571.4 lb

WF
Cr 4000.00 lb

CD
0
clean,M

0.0390

BDP
clean 0.0233

prop 0.800

cp 0.53
lb/hr

hp

T 0.0 deg

CL 5.9116 rad
-1

CL
o 0.3086

low 0.0 deg

high 8.0 deg

Output Parameters

Preq 267 hp

Pav ail 587 hp

2.66 deg

CL
1 0.5830

RCr
V=const 3839.0 nm

Airplane Range: Flight Condition 1

             Advanced Aircraft Analysis 3.2 Project          04/15/12          5:04 PM  
Figure 285: AAA Sharp Fairing, Circular Pylons Trailing Edges Range Calculation 

 

 

 

 

Input Parameters

Sw 271.59 ft
2

Altitude 25000 ft

T 0.0 deg F

U1 165.00 kts

WCr 8571.4 lb

WF
Cr 4000.00 lb

CD
0
clean,M

0.0444

BDP
clean 0.0233

prop 0.800

cp 0.53
lb/hr

hp

T 0.0 deg

CL 5.9116 rad
-1

CL
o 0.3086

low 0.0 deg

high 8.0 deg

Output Parameters

Preq 298 hp

Pav ail 587 hp

2.66 deg

CL
1 0.5828

RCr
V=const 3443.2 nm

Airplane Range: Flight Condition 1

             Advanced Aircraft Analysis 3.2 Project          04/15/12          5:02 PM  
Figure 286: AAA Sharp Pylons, Circular Fairing Trailing Edges Range Calculation 
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Input Parameters

Sw 271.59 ft
2

Altitude 25000 ft

T 0.0 deg F

U1 165.00 kts

WCr 8571.4 lb

WF
Cr 4000.00 lb

CD
0

clean,M
0.0478

BDP
clean 0.0233

prop 0.800

cp 0.53
lb/hr

hp

T 0.0 deg

CL 5.9116 rad
-1

CL
o 0.3086

low 0.0 deg

high 8.0 deg

Output Parameters

Preq 317 hp

Pav ail 587 hp

2.66 deg

CL
1 0.5826

RCr
V=const 3234.3 nm

Airplane Range: Flight Condition 1

             Advanced Aircraft Analysis 3.2 Project          04/15/12          5:05 PM  
Figure 287: AAA Circular Trailing Edges Range Calculation 

 

 

Input Parameters

Sw 271.59 ft
2

ARw 16.04

hTO 0 ft

TTO 0.0 deg F

WTO 10500.0 lb

CL
max

TO
2.000

CD
0

TO_down
0.0363

(L/D)OEI 14.75

V3/ VS
TO 1.15

G 0.0200

a/g 0.40

SHPset 900 hp

Dprop 9.50 ft

T 0.0 deg

CL

TO 0.5730 rad
-1

CL
o
TO

-1.0000

Output Parameters

PTO/NDp

2

9.97
hp

f t
2

VS
TO 83.60 kts

VLOF 91.97 kts

STO 2219 ft

STOG 1911 ft

BFL ft

Take-off Distance: Flight Condition 1

             Advanced Aircraft Analysis 3.2 Project          05/26/12          4:43 PM  
Figure 288: Clean Takeoff Distance 
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Input Parameters

Sw 271.59 ft
2

ARw 16.04

hTO 0 ft

TTO 0.0 deg F

WTO 10500.0 lb

CL
max

TO
2.000

CD
0

TO_down
0.0404

(L/D)OEI 14.75

V3/ VS
TO 1.15

G 0.0200

a/g 0.40

SHPset 900 hp

Dprop 9.50 ft

T 0.0 deg

CL

TO 0.5730 rad
-1

CL
o
TO

-1.0000

Output Parameters

PTO/NDp

2

9.97
hp

f t
2

VS
TO 83.60 kts

VLOF 91.97 kts

STO 2230 ft

STOG 1926 ft

BFL ft

Take-off Distance: Flight Condition 1

             Advanced Aircraft Analysis 3.2 Project          05/26/12          4:56 PM  
Figure 289: Sharp Trailing Edges Takeoff Distance 

 

 

Input Parameters

Sw 271.59 ft
2

ARw 16.04

hTO 0 ft

TTO 0.0 deg F

WTO 10500.0 lb

CL
max

TO
2.000

CD
0

TO_down
0.0437

(L/D)OEI 14.75

V3/ VS
TO 1.15

G 0.0200

a/g 0.40

SHPset 900 hp

Dprop 9.50 ft

T 0.0 deg

CL

TO 0.5730 rad
-1

CL
o
TO

-1.0000

Output Parameters

PTO/NDp

2

9.97
hp

f t
2

VS
TO 83.60 kts

VLOF 91.97 kts

STO 2239 ft

STOG 1938 ft

BFL ft

Take-off Distance: Flight Condition 1

             Advanced Aircraft Analysis 3.2 Project          05/26/12          5:00 PM  
Figure 290: Sharp Fairing Circular Pylon Trailing Edges Takeoff Distance 

 



 

A-15 

Input Parameters

Sw 271.59 ft
2

ARw 16.04

hTO 0 ft

TTO 0.0 deg F

WTO 10500.0 lb

CL
max

TO
2.000

CD
0

TO_down
0.0491

(L/D)OEI 14.75

V3/ VS
TO 1.15

G 0.0200

a/g 0.40

SHPset 900 hp

Dprop 9.50 ft

T 0.0 deg

CL

TO 0.5730 rad
-1

CL
o
TO

-1.0000

Output Parameters

PTO/NDp

2

9.97
hp

f t
2

VS
TO 83.60 kts

VLOF 91.97 kts

STO 2254 ft

STOG 1957 ft

BFL ft

Take-off Distance: Flight Condition 1

             Advanced Aircraft Analysis 3.2 Project          05/26/12          5:01 PM  
Figure 291: Circular Fairing Sharp Pylon Trailing Edges Takeoff Distance 

 

 

Input Parameters

Sw 271.59 ft
2

ARw 16.04

hTO 0 ft

TTO 0.0 deg F

WTO 10500.0 lb

CL
max

TO
2.000

CD
0

TO_down
0.0525

(L/D)OEI 14.75

V3/ VS
TO 1.15

G 0.0200

a/g 0.40

SHPset 900 hp

Dprop 9.50 ft

T 0.0 deg

CL

TO 0.5730 rad
-1

CL
o
TO

-1.0000

Output Parameters

PTO/NDp

2

9.97
hp

f t
2

VS
TO 83.60 kts

VLOF 91.97 kts

STO 2264 ft

STOG 1970 ft

BFL ft

Take-off Distance: Flight Condition 1

             Advanced Aircraft Analysis 3.2 Project          05/26/12          5:01 PM  
Figure 292: Circular Trailing Edges Takeoff Distance 


