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Abstract 

 Decarboxylative carbon–carbon bond formations have emerged as a powerful synthetic tool 

within the past ten years.  Beginning with the seminal reports from Saegusa and Tsuji in 1980, the 

decarboxylative allylation (DcA) of β-ketoesters remained relatively uninvestigated until the 

independent reports from Tunge and Stoltz in 2004.  As part of the body of work produced during my 

tenure under the mentorship of Dr. Tunge, our group in 2011 compiled a comprehensive report 

published in Chemical Reviews highlighting the advancements of the DcA reaction.  In addition, our 

group has also investigated the decarboxylative benzylation (DcB) of β-ketoesters and the reaction has 

shown to be an efficient method for the introduction of benzyl moieties.     

The enclosed dissertation thoroughly discusses my contribution to the advancement of 

palladium-catalyzed decarboxylative carbon–carbon bond forming reactions.  As previously reported by 

the Tunge group, it was realized that, in addition to enolate nucleophiles derived from decarboxylation 

of β-ketoesters, various other nucleophiles were accessible via this path.  In particular, my work involved 

the development of the palladium-catalyzed DcA, DcB, and decarboxylative arylation (DcAr) of 

cyanoacetic esters.  Palladium-catalyzed ionization of allyl and benzyl cyanoacetic esters facilitates loss 

of carbon dioxide from cyanoacetate and is believed to allow access to the common intermediacy of 

non-stabilized metalated nitriles. In the course of our studies we discovered the DcA reaction to be 

regiospecific in C–C bond formation and to deliver enriched branched to linear allylation products.  In 

addition, treatment of benzyl cyanoacetic esters with a palladium catalyst allows for access to newly 

benzylated acetonitrile molecules.  However, in the case of furylmethyl cyanoesters choice of palladium 

catalyst determines the formation of benzylated and arylated products, representing the first reported 

examples for the addition of nitrile anions to Pd-π-benzyl complexes. 
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Chapter I:   

Transition metal–catalyzed alkylation and arylation of nitriles 
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CI.1:  Synthetic relevance of nitrile functional groups 

Nitrile moieties are versatile functional groups in organic synthesis that possess general 

synthetic accessibility and impressive reactivity.1  A key feature of nitrile functionalities is 

manifest by their ability to be rapidly converted to both amides as well as carboxylic acids via 

hydrolysis.  Alternatively, partial reduction to imines and further reduction results in amines 

(Scheme 1.1).2-4  As nucleophiles, nitriles benefit from having increased nucleophilicity as a 

result of having a relatively high pKa value (≈29–31 in DMSO).5,6 In addition to the minimal van   

 

Scheme 1.1 

der Waal radii’s of the cyano moiety which possess  an A-value of approximately 0.2 kcal/mol.  

In simplest terms, metalated nitriles are believed to exist in several potential configurations 

(Scheme 1.2).7 Accounting for the strong electronegativity of the nitrile functionality suggests 

that a majority of the anionic charge remains on carbon, favoring resonance structure 1.1.  

However, rationalizing the greater electronegativity of nitrogen with respect to that of carbon 

would suggest the ketenimine 1.3 to be the more thermodynamically favorable resonance 

contributor.  In addition, both resonance models could exist as ion separated species as 
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suggested by 1.1 and 1.3, or as covalent pairs suggested by 1.2 and 1.4.  Crystallographic data 

suggest a minimal amount of double bond character between the α-carbon and sp- hydridized 

 

Scheme 1.2 

carbon as represented by 1.5 and 1.6, which have bond lengths of 1.38Å (Figure 1.1).8  In 

addition, the amount of elongation of the C–N triple bond associated with the lithiated and 

sodiated complexes is not consistent with ketenimine formation (1.58 and 1.69, Figure 1.1).  This 

result suggests that when lithium and sodium are employed as counter ions, stabilization of the 

anion is due solely to an electrostatic interaction between the anionic α-carbon and the elec- 

 

Figure 1.1   
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tron withdrawing nitrile  moiety.  Theoretically it should be possible for the α-carbanion to 

resonate into the nitrile moiety; however this was not observed with nitrile-stabilized 

carbanions until low-valent, softer transition metal10 counterions were employed (1.7 and 1.8, 

Figure 1.1).11,12  As a whole, literature precedent suggested that nitrile-transition metal 

complexes have nearly equal propensity for C-, and N- bound coordination.10  However, elegant 

mechanistic studies performed by Hartwig and co-workers revealed that the mode of nitrile 

coordination could be greatly influenced via careful choice of ligand.11,12  As shown in Figure 

1.1, employment of a more sterically bulky electron rich ligand favors N-bound coordination of 

the nitrile as represented by crystallographic data revealing a bond length consistent with 

ketenimine formation.  In addition, use of a less hindered phosphine-based ligand favors the 

formation of the C-ligated nitrile.  Last, another mode of complexation is shown in Figure 1.2, 

the μ2-C,N coordination was observed when more labile monodentate ligands were utilized 

(figure 1.2).11       

 

Figure 1.2 

 Having a better understanding of the potential modes of reactivity for metallated 

nitriles allows for more accurate interpretation of literature precedent and laboratory results.  

It is well known that there is an abundance of work detailing the allylic alkylation and arylation 

of distabilized nucleophiles (ie. malononitriles, cyanoacetates, etc.),13-23 however the direct 
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functionalization of acetonitrile moieties has received far less investigation.  For this reason, the 

focus of the remainder of this chapter is to highlight the recent advancements involving the 

transition metal–catalyzed alkylation and arylation of carbanions that are stabilized by a single 

nitrile moiety.      

CI.2:  Transition metal–catalyzed alkylation of nitriles  

The first decarboxylative allylation of cyanoacetic esters was reported by Saegusa in 

1980.24,25  Saegusa’s seminal work detailed the generation of nitrile-stabilized carbanions under 

formally neutral conditions.  Preliminary studies from Saegusa revealed that treatment of allyl 

cyanoacetate with Pd(PPh3)4 provided a mixture of mono- (1.9, eq. 1, Scheme 1.3), and 

diallylated (1.10, eq. 1, Scheme 1.3) products. It should be noted that the pKa values of the 

conjugate acids of nitrile-stabilized carbanions range from 30-33 in DMSO.6  Typically lithiated  

 

Scheme 1.3 
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amine bases or hydroxide and heat are required to generate nitrile anions.  However under the 

conditions reported by Saegusa and later Tsuji,26 nitrile-stabilzed carbanions were formed via 

decarboxylation. In a similar fashion, Tsuji reported the decarboxylative coupling of tertiary allyl 

cyanoacetates (eq. 2, Scheme 1.3).  Despite obtaining 76% of the target monoallyated product, 

Tsuji obtained 21% of the protonated byproduct 1.12 (Scheme 1.3) as well. In an effort to 

circumvent the protonation product, Tsuji and coworkers reported the decarboxylative 

allylation of tertiary cyanoacetic esters employing Pd2dba3 and dppe (eq. 3, Scheme 1.3).26  

Despite modification of the substrate and reaction conditions, a mixture of completing 

allylation and protonation products were obtained.  A proposed catalytic cycle for the 

decarboxylative coupling of nitriles is as follows (Scheme 1.4): treatment of allyl cyanoacetate 

1.15 with a palladium (0) catalyst results in ionization of the allyl ester moiety revealing both 

the electrophilic palladium-π-allyl complex 1.16 and the pro-nucleophile nitrile carboxylate 

species.  Loss of CO2 generates the nitrile-stabilized carbanion nucleophile 1.17 which upon 

recombination with the Pd-π-allyl complex regenerates the Pd- catalyst and delivers the allyl-  

 

Scheme 1.4 
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ated product 1.18.  It should be mentioned that this is believed to be the mechanism for the 

decarboxylative coupling of quaternary nitriles.  However, if there is an accessible proton in the 

α-position or vinyligous to the α-position as suggested in Scheme 1.5, literature precedent 

suggests that C–C bond formation takes place before loss of CO2.26,27  

Treatment of 1.19 with Pd(PPh3)4 promotes the decarboxylative allylation of a vinyl 

anion, however the reaction likely proceeds via proton transfer from the vinyligous carbon to 

the carboxylate (1.201.21, Scheme 1.5). Exposure of the allyl anion 1.21 to the palladium-π-

allyl complex likely generates intermediate 1.22 which can then undergo decarboxylative 

protonation to deliver the observed allylated product 1.23 (Scheme 1.5).27  Of course it is 

certainly feasible that allylation takes place at the γ-carbon which could then undergo 

sigmatropic rearrangement to generate intermediate 1.22.28  

 

 

Scheme 1.5 
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Recently, Yamamoto and coworkers reported a palladium–catalyzed interceptive 

decarboxylative allylation with benzylidene malononitrile moieties (Scheme 1.6).29  Treatment 

of allyl cyanoacetate with a BINAP ligated palladium catalyst in presence of benzylidene 

malononitrile resulted in insertion of the Michael acceptor between the nitrile-stabilized 

carbanion and the electrophilic Pd-π-allyl complex, resulting in the formation of 1.26 (Scheme 

1.6).  As shown in Scheme 1.6, loss of CO2 reveals two equilibrating intermediates, the Pd(II)-

ligated σ-allyl, N-bound ketenimine 1.2430,31 or the solvent separated Pd-π-allyl complex and 

nitrile anion as suggested by 1.25.32 Subsequent β-nucleophilic addition of acetonitrile to 

ethylidene malononitrile generates the ion pair suggested by 1.26 which combined to form the 

β-acetonitrile-α-allylated product (Scheme 1.6).  A brief investigation of the ethylidene 

malononitrile scope revealed that both electron rich (entries 1 and 2, Table 1.1) as well as 

polyaromatic (entry 4), heteroaromatic, and alkyl moieties were tolerated under the reaction 

 

Scheme 1.6 
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conditions nitrile scope revealed that both electron rich (entries 1 and 2, Table 1.1) as well as 

polyaromatic (entry 4), heteroaromatic, and alkyl substituents were tolerated under the 

reaction conditions providing products in good yield.  However, the reaction employing the 

electron deficient benzylidene malononitrile was problematic, resulting in only 35% yield (entry 

3, Table 1.1).   

Table 1.1:  Interceptive decarboxylative coupling of allyl cyanoacetate 

 

 

 

In addition to a report from Recio and Tunge for the palladium–catalyzed 

decarboxylative allylation of nitriles in 2009,33 Grenning and Tunge reported an alternative 

method for the allylation of nitriles in 2011 (Scheme 1.7).34  The method involved the retro-

Claisen activation of phenylacetonitrile carbanions followed by palladium–catalyzed allylation.  

As shown in Scheme 1.7, broad substrate scope was shown via the deacylative allylation (DaA) 

of aryl, alkyl (1.27), diary (1.28), and aryl, allyl (1.29) cyanoacetone compounds (eq. 1, Scheme 

1.7).  The authors propose that treatment of the acyl nitrile compounds with allyl alkoxide 

moieties induces the retro-Claisen formation of a nucleophilic nitrile carbanion and an allyl 
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acetate (X= Me, Scheme 1.7) or carbonate (X = OEt, Scheme 1.7) species which can undergo a 

subsequent Tsuji-Trost allylation upon exposure to palladium (eq. 2, Scheme 1.).32,35  The 

bimolecular deacylative allylation showcases the versatility of the reaction via the facile 

activation of both pronucleophilic and proelectrophilic coupling partners.  As shown in Table 

1.2, both α- alkyl, and α-allyl phenylacetonitriles smoothly undergo allylation via retro-Claisen 

 

Scheme 1.7 

activation from allyl alcohol.  It should also be noted that heteroaromatic, polyaromatic, and 

electron rich aromatic (not shown) nitriles were allylated in good yield.  In addition, the 

reaction scope was extended to include allyl alcohol moieties that provide linear and branched 

products (Table 1.2).  What is particularly interesting is the ratio of linear to branched 
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selectivities observed when employing cinnamyl alcohol 1.35 and prenyl alcohol 1.37 and 1.37’ 

(Table 1.2).  When cinnamyl alcohol was utilized, the linear product was obtained exclusively 

(1.35, Table 1.2).  However, when switching to the prenyl moiety, a 1:1 mixture of linear and 

branched products was observed.  This result likely suggests that the DaA involving the 

cinnamyl alcohol proceeds via an outer-sphere mechanism (ie. sodiated nitrile) generating the 

linear product via nucleophilic attack at the least hindered position of the electrophile.32,35  The 

selectivity observed with the reaction utilizing the prenyl alcohol suggests the sodiated nitrile 

potentially undergoes a transmetalation to the palladated nitrile.30,31,33  The transmetalation 

facilitates competing outer- and inner-sphere mechanisms for C–C bond formation. This mode 

of reactivity will be discussed in depth in chapter 2 (See section CII.4).  The DaA method has 

proven to be an efficient protocol for obtaining 1,6 heptadiene nitriles, substrates that have  

Table 1.2:  Deacylative allylation of cyanoacetone derivatives  
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broad application in cycloisomerization reactions.  Palladium-catalyzed allylic alkylation of the 

nitrile ketones followed by DaA with various allyl alkoxide moieties provided the 1,6 heptadiene 

products. 

 

Scheme 1.8  

 In addition to utilizing the cyanoacetone derivatives, Grenning and Tunge were able to 

extend the DaA method the more accessible cyanoesters 1.41 (Table 1.3).  As showcased by the 

bifurcated approach to the synthesis of 1.39 which is an intermediate in the synthesis of 

verapamil via Nelson’s protocol.36  It should be noted that the acetonitrile ester (1.40, Scheme 

1.) is synthesized via Hartwig’s16 arylation of isopropyl cyanoacetate followed by alkylation.  

This synthetic modification was seen as an improvement over the needed acylation of 

phenylacetonitriles required to obtain the cyanoacetone starting material 1.38 (Scheme 1.8).  

As suggested in Scheme 1.8, retro-Claisen allylation of 1.40 looks to be the optimal method for 

obtaining the allylated nitrile precursor 1.39.  In addition to the synthesis of precursor 1.39, 

Table 1.3 details the scope of the retro-Claisen allylation from ethyl and isopropyl cyano- 

acetates.  As shown diaryl- (1.43, 1.44, 1.46, 1.47, 1.48), and aryl, allyl (1.42 and 1.45) 

cyanoacetates smoothly undergo C–C bond formation via activation from allyl alkoxide 

derivatives. 
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Table 1.3: Deacylative allylation of ethyl and isopropyl cyanoacetate 

 

 Last, given that the decarboxylative allylation of phenylacetonitriles has been 

reported24,26,33 and is the focus of the next chapter; it was feasible to speculate that rather than 

a retro-Claisen allylation reactive pathway (path A, eq. 1, Scheme 1.9), a transesterification 

followed by decarboxylative allylation pathway was responsible for C–C bond formation (path B  

 

Scheme 1.9  
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eq. 1, Scheme 1.9).  A simple control reaction was performed to determine which reaction 

pathway was operative (eq. 2, Scheme 1.).  Treatment of 1.49 with allyl alkoxide in absence of 

palladium revealed only the protonated allyl phenylacetonitrile 1.50.  This result confirmed that 

retro-Claisen activation (path A) was indeed the path to C–C bond formation and that the pKa of 

phenylacetonitrile is lower than ethoxide in DMSO.5,6 

 Hartwig and coworkers also reported the allylation of nitriles, however did so via a 

slightly different reactive manifold (Scheme 1.10).37  Taking advantage of the lower pKa of 

phenylacetonitrile, exposure to a palladium (0) catalyst generates a nitrile-stabilized carbanion.  

As shown in Scheme 1.10 treatment of 4-trifluoromethyl phenylacetonitrile with 1,3 

cyclohexadiene in the presence of dicyclohexylphosphinopropane (DCyPP) ligated CpPd(allyl) 

lead to formation of the diallylated product (eq. 1, Scheme 1.10).  In addition, subjecting 

phenylacetonitrile and 2,3-dimethylbutadiene to identical reaction conditions resulted in a 

mixture of mono- and diallylated products.  Even more interesting, is the observed ratio of  

 

Scheme 1.10 
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linear and branched products.  This result provided another potential example of competing 

inner- and outer-sphere C–C bond forming mechanisms (see section CII.4).30,31  The reaction is 

proposed to proceed via the catalytic cycle in Scheme 1.11.  Exposure of the Pd(0) catalyst to 

the phenylacetonitrile derivative generates a nitrile-stabilized carbanion and a palladium 

hydride species.  Regioselective hydropalladation allows for Pd-π-allyl formation as suggested 

by 1.51.  Nucleophilic attack of the Pd-π-allyl complex produces the product 1.52 and 

regenerates the palladium catalyst. 

 

Scheme 1.11 

 In a different reactive manifold, Fleming and coworkers developed a halogen–metal 

exchange with α-halonitriles as an alternative to the traditional use of amide base for the 

generation of metalated nitriles (Scheme 1.12).38,39  As shown in Scheme 1.12, Fleming takes 

advantage of an extremely fast halogen–metal exchange to obtain the magnesiated nitrile 1.54; 

the process likely proceeds via bromate intermediate 1.53 which upon collapse and exposure to 

the electrophile generates the quaternarized nitrile product.  A brief look at the scope of the 

reaction revealed that the method was quite efficient for the allylation of nitriles as shown in 
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Scheme 1.13.  Subjecting α-bromonitriles to isopropyl magnesium bromide and allyl bromide 

either sequentially, or in situ lead to the formation of the allylated nitriles (eq. 1 and 2, scheme 

 

Scheme 1.12  

1.13).  The α-chloronitriles worked more efficiently when butyl lithium was employed.  In 

addition, incorporating cinnamyl bromide into the reaction conditions lead to the formation of 

cinnamylated nitriles (eq. 4, Scheme 1.13).  It should also be noted that the linear product was 

 

Scheme 1.13 

formed exclusively.  Another interesting example was the regioselectivity observed via 

modification of the metalating reagent.  Treatment of cyclohexyl bromonitrile with isopropyl 

magnesium bromide and propargyl bromide lead to the SN2 alkylation product (eq. 5, Scheme 

1.13).  However, simple modification of the reaction conditions with Me2CuLi reagent resulted 
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in the SN2’ alkylation product (eq.6, Scheme 1.13).  Fleming suggests that the change in the 

regiochemistry for the alkylation can be attributed to the precoordination of the cuprate with 

the alkynyl moiety of the propargyl bromide.  In addition, the coordination allows for a more 

classical reductive elimination of the C-bound cuprate and allenyl moiety.  In contrast, the 

magnesiated nitrile reacts via a more direct displacement mechanism.         

CI.3:  Transition metal–catalyzed arylation of nitriles 

In keeping with the use of α-halonitriles, Fu and coworkers reported a couple of 

examples of nickel-catalyzed Hiyama coupling with an aryl trifluorosilane (Scheme 1.14).40  The 

reaction required a witch’s brew of reagents that included NiCl2•glyme, norephedrine, LiHMDS 

as base and CsF to activate the arylsilane.  The reaction was performed in DMA at 60 °C.  As 

shown in Scheme 1.14, the α-bromo- and α-chloronitriles were converted to the arylated 

products in good yield.  It should also be noted that in a similar reactive manifold, the Lei group 

reported a nickel-catalyzed Suzuki type cross coupling of α-bromonitriles and aryl boronic 

acids.41  

 

Scheme 1.14   

In 2002, the Hartwig group reported the α-arylation of acetonitrile moieties.11,17  Up 

until this point, carbanions stabilized by a single nitrile moiety were difficult to functionalize as 
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a result of their high pKa.  This inherent property of nitriles suggested that in order to develop a 

catalytic arylation of nitriles, a strong base would be required in addition to a ligand that could 

facilitate reductive elimination.  Because the nitrile moiety is strongly electron withdrawing it 

was suggested that the reductive elimination was going to be difficult.  Indeed, as discussed in 

the introductory paragraph Hartwig and coworkers were able to determine that electron rich 

bulky ligands such as BINAP and tert-butyl phosphine were competent for catalytic arylation.  

As shown in Scheme 1.15, subjecting various nitriles to either a BINAP or P(t-Bu)3 ligated 

 

Scheme 1.15 

palladium catalyst in the presence of a strong base and heat provided mono- and diarylated 

nitriles (Scheme 1.15).  A brief overview of the reaction scope revealed that dimethyl 

acetonitrile readily underwent arylation; however the yields suggest that electron poor 
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aromatic coupling partners provide optimal conversion (1.55, Scheme 1.15).  The tertiary 

norbornane nitrile was also converted to the arylation product in 69% yield and with a 2:1 

endo/exo ratio.  It should also be noted that use of butyronitrile and acetonitrile required a 

modification in the reaction conditions to the P(t-Bu)3 ligated palladium catalyst. Despite this 

modification, the major products were diarylation, likely stemming from the fact that the 

phenylacetonitrile intermediate is more activated (reduced pKa) toward arylation.  In addition 

to this report, it should be noted that the Verkade group reported a protocol for the α-arylation 

of nitriles using triaminophosphine base P(iBuNCH2CH2)3N along with essentially identical 

catalyst conditions employed by Hartwig.42 Recently, Fleming and coworkers also reported the 

α-arylation of valeronitrile showcasing the utility of a TMPZnCl•LiCl base in conjunction with 

the conditions reported by Hartwig.43  

 In a follow up to their seminal report, Hartwig and coworkers address the large amounts 

of diarylation observed with butyronitrile and acetonitrile derivatives (1.58 and 1.60, Scheme 

1.15) via attenuation of the nucleophilic nitrile with trimethylsilane.44  As shown in Table 1.4, 

treatment of various substituted and unsubstituted trimethylsilyl acetonitriles with appropriate 

catalytic conditions indeed afforded monosubstituted arylated products.  In addition, both 

tertiary and quaternary nitriles were readily obtained via appropriate reaction conditions.  As 

suggested by Hartwig, the circumvention of the large amounts of diarylation and 

homodimerization is likely due to the fact that silicon cyanoalkyl reagents are less basic than 

their alkali metal surrogates resulting in higher functional group tolerance.  A brief overview of 

the reaction scope reveals that electron deficient aryl bromides more readily undergo C–C bond 

formation, however electron rich aromatics are also converted in good yield as well (1.61, Table 
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1.4).  In addition, ortho substitution does not look to have a large influence on product 

formation as represented by 1.64 and 1.67.  The propionitrile is also smoothly arylated, albeit 

with slightly reduced yields.  The loss in yield is potentially due to the thermodynamic 

favorability of formation of the styrenyl compounds via β-hydride elimination (1.62, 1.65, 1.68).  

Last, the tertiary alkyl nitriles were arylated with good yields (1.63, 1.66, 1.69).   

Table 1.4.  Mild palladium-catalyzed selective monoarylation of nitriles 

 

 Recently, Liu reported the palladium-catalyzed decarboxylative coupling of potassium 

and sodium cyanoacetate salts with aryl halides (Scheme 1.16).45  The reaction involves the use 

of Pd2(allyl)2Cl2 and Xantphos ligand at elevated temperature.  It should be noted that this 

reaction is extremely robust and the scope of the reaction is impressively large.  This method 
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was showcased via application to a gram scale synthesis of flurbiprofen, a nonsteroidal anti-

inflammatory drug.  Decarboxylative coupling of the cyanocarboxylate and aryl halide afforded 

the phenylacetonitrile 1.70 in nearly quantitative yield.  Subsequent hydrolysis of the nitrile 

moiety and acidification provided the drug flurbiprofen.  In the same year, Kwong reported a 

very similar protocol for the decarboxylative diarylation of potassium and sodium 

cyanoacetates.46  The first arylation is initiated under conditions reported by Hartwig and a 

subsequent decarboxylation facilitates the second arylation.      

 

Scheme 1.16     

 The examples above discuss the recent advancements made involving the transition 

metal–catalyzed alkylation and arylation of nitriles.  It is important to note, that there is 

another important class of reactions that involve the transition metal–catalyzed activation of 

nitriles toward nucleophilic additions to carbonyl compounds.  These methods involve the use 

of Cu,47-50 Ru,14,51-60 Rh,13,61-63 Ir64 and even lanthanide catalysts.20,22,65-67 
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CII.1: Introduction to the decarboxylative allylation reaction 

 Recently, transition metal-catalyzed decarboxylative carbon–carbon bond forming 

reactions have become powerful synthetic tools for organic chemists.1-8  A specific subset of 

this class of reactions was reported by Saegusa9 and Tsuji10 in 1980. The reaction involved the 

palladium-catalyzed decarboxylative allylation (DcA) of allyl β-ketoester substrates (eq. 1, 

Scheme 2.1).9,10  This methodology was likely inspired by the Tsuji-Trost reaction, which 

involves treatment of allyl acetate with a palladium catalyst in the presence of various activated 

nucleophiles, resulting in the production of new carbon–carbon bonds.11-14  The Tsuji-Trost 

reaction proceeds via formation of a highly electrophilic Pd-π-allyl complex 2.1 generated upon 

ionization of allyl acetate with a palladium catalyst.13  Subsequent nucleophilic attack of the     

 

Scheme 2.1 

electrophilic species 2.1 results in C–C bond formation generating newly allylated products (eq. 

2, Scheme 2.1).  In an analogous reactive manifold, a simplified catalytic cycle for the DcA 

reaction proceeds as follows:9 treatment of allyl ester substrate 2.2 with a palladium (0) catalyst 

results in ionization of the allyl ester moiety, unveiling both the palladium-π-allyl complex 2.3  
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Scheme 2.2 

and the pro-nucleophilic carboxylate species (EWG=electron withdrawing group).  Loss of CO2 

generates the carbanion nucleophile 2.4 which upon recombination with the Pd-π-allyl complex 

regenerates the Pd(0) catalyst and delivers the allylated product  2.5.  To this end, it is now 

understood that decarboxylation is largely dependent upon the pKa of the conjugate acid of the 

ensuing carbanion.8   In essence, the ability of the EWG group to stabilize anionic charge 

through resonance or inductive effects determines the ease with which CO2 is released.  This 

reactivity represents a major difference between the decarboxylative allylation method and the 

Tsuji-Trost reaction. Traditionally, Tsuji-Trost reactions are performed with di-stabilized 

nucleophiles (Nu-H = malonate esters, acetylacetone, malononitriles, etc, eq. 2, Scheme 2.1) 

and require strong bases for nucleophiles with pKa values above 16 (ie. enolates pKa ≈20).13  In 

contrast, the DcA method allowed for accessing enolate nucleophiles in the absence of base via 

taking advantage of the thermodynamic favorability of loss of CO2 from an β-keto carboxylate 

(2.3  2.4, EWG = C(O)R, Scheme 2.2).8  Much of the work reported by Saegusa and Tsuji 

addressed α-allylation of enolates (EWG= C(O)R),9,10,15 however many other electron 
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withdrawing groups (EWG) are now known to facilitate decarboxylation upon ionization of the 

allyl ester moiety (Scheme 2.3).8   

 

Scheme 2.3 

In addition to further development of the DcA of allyl β-ketoesters,16-19 the Tunge group 

has also developed the DcA of various other nucleophiles (Scheme 2.3).8  Phenyl propiolate 

esters were competent substrates for DcA as exhibited by Rayabarapu, suggesting sp-

hybridized carbanions were efficient nucleophiles for C–C bond formation.20  Weaver’s 

contribution entailed the allylation of α-sulfonyl carbanions (eq. 2, Scheme 2.3).21  This 

development was significant because analogous to Rayabarapu’s work it represented an 

example of the decarboxylative generation of carbanions being stabilized solely by inductive 

effects.22   Waetzig reported the facile DcA of both nitroaromatic as well as heteroaromatic allyl 

esters (eq. 4, eq. 5, Scheme 2.3).23,24  The latter reaction represents the upper limit in terms of 

the stability of the carbanion (pKa of picoline ≈ 35) obtained from decarboxylation.24  It should 

be note that the highly basic picolinic anion was generated at relatively low temperatures and 
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under formally neutral conditions.  In addition, Burger25 and Grenning26 showed that α-imino 

carbanions as well as highly reactive, somewhat problematic, nitronate carbanions were 

efficiently allylated via decarboxylative coupling (eq. 3 and eq. 6, Scheme 2.3).  In addition to 

the above stabilized nucleophiles, nitrile stabilized carbanions are coveted nucleophiles that are 

difficult to generate in absence of amide bases.27-29  Before 2009, only two examples for the 

palladium-catalyzed decarboxylative allylation of nitriles had been reported.9,15  Moreover, 

there are only a few examples in the literature for the transition metal-catalyzed 

decarboxylative generation of nitrile-stabilized carbanions.30-32  As an alternative method for 

the allylation of metalated nitriles, Grenning and Tunge reported the palladium-catalyzed 

deacylative allylation of nitriles.33  Fleming and Knochel reported that similar allylated products 

are obtained from Grignard reagents and α-halo nitriles.34-36  The next section will describe the 

palladium-catalyzed decarboxylative allylation of nitrile stabilized carbanions.37  

CII.2:  Decarboxylative allylation of tertiary α-nitrile carbanions 

In 1980, Saegusa reported a single example of the palladium-catalyzed decarboxylative 

allylation of cyanoacetic esters (eq. 1, Scheme 2.4).9  Saegusa employed Pd(PPh3)4 as the 

catalyst to obtain the target product 2.6 in 69% yield in addition to 16% formation of the 

diallylated compound 2.7.  In 1987, Tsuji reported the decarboxylative allylation of tertiary 

cyanoacetic esters with a triphenylphosphine modified palladium catalyst in which he obtained 

the allylated product 2.8 in 76% yield in addition to 16% of the protonation product 2.9 (eq. 2, 

Scheme 2.4).15  The above literature precedent suggested that competing diallylation as well as 

protonation products could be problematic with α-protio containing substrates.  With this 
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knowledge in hand, studies to determine catalytic conditions for the DcA of tertiary allyl 

cyanoacetates that circumvented the formation of both the diallylated as well as the 

protonation products were undertaken. 

 

Scheme 2.4  

 Saegusa’s and Tsuji’s results suggest that increased pKa of the conjugate acid of the 

nitrile carbanion generated via decarboxylation was leading to formation of the protonated 

product 2.9 (Scheme 2.4).  Known pKa values for alkyl-substituted acetonitriles 2.10 range from 

30-33 in DMSO, however addition of a phenyl substituent (ie. benzyl cyanide) reduces the α-

nitrile pKa to ≈ 22 (2.11, Scheme 2.5).38,39  For this reason, α-phenyl cyanoacetic esters were 

chosen initially as test substrates for DcA of nitrile stabilized carbanions.  α-Phenyl allyl cyano 

acetate 2.12 is prepared from Steglich coupling of α-phenyl cyanoacetic  acid with allyl acetate 

 

Scheme 2.5  
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alcohol.40  α-Phenyl cyanoacetic acid 2.13 is prepared via lithiation of benzyl cyanide 2.11 

followed by quenching with carbon dioxide and acid (Scheme 2.6).21 Literature precedent 

suggests that Pd(PPh3)4 and various other ligated palladium (0) sources would be effective 

catalysts for ionization of allyl cyanoacetic ester 2.12 (2.22.3, Scheme 2.2).9,10,15,21  As 

detailed in Table 2.1, Preliminary results for the DcA of ester 2.12 utilizing a catalytic amount of 

Pd(PPh3)4 in toluene at 100 °C generated the mono-allylated product 2.14 while circumventing    

 

Scheme 2.6 

formation of the diallylated product 2.15.  However, the competing protonation product 2.16 is 

observed in equal amounts (entry 1, Table 2.1).  A change in solvent from toluene to methylene 

chloride only served to introduce an equal amount of diallylated product (entry 2, Table 2.1).  A 

switch in the source of palladium from Pd(PPh3)4 to Pd2(dba)3 with triphenylphosphine as ligand 

prevents formation of the monoallylation product; instead protonation was the major product 

in addition to a minimal amount of the diallylated compound 2.15 (entry 3, Table 2.1).  

Currently, it is not clear why the use of Pd(PPh3)4 delivers C–C bond formation while employing 

the precatalyst Pd2(dba)3 and triphenylphosphine does not deliver the monoallylated product 

2.14.  Lack of C–C bond formation in the latter example suggests the active palladium-catalyst 

species forming in solution is dependent upon the initial source of palladium.  A screen with a 

series of bidentate ligands and precatalyst Pd2dba3 resulted in the production of monoallylated    
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Table 2.1: Decarboxylative allylation of phenylacetonitrile 

 

product 2.14 in addition to complete circumvention of the diallylated product 2.15 (entries 4-5, 

Table 2.10).  Despite the various reaction conditions attempted, inhibiting the formation of the 

protonated product 2.16 was never achieved with the tertiary α-phenyl nitrile substrates. The 

highest product selectivity was observed with rac-BINAP as ligand resulting in a 2.5 : 1 ratio of 

monoallylated to protonated products (entry 5, Table 2.10) 

 To be certain that protonation was not a result of the test substrate chosen, both 

cyclohexenyl- and β-methylallyl α-phenyl cyanoacetates which are converted to products 2.17 

and 2.18 respectively (Table 2.2), were subjected to the identical reaction conditions in Table 

2.1.  Despite modification of the substrates, similar product distributions were observed in 

which the diallylation products were completely eliminated however the competing 

protonation product persisted.   Previous experiments have shown (CII.4) that the qualitative  



[42] 
 

Table 2.2: DcA of tertiary cyanoacetic esters containing substituted allyl moieties  

 

rate of decarboxylation directly correlate to the pKa of the carbanion that is formed.37  It is also    

known that the rate of ionization of more sterically hindered allyl acetate moieties is slower 

with respect to unsubstituted allyl acetate.13  Current literature precedent suggests, 

mechanistically, that protonation and C–C bond formation occur via the same reactive pathway 

(Scheme 2.7).41  Both products are derived from carboxylate 2.19 which is obtained from 

palladium-catalyzed ionization of α-phenyl allyl cyanoacetate 2.12.  Carboxylate 2.19 is in 

equilibrium via proton transfer with α-anionic carboxylic acid 2.20.  Exposure of carboxylic acid 

2.20 to the Pd-π-allyl electrophile (Path A, Scheme 2.7) leads to the formation of α-allylated 

carboxylic acid 2.21.  At this point, palladium-catalyzed decarboxylation of 2.21 would lead to 

the target mono-allylated product 2.22.  However, proton transfer from α-allylated carboxylic 

acid 2.21 to α-protio carboxylate 2.19 generates α-protio carboxylic acid 2.23 (Path B, Scheme 

2.7).  Analogous to Path A, oxidative addition of palladium (0) catalyst into α-protio carboxylic 

acid 2.23 as suggested by 2.24 and subsequent loss of CO2 followed by reductive elimination 
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Scheme 2.7 

delivers the protonated product 2.25 (Scheme 2.7).41  In addition to the presence of α-protons, 

substrates with allyl moieties containing acidic protons are also problematic (2.26 ,Scheme 

2.8).8  Ionization of the cyclohexenyl acetate moiety of ester 2.26 generates Pd-π-allyl complex 

2.27 which is susceptible to elimination, generating cyclohexadiene 2.28 and α-protio 

carboxylic acid 2.23 (Scheme 2.8).  Compound 2.23 can then go on to form the protonation 

product 2.25 as shown in Scheme 2.7 (2.242.25, Scheme 2.7).  It was evident that 

circumventing the competitive formation of the protonation product is difficult. For this reason, 

development of the DcA of tertiary cyanoacetic esters was abandoned for the investigation into 
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the DcA of quaternary cyanoacetic esters.  The following section will detail the development of 

the palladium-catalyzed decarboxylative allylation of quaternary allyl cyanoacetates.37         

 

Scheme 2.8 

CII.3:  Decarboxylative allylation of quaternary nitriles 

Decarboxylative allylation of allyl cyanoacetates containing α-protio substituents is 

problematic due to competing formation of the protonated product (2.25, Scheme 2.7).15  In 

attempt to remove the source of protonation, Tsuji reported that DcA of α,α-dibutyl allyl 

cyanoacetate 2.29 was catalyzed by  diphenylphosphinoethane (dppe)-ligated palladium in 

toluene at 100 °C and the product 2.30 was obtained in 63% yield, however 24% of the 

protonated species 2.31 was also observed  (Scheme 2.9).15  Successful development of this  

 

Scheme 2.9  

methodology will allow for the generation of nitrile-stabilized anions (conjugate acid pKa ≈30-

33)40 under formally neutral conditions.9,15,30,42,43  In addition, the method allows for the 
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functionalization of all carbon quaternary centers as well as the incorporation of nitrogen via 

carbon based nucleophiles.  

Building on the proof of concept set forth by Tsuji,15 identification of a competent 

palladium catalyst as well as reaction conditions selective for C–C bond formation is described.  

The α,α-dibenzyl, allyl cyanoacetate substrate 2.32 (Table 2.3) was prepared via dialkylation of 

the allyl cyanoacetate obtained from Steglich coupling of cyanoacetic acid and allyl alcohol (see 

appendix A).40  The data combined in Table 2.3 was acquired via analysis of crude 1H NMR 

spectra.37  The preliminary results suggested that bidentate-ligated palladium catalysts were 

more selective toward C–C bond formation (2.33, Table 2.3) with toluene employed as solvent.  

The data also revealed that monodentate Pd(PPh3)4 as well as the use of PPh3 modified 

precatalyst Pd2(dba)3 provided only the protonation product 2.34 (entries 1-3, Table 2.3) in 

thoroughly dried toluene.15,44  A series of bidentate phosphine ligands with differing bite angles 

as well as electronic properties were screened using Pd2(dba)3 as precatalyst in toluene at 100 

°C (entries 4-6, Table 2.3).37  Both diphosphinoferrocene (dppf) and diphosphinoethane 

(dppe)15 were more selective toward allylation however did not successfully circumvent 

formation of the protonation product.  In contrast, the racemic-binaphthylphosphino (rac-

BINAP) ligated palladium catalyst smoothly converted the ester 2.32 to the allylated product 

2.33 in addition to completely suppressing the formation of the protonated product 2.34 (entry 

6, Table 2.3).  Currently, it is not well understood exactly how the rac-BINAP ligand is able to 

circumvent formation of the protonated product.  Nevertheless this observation is consistent 

with use of a rac-BINAP ligated palladium catalyst to prevent the formation of protonated 

products in the DcA of α-sulfonyl esters.21   
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Table 2.3: Circumventing protonation in the decarboxylative coupling of nitriles 

 

 Having establishing that the rac-BINAP ligand promotes C–C bond formation in the 

absence of decarboxylative protonation, the DcA of α,α-disubstituted cyanoacetates is 

disclosed.37  Literature precedent suggests that upon ionization of the allyl acetate moiety, the 

facility of decarboxylation is dependent up the pKa of the conjugate acid of the ensuing 

carbanion.8,37  For this reason, a series of α-phenyl cyanoacetates were synthesized (2.12, 

Scheme 2.6) and quaternarized via alkylation (Table 2.4).29 As depicted in Table 2.4, the α-

phenyl, α-methyl cyanoacetate containing an unsubstituted allyl moiety is converted to the 

allylated product 2.35 in 80% yield at 25 °C.  It should be noted that this reaction is performed 

at room temperature, which is lower than the 100 °C required for the DcA of allyl, α,α-dibenzyl 

cyanoacetate 2.32 (Table 2.3).  This observation supports the argument that decarboxylation 
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correlates with the pKa of the conjugate acid of the forming carbanion and suggests loss of CO2 

is rate–limiting.21  α-Phenyl, α-methyl cyanoacetate substrates containing substituted allyl   

Table 2.4: Decarboxyltive coupling of nitriles 

 

moieties also undergo C–C bond formation (2.36, Table 2.4), however obtaining the 

cyclohexenyl nitrile 2.37 required a change in catalyst from the bidentate rac-BINAP ligated 

palladium to monodentate Pd(PPh3)4.21  Use of the rac-BINAP modified palladium catalyst 

resulted in a 50:50 mixture of the allylated product 2.37 and the protonation product (2.28, 

Scheme 2.8).  In addition to the α-phenyl cyanoacetate substrates, a number of α,α-dialkyl allyl 

cyanoacetates were prepared and subjected to the reaction conditions in Table 2.4.  The α-

benzyl, α-methyl allylated nitrile 2.38 is generated in 71% yield along with the more sterically 

encumbered α-benzyl, α-isopropyl allylated nitrile 2.39, which is obtained in 75% yield.  It 

should be noted that allylated products 2.38, 2.39, and 2.33 form via a nitrile stabilized 
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carbanion in which the conjugate acid has a pKa value of 32.38,39   This is an increase of 10 orders 

of magnitude from the α-phenyl nitrile stabilized carbanions (Scheme 2.5).  α-Phenyl, α-

acetophenone allyl cyanoacetate undergoes C–C bond formation smoothly to produce 2.40 

with minimal evidence of the protonation product 2.41 (figure 2.1).  This result is interesting 

given that the pKa of the conjugate acid of the carbanion generated via decarboxylation is 22, 

whereas the pKa of the α-acetophenone protons is 24 (figure 2.1).38,39  This observation suggest 

that the DcA of α,α-disubstituted allyl cyanoacetates provided the products of regiospecific C–C 

bond formation.  The regiospecificity of the DcA can be investigated via performing the reaction 

in the presence of protons containing pKa values lower (ie more acidic) than the pKa of the 

conjugate acid of the carbanion formed via decarboxylation.45  If indeed the reaction is 

regiospecific, C–C bond formation takes place at the site of decarboxylation (kinetic, Scheme 

2.10) and there will be no equilibration to the thermodynamic carbanion (Scheme 2.10).  The 

development of regiospecific decarboxylative coupling of nitriles is detailed. 

 

 

Figure 2.1  
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Scheme 2.10  

 In order to investigate the regiospecificity of the DcA reaction, a series of substrates 

containing protons with pKa values lower than the pka of the conjugate acid of the nitrile-

stabilized carbanion formed via decarboxylation were synthesized (Scheme 2.11, see appendix 

B).  Allyl cyanoacetates containing aryl ketone (2.42 pKa=24, figure 2.2), alkyl ketone (2.43 

pKa=26, figure 2.2), and ester (2.44 pKa=29, figure 2.2) functionalities would satisfy this 

requirement (protonated nucleophile pKa=32, figure 2.2).38,39  A brief screen of reaction  

 

Figure 2.2 

conditions for the regiospecific decarboxylative coupling of nitriles revealed that the rac-BINAP 

ligated palladium catalyst was competent at promoting C–C bond formation and minimizing the 

amount of observed protonation product ( entries 1 and 3, Table 2.5).21  The DcA reaction 

suffers a noticeable deterioration of selectivity as the pKa of the acidic protons (2.44 pka=29 

2.43 pka=26, figure 2.2) decreases (entry 1  3, Table 2.2).38,39  Monodentate Pd(PPh3)4 also 
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Table 2.5: Screen of conditions for regiospecific decarboxylative coupling of nitriles 

 

delivered allylated nitriles, however favored formation of equal amounts of the protonated 

products (entries 2 and 4, Table 2.5).  Having identified a palladium catalyst, a series of allyl 

cyanoacetates with tethered ketone and ester functionalities were subjected to the reaction 

conditions to further investigate the scope of regiospecific decarboxylative coupling of nitriles.  

As detailed in Table 2.6, products 2.46 and 2.47 containing ketone and ester substituents are 

allylated in 74% yield.  Likewise, the substrate containing α,α-diacetophenone functionalities 

was converted to product 2.44 in 83% yield, however interchanging a single acetophenone with 

a benzyl substituent caused a 20% reduction in yield 2.45.  Furthermore, increasing the steric 

demand of the nitrile-stabilized carbanion resulted in a 53% yield of the product 2.49 (Table 

2.6).  It should be noted that analysis of the crude 1H NMR spectra for compounds 2.45, 2.48, 

and 2.49 suggests a higher yielding reaction, however the protonated and allylated products 

possess similar polarity on  silica gel;  so an abundance of the product is lost during purification.  

Based on preliminary results that suggested a regiospecific allylation of nitriles observed in 

Table 2.6, the limits of regiospecific C–C bond formation were further investigated to gain some 



[51] 
 

insight into the mechanism of the reaction.  The investigation entailed preparation of an allyl 

cyanoacetate substrate with a tethered malonate functionality (2.50, Table 2.7).  Preliminary   

Table 2.6: Regiospecific DcA of Nitriles 

 

results showed formation of a 1:1 ratio of regioisomers 2.51 and 2.52 (Table 2.7).  However, 

increasing the concentration and temperature of the reaction as well as mixing the precatalyst 

Pd2(dba)3 and rac-BINAP ligand prior to addition of the substrate delivers exclusively the 

product of regiospecific C–C bond formation (2.51, Table 2.7).  Scaling-up the reaction resulted 

in exclusive formation of 2.51 in 72 % yield (eq. 1, Scheme 2.11).  It should also be noted that 

neither the 2.52 nor the protonation product 2.53 was observed in the crude 1H NMR 

spectrum.  Given the 15 orders of magnitude between the acidity of protons Ha and Hb (2.53, 

eq. 1, Scheme 2.11)38,39 the result suggests that C–C bond formation is faster than equilibration 

between kinetic and thermodynamic carbanions formed via decarboxylation (eq. 2, Scheme 

2.11). However, the observed regiospecificity of the DcA and the lack of thermodynamically 
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Table 2.7 Further investigation into the regiospecific decarboxylative coupling of nitriles  

 

 

 

Scheme 2.11                            

favorable anion equilibration suggests an alternative reaction pathway for C–C bond formation 

may be operative.  From an application perspective, the likelihood of obtaining the allylated 

nitrile 2.51 from diester 2.53 via classical base-mediated methodologies would likely be 

kinetically and thermodynamically impossible.29 The following section will detail the 

mechanistic studies undertaken to elucidate the mechanism of the decarboxylative coupling of 

nitriles.37 
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CII.4:  Mechanistic studies for elucidation of the decarboxylative coupling of nitriles 

 At this point, what has been determined for the decarboxylative coupling of nitriles is 

that C–C bond formation is regiospecific, suggesting that allylation takes place at the carbon 

from which CO2 is released (Scheme 2.11 and Table 2.6).  In addition, palladium-catalyzed 

decarboxylative C–C bond formation out-competes a thermodynamically favorable proton 

transfer (Scheme 2.11).  To begin formulating a mechanistic hypothesis that includes the 

previous observations, a series of control experiments were performed to identify the role of 

palladium in decarboxylation.  The control experiments depicted in Table 2.8 suggest that the 

decarboxylation of cyanoacetic acid is catalyzed by palladium (II) acetate.42,43  Exposure of the 

cyanoacetic acid 2.54 to triethylamine in the absence of palladium catalyst for 15 hours at 

temperatures elevated above the normal reaction conditions does not convert any of the 

carboxylate to the protonated nitrile 2.55 (entry 1, Table 2.8).  The combination of palladium 

acetate and triethylamine rapidly consumed the cyanoacetic acid 2.54 generating the 

decarboxylative protonation product 2.55 (entry 2, Table 2.8) within 5 hours.  When the 

reaction was performed with palladium catalyst in the absence of triethylamine the cyanoacetic 

Table 2.8 Palladium-catalyzed decarboxylation 
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acid was converted to the product 2.55, albeit at a slower reaction rate (entries 3 and 4, Table  

2.8).  Moreover, these observations were in agreement with mechanistic studies performed by 

Darensbourg suggesting that metal-nitrile complexation was required for decarboxylation of 

cyanoacetic acid.42,43 

Amongst a myriad of potential reactive pathways for C-C bond formation, the data 

acquired to this point suggested two feasible reaction pathways for the decarboxylative 

coupling of nitriles.  Exposure of 2.56 to the Pd(0) catalyst induces ionization of the allyl acetate 

moiety generating the cyanoacetate Pd(II)-π-allyl complex 2.57(Scheme 2.12).  Subsequent  

 

Scheme 2.12 

Pd(II) catalyzed decarboxylation15,46 produced the N-ligated Pd(II)-π-allyl complex 2.58 or 

solvated ion pair 2.59 which can recombine via the more traditional direct allylation reactive 

manifold to form 2.60 (path A, Scheme 2.12).13  Alternatively, reductive elimination of the 
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palladium catalyst from 2.57 generates the N-allyl cyanoacetate 2.61 (path B, Scheme 2.12).  

Decarboxylative neutralization of 2.61 generates N-allyl ketenimine 2.62 which can then 

undergo [3,3] sigmatropic rearrangement to deliver the allylated nitrile 2.60 (path B, Scheme 

2.12).  Studies performed by Walters show that N-allyl ketenimines undergo [3,3] sigmatropic 

rearrangement at room temperature to form α-allylated phenylacetonitriles (Scheme 2.13).47  

The regiospecificity of the decarboxylative coupling is rationalized via pathway B, however does 

not account for the increased amounts of protonation observed with other ligands (Table 2.3).  

The large amount of protonation observed is rationalized via path A due to the formation of 

more basic intermediates.   Furthermore, it is feasible that both path A and Path B are operative 

via decarboxylation and reductive elimination of the palladium catalyst from 2.59 generating 

the N-allyl ketenimine 2.62 (path C, Scheme 2.12).  To investigate the feasibility of N-allylation 

prior to C–C bond formation,48,49 a series of cyanoacetate substrates with substituted allyl 

moieties capable of generating linear and branched products were subjected to the conditions 

for the decarboxylative coupling of nitriles.   

   

 

Scheme 2.13 
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 The origin of the regiospecific C–C bond formation observed with the DcA of nitriles was 

investigated via the synthesis of allyl cyanoacetates capable of producing linear and branched 

products (Scheme 2.15).  Crotyl and cinnamyl functionalized cyanoacetic esters were subjected 

to the conditions for the decarboxylative coupling of nitriles. In order to fully appreciate the 

linear to branched selectivities observed in the DcA of nitriles, it should be noted that literature 

reported values for the linear to branched selectivities associated with DcA of ketones are in 

excess of 95 : 5, favoring formation of the linear product (Scheme 2.14).8  Selective formation of 

the linear allylation product stems from the nucleophile approaching the least sterically 

hindered carbon of the Pd-π-allyl complex (path A, Scheme 2.14).50  Both the α-phenyl,α-methyl 

crotyl cyanoacetate ester 2.63 (Scheme 2.15) as well as the α-phenyl,α-methyl cinnamyl ester 

2.66 (Scheme 2.15) are converted to the respective products in nearly a 1:1 ratio of linear to 

branched isomers.  Taking into account that with the DcA of ketones (Scheme 2.14) the 

branched product is not observed by 1H NMR spectra; With respect the DcA of nitriles, the 

increased selectivity for the formation of the branched isomer (2.65 and 2.68, Scheme 2.15)  

 

Scheme 2.14 

suggests that an alternative reaction pathway for allylation is operative.48,49  α-, α-Diallyl and α, 

α-dibenzyl cinnamyl cyanoacetates 2.69 and 2.72 (Scheme 2.15) were also subjected to the rac-
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BINAP ligated palladium catalyst in toluene at 90 °C which resulted in increased formation of 

the branched isomer 2.71 and 2.74 (Scheme 2.15).  This observation is consistent with studies  

 

Scheme 2.15 

involving the DcA of α-picolinic cinnamyl esters24 in which the pyridine nitrogen is proposed to 

add to the least hindered position50 of the Pd-π-allyl complex generating the N-allylated 

iminium intermediate 2.75 (Scheme 2.16).  Subsequent decarboxylation and [3,3]-sigmatropic 

rearrangement delivered exclusively the branched product 2.76 (Scheme 2.16).  With respect to 

the decarboxylative coupling of 2.72 (Scheme 2.15), it should be noted that similar linear to 

branched selectivities are also obtained employing the (α-phenyl) allyl substituted cyanoacetate  
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Scheme 2.16 

2.77 (Scheme 2.17).  This result suggests the reaction takes place via the common intermediate 

A (Scheme 2.17) and upon ionization of the allyl acetate moiety, C-C bond formation takes 

place via the same reactive pathway.8     

 

Scheme 2.17 

 Compiling all of the data to this point suggests competing kinetic N-allylation and C-

allylation pathways for the decarboxylative coupling of nitriles.48,49  Regiospecific C-C bond 

formation entails allylation of the kinetic carbanion generated via decarboxylation (eq 1., 

Scheme 2.11).  Based on previous experiments (Scheme 2.17) it is likely that both reactive 

pathways originate from ion pair A (Scheme 2.18).8  The relatively low selectivities observed for 

the linear and branched allylation of α-phenyl cyanoacetates suggests a minimal energetic 
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preference for C-allylation over N-allylation.  In addition to the linear to branched allylation 

selectivities, the added stability of the α-phenyl substituent makes the anion less likely to be 

coordinated to the metal center; as suggested by complex 2.59 (Scheme, 2.12) favoring an 

outer-sphere C-allylation pathway.33  This is not the case with less stable α-,α-dialkyl nitriles.  

Increased selectivity toward formation of the branched isomer suggests that bulky, α-,α-dialkyl 

nitrile-stabilized carbanions favor the kinetic N-allylation pathway.  At this point, one of two 

potential mechanisms is operative.  Immediate reductive elimination of the palladium catalyst 

generates the N-allyl ketenimine 2.78 (Scheme 2.18) which can then undergo a [3,3] 

sigmatropic rearrangement to deliver the branched product.  However, an inner-sphere attack 

involving Pd(II)-ligated σ-allyl, N-bound ketenimine complex 2.79 may also be responsible for 

the formation of the branched product (Scheme 2.18).  The inner-sphere mechanistic rationale 

is in accordance with studies reported by Stoltz involving the palladium-catalyzed decarbox- 

 

Scheme 2.18 
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ylative coupling of ketones.51,52  In addition, studies performed by Grenning and Tunge revealed 

that treatment of cyanoketone 2.80 with cinnamyl alcohol in the presence of NaH and 

Pd(PPh3)4 lead to exclusive formation of the linear allylation product 2.81 (eq. 2, Scheme 

2.19).33  This result suggests that the sodiated ketenimine likely undergoes an outer-sphere 

addition to the Pd-π-allyl complex, resulting in exclusive formation of the linear product 2.81 

(eq. 2, Scheme 2.19).  However, the use of the rac-BINAP ligated palladium-catalyst resulted in 

the formation of equal amounts of linear and branched products suggesting that a inner-sphere  

 

Scheme 2.19 
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reaction pathway is operative as well (eq. 1, Scheme 2.19).     

  In summary, development of the palladium-catalyzed decarboxylative allylation of 

nitriles has been detailed.  This method allows for the generation of nitrile-stabilized carbanions 

under formally neutral reaction conditions.  The reaction is regiospecific in carbon-carbon bond 

formation due to rapid allylation of the kinetic anion generated via palladium(II)-catalyzed 

decarboxylation.  As a result, this method allows for the generation of allylated products not 

accessible via classical base-mediated methodologies.  The nitrile-stabilized carbanions exhibit a 

heightened selectivity toward the formation of branched allylation products.  This heightened 

selectivity in addition to the regiospecificity of C-C bond formation suggests that palladium-

catalyzed decarboxylative coupling of nitriles proceeds via a competing reaction pathway.  All 

experiments suggest that linear to branched selectivities are dependent upon the stability of 

the nitrile stabilized carbanion that is formed via decarboxylation.  
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Appendix A 

General Experimental: 

All reactions were run in flame-dried glassware under Ar atmosphere using standard Schlenk 

techniques. CH2Cl2 and Toluene were dried over activated alumina, and further distilled over 

sodium. THF was dried over sodium in the presence of benzophenone indicator. Commercially 

available reagents were used without additional purification unless otherwise stated. 

Compound purification was effected by flash chromatography using 230x400 mesh, 60 Å 

porosity, silica obtained from Sorbent Technologies. 1H NMR and 13C NMR spectra were 

obtained on a Bruker AVIII 500 spectrometer and referenced to residual protio solvent signals 

(most spectra were taken using a dual 13C/1H cryoprobe). Structural assignments are based on 

1H, 13C, DEPT-135, COSY, HSQC and IR spectroscopies. Mass spectrometric analyses were run 

using either EI or ESI techniques. 

  

Synthesis of α-substituted cyanoacetic acids. α-phenyl, cyanoacetic acid:1  Synthesis of α-

phenyl, cyanoacetic acid:  A 200 mL flame dried schlenk flask with stir bar under Ar, filled with 

dry THF (100mL), was charged with commercially available benzyl cyanide (31.0 mmol, 3.6mL) 

(commercially available propionitrile, or isovaleronitrile would be substituted for benzyl cyanide 

for the synthesis of the other acids) via syringe, and n-BuLi (18.5 mL, solution 1.6 M/Hex from 

Aldrich) was added dropwise over 10 minutes at room temperature.  The solution was then 

placed in a dry ice /acetone bath and solid CO2 (dryice, small amount) was added carefully.  The 

                                                           
1
 Weaver, J. D.; Tunge, J. A. Org. Lett. 2008, 10, 4657. 
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solution was stirred at -78 oC for 1 hr.  The reaction was then quenched with NaHCO3 (saturated 

in H2O, 125 mL) and Et2O (50 mL).  The aqueous layer was isolated and ice cold EtOAc (100 mL) 

was added.  12M HCl was then added until pH of 2 (pH paper) was achieved.  The organic layer 

was separated, dried over MgSO4, and reduced on rotary evaporator to yield a yellowish oil.  

The oil was then azeotroped with CHCl3 and a white solid (3.89g, 75%) formed, and taken on as 

is without purification, 2-cyano-2-phenylacetic acid: 1H NMR (500 MHz, CDCl3) δ 7.40 (m, 2H), 

7.38 – 7.33 (m, 3H), 4.91 (s, 1H), 4.68 (s, 1H).  13C NMR (126 MHz, CDCl3) δ 168.9 (RCO2R), 129.5 

(quat. Ar C), 129.32 (Ar C), 128.03 (Ar C), 115.22 (RC≡N), 43.58 (quat. C).  These compounds 

were converted to the corresponding allyl esters by standard DCC/DMAP coupling,2
 

  

General procedures for the synthesis of α,α-disubstituted cyanoacetic allyl esters:  

Procedure A (synthesis of α-aryl substrates):  Synthesis of but-3-en-2-yl 2-cyano-2-

phenylpropanoate (2e): To a solution of but-3-en-2-yl 2-cyano-2-phenylpropanoate (0.90g, 4.2 

mmol) in dry THF (0.5 M) under argon was added NaH (0.10g, 4.2 mmol).  When solution 

became homogeneous MeI (0.6g, 4.2 mmol) was added dropwise via syringe.  After 4hr, water 

was added to the reaction mixture and the resulting mixture was extracted with Et2O, and dried 

over MgSO4. The organic layer was concentrated via rotary evaporator, and the resulting 

residue was purified by flash chromatography over silica with Et2O/Hexanes (1:9).  Fractions 

reduced to a clear oil, .723g, 75%.    

 

                                                           
2
 Neises, B., Steglich, W. Angew. Chem. Int. Ed. Engl. 1978, 17, 522. 
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Procedure B (synthesis dialkyl substrates):1  Synthesis of allyl 2-benzyl-2-cyano-3-

phenylpropanoate (1a): To a solution of α-cyanoacetic allyl ester (0.2g, 1.6 mmol) in DMF (0.5 

M) was added K2CO3 (2.19g, 15.9 mmol) and stirred vigorously.  Then benzyl bromide (1.36g, 

8.0 mmol) was added and the reaction was allowed to proceed for more than 24 hrs.  The 

reaction was then subjected to a water workup, extracted with EtOAc, and dried over MgSO4.  

The product was then purified via silica chromatography with EtOAc/Hexanes (0.5:9.5) as 

eluent, and reduced via rotary evaporator to clear colorless oil, .270g, 56%.    

 

Representative procedure for decarboxylative allylations:  To a flame dried Schlenk flask with 

stir bar under argon was added rac-BINAP (0.014g, 0.023 mmol), Pd2dba3 (0.010g, 0.011 mmol), 

and toluene (.05M).  The mixture was then pre-heated at 90 oC (except for 2f, realized via 5 mol 

% Pd(PPh3)4) for 5 minutes (Note: when ligand and catalyst were not pre-mixed and heated, 

some of the isomerization product was observed, see Scheme 2, in paper).  The reaction was 

then charged with 2-allyl 1,1-diethyl 2-cyanopropane-1,1,2-tricarboxylate (1n) (.135g, 0.45 

mmol) via syringe under argon.  Following proper Schlenk technique, the reaction progress was 

monitored by TLC for consumption of starting material.  The reaction was allowed to proceed at 

110 °C for 17hr.  Upon consumption of starting material, the reaction solution was 

concentrated via rotary evaporation and the residue was purified via flash chromatography 

over silica gel (column 23.5 cm x 2cm) with Et2O/hexanes (1:4).  TLC of fractions in 

Et2O/Hexanes (1:5) gave an rf ~ 0.18.  Fractions reduced to diethyl 2-(2-cyanopent-4-en-2-

yl)malonate (2n), clear oil, 0.082g, 72%. 
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 Characterization of allylated nitriles: 

   

2,2-dibenzyl-4-pentenenitrile (2.33):  Clear oil, purified over silica, Et2O/Hexanes (0.1:9.9).   

1H NMR (500 MHz, CDCl3) δ 7.29 – 7.25 (dd, J = 4.29, 2.95 Hz, m-Ar 4H), 7.22 (d, J = 5.9 Hz, o-, p-

Ar 6H), 5.85 (m, 1H, CH2CH=CH2), 5.24 – 5.18 (dd, 1H, J = 10, 1.1 Hz, CH=CH2trans), 5.14 (dd, 1H, J 

= 17.0, 1.5 Hz, CH=CH2cis), 2.85 – 2.72 (dd, 4H, J = 15, 20 Hz, CquatCH2CAr-quat), 2.22 (d, 2H, J = 7.2 

Hz, CquatCH2CH=CH2).   

13C NMR (126 MHz, CDCl3) δ 135.2 (quat. Ar C), 132.0 (RHC=CH2), 130.4 (m-Ar CH), 128.4 (o-Ar 

CH), 127.4 (p-Ar CH), 122.3 (RC≡N), 120.5 (RHC=CH2), 42.8 (R1CH2C=CH2), 42.8 (2 R1CH2C6H6), 

40.4 (quat. C).  

IR (CH2Cl2) ῡmax:  3029, 2920, 2233, 1645,1602, 1496, 1456, 923, 756, 702.   

HRMS calcd for [M+] 261.1517, found 262.1574. 

 

 

2-Methyl-2-phenyl-4-pentenenitrile (2.35):3 Clear oil, purified over silica, Et2O/Hexanes 

(0.3:9.7).   

1H NMR (500 MHz, CDCl3) δ 7.40 – 7.36 (m, Ar 2H), 7.34 – 7.30 (m, Ar 2H), 7.27 – 7.22 (m, Ar 

1H), 5.64 (m,1H, CH2CH=CH2), 5.10 (dd, 1H, J = 2.6, 1.4 Hz, 1H, CH=CH2trans), 5.09 – 5.06 (dd, 1H, 

                                                           
3
 Walters, M. A.; Hoem, A. B.; McDonough, C. S.  J. Org. Chem. 1996, 61, 55-62. 
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J=10, 1.5 Hz, CH=CH2cis), 2.61-2.54 (dd, 2H, J = 13.9, 1.2 Hz, CquatCH2CH=CH2), 1.65 (s, 3H, 

CquatCH3).  

13C NMR (126 MHz, CDCl3) δ 139.8 (quat. Ar C), 131.88 (RHC=CH2), 128.8 ( m-Ar CH), 127.8 (p-Ar 

CH), 125.5 ( o-Ar CH), 123.1 (RC≡N), 120.1 (RHC=CH2), 46.3 (R2CH2), 42.1 (quat. C), 26.5 (CH3).   

IR (CH2Cl2) ῡmax :  3080, 2981, 2235, 1641,1600, 1494, 1446, 995, 925, 763, 698.  

 

 

2,4-dimethyl-2-phenyl-4-pentenenitrile (2.36): Clear oil, purified over silica, Et2O/Hexanes, 

(1.2:8.8).   

1H NMR (500 MHz, CDCl3) δ 7.40 (dd, 2H, J = 1.7, 1.7 Hz, m-Ar-H), 7.33 (d, 2H, J = 1.5 Hz, o-Ar-H), 

7.24 (dd, 1H, J = 2.01, 2.01 Hz, p-Ar-H) 4.84 (d, 1H, J = 1.5 Hz, CH2(CH3)C=CH2trans), 4.68 (d, 1H, J 

= 0.9 Hz, CH2(CH3)C=CH2cis), 2.56 (d, 2H, J = 6.05 Hz, CquatCH2(CH3)C=CH2), 1.68 (s, 3H, CquatCH3), 

1.52 (s, 3H, CH2(CH3)C=CH2).   

13C NMR (126 MHz, CDCl3) δ 140.1 (quat. Ar C), 140.0 (quat. vinyl (CH3)C=CH2) 129.1 (R2C=CH2), 

127.8 (m-Ar CH), 125.7 (o-, p-Ar CH), 123.5 (RC≡N), 116.8 (R2C=CH2), 49.8 

(R1CH2R(vinylmethyl)C=CH2), 41.5 (quat. C), 27.7 (R(quat C)CH3), 23.4 (R(vinyl C)CH3).   

IR (CH2Cl2) ῡmax :  3078, 2981, 2939, 2235, 1645, 1600, 1494, 1446, 1379, 900, 765, 732.   

HRMS calcd for [M+H] 186.1283, found 186.1319. 
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2-(cyclohex-2-enyl)-2-phenylpropanenitrile (2.37): Clear Oil, purified over silica, Et2O/Hex, 

(1.5:8.5).   

1H NMR (500 MHz, CDCl3) 2 diastereomers δ 7.42 – 7.35 (m, 4H, m-Ph-H), 7.34 – 7.29 (m, 4H, o-

Ph-H), 7.27 – 7.21 (m, 2H,  p-Ph-H), 5.88 (m, 1H, Y: R2CHCH=CHRring ), 5.80 – 5.70 (m, 1H, X: 

R2CHCH=CHRring), 5.62 (ddt, 1H, J = 10.3, 3.8, 2.0 Hz, Y: R2CHCH=CHRring ), 5.28 (ddt, 1H, J = 6.0, 

3.6, 1.8 Hz, X: R2CHCH=CHRring), 2.60 (m, 1H, X: Cquat(Rring)-CHCH=CHRring),  2.50 (m, 1H, Y: 

Cquat(Rring)CHCH=CHRring), 2.00 – 1.87 (m, 4H, RringCH=CHCH2CH2Rring), 1.86 – 1.76 (m, 2H, 

R2CHCH2CH2Rring), 1.69 (s, 3H, CquatCH3), 1.65 (s, 3H, CquatCH3), 1.51 – 1.31 (m, 5H, RringCH=CHCH-

2CH2CH2 Rring), 1.28 – 1.20 (m, 1H, RringCH=CHCH2CH2CH2 Rring).   

13C NMR (126 MHz, CDCl3) δ 139.7 (quat. Ar C), 132.0 (R(methyne)CH=CHR(methylene)), 131.2 (Ar CH), 

128.7 (Ar CH), 127.7 (Ar CH), 126.0 (R(methyne)CH=CHR(methylene)), 124.8 (RC≡N), 45.6 (R3CH), 45.2 

(quat. C), 25.64 (R(methyne)CH2R(methylene)), 24.53 (R(quat.)CH3), 23.9 (R(methyne)CH2R), 21.7 (R2CH2).  

IR (CH2Cl2)  ῡmax : 3028, 2939, 2862, 2233, 1650, 1600, 1494, 1446, 1026, 763, 736, 700.   

HRMS calcd for [M+H] 212.1439, found 212.1446. 
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2-Benzyl-2-methyl-4-pentenenitrile (2.38):4  Clear oil, purified over silica, Et2O/Hexanes 

(1.5:8.5).  

1H NMR (500 MHz, CDCl3) δ 7.39 – 7.27 (m, 5H, Ar-H), 5.93 (m, 1H, CH2CH=CH2), 5.25 (d, 2H, J = 

2.0 Hz, CH2CH=CH2), 2.84 (dd, 2H, J = 93.3, 13.6 Hz, CquatCH2Cquat Ar ), 2.34 (dd, 2H, J = 81.4, 7.3 

Hz, CquatCH2CH=CH2), 1.28 (s, 3H, CquatCH3).  

 13C NMR (126 MHz, CDCl3) δ 135.3 (quat. Ar C), 132.0 (RCH=CH2), 130.3 (Ar CH), 128.4 (Ar CH), 

127.3 (Ar CH), 123.5 (RC≡N), 120.26 (RCH=CH2), 44.9 (R(phenyl)CH2R(quat.) ), 43.5 (R(quat)CH2R(vinyl)), 

37.6 (quat. C), 23.5 (RCH3).  

IR (CH2Cl2) ῡmax : 3064, 3029, 2981, 2923, 2232, 1641, 1496, 1454, 995, 923, 759, 702.   

HRMS calcd for [M+Na] 208.1102, found 208.1128.  

   

 

2-benzyl-2-isopropyl-4-pentenenitrile (2.39): Light yellow liquid, purified over silica, 

EtOAc/Hexanes (1:9).   

1H NMR (500 MHz, CDCl3) δ 7.31 – 7.19 (m, 5H, Ph-H), 5.78 (m, 1H, CH2CH=CH2), 5.22 – 5.12 

(dd, 2H, J = 16.9, 1.4 Hz, CH2CH=CH2), 2.76 (dd, 2H, J = 108.0, 13.8 Hz, CquatCH2Ph), 2.21 (dd, 2H, 

J = 45.3, 7.2 Hz, CH2CH=CH2), 1.90 (dq, 1H J = 13.6, 6.8 Hz, CquatCH(CH3)2), 1.04 (dd, 6H, J = 12.7, 

6.8 Hz, CquatCH(CH3)2). 

                                                           
4
 Gao, M.; Wang, D.; Zheng, Q.; Huang, Z.; Wang, M. J. Org.Chem. 2007, 72, 6060-6066. 
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 13C NMR (126 MHz, CDCl3) δ 134.7 (quat. Ar C), 131.0 (RCH=CH2), 129.3 (Ar CH), 127.3 (Ar CH), 

126.2 (Ar CH), 121.7 (RC≡N), 118.8 (RCH=CH2), 45.1 (quat. C), 37.4 (phenyl-CH2R), 36.1 

(R(quat)CH2R(vinyl)), 30.6 (R3CH), 16.76 (RCH3).   

IR (CH2Cl2) ῡmax : 3092, 2966, 2229, 1641, 1602, 1496, 1454, 1392, 1373, 1081, 921, 761, 702.  

HRMS calcd for [M+Na] 236.1415, found 236.1430.   

 

 

2-(2-oxo-2-phenylethyl)-2-phenyl-4-pentenenitrile (2.40): Clear oil, purified over silica, 

Et2O/hexanes, (1:4).  

1H NMR (500 MHz, CDCl3) δ 7.81 (dd, 2H, J = 5.2, 3.3 Hz, COCquat Ar o-ArCH), 7.52 (m, 1H, COCquat 

Ar p-ArCH) 7.48 (m, 2H, COCquat Ar m-ArCH), 7.43 (m, 2H, NCCquatm-Ar-CH), 7.37 (dd, 2H, J = 10.6, 

4.9 Hz, NCCquato-Ar-CH), 7.26 (m, 1H, NCCquatp-Ar-CH), 5.75 (m, 1H, CH=CH2), 5.25 (d, 2H, J = 1.5 

Hz, CH=CH2 ), 3.38 (d, 2H J = 17.8 Hz, CquatCH2CO) 2.65 (dd, 2H, J = 13.9, 7.9 Hz, CquatCH2CH=CH2).   

13C NMR (126 MHz, CDCl3) δ 194.1 (R2C=O ), 137.9 (quat. Ar C), 136.2 (quat. Ar α-C), 133.66 

(acetophenone, p-Ar CH), 131.40 (RCH=CH2), 128.92 (acetophenone, Ar CH), 128.7 

(acetophenone, Ar CH), 127.8 (alkyl phenyl, Ar CH), 127.9 (ArCH) 125.8 (alkyl phenyl, p-Ar CH), 

121.68 (RC≡N), 120.86 (RCH=CH2), 46.37 (α-R2CH2), 45.01 (R2CH2), 43.82 (quat. C).   

IR (CH2Cl2) ῡmax : 3062, 2239, 1689, 1641, 1596, 1579, 1494, 1448, 1218, 993, 927, 754, 690.   

HRMS calcd for [M+Na] 298.1208, found 298.1205. 
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2,2-bis(2-oxo-2-phenylethyl)-4-pentenenitrile (2.44): White solid, purified over silica, 

Et2O/hexanes (1:4). 

1H NMR (500 MHz, CDCl3) δ 7.86 (dd, J = 8.4, 1.2, 4H, COCquat Ar o-ArCH), 7.51 (t, J = 7.4, 2H, 

COCquat Ar p-ArCH), 7.40 (t, J = 7.8, 4H, COCquat Ar m-ArCH), 5.91 (m, 1H, CH2CH=CH2), 5.18 (dd, J = 

18.6, 13.6, 2H, CH2CH=CH2), 3.69 (q, J = 18.2, 4H, 2(CquatCH2CO)), 2.75 (d, J = 7.4, 2H, 

CquatCH2CH=CH2).   

13C NMR (126 MHz, CDCl3) δ 196.2 (2 C, 2(CquatCH2C(=O)Ph)), 136.4 (2 C, quat. Ar C), 133.7 

(CquatCH2CH=CH2), 131.5 (4 C, o-Ar-C), 128.7 (2 C, p-Ar-C), 128.0 (4C, m-Ar-C), 127.9 (s), 122.4 

(NCCquat), 121.3 (CquatCH2CH=CH2), 43.1 (s) 41.7 (2 C, NCCquat(CH2)2C(=O)), 40.8 

(CquatCH2CH=CH2), 35.9 (NCCquat(CH2)2CH2).   

IR (CH2Cl2) ῡmax : 3367, 2358, 2237, 1687, 1596, 1448, 1357, 1000, 929, 754, 688, 408.   

HRMS calcd for [M+H] 318.1494, found 318.1471. 
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2-benzyl-2-(2-oxo-2-phenylethyl)-4-pentenenitrile (2.45): Clear oil, purified over silica, Et2-

O/Hexanes, (1:4).  

1H NMR (500 MHz, CDCl3) δ 7.80 (dd, 2H, J = 8.4, 1.2 Hz, COCquat Ar o-ArCH), 7.52 (m, 1H, COCquat 

Ar p-ArCH), 7.39 (m, 2H, COCquat Ar m-ArCH), 7.23 – 7.19 (m, 5H, CH2Ar-H), 5.87 (m, 1H, CH=CH2), 

5.20 – 5.16 (d, 1H, J = 2.0 Hz, CH=CH2trans), 5.14 (d, 1H, J = 2.9 Hz, CH=CH2cis), 3.23 – 3.06 (dd, 4H, 

J = 40.0, 15.0 Hz, CquatCH2CO; CquatCH2Ph), 2.6 (dd, 2H, J = 13.9, 7.9 Hz, CquatCH2CH=CH2 ).  

13C NMR (126 MHz, CDCl3) δ 195.8 (R2C=O), 136.5 (quat. Ar C), 135.1 (quat. Ar α-C), 133.7 

(RCH=CH2), 131.8 (ArCH), 130.4 (ArCH), 128.7 (ArCH), 128.6 (ArCH), 127.8(ArCH), 127.5 (ArCH), 

122.6 (RC≡N), 120.9 (RCH=CH2), 41.5 (α-R2CH2), 41.3 (R2CH2), 40.88 (R2CH2), 39.6 (quat. C).   

IR (CH2Cl2) ῡmax : 3062, 2921, 2235, 1685, 1596, 1496, 1448,1359, 1000, 752,703.   

HRMS calcd for [M+Na] 312.1364, found 312.1358.  

 

 

2-allyl-2-methyl-4-oxohexanenitrile (2.46):  Clear oil, purified over silica, Et2O/Hexanes (1:3).  

1H NMR (500 MHz, CDCl3) δ 5.84 – 5.73 (m, 1H, CH2CH=CH2), 5.22 – 5.12 (dd, 2H, J = 16.9, 1.4 

Hz, CH2CH=CH2), 2.60 (dd, 2H, J = 77.4, 17.2 Hz, CquatCH2CO), 2.44 – 2.35 (m, 3H,  COCH2CH3, 

CquatHCHCH=CH2), 2.32 (dd, 1H, J = 13.7, 7.3 Hz, CquatHCHCH=CH2), 1.36 (s, 3H, CquatCH3), 1.00 (t, 

3H, J = 7.3 Hz, COCH2CH3).   
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13C NMR (126 MHz, CDCl3) δ 204.34 (R2C=O), 129.24 (RCH=CH2), 120.99 (RC≡N), 118.29 

(RCH=CH2), 46.34 (α-R2CH2), 40.66 (R2CH2), 34.41 (R(C=O)CH2CH3), 31.03 (RquatCH3), 21.57 (quat. 

C), 5.16 (RCH3).   

IR (CH2Cl2) ῡmax : 2979, 2939, 2235, 1716, 1683, 1643, 1458, 1413, 1377, 1363, 1108, 925.   

HRMS calcd for [M+Na] 188.1051, found 188.1049. 

 

 

ethyl 3-cyano-3-methyl-5-hexenoate (2.47): Yellowish liquid, purified over silica, Et2O/Hexanes 

(1:4).  

1H NMR (500 MHz, CDCl3) δ 5.80 (m, 1H, CH2CH=CH2), 5.20 (d, 1H, J = 9.7 Hz, CH2CH=CH2trans), 

5.15 (d, 1H, J = 16.9 Hz, CH2CH=CH2cis), 4.13 (q, 2H, J = 7.1 Hz, COOCH2CH3), 2.57 (d, 1H, J = 15.7 

Hz, CquatHCHCO), 2.41 (dd, 2H, J = 14.7, 6.0 Hz, CquatHCHCO, CquatHCHCH=CH2  ), 2.32 (dd, 1H, J = 

13.7, 7.3 Hz, CquatHCHCH=CH2), 1.38 (s, 3H, CquatCH3), 1.22 (t, 3H, J = 7.2 Hz, COOCH2CH3).   

13C NMR (126 MHz, CDCl3) δ 167.1 (RCO2R), 129.3 (RCH=CH2), 120.8 (RC≡N), 118.9 (RCH=CH2), 

59.0 (ROCH2R), 41.2 (α-R2CH2), 40.2 (R2CH2), 32.06 (RquatCH3), 21.9 (quat. C), 12.1 (RCH3).   

IR (CH2Cl2) ῡmax : 2981, 2939, 1735, 1643, 1448, 1417, 1371,1348, 1201, 1029, 999, 927.   

HRMS calcd for [M+Na] 204.1000, found 204.1004.  
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ethyl 3-cyano-3-isopropyl-5-hexenoate (2.48):  Clear oil, purified over silica, Et2O/Hexanes 

(1.5:8.5).   

1H NMR (500 MHz, CDCl3) δ 5.84 – 5.74 (m, 1H, CH2CH=CH2), 5.16 (dd, 2H, J = 12.3, 1.4 Hz, 

CH2CH=CH2), 4.11 (q, 2H, J = 7.1 Hz, COOCH2CH3), 2.59 (d, 1H, J = 15.6 Hz, CquatHCHCO), 2.53 – 

2.46 (m, 2H, CquatHCHCO, CquatHCHCH=CH2), 2.46 – 2.40 (m, 1H, CquatHCHCH=CH2), 2.01 (dq, 1H, 

J = 13.6, 6.8 Hz, CquatCH(CH3)2), 1.21 (t, 3H, J = 7.1 Hz, COOCH2CH3), 1.01 (dd, 6H, J = 11.1, 6.8 Hz, 

CquatCH(CH3)2).   

13C NMR (126 MHz, CDCl3) δ 169.4 (RCO2R), 131.7 (RCH=CH2), 121.5 (RC≡N), 120.5 (RCH=CH2), 

60.9 (ROCH2R), 43.2 (quat. C), 37.7 (α-R2CH2), 37.2 (R(quat)CH2R(vinyl)), 32.3 (R3CH), 17.8 

(R(isopropyl)CH3), 14.1 (RCH3).   

IR (CH2Cl2) ῡmax : 2977, 2358, 2235, 1737, 1641, 1465, 1444, 1373, 1195, 997, 927.   

HRMS calcd for [M+Na] 232.1313, found 232.1306. 

 

 

2-allyl-2-isopropyl-4-oxohexanenitrile (2.49): Clear oil, purified over silica, Et2O/Hexanes 

(1.5:8.5).  

1H NMR (500 MHz, CDCl3) δ 5.75 (m, 1H, CH2CH=CH2), 5.10 (dd, 2H, J = 25.8, 13.6 Hz, 

CH2CH=CH2), 2.64 (dd, 2H, J = 45.7, 17.4 Hz, CquatCH2C(=O)), 2.48 (d, 2H, J = 7.4 Hz, 

CquatCH2CH=CH2), 2.43 – 2.33 (m, 2H, C(=O)CH2CH3), 2.12 (dt, 1H, J = 13.6, 6.8 Hz, CquatCH(CH3)2), 

0.99 (m, 9H, CquatCH(CH3)2, C(=O)CH2CH3).  
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13C NMR (126 MHz, CDCl3) δ 207.2 (R2C=O), 132.2 (RCH=CH2), 121.9 (RC≡N), 120.1 (RCH=CH2), 

43.5 (α-RCH2R(quat.)), 42.8 (quat. C), 37.3 (α-RCH2CH3), 36.8 (R(quat)CH2R(vinyl)), 31.7 (R3CH), 17.9 

(R(isopropyl)CH3), 7.63 (RCH3).   

IR (CH2Cl2) ῡmax : 3080, 2972, 2939, 2878, 2231, 1720, 1641, 1460, 1413, 1375, 1365, 1110, 925.   

HRMS calcd for [M+H] 194.1545, found 194.1537.       

  

 

diethyl 2-(2-cyanopent-4-en-2-yl)malonate (2.51): Clear oil, purified over silica, Et2O/Hexanes 

(1:5).  

1H NMR (500 MHz, CDCl3) δ 5.88 – 5.74 (m, 1H, CH2CH=CH2), 5.19 (dd, 2H, J = 28.1, 13.6 Hz, 

CH2CH=CH2), 4.24 – 4.15 (m, 4H, CquatCH(C(=O)OCH2CH3)2), 3.46 (s, 1H, CquatCH(C(=O)OCH2CH3)2 

), 2.48 (dd, 2H, J = 106.8, 7.4 Hz, CquatCH2CH=CH2), 1.45 (s, 3H, CquatCH3), 1.23 (dt, 6H, J = 7.1, 

2.9, 0.9 Hz, CquatCH(C(=O)OCH2CH3)2).   

13C NMR (126 MHz, CDCl3) δ 164.23 (RCO2R), 129.1 (RCH=CH2), 119.78 (RC≡N), 119.6 (RCH=CH2), 

60.3 (ROCH2R), 54.9 (R3CH ), 40.0 (R(quat)CH2R(vinyl)), 34.9 (quat. C), 20.3 (R3(quat.) CH3), 12.2 (RCH3).   

IR (CH2Cl2)  ῡmax : 3082, 2983, 2941, 2239, 1755, 1735, 1643, 1465, 1446, 1369, 1305, 1272, 

1224, 1178, 1155, 1031, 999, 929, 860.   

HRMS calcd for [M+Na] 276.1212, found 276.1224.  
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2-methyl-2-phenyl-4-hexenenitrile / (E/Z)-2-methyl-2-phenyl-4-hexenenitrile (2.64/2.65):5 

Clear oil, purified over silica, Et2O/Hexanes (1:9).  

1H NMR (500 MHz, CDCl3) δ 7.43 – 7.19 (m, 5H(Ph-Hlinear), 10H(Ph-Hbranched)), 5.80 (m, 1H, 

branched R2CHCH=CH2), 5.58 – 5.44 (m, 2H, linear CH2CH=CHCH3), 5.35 – 5.20 (m, 1H, linear 

CH2CH=CHCH3), 5.20 – 5.03 (m, 2H, branched R2CHCH=CH2), 5.01 – 4.84 (m, 1H, linear 

CH2CH=CHCH3), 2.61 – 2.40 (m, 4H, (2H Branched Cquat(CH3)CHCH=CH2), (2H Linear 

CquatCH2CH=CHCH3)), 1.66 – 1.57 (m, 12H, (6H branched CquatCH3), (6H linear CquatCH3), 1.10 (d, 

3H, J = 6.8 Hz, 1 diastereomer Cquat(CH3)CHCH=CH2), 0.87 (d, 3H, J = 6.8 Hz, 1 diastereomer 

Cquat(CH3)CHCH=CH2).   

13C NMR (126 MHz, CDCl3) δ 140.1 (ArC) 139.7 (ArC), 138.9 (ArC), 138.4 (ArC), 137.8 (quat. Ar 

C), 131.1 (RCH=CH2), 128.8 (RCH=CHR), 128.5 (ArC), 127.7(ArC),125.8 (Ar C), 125.6 (RC≡N), 

124.4 (RCH=CH2), 117.4 (RCH=CHR), 48.3 (quat. C(branched)), 47.3 (quat. C(linear)), 46.1 

(R(quat)CH2R(vinyl)), 42.5 (R2CHR(vinyl)), 26.4 (R(quat)CH3(linear)), 24.2 (R(quat)CH3(branched)), 18.0 

(R(vinyl)CH3(trans)), 16.9 (R3CH3(allyl)), 15.6 (R(vinyl)CH3(cis)).   

IR (CH2Cl2)  ῡmax : 3028, 2981, 2935, 2235, 1635, 1600, 1494, 1446, 1379, 968, 923, 759, 700.  

HRMS calcd for [M+] 185.1204, found 185.1199. 

 

 

 

                                                           
5
 (a) Gaudin, J.; Millet, P.  Chem. Comm. 2008, 5, 588-590.  (b) Yasui, H.; Yorimitsu, H.; Oshima, K.  Chem. lett. 

2007, 36, 32-33.             
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E)-2-methyl-2,5-diphenyl-4-pentenenitrile (2.67/2.68):  Clear oil, purified over silica, 

Et2O/Hexanes (1:9).  

1H NMR (500 MHz, CDCl3) δ 7.40 (dt, 4H, J = 8.4, 2.3, m-Ar-H ), 7.37 – 7.30 (m, 4H, o-Ar-H ), 7.29 

– 7.13 (m, 2H, p-Ar-H ), 6.40 (d, 1H, J = 15.8, CH=CHCar quat ), 6.06 – 5.95 (m, 1H, CH2CH=CH), 

2.72 (dd, 2H, J = 20.7, 6.8, CquatCH2CH=CH), 1.69 (s, 3H, CquatCH3).  

13C NMR (126 MHz, CDCl3) δ 138.5 (CquatCquat Ar), 135.4 (CH=CHCquat Ar), 133.8 (2C, CH=CH(Ar-m-

CH)), 127.7 (CH=CH), 127.3 (CH=CH(Ar-p-CH)), 126.6 (2C, Cquatm-Ar-CH), 126.4 (2C, CH=CH(Ar-o-

CH)), 125.1 (2C, Cquat(Ar-o-CH)), 124.4 (CquatAr-p-CH), 122.0 (CH2CH=CH) 121.9 (NCCquatCH2), 44.4 

(CquatCH2CH=CH), 41.2 (NCCquatCH2), 25.1 (CquatCH3).   

IR (CH2Cl2) ῡmax :  3028, 2979, 2235, 1598, 1494, 1446, 1260, 968, 800, 763, 748, 698.   

HRMS calcd for [M+Na] 270.1259, found 270.1270.   

 

 

2,2-diallyl-3-phenylpent-4-enenitrile (2.71):  Clear oil, purified over silica, EtOAc/Hexanes 

(0.5:9.5).  

1H NMR (500 MHz, CDCl3) δ 7.31 – 7.24 (m, 4H, o-, m-Ar-CH), 7.22 – 7.19 (m, 1H, p-Ar-CH ), 6.23 

(m, 1H, Cquat(Ph)CHCH=CH2), 5.73 (m, 2H, CquatCH2CH=CH2), 5.20 (dd, 2H, J = 10.2, 1.1 Hz, 
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CquatCH2CH=CH2), 5.18 – 5.13 (m, 1H, Cquat(Ph)CHCH=CH2trans), 5.13 – 5.07 (m, 2H, 

CquatCH2CH=CH2), 5.01 (dd, 1H, J = 17.0, 1.5 Hz, Cquat(Ph)CHCH=CH2cis), 3.27 (d, 1H, J = 9.7 Hz, 

Cquat(Ph)CHCH=CH2trans), 2.49 (dd, 1H, J = 14.1, 6.5 Hz, CquatCH2CH=CH2 ), 2.38 (dd, 1H, J = 14.1, 

8.1 Hz, CquatCH2CH=CH2), 2.10 (qd, 2H J = 14.3, 7.3 Hz, CquatCH2CH=CH2).  

13C NMR (126 MHz, CDCl3) δ 137.8 (Ar-Cquat), 134.9 (Cquat(Ph)CHCH=CH2) 129.6 

(CquatCH2CH=CH2), 127.4 (5C, Ar-CH), 126.2 (CquatCH2CH=CH2), 120.9 (NCCquat), 119.4 

(Cquat(Ph)CHCH=CH2), 118.9 (CquatCH2CH=CH2), 117.6 (CquatCH2CH=CH2), 53.0 

(Cquat(Ph)CHCH=CH2), 42.7 (NCCquatR3), 36.4 (2C, NCCquatCH2CH=CH2).   

IR (CH2Cl2) ῡmax :  3029, 2981, 2920, 2258, 2231, 1639, 1492, 1438, 993, 923, 721, 405.   

HRMS calcd for [M+Na] 260.1415, found 260.1435. 

 

 

2,2-dibenzyl-3-phenylpent-4-enenitrile  (2.74):  White solid, purified over silica, Et2O/Hexanes 

(0.3:9.7).  

1H NMR (500 MHz, CDCl3) δ 7.41 – 6.90 (m, 15H, Ph-H), 6.39 – 6.29 (m, 1H, Cquat(Ph)CHCH=CH2), 

5.30 (s,1H J = 2.0 Hz, CH=CH2trans), 5.12 (d, 1H, J = 16.9 Hz, CH=CH2cis), 3.51 (d, 1H, J = 9.1 Hz, 

Cquat(Ph)CHCH=CH2), 3.06 (d, 1H, J = 13.8 Hz, CquatCH2Ph ), 2.89 (d, 1H, J = 13.8 Hz, CquatCH2Ph), 

2.83 – 2.70 (m, 2H, CquatCH2Ph).  
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13C NMR (126 MHz, CDCl3) δ 139.2 (2C, quat. CquatCH2Cquat Ar),135.4 (CquatCH(Cqaut Ar)CH2), 135.2 

(CH2CH=CH2), 130.8 (6C, o-Ar-CH), 135.2 (ArC), 130.8 (ArC), 130.5 (ArC), 129.6(ArC), 128.5(ArC), 

128.4(ArC), 127.6(ArC), 127.3 (6C, m-Ar-CH), 127.2 (3C, p-Ar-CH ), 122.2 (NCCquat), 120.4 

(CH2CH=CH2), 54.2 (Cquat(Ph)CHCH=CH2), 47.4 (NCCquat(Ph)CH), 39.9 (2C, CquatCH2Ph).   

IR (CH2Cl2) ῡmax :  3029, 2927, 2231, 1600, 1496, 1454,1029, 993, 754, 702.   

HRMS calcd for [M+H] 338.1909, found 338.1926. 
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dibenzyl-3-phenylpent-4-enenitrile, (E)-2,2-dibenzyl-5-phenylpent-4-enenitrile (2.73/2.74):  

White solid, purified over silica, Et2O/Hexanes (0.3:9.7).   

1H NMR (500 MHz, CDCl3) δ 7.30 – 7.12 (m, 18H total, 15H, Ar-Hbranched, (linear 1H=.21) 15H, Ar-

Hlinear), 6.65 (d, 1H, J = 15.7 Hz, CH2CH=CHPh), 6.49 (m, 1H, Cquat(Ph)CHCH=CH2), 6.31 (dd, 1H, J = 

14.4, 8.6 Hz, CH2CH=CHPh), 5.45 (d, 1H, J = 10.1, Cquat(Ph)CHCH=CH2trans), 5.22 (d, 1H, J = 16.9 

Hz, Cquat(Ph)CHCH=CH2cis), 3.63 (d, 1H, J = 8.6 Hz, Cquat(Ph)CHCH=CH2 ), 3.08 (dd, 2H, J = 83.5, 

13.7 Hz, branched CquatCH2Ph), 2.73 (dd, 4H, J = 31.0, 17.4 Hz, linear CquatCH2Ph), 2.65 (dd, 2H, J 

= 18.2, 8.6 Hz, branched CquatCH2Ph), 2.51 (d, 2H, J = 7.2 Hz, linear CquatCH2CH=CHPh ).   

13C NMR (126 MHz, CDCl3) δ 141.9 (6C, CH=CHCquat ar), 137.1 (2C, CquatCH2CquatAr), 133.1 

(RCH=CH2, RCH=CHPh), 128.7 (12C, m-Ar-C), 128.3 (12C, o-Ar-C), 127.5 ( p-Ar-C), 126.5 (m-Ar-C), 

125.44 (o-Ar-C), 125.13 (p-Ar-C), 124.2 (RCH=CHPh), 121.1 (branched, NCCquat), 120.0 (linear, 

NCCquat), 118.23 (RCH=CH2), 52.1 (branched, CquatCH2Ph), 45.2 (CquatCH(CH2)Ph), 40.9 (linear, 

CquatCH2Ph), 40.0 (NCCquat), 37.8 (CquatCH2CH=CHPh ).   

IR (CH2Cl2) ῡmax :  3029, 2927, 2231, 1600, 1496, 1454,1029, 993, 754, 702.   

HRMS calcd for [M+H] 338.1909, found 338.1926. 
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Characterization of Allyl cyanoacetates: 

 

(2.12) allyl 2-cyano-2-phenylacetate (TR1-065) 

1H NMR (400 MHz, CDCl3) δ 7.56 – 7.34 (m, 5H, CHAr), 5.86 (ddt, J = 17.2, 10.4, 5.7 Hz, 1H, 

CH2CHvinyl), 5.33 – 5.18 (m, 2H, C(H)CH2), 4.81 (s, 1H, CHtertiary), 4.66 (dt, J = 5.7, 1.5 Hz, 2H, 

ROCH2). 

 

 

(2.26) cyclohex-2-en-1-yl 2-cyano-2-phenylacetate  

1H NMR (400 MHz, CDCl3) δ 7.67 – 7.35 (m, 5H, CHAr), 6.02 (dq, J = 14.1, 4.2 Hz, 1H,CHvinyl), 5.83 

– 5.60 (m, 1H, CHvinyl), 5.31 (t, J = 4.5 Hz, 1H, ROCHCy), 4.73 (s, 1H, CHtertiary), 2.29 – 1.94 (m, 2H, 

CvinylCH2), 1.92 – 1.47 (m, 4H, CH2). 

 

 

2-methylallyl 2-cyano-2-phenylacetate (TR1-126) 
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1H NMR (400 MHz, CDCl3) δ 7.57 – 7.32 (m, 5H, CHAr), 4.95 (qd, J = 2.4, 1.0 Hz, 2H, C(H)CH2), 

4.79 (s, 1H, CHtertiary), 4.67 – 4.52 (m, 2H, ROCH2), 1.71 (s, 3H, CH3). 

 

 

allyl 2-cyano-2-phenylpropanoate (TR1-096) 

1H NMR (400 MHz, CDCl3) δ 7.64 – 7.53 (m, 2H, CHAr), 7.51 – 7.36 (m, 3H, CHAr), 5.94 – 5.76 (m, 

1H, CH2CHvinyl), 5.35 – 5.19 (m, 2H, CvinylCH2), 4.77 – 4.61 (m, 2H, ROCH2), 2.00 (s, 3H, CH3). 

 

 

2-methylallyl 2-cyano-2-phenylpropanoate (TR1-189) 

1H NMR (400 MHz, CDCl3) δ 7.65 – 7.50 (m, 2H, CHAr), 7.50 – 7.35 (m, 3H, CHAr), 4.91 (d, J = 3.0 

Hz, 2H, CvinylCH2), 4.67 – 4.52 (m, 2H, ROCH2), 2.00 (s, 3H, CquatCH3), 1.66 (s, 3H, CH3). 

 

 

cyclohex-2-en-1-yl 2-cyano-2-phenylpropanoate (TR1-257) 
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1H NMR (500 MHz, CDCl3) δ 7.52 – 7.43 (m, 2H, CHAr), 7.40 – 7.26 (m, 3H, CHAr), 5.99 – 5.81 (m, 

2H, CHvinyl), 5.66 (ddt, J = 10.1, 4.0, 2.2 Hz, 1H, CHvinyl), 5.49 (ddt, J = 9.7, 4.2, 2.2 Hz, 1H, CHvinyl), 

5.25 – 5.12 (m, 1H, ROCHCy), 2.05 – 1.91 (m, 5H, CvinylCH2 and CH3), 1.91 –1.43 (m, 4H, CH2). 

13C NMR (126 MHz, CDCl3) δ 167.5, 135.8, 134.2, 129.1, 128.7, 125.7, 124.0, 123.9, 119.6, 71.2, 

27.6, 24.7, 18.4. 

 

allyl 2-cyano-2-methyl-3-phenylpropanoate (TR2-063) 

1H NMR (500 MHz, CDCl3) δ 7.43 – 7.25 (m, 5H), 5.85 (ddt, J = 16.4, 10.9, 5.8 Hz, 1H), 5.38 – 5.22 

(m, 2H), 4.65 (dd, J = 6.5, 2.7 Hz, 2H), 3.27 (d, J = 13.6 Hz, 1H), 3.08 (d, J = 13.6 Hz, 1H), 1.65 (s, 

3H). 

 

 

allyl 2-benzyl-2-cyano-3-methylbutanoate (TR2-017) 

1H NMR (500 MHz, CDCl3) δ 7.45 – 7.24 (m, 5H), 5.70 (ddt, J = 17.2, 10.3, 5.8 Hz, 1H), 5.25 – 5.14 

(m, 2H), 4.57 – 4.42 (m, 2H), 3.26 – 3.17 (m, 1H), 3.14 – 3.04 (m, 1H), 2.38 (hept, J = 6.7 Hz, 1H), 

1.27 (d, J = 6.8 Hz, 3H), 1.11 (d, J = 6.7 Hz, 3H). 
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allyl 2-cyano-4-oxo-2,4-diphenylbutanoate (TR1-198) 

1H NMR (400 MHz, CDCl3) δ 7.47 (m, 10H), 6.02 – 5.80 (m, 1H), 5.43 – 5.18 (m, 2H), 4.85 – 4.62 

(m, 2H). 

 

 

allyl 2-cyano-4-oxo-2-(2-oxo-2-phenylethyl)-4-phenylbutanoate (TR1-221) 

1H NMR (400 MHz, CDCl3) δ 8.15 – 7.92 (m, 4H), 7.72 – 7.58 (m, 2H), 7.58 – 7.44 (m, 4H), 6.09 – 

5.87 (m, 1H), 5.56 – 5.41 (m, 1H), 5.39 – 5.27 (m, 1H), 4.88 – 4.72 (m, 2H), 4.09 – 3.84 (m, 4H). 

 

 

allyl 2-benzyl-2-cyano-4-oxo-4-phenylbutanoate (TR1-228) 

1H NMR (500 MHz, CDCl3) δ 7.89 – 7.77 (m, 2H), 7.57 – 7.49 (m, 1H), 7.44 – 7.37 (m, 2H), 7.33 – 

7.22 (m, 5H), 5.74 (ddt, J = 17.3, 10.5, 5.7 Hz, 1H), 5.25 (dq, J = 17.2, 1.4 Hz, 1H), 5.17 (dq, J = 
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10.4, 1.2 Hz, 1H), 4.66 – 4.58 (m, 1H), 4.58 – 4.50 (m, 1H), 3.70 (d, J = 17.9 Hz, 1H), 3.55 – 3.41 

(m, 1H), 3.27 – 3.22 (m, 1H), 3.18 – 3.13 (m, 1H). 

13C NMR (126 MHz, CDCl3) δ 194.3, 168.3, 135.3, 134.0, 133.3, 130.7, 130.1, 128.8, 128.3, 

128.0, 119.2, 118.7, 67.3, 46.5, 45.1, 42.7. 

 

 

allyl 2-cyano-2-methyl-4-oxohexanoate (TR1-269) 

1H NMR (500 MHz, CDCl3) δ 5.88 (ddt, J = 17.2, 10.4, 5.7 Hz, 1H), 5.36 (dq, J = 17.2, 1.5 Hz, 1H), 

5.24 (dq, J = 10.4, 1.2 Hz, 1H), 4.72 – 4.59 (m, 2H), 3.14 – 3.07 (m, 1H), 2.97 – 2.88 (m, 1H), 2.40 

(q, J = 7.3 Hz, 2H), 1.60 – 1.56 (s, 3H), 1.02 (t, J = 7.3 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 205.6, 168.8, 130.8, 119.5, 119.3, 67.3, 49.2, 39.6, 35.4, 23.7, 7.4. 

 

1-allyl 4-ethyl 2-cyano-2-methylsuccinate (TR1-268) 

1H NMR (500 MHz, CDCl3) δ 5.88 (ddt, J = 17.2, 10.5, 5.7 Hz, 1H), 5.35 (dq, J = 17.2, 1.4 Hz, 1H), 

5.25 (dq, J = 10.4, 1.2 Hz, 1H), 4.72 – 4.61 (m, 2H), 4.13 (q, J = 7.1 Hz, 2H), 2.99 (d, J = 17.1 Hz, 

1H), 2.77 (d, J = 17.1 Hz, 1H), 1.61 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 168.6, 168.4, 130.7, 119.5, 119.2, 67.4, 61.6, 41.7, 40.5, 23.8, 14.1. 
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1-allyl 4-ethyl 2-cyano-2-isopropylsuccinate (TR2-011) 

1H NMR (400 MHz, CDCl3) δ 6.10 – 5.89 (m, 1H), 5.46 (dt, J = 17.0, 1.4 Hz, 1H), 5.33 (dd, J = 10.0, 

1.6 Hz, 1H), 4.75 (dd, J = 6.7, 2.1 Hz, 2H), 4.20 (qd, J = 7.5, 1.8 Hz, 2H), 3.12 – 2.98 (m, 1H), 2.96 

– 2.80 (m, 1H), 2.17 (hept, J = 6.8 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H), 1.15 (d, J = 6.8 Hz, 3H), 1.11 (d, 

J = 6.8 Hz, 3H). 

 

 

allyl 2-cyano-2-isopropyl-4-oxohexanoate (TR2-009) 

1H NMR (500 MHz, CDCl3) δ 6.05 – 5.90 (m, 1H), 5.46 (ddt, J = 17.0, 2.8, 1.5 Hz, 1H), 5.32 (ddt, J 

= 10.2, 2.7, 1.4 Hz, 1H), 4.73 (ddd, J = 5.6, 2.5, 1.2 Hz, 2H), 3.18 – 3.07 (m, 1H), 3.05 – 2.95 (m, 

1H), 2.48 (qd, J = 7.3, 2.1 Hz, 2H), 2.11 (heptd, J = 6.8, 2.1 Hz, 1H), 1.13 (dd, J = 6.9, 2.1 Hz, 3H), 

1.09 (td, J = 6.7, 3.2 Hz, 6H). 

 

2-allyl 1,1-diethyl 2-cyanopropane-1,1,2-tricarboxylate (TR2-008) 
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1H NMR (500 MHz, CDCl3) δ 5.92 – 5.81 (m, 1H), 5.37 (dq, J = 17.2, 1.4 Hz, 1H), 5.26 (dq, J = 

10.5, 1.2 Hz, 1H), 4.67 (dd, J = 5.8, 2.4 Hz, 2H), 4.29 – 4.13 (m, 4H), 3.95 (s, 1H), 1.66 (s, 3H), 

1.26 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 167.8, 165.8, 165.2, 130.5, 119.7, 117.4, 67.8, 62.7, 62.6, 56.7, 

43.4, 22.44, 14.0, 13.9. 

 

 

but-2-en-1-yl 2-cyano-2-phenylpropanoate (TR2-097) 

1H NMR (500 MHz, CDCl3) δ 7.56 – 7.38 (m, 2H), 5.89 – 5.77 (m, 0H), 5.64 – 5.50 (m, 0H), 4.74 

(d, J = 3.1 Hz, 0H), 4.62 (m, 1H), 1.74 (ddq, J = 4.9, 2.5, 1.3 Hz, 1H), 1.57 (d, J = 3.6 Hz, 1H). 

 

 

()-but-3-en-2-yl 2-cyano-2-phenylpropanoate (TR1-202) 

1H NMR (400 MHz, CDCl3) δ 7.55 (m, 5H), 7.50 – 7.33 (m, 5H), 5.91 – 5.79 (m, 1H), 5.77 – 5.64 

(m, 1H), 5.42 – 5.36 (m, 2H), 5.35 – 5.29 (m, 1H), 5.20 (dt, J = 10.6, 1.1 Hz, 1H), 5.08 (dtd, J = 

12.9, 2.3, 1.1 Hz, 2H), 1.98 (s, 6H), 1.38 (dd, J = 6.6, 0.7 Hz, 3H), 1.29 – 1.22 (m, 3H). 
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cinnamyl 2-cyano-2-phenylpropanoate (TR1-163) 

1H NMR (400 MHz, CDCl3) δ 7.67 – 7.54 (m, 2H), 7.50 – 7.39 (m, 3H), 7.40 – 7.29 (m, 5H), 6.59 

(dq, J = 15.9, 1.3 Hz, 1H), 6.22 (dtd, J = 16.0, 6.3, 0.9 Hz, 1H), 4.86 (dt, J = 6.0, 1.2 Hz, 2H), 2.02 

(d, J = 1.0 Hz, 3H). 

 

 

cinnamyl 2-allyl-2-cyanopent-4-enoate (TR2-175) 

1H NMR (500 MHz, CDCl3) δ 7.46 – 7.40 (m, 2H), 7.37 (m, 1H), 7.34 – 7.29 (m, 2H), 6.73 (dt, J = 

15.9, 1.3 Hz, 1H), 6.29 (dt, J = 15.8, 6.6 Hz, 1H), 5.92 – 5.79 (m, 2H), 5.29 (dq, J = 5.5, 1.3 Hz, 2H), 

5.26 (t, J = 1.3 Hz, 2H), 4.87 (dd, J = 6.6, 1.4 Hz, 2H), 2.76 – 2.66 (m, 2H), 2.64 – 2.56 (m, 2H). 

 

 

1-phenylallyl 2-benzyl-2-cyano-3-phenylpropanoate (TR2-093) 
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1H NMR (500 MHz, CDCl3) δ 7.32 (m, 6H), 7.30 – 7.23 (m, 5H), 7.18 (m, 5H), 7.09 – 7.01 (m, 3H), 

6.12 (m,1H), 5.67 (dd, J = 17.2, 10.5, 5.8 Hz, 1H), 5.09 (ddd, J = 10.5, 2.3, 1.1 Hz, 1H), 5.00 (ddt, J 

= 17.2, 2.6, 1.3 Hz, 1H), 3.36 (dd, J = 13.5, 5.5 Hz, 2H), 3.14 (ddd, J = 16.0, 13.5, 2.0 Hz, 2H), 2.20 

(m, 1H), 1.60 – 1.53 (m, 1H). 
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Chapter III.  

Decarboxylative Benzylation and Arylation of Nitriles 
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CIII.1 Nucleophilic additions to palladium-π-benzyl complexes  

 Alkylation of benzylic halides for the incorporation of aromatic moieties is ubiquitous in 

organic synthesis.1  Despite the vast number of literature reports utilizing benzylic halides, 

these procedures typically require stoichiometric amounts of base2-4 or organometallics,5-8 in 

addition to necessitating expensive and difficult to handle halogenated reagents (eq. 1, scheme 

3.1).9  An alternative method makes use of activated benzyl alcohols that are less expensive and 

easier to handle than the halide variants (eq. 2, scheme 3.1).  Analogous to the use of activated 

allyl alcohol moieties in palladium-catalyzed allylation protocols,10 benzyl alcohol moieties are 

activated as benzyl acetates and can be utilized as benzylating reagents via the intermediacy of  

 

Scheme 3.1  

Pd-π-benzyl complexes (eq. 2, scheme 3.1).11  To date, a number of examples for the addition of 

highly stabilized nucleophiles to benzyl acetates and carbonates have been reported.12-24  

Legros reported the substitution of naphthylmethyl-, and quinolylmethyl acetates with 

dimethylmalonate nucleophiles in presence of a Pd(0) catalyst.12,13  The reaction is proposed to 

proceed via the electrophilic Pd-π-naphthyl complex 3.1 (scheme 3.2).  This report is significant 

because it suggests that palladium-catalyzed dearomatization of naphthylmethyl acetates   
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Scheme 3.2  

induces ionization of the benzyl acetate moiety.12   The ionization leads to the formation of Pd-

π-naphthyl complexes capable of being intercepted with various nucleophiles.  It should be 

noted that the adjacent aromatic ring compensates for the thermodynamic disfavorability of 

dearomatizing the naphthyl moiety.  To address this issue, Kuwano reported the palladium-

catalyzed ionization of benzyl carbonate moieties lacking extended conjugated systems capable 

 

Scheme 3.3  

of compensating for the loss of aromatization (3.2, scheme 3.3).14  In addition to the 

intermolecular substitution of benzyl acetates with distabilized nucleophiles,19 Kuwano has also 
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developed a method for the intramolecular decarboxylative etherfication of benzyl aryl 

carbonates 3.3 that ionize upon treatment with a DPEphos ligated palladium-catalyst.18  

Subsequent decarboxylation reveals the relatively stabilized phenoxide anion and the η3-Pd-π-

benzyl complex 3.2 which is in equilibrium with the phenol coordinated η1-Pd-σ-benzyl complex 

3.4 (scheme 3.3).  Reductive elimination regenerates the palladium catalyst and produces the 

benzylated phenol 3.5 (scheme 3.3).  The catalytic cycle shown in Scheme 3.3 represents the 

proof of concept needed for the intramolecular decarboxylative coupling of carbon 

nucleophiles.  In this reactive manifold, Chruma reported the decarboxylative benzylation of 

diphenylglycinate imines in which C-C bond formation proved to be problematic if the 

nucleophiles were not highly stabilized.20  In another report, Torregrosa and Tunge describe the 

palladium-catalyzed decarboxylative naphthylmethylation, and quinolylmethylation of non-

stabilized alkynes and ketones.22  However, despite numerous examples of naphthyl- and 

quinolylmethylaltion, only a single example for the decarboxylative arylmethylation (ie. 

benzylation) of ketones is reported (scheme 3.4). 

 

Scheme 3.4 

Based on the above literature precedent regarding the substitution of benzyl acetate 

moieties via the proposed intermediate Pd-π-benzyl complexes,12-24 studies to investigate the 

feasibility of the decarboxylative benzylation of nitriles were initiated.25  Analogous to DcA of 
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nitriles, it is known that treatment of benzyl cyanoacetates with an appropriate palladium 

catalyst generates a metallated nitrile in situ under formally neutral conditions.26  In addition, 

recombination of the Pd-π-benzyl complex and the nitrile-stabilized carbanion facilitates C–C 

bond formation generating a newly benzylated nitrile.  Given the prevalence of nitriles27 and 

heteroaromatic functionalities28,29 in biologically relevant molecules, an investigation into the 

decarboxylative benzylation of electron rich and electron deficient heteroaromatic arylmethyl- 

as well as arylmethyl cyanoacetates is described.25  It should be noted that these are the first 

reported examples for the addition of non-stabilized nitriles to Pd-π-benzyl complexes.  

CIII. 2 Decarboxylative Benzylation of Nitriles 

 CIII. 2.1 Decarboxylative arylmethylation of cyanoacetates 

 Nucleophilic substitution of benzyl halides is a commonly used method for the 

introduction of aromatic functionalities.1  Given that benzyl halides are known to be toxic,9 

costly and difficult to handle reagents, an investigation into the feasibility of employing 

activated benzyl alcohols for the decarboxylative benzylation (DcB) of nitriles is detailed.25  

Initial studies involved identifying a metal catalyst competent for selectively promoting C–C 

bond formation. Current literature precedent identifies α-naphthylmethyl acetate moieties as 

an ideal test substrate for probing the reactivity of various metal-ligand combinations (Table 

3.1).12,13,22  Exposure of the naphthylmethyl cyanoacetates 3.6 to the non-ligated and ligated 

ruthenium-catalyst in both methylene chloride and toluene did not show any consumption of 

the starting material (entries 1-3, Table 3.1).  This observation suggests that the ruthenium-

catalyst was not reactive toward ionization of the benzyl acetate moiety.  Hiyama17 and Tunge22  
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Table 3.1 Conditions for decarboxylative arylmethylation nitriles  

 

independently report that the combination of CpPd(allyl) and bidendate ligands were reactive 

catalysts toward the ionization of benzyl acetate functionalities.  However, subjecting 

naphthylmethyl cyanoacetate to a rac-BINAP ligated CpPd(allyl) catalyst resulted in an equal 

distribution of monobenzylated (3.7, Table 3.1), di-benzylated (3.8), and protonation (3.9) 

products (entry 4, Table 3.1).14  Exposure of the same substrate to Pd(PPh3)4 in refluxing 

toluene generated a 2.5 : 1 ratio of 3.7 : 3.8 without any evidence of the formation of 3.9 (entry 

5, Table 3.1).22  Although, treatment of α-phenyl, naphthylmethyl cyanoacetate with the 

Pd(PPh3)4 results in the formation of a 4 : 1 ratio of monobenzylation 3.7 to protonation 3.9,  

with the dibenzylation product 3.8 not observed (entry 6, Table 3.1).  Based on the selectivity 

for C–C bond formation obtained with the Pd(PPh3)4 (entry 6, Table 3.1),  α-phenyl benzyl 

cyanoaceatate is examined under identical reaction conditions (entry 7, Table 3.1).  Complete 
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consumption of the starting material ester was observed, suggesting ionization of the acetate 

moiety, however the catalyst was not competent for C–C bond formation (entry 7, Table 3.1).22  

It should be noted that ionization of benzyl acetates involves partial dearomatization of a 

benzene moiety lacking an adjacent aromatic ring capable of compensating for the loss in 

aromaticity.19  For this reason p-methoxyphenylmethyl cyanoacetate was treated under 

conditions reported by Tunge for the decarboxylative benzylation of ketones (entry 8, Table 

3.1).22  The results showed that dibenzylation 3.8 is the major product in addition to the 

formation of equal amounts of 3.7 and 3.9 (entry 8, Table 3.1).  Results obtained during the 

development of the DcA of nitriles suggest the α-protio cyanoacetate substrate is likely the 

source of the protonated product (section 2, Chapter II).  Furthermore, the observed C–C bond 

formation with the dppf-ligated CpPd(allyl) leads to utilization of this catalyst for the 

decarboxylative benzylation of the α-phenyl, α-methyl benzyl cyanoacetate 3.10 (Table 3.2).17  

A brief screen of various catalyst conditions competent for facilitating ionization of the benzyl 

acetate moiety in addition to promoting C–C bond formation are detailed in Table 3.2.  Use of a 

catalytic amount of Pd(PPh3)4 as reported by Tunge,22 led only to the formation of the 

protonation product 3.12 (entry 1, Table 3.2).  A similar product distribution is observed when 

using precatalyst Pd2(dba)3 and bulky monodentate Xphos ligand (entry 2, Table 3.2).14 

However, switching to the dppf- ligated CpPd(allyl) catalyst led to nearly exclusive formation of 

the benzylated nitrile 3.11 (entry 3, Table 3.2).17  These newly found reaction conditions are 

utilized to investigate the scope of the decarboxylative arylmethylation of nitriles.  As shown in 

Table 3.2, treatment of 2-methylbenzyl-, and benzyl cyanoacetate with a dppf-ligated 

CpPd(allyl) facilitates loss of CO2, producing the benzylated nitriles 3.11 and 3.13 in 93% and    
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Table 3.2 Decarboxylative benzylation of nitriles  

 

87% yield, respectively (Table 3.3). It should be noted that decarboxylative benzylation does not 

proceed at room temperature.  As discussed in Chapter II, loss of CO2 in the DcA of 

phenylacetonitrile-stabilized carbanions proceeds at room temperature.  The needed increase 

in temperature for the DcB of nitriles suggests that, due to the dearomatization required, 

ionization of the benzyl acetate moiety is rate-limiting.26  Introducing electron-withdrawing 

(3.15, 3.16, Table 3.3), as well as electron-donating (3.14, Table 3.3) substituents on the 

benzylating coupling partner has a minimal effect on reactivity and accounts for a 10% 

difference in yield (3.143.15, Table 3.3).  Arylmethyl ester substrates with extended 

conjugation capable of compensating for the loss of aromaticity upon ionization of the benzyl 

acetate moiety undergo decarboxylative coupling to produce compounds 3.17 and 3.18 in 83% 

and 80% yield, respectively (Table 3.3).12,13,22  Last, using a para-chlorobenzyl nitrile nucleophile 

results in a minor decrease in yield as shown by compound 3.19 (Table 3.3).16  To further               
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Table 3.3 Decarboxylative arylmethylation of nitriles 

 

investigate the scope of the decarboxylative arylmethylation reaction, various α-nitrile 

substituents are examined.  Having shown the decarboxylative allylation of various 

phenylacetonitrile moieties,26 studies employing similar functionalities for the decarboxylative 

arylmethylation of nitriles are detailed in Table 3.4.  Exchanging a methyl substituent for an 

aceto-, ethyl ester functional group (3.20, entry 1, Table 3.4) provided the benzylated nitrile in 

66% yield in addition to a substantial amount of the competing protonation product.  When an 

isopropyl containing substrate 3.21 is subjected to the dppf-ligated Pd-catalyst, equal amounts 

of C–C bond formation and protonation are observed (entry 2, Table 3.4).26 This deterioration 

of selectivity is likely due to the increased steric demand of the nitrile-stabilized carbanion 

containing the isopropyl unit.  Introducing a β-methylallyl substituent (3.22, Table 3.4) leads to 

a more selective C–C bond formation, however does not completely circumvent the protonated    
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Table 3.4 Scope of the decarboxylative arylmethylation of Nitriles 

 

byproduct (entry 3, Table 3.4).  This observation is in accordance with studies reported by 

Grenning and Tunge suggesting that allylated nitrile-stabilized carbanions are competent 

nucleophiles for additions to Pd-π-complexes.26,30  Further investigation into the scope of this 

reaction reveals that a long chain aliphatic substituent renders the arylmethyl cyanoacetate 

3.23 non-reactive (entry 4, Table 3.4).  Additionally, dialkyl arylmethyl cyanoacetate substrate 

3.24 is not activated toward C-C bond formation providing only the protonation by-product 

(entry 5, Table 3.4).  This result is not agreement with studies performed in Chapter II detailing 

the decarboxylative coupling of dialkyl nitrile-stabilized anions, in which dialkyl cyanoacetates 

were readily allylated.26   

 To this point, it was established that utilizing CpPd(allyl) as precatalyst and dppf as 

ligand generates a catalytic complex that is competent for promoting C–C bond formation and 

minimizing the amount of observed protonation by-product.  In addition, it was determined 

that α-phenyl nitrile-stabilized carbanions are reactive toward the Pd-π-benzyl complexes 

generated upon the dearomatization/ionization of the benzyl acetate moieties.  A brief 
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summary of the previous studies conducted in this section suggest that substituents placed on 

the benzyl/arylmethyl substituent likely does not affect the overall yield of the decarboxylative 

arylmethylation reaction.  In addition, alkyl substituents other than methyl groups are 

tolerated, albeit in conjunction with substantial amounts of the protonation byproduct.  In 

continuation with the investigation of the decarboxylative benzylation of nitriles, the next 

section details the development of the decarboxylative heteroarylmethylation of nitriles.25   

 CIII. 2.2 DcB of heteroarylmethyl cyanoacetates 

 Heteroaromatic compounds such as furans, thiophenes, indoles, and pyridines are 

present in many active pharmaceutical ingredients as well as biologically active natural 

products.28,29  Typically these heteroaromatic functionalities are introduced via nucleophilic31 or 

electrophilic32 aromatic substitution. Traditional metal-catalyzed cross-coupling reactions have 

also been employed;33 however these methods typically require activation of preformed 

organometallic reagents and produce stoichiometric amounts of potentially hazardous metal 

waste.  The palladium-catalyzed decarboxylative heteroarylmethylation of nitrile-stabilized 

carbanions serves to complement known cross-coupling methodologies via achieving C–C bond 

formation while generating CO2 as the sole reaction by-product.34  Preliminary studies 

identified Pd(PPh3)4 as an efficient catalyst for the decarboxylative heteroarylmethylation of 

nitriles, these results were in accordance with studies reported by Tunge involving the 

decarboxylative quinolylmethylation of alkynes.22  3-, and 2-thiophenylmethyl cyanoacetates 

undergo Pd(PPh3)4-catalyzed coupling to provide products of heteroarylmethylated nitriles 

3.25, and 3.26 in 88% and 86% yield, respectively (Table 3.5).  In addition, 3-furylmethylated  
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Table 3.5 Decarboxylative Heteroarylmethylation of nitriles  

 

and 2-benzofuranylmethylated nitriles 3.27 and 3.29 are obtained in 87% and 50% via similar 

reaction conditions. The decrease in yield with the benzofuranyl product 3.29 is not currently 

understood; however analysis of spectral data suggests a mixture of protonation and homo-

coupling of the palladated-2-methylbenzofuran moiety.35,36 A similar product distribution is 

observed with the Boc-protected indole substrates as well, resulting in a diminished 31% yield 

(3.31, Table 3.5).20  However, C–C bond formation required a change in catalyst from the 

Pd(PPh3)4 to a dppf-ligated CpPd(allyl) complex.  Given that pyridines are present in many 

pharmaceutical compounds, the α-picolyl nitrile was highly coveted.  Numerous attempts to 

synthesize a variety of picolyl cyanoacetates failed.  However, α-phenyl, α-methyl α-picolyl 

cyanoacetate 3.33 is obtained (appendix B) and it is determined that Pd(PPh3)4 readily ionizes 

the arylmethyl acetate moiety providing exclusively the protonation product 3.12 (Table 3.6).   
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Table 3.6 Decarboxylative arylmethylation from α-picolyl cyanoacetates  

 

Based on this result, a series of bidentate ligand and CpPd(allyl) combination were screened in 

order to determine catalytic condition for C–C bond formation.  As detailed in Table 3.6, 

attempts with dppf- and dppe-ligated CpPd(allyl) catalyst14,22 in toluene at 95 °C delivered only 

the protonation product, however switching to rac-BINAP20 delivered the benzylated product 

3.32 along with equal amounts of the competing protonation.  Purification of the crude mixture 

resulted in a 35% yield of nitrile 3.32 (Table 3.5).  It should be noted that simply changing the 

solvent from toluene to THF resulted in complete suppression of C–C bond formation.  

Returning to investigating the scope of the decarboxylative arylmethylation of nitriles, focus 

was then placed on furyl-2-methyl cyanoacetates (3.4, scheme 3.5).  Preliminary attempts to 

obtain the benzylated nitrile 3.30 employing Pd(PPh3)4 as catalyst resulted in formation of the 

decarboxylative arylation product 3.35 (scheme 3.5).  As a result of this observation, Chapter III, 

section 3 is dedicated to identification of catalytic conditions for decarboxylative 

arylmethylation of nitriles.  In this vein, the target method development became determination 

of conditions for selectively obtaining the competing benzylation and arylation products.  It has 
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now been determined that treatment of furylmethyl cyanoacetate 3.34 with an (S)-DTMB-

SEGPHOS (see Table 3.7) ligated palladium catalyst delivers the benzylated nitrile 3.30 in 65% 

yield with 11% ee (Table 3.5). 

 

Scheme 3.5  

 To this point, it has been determined that Pd(PPh3)4 is competent for facilitating the 

decarboxylative heteroarylmethylation of nitriles with substrates containing thiophenylmethyl- 

and furylmethyl-, and benzofurylmethyl- acetate moieties.  Substrates containing indolyl- and 

picolyl- residues also undergo decarboxylative arylmethylation with bidentate palladium 

catalyst, albeit with reduced yields.  Last, it was discovered that treatment of 2-methylfuryl 

cyanoacetates 3.34 resulted in the decarboxylative arylation of nitriles.  The following section 

will detail the investigation into developing reaction conditions necessary for selectively 

obtaining the products of decarboxylative arylation and benzylation. 

CIII. 3 Decarboxylative Arylation vs. Benzylation of Nitriles 

Recently, transition metal–catalyzed decarboxylative arylations have emerged as an 

alternative to traditional cross–coupling procedures.37-41 These methods typically involve loss of 

CO2 to generate a metalated anion intermediate that can then be intercepted with an aryl 
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halide.  In addition to aryl anions, there are a myriad of nucleophiles that can be generated via 

the loss of carbon dioxide.34,42 More specifically Kwong reported the palladium-catalyzed, base-

mediated decarboxylative arylation of nitrile carboxylates via aryl halides.43  The reaction is 

proposed to proceed via transmetalation of a metalated nitrile to an aryl-palladated species, 

which subsequently undergoes a reductive elimination to generate the arylated nitrile.  In a 

similar reactive manifold, Verkade,44,45 Hartwig,46,47 as well as Fleming and Knochel48 report the 

palladium-catalyzed arylation of metalated nitriles.  Alternatively, Fu discloses obtaining α-

arylnitriles via a nickel-catalyzed Hiyama-type cross-coupling reaction from α-chloronitriles and 

aryltrifluorosilanes.8  An additional report from Hartwig describes obtaining the phenyl 

acetonitriles from trimethylsilyl acetonitrile and aryl halides.49  The above methods share two 

attributes: (1) the nitrile requires base activation or prefunctionalizaton; (2) the arylating 

coupling partner is either an aryl halide or preformed organometallic reagent.  The 

decarboxylative arylation of furfuryl cyanoacetate 3.34 generates a palladated nitrile via 

decarboxylation as well as the arylating Pd-π-furfuryl complex (I, scheme 3.6).25,50  There are 

two examples for arylation via the intermediacy of Pd- π-benzyl complexes currently in the 

literature.51,52  The following describes the palladium-catalyzed decarboxylative arylation and 

benzylation of furfuryl cyanoacetates.25  
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Scheme 3.6  

At this point it should be noted that the arylated product 3.35 is formed when 3.34 is 

exposed to Pd(PPh3)4.  As a result of the observed selectivity for the arylated product, 

developing the current method mainly involves screening for catalytic conditions that 

promoted decarboxylative benzylation of the furfuryl cyanoacetate 3.34 (Table 3.7).  As 

detailed in Table 3.7, monodentate Pd(PPh3)4 facilitates formation of the arylation product 3.35 

(entry 1, Table 3.7).  Previous studies involving the decarboxylative arylmethylation of 

arylmethyl cyanoacetates identified that CpPd(allyl) in conjunction with bidentate ligands 

efficiently ionized benzyl acetate moieties.13,22  However, based on the reactivity observed with 

Pd(PPh3)4, a reaction employing the more electron rich monodentate  tricyclohexylphosphine 

ligand did not provide the benzylation product (entry 2, Table 3.7).  An evaluation of the dppe-

ligated Pd catalyst as reported by Kuwano14 resulted in exclusive formation of the protonation 

product 3.12 when performed in both toluene and THF (entry 3 and 4).  A modest selectivity for 

the formation of the benzylation product with respect to the arylation product was first 

observed with dppf as ligand, however the crude product mixture includes an equal amount of 

the protonation product.14,22  As previously reported for the DcA of sulfones53 and nitriles,26 
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Table 3.7 Conditions for decarboxylative arylmethylation of furfuryl cyanoacetate  

 

rac- BINAP was the ligand of choice for circumvention of protonation product.  Use of the rac-

BINAP-ligated catalyst provided selective formation of the arylmethylated product and nearly 

circumvented the protonation product (entry 7, Table 3.7).  Realizing that steric bulk could be 

the rationale for the observed switch in selectivity from arylation to benzylation products; bulky 

(S)-DTBM-SEGPHOS was screened and found to favor formation of the arylmethylated nitrile 

3.30, with only a trace amount of protonation (entry 9).  As a result of employing the 

enantioenriched (S)-DTBM-SEGPHOS, 3.30 was analyzed by chiral stationary phase HPLC, 

however very little enantioenrichment was observed (11% ee).  
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Determining the conditions for both decarboxylative arylation and arylmethylation of 

furfuryl cyanoacetates lead to an investigation into identifying similar conditions for the 

thiophenyl reactant 3.36 (Table 3.8).  Preliminary evaluation of reaction temperature suggested 

that ionization of the thiophenyl-2-methyl acetate moiety does not take place below 95 °C.  It 

became evident that the mixture of precatalyst CpPd(allyl) and PCy3 was not an active catalyst 

for decarboxylative coupling of arylmethyl acetates.  In addition, employing the Xantphos ligand 

with a larger bite angle (111°)54 also favored formation of the arylmethylation product 3.26.14  

Last, switching to the rac-BINAP ligated Pd catalyst did not promote formation of the arylation  

Table 3.8 Conditions for decarboxylative arylation of 2-methylthiophenyl cyanoacetate  

 

product.  It should be noted, as Dewhurst has isolated a Pd-π-furfuryl complex (A, figure 3.1)50 

and the analogous thiophenyl η3-metal complexes (B, figure 3.1)55 have also been reported, it is 
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likely that our reaction proceeds via similar intermediates.  Despite these reports, it remains 

unclear how Pd(PPh3)4 facilitates decarboxylative arylmethylation with the thiophenyl-2-methyl 

cyanoacetates and arylation with furfuryl cyanoacetates.  

 

Figure 3.1 

The conditions for selectively obtaining the products of decarboxylative arylmethylation 

and arylation of furfuryl cyanoacetates have been established.  Table 3.7 reveals that 

monodentate-ligated Pd(PPh3)4 (conditions A) facilitates decarboxylative arylation and the 

bidentate (S)-DTBM SEGPHOS modified Pd-catalyst (conditions B) obtained from precatalyst 

CpPd(allyl)  facilitates decarboxylative arylmethylation.  Having identified these conditions, the 

scope of the reaction was investigated (Table 3.9).  Preliminary studies involved probing the 

electronics of various p-derivatized nitrile-stabilized anions generated by decarboxylation 

(entries 1-7, Table 3.9). The result shown in Table 3.9 suggest that the phenylacetonitriles 

substituted with electron-donating substituents (entries 3, 4, and 7) are more selective than the 

products obtained from p-chlorophenylacetonitrile (entries 5 and 6) with respect to arylation 

vs. benzylation.  It should be noted that the p-cyanophenylacetonitrile is not reactive upon 

exposure to reaction conditions B, in contrast treatment of p-cyanophenylacetonitrile to 

reaction conditions A leads to selective production of the arylated product 3.42 in 70% yield 
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(entry 7).  Incorporation of the more sterically demanding β-naphthyl nitrile results in exclusive 

formation of the arylation product when subjected to Pd(PPh3)4 catalyst (conditions A, entry 8). 

However, exposure of the β-naphthyl nitrile substrate to the condition for decarboxylative   

Table 3.9 Decarboxylative arylation vs. arylmethylation of Nitriles 
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benzylation (conditions B) did not provide the same ratio of products, and the reduced yield 

was due to a minimal amount of the difficult to resolve protonation contaminant (entry 9, Table 

3.9).  In addition, only minimal changes in selectivity were observed when varying the α-methyl 

substituent to more stericially demanding benzyl and isopropyl functionalities (entries 10-13, 

15, 16).  Last, substrates with functional groups capable of coordinating to the metal catalyst 

(entry 14, pyridine, entry 17, allyl) resulted in reduced selectivity when subjected to the 

reaction condition for decarboxylative arylation.  It should be noted that these substrates were 

not competent for C–C bond formation under the reaction conditions for obtaining the 

arylmethylation products (conditions B, Table 3.9).  With some understanding of the scope of 

the decarboxylative arylmethylation and arylation reaction, the current rationale for the 

observed selectivity will be detailed.  

To address the observed selectivity for decarboxylative arylation and arylmethylation 

with the furfuryl cyanoacetates, a working mechanistic rationale based on literature precedent 

is proposed (scheme 3.7).  All of the data to this point show a distinct switch in selectivity when 

changing from the monodentate PPh3 ligand to the bidentate bulky (S)-DTBM-SEGPHOS ligand.  

It is likely that both products originate from an η3-Pd-π-furfuryl complex (scheme 3.7).50  Based 

on literature precedent, it is feasible that the ligand-dependent selectivity observed with PPh3 

originates from access to an open coordination site on the metal center (path A).  The available 

coordination site allows for inner-sphere attack of the ketiminate nucleophile as suggested in 

Scheme 3.7, I.  Crystallographic data characterizing an analogous palladated-keteniminate 

complex has been reported by Hartwig.46  Moreover, mechanistic studies of an allylative 

dearomatization reaction performed by Lin (scheme 3.8) 56 suggest that an η3-Pd-π-benzyl, η1-  
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Scheme 3.7 

N-bound ketenimine26,57,58 transition state is feasible.59-61  Moreover, Bao reports the 

dearomatization of benzyl electrophiles with allenyl stannanes likely proceeds by intermediates 

similar to I, as suggested in Scheme 3.7.  With respect to the selectivity observed employing the 

bidentate (S)-DTMB-SEGPHOS ligand, lack of an available coordination site forces an outer- 

sphere attack (II, scheme 3.7) of the nitrile-stabilized carbanion resulting in formation of the 

arylmethytion product 3.55 (path B, scheme 3.7).    

  

 

Scheme 3.8 
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 The palladium-catalyzed decarboxylative arylmethylation and arylation of nitriles has 

been described.  The method entails treatment of furfuryl cyanoacetates with monodentate 

PPh3 ligand to obtain arylated nitriles and bidentate (S)-DTMB-SEGPHOS ligand to afford 

arylmethylated nitriles.  In addition, the method represents the use of activated benzyl alcohol 

moieties as alternatives to benzyl halides for the benzylation and arylation of nitriles.  Last, the 

method is another example of the functionalization of metalated nitriles generated via the loss 

of CO2 under formally neutral conditions.                  
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Appendix B 

General information: 

All reactions were performed in flame-dried glassware under Ar atmosphere using 

standard Schlenk techniques.  All reactions run in tetrahydrofuran were performed in 5 mL 

Biotage microwave vials with sealable septa-caps. The THF was dried over sodium in the 

presence of benzophenone indicator.  Toluene (tol) was dried over activated alumina and 

distilled over sodium. Other commercially available reagents, solvents, and catalysts were used 

without additional purification unless otherwise stated.  CpPd(allyl) was prepared according to 

a literature procedure.1 All imidazole carbamate benzyl esters were prepared via literature 

protocol.2 1H and 13C NMR spectra were obtained on  Bruker Avance 500 DRX spectrometer and 

were referenced to residual protio solvent signals. Compound purification was effected by flash 

chromatography using 230 x 400 mesh, 60 Å porosity, silica obtained from Sorbent 

Technologies. Structural assignments were based on 1H, 13C, DEPT-135, COSY, HSQC 

spectroscopies. Mass spectrometry was run using ESI techniques. 

 

Procedures for the synthesis of α-phenyl cyanoacetic acid and esters:3  A 200 mL flame dried 

Schlenk flask under Ar was charged with commercially available benzyl cyanide (31.0 mmol, 3.6 

mL) via syringe, and n-BuLi (18.5 mL, solution 1.6 M/Hex from Aldrich) was added dropwise 

over 10 minutes. The solution was then placed in a dry ice/acetone bath and solid CO2 (dryice, 

small amount) was added carefully. The solution was stirred at -78 oC for 1 h. The reaction was 

then quenched with NaHCO3 (saturated in H2O, 125 mL) and Et2O (50 mL). The aqueous layer 

was isolated and ice cold Et2O (100 mL) was added. Conc. HCl (0 oC ) was then added until pH of 
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6 (pH paper). The organic layer was separated and reduced on rotary evaporator to yield a 

yellowish oil. The oil was then azeotroped with CHCl3 and a white solid formed. 1H NMR (500 

MHz, CDCl3) δ 7.40 (m, 2H), 7.38 – 7.33 (m, 3H), 4.91 (s, 1H), 4.68 (s, 1H). 13C NMR (126 MHz, 

CDCl3) δ 168.9, 129.5, 129.32, 128.03, 115.2, 43.6.  These compounds were converted to the 

corresponding benzyl4 esters by standard DCC/DMAP coupling.5 

 

Procedure for the synthesis of α,α-disubstituted cyanoacetic benzyl esters 

Procedure A (hetero-aromatic benzyl ester substrates in Table 3.5):3 To a solution of α-

substituted, benzyl cyanoacetate in dry THF (0.5 M) under argon was added NaH (1.0 eq.). 

When the resulting solution became homogeneous, the respective alkyl bromide (1.0 eq.) was 

added dropwise via syringe. After 4 h., water was added to the reaction mixture and the 

resulting mixture was extracted with Et2O (2 times with twice the amount of solvent required 

for the reaction). The organic layer was concentrated via a rotary evaporator, and the resulting 

residue was purified by flash chromatography over silica with Hex/EtOAc (92:8) as eluent. 

 

 

 

 

1 Komiya, S. Synthesis of Organometallic Compounds. A Practical Guide; John Wiley & Sons: New York, 1997, pp 

290. 
2
 Heller, S. T.; Sarpong, R. Org. Lett. 2010, 12, 4572. 

3
 Recio, III, A.; Tunge, J. A. Org. Lett. 2009, 11, 630. 

4
 Obtained via coupling with aromatic-, heteroaromatic-, and aryl-benzyl alcohols  

5
 Neises, B., Steglich, W. Angew. Chem. Int. Ed. Engl. 1978, 17, 522.  
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Procedure B (aromatic benzyl ester substrates):3 To a solution of α-cyanoacetic benzyl ester, or 

α-substituted cyanoacetic benzyl ester in DMF or DMSO (0.5 M) was added K2CO3 (3.0 eq. Dry) 

and stirred vigorously. The respective electrophilic bromide (3.0 eq.) was added and the 

reaction was allowed to proceed for more than 12 h.  The reaction was then diluted in CH2Cl2 (3 

times the volume of solvent used for the reaction).  The reaction was then quenched with H2O 

(5 times the volume of solvent used for the reaction). The organic layer was then washed 6 

times with H2O (5 times the volume of solvent used for the reaction) and purified via flash 

column chromatography using Hex/EtOAc (92:8) as eluent. 

 

 

 

Procedure C (substrates reported in Table 3.9):2 To a solution of the appropriate variant of 

benzyl cyanide (6.0 mmol), in DMSO or DMF (0.4 M) was added NaH (14.0 mmol).  The solution 

was allowed to stir until H2 gas evolution no longer evident.  The imidazole carbamate benzyl 

ester (9 mmol) was added and the reaction was allowed to stir for 2h.  Next was added solid 

K2CO3 (6.0 mmol).  The flask was then charged with the alkyl halide (18.0 mmol) and stirred 

vigorously for 2 h.  The reaction was then diluted in 30 mL CH2Cl2 and quenched with 60 mL 

aqueous HCl (0.5 M).  The organic layer was then washed 5 more times with 60 mL of H2O.  The 

compounds were purified via flash column chromatography using Hex/EtOAc (ca. 95:5) as 

eluent.  
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Procedure for Pd-catalyzed decarboxylative benzylation and arylation: 

Procedure D (All reaction in Tables 3.1-3.8, 3.9 entries 1 &2)– To a flame-dried flask (Schlenk 

for reactions with tol or sealable microwave vial for reactions with THF) with stir bar was added 

the respective substrate (0.5 mmol) and placed under Ar. The catalyst (Cond. A: Table 1: 5 mol% 

Pd(PPh3)4, or Cond. B Table 1: 10 mol% CpPd(Allyl) and 11 mol% dppf ligand as denoted in Table 

1 in manuscript) was then added.  The flask was then charged with solvent (THF or Tol, 0.2 M) 

and the reaction was allowed to proceed for the amount of time noted in the manuscript (4-

24h), under Ar at 110 °C. After the allotted reaction time, the solvent was reduced via rotary 

evaporator. All products were purified via silica gel chromatography (mobile phase for each 

substrate denoted below). 

 

Procedure E (entries 3-17 in Table 3.9): – To a flame-dried microwave vial with stir bar was 

added the appropriate substrate (0.5 mmol), followed by activated (flamed with propane torch 

in round bottom flask) 3Å molecular sieves (0.2 g) and placed under argon.  Tol or THF (0.2M) 

was added, the vial was sealed, and the mixture was allowed to stir vigorously at 110 °C for 0.5-

1.0 h.  Under Ar, the molecular sieves were filter from the solution and the catalyst (Cond. A 

Table 3 for arylation: 5 mol% Pd(PPh3)4 Cond B. Table 3 for benzylation: 10 mol% CpPd(Allyl) 

and 11 mol% (S)-DTBM SEGPHOS ligand) was added.  The reaction was allowed to proceed for 

the amount time noted in the manuscript (12-24 h), under Ar at 110 °C.  After the allotted 

reaction time, the solvent was reduced via rotary evaporator.  All products were purified via 

silica gel chromatography (mobile phase for each substrate denoted below). 
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Characterization of benzylated nitriles: 

 

2-methyl-2,3-diphenylpropanenitrile(3.11):6 

Clear liquid isolated via column chromatography 98:2 Hex:EtOAc as eluent.  

1H NMR (500 MHz, CDCl3) δ 7.34 – 7.21 (m, 5H,R3C(q)ArH), 7.16 (dd, J = 5.0, 1.9 Hz, 3H,RCH2ArH 

), 6.98 – 6.93 (m, 2H, RCH2ArH), 3.11 – 3.02 (m, 2H, R3C(q)CH2Ph), 1.68 (s, 3H, R3C(q)CH3).  

13C NMR (126 MHz, CDCl3) δ 139.7 (R3C(ArC(q)), 135.1 (R3CCH2(ArC(q)), 130.3 (R3C(ArC(meta)), 

128.7 (R3CCH2 (ArC(ortho)), 128.1 (R3C(ArC(meta)), 127.9 (R3C(ArC(para)), 127.4 (R3CCH2 (ArC(para)), 

125.9 (R3CCH2 (ArC(ortho)), 123.1 (R3CN), 48.6 (R3CCH2Ph), 43.5 (CR4), 26.0 (R3C(q)CH3).   

GC/MS: 221.1 [M+], 196.0 [M-CN], 91.0 [base peak] 

 

2-methyl-2-phenyl-3-(o-tolyl)propanenitrile (3.13): 

Viscous clear liquid isolated via column chromatography 97:3 Hex:EtOAc as eluent.  

1H NMR (500 MHz, CDCl3) δ 7.33 – 7.21 (m, 5H, R3C(q)ArH), 7.10 – 7.05 (m, 1H, RCH2- 

C(q)=C(Me)=CH(meta)), 7.05 – 6.99 (m, 1H, RCH2ArH(meta)), 6.99 – 6.94 (m, 2H, RCH2ArH), 3.11 (q, J 

= 13.9 Hz, 2H, R3C(q)CH2Ar), 1.99 (s, 3H, PhCH3), 1.74 (s, 3H, R3C(q)CH3).  

13C NMR (126 MHz, CDCl3) δ 139.8 (R3C(PhC(q)), 137.5 (R3CCH2(ArC(q)), 133.4 (PhC(q)CH3), 

131.1 (RCH2- C(q)=C(Me)=CH(meta)), 130.5 (PhC), 128.7 (PhC), 127.5 (PhC), 127.4 (PhC),  

 6
 Smith, H. A.; Bissell, R. L.; Kenyon, W. G.; MacClarence, J. W.; Hauser, C. R. J. Org. Chem. 1971, 36, 2132. 
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126.0 (PhC), 125.6 (PhC), 123.5 (R3CN), 44.6 (R3CCH2Ph), 43.3 (CR4), 26.0 (R3C(q)CH3), 19.7 

(PhCH3).   

GC/MS: 235.1 [M+], 210.9 [M-CN], 105.0 [base peak] 

 

3-(4-methoxyphenyl)-2-methyl-2-phenylpropanenitrile (3.14): 

Viscous clear liquid isolated via column chromatography 97:3 Hex:EtOAc as eluent. 1H NMR 

(500 MHz, CDCl3) δ 7.35 – 7.19 (m, 5H, R3C(q)ArH), 6.85 (d, J = 8.7 Hz, 2H, RCH2ArH(ortho)), 6.68 

(d, J = 8.7 Hz, 2H, RCH2ArH(meta)), 3.69 (s, 3H,CH2ArOCH3), 3.08 – 2.94 (m, 2H, R3C(q)CH2Ar), 1.66 

(s, R3C(q)CH3).  

13C NMR (126 MHz, CDCl3) δ 158.9 (CH2ArC(q)OCH3), 139.7 (R3CPhC(q)), 131.4 (RCH2ArCH(ortho)), 

128.7 (RCH2ArC(q)), 127.8 (R3CPhCH(meta)), 127.2 (R3CPhCH(para)), 125.9 (R3CPhCH(ortho)), 123.3 

(R3CN), 113.5 (RCH2ArCH(meta)), 55.2 (CH2ArOCH3), 47.8 (R3CCH2Ar), 43.7 (CR4), 25.9 (R3C(q)CH3).   

GC/MS: 251.2 [M+], 226.5 [M-CN], 57.1 [base peak] 

 

2-methyl-2-phenyl-3-(4-(trifluoromethyl)phenyl)propanenitrile (3.15): 

Viscous clear liquid isolated via column chromatography 98:2 Hex:EtOAc as eluent.  

1H NMR (500 MHz, CDCl3) δ 7.40 (d, J = 8.0 Hz, 2H, RCH2ArH(meta)), 7.32 – 7.23 (m, 5H, 

R3C(q)ArH), 7.04 (d, J = 8.0 Hz, 2H, RCH2ArH(ortho)), 3.12 (s, 2H, R3C(q)CH2Ar ), 1.71 (s, 3H, 

R3C(q)CH3).  
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13C NMR (126 MHz, CDCl3) δ 139.1(R3C(ArC(q)), 138.8 (R3CCH2(ArC(q)), 130.6 (R3C(ArC(m)), 

128.9 (ArCF3), 128.2 (ArCCF3), 125.9 (ArC), 125.6 (ArC), 125.1 (q, J = 3.7 Hz, PhC), 125.0 (ArC), 

122.7 (R3CN), 48.2 (R3CCH2Ph), 43.5 (CR4), 26.3 (R3C(q)CH3).  

GC/MS: 290.1 [M+], 264.0 [M-CN], 130.0 [base peak] 

 

3-(4-fluorophenyl)-2-methyl-2 phenylpropanenitrile (3.16): 

Viscous clear liquid isolated via column chromatography 97:3 Hex:EtOAc as eluent. 1H NMR 

(500 MHz, CDCl3) δ 7.27 (d, J = 8.0 Hz, 5H, RCH2ArH), 6.87 (d, J =  

8.0 Hz, 2H, R3C(q)ArH), 6.83 (d, J = 8.0 Hz, 2H, RCH2ArH(ortho)), 3.03 (s, 2H, R3C(q)CH2Ar ), 1.68 (s, 

3H, R3C(q)CH3).   

13C NMR (126 MHz, CDCl3) δ 163.2 (ArCF), 161.2 (ArCF), 139.3 (R3CCH2(ArC(q)), 131.8 

(R3C(ArC(q)), 131.0 (R3CCH2- (ArC(ortho)), 129.0 (R3C(ArC(meta)), 128.0 (R3C(ArC(ortho)), 125.9 

(R3C(ArC(para)), 122.8 (R3CN), 115.0 (d, J = 21.3 Hz, R3CCH2(ArC(meta)CF), 47.8 (R3CCH2Ph), 43.6 

(CR4), 26.1(R3C(q)CH3).  

GC/MS: 239.0 [M+], 214.0 [M-CN], 109.0 [base peak] 

 

 2-methyl-3-(naphthalen-1-yl)-2-phenylpropanenitrile (3.17): 

White solid isolated via column chromatography 98:2 Hex:EtOAc as eluent. 
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1H NMR (500 MHz, CDCl3) δ 7.78 – 7.73 (m, 2H, 5-, 8-naphthylCH), 7.70 (d, J = 8.2 Hz, 1H, 4-

naphthylCH), 7.38 – 7.28 (m, 5H, R3C(q)PhCH), 7.28 – 7.19 (m, 4H, 2-, 3-, 6-,7-naphthylCH), 3.68 

– 3.47 (m, 2H, R3C(q)CH2(α-Naphthyl), 1.72 (s, 3H, (s, R3C(q)CH3)).  

13C NMR (126 MHz, CDCl3) δ 140.0 (R3C(PhC(q)), 133.7 (R3CCH2(α-naphthylC(q)), 132.6, 131.3, 

129.2, 128.9,128.7 (R3C(q)(PhC), 128.2 (CH2-α-naphthylC), 128.0 (CH2-α-naphthylC), 126.03,  

125.74 (R3C(PhC), 125.5 (CH2-α-naphthylC), 125.1 (CH2-α-naphthylC), 123.7 (R3CN), 123.5 (CH2-

2-naphthylC), 43.8 (R4C(q)), 43.6 (R3C(q)CH2-β-naphthyl)), 26.0 (R3C(q)CH3).   

GC/MS: 271.1 [M+], 141.0 [base peak]   

 

 2-methyl-3-(naphthalen-2-yl)-2-phenylpropanenitrile (3.18): 

Brown solid isolated via column chromatography 98:2 Hex:EtOAc as eluent.  

1H NMR (500 MHz, CDCl3) δ 7.71 (dd, J = 6.1, 3.4 Hz, 1H, 5-naphthylCH), 7.66 (dd, J = 6.0, 3.5 Hz, 

1H, 8-naphthylCH), 7.61 (d, J = 8.4 Hz, 1H, 4-naphthylCH), 7.43 (s, 1H, 1-naphthylCH ), 7.37 (dd, J 

= 6.2, 3.2 Hz, 2H, 6-, 7-naphthylCH), 7.34 – 7.22 (m, 5H, R3C(q)ArH), 7.02 (dd, J = 8.4, 1.7 Hz, 1H, 

3-naphthylCH), 3.31 – 3.16 (m, 2H, R3C(q)CH2-β-Naphthyl), 1.72 (s, 3H, R3C(q)CH3).  

13C NMR (126 MHz, CDCl3) δ 139.6 (R3C(PhC(q)), 133.1(R3CCH2(2-naphthylC(q)), 132.6 (2-

naphthylC), 132.4, 129.4 (2-naphthylC), 128.8 (2-naphthylC), 128.3 (2-naphthylC), 128.0 (ArC), 

127.8 (2-naphthylC), 127.6 (2-naphthylC), 127.5 (ArC), 126.0 (PhC), 125.9 (PhC), 125.8 (ArC), 

123.2 (R3CN), 48.7 (R3C(q)CH2-β-naphthyl), 43.6 (CR4), 26.0 (R3C(q)CH3).   

GC/MS: 271.1 [M+], 141.0 [base peak] 
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2-(4-chlorophenyl)-2-methyl-3-phenylpropanenitrile (3.19): 

Viscous clear liquid isolated via column chromatography 97:3 Hex:EtOAc as eluent.  

1H NMR (500 MHz, CDCl3) δ 7.28 – 7.14 (m, 7H), 6.94 (dd, J = 5.0, 1.8 Hz, 2H), 3.04 (d, J = 2.7 Hz, 

2H), 1.67 (s, 3H).  

 13C NMR (126 MHz, CDCl3) δ 138.1, 134.7, 133.9, 130.3, 128.9, 128.2, 127.4, 122.8, 48.5, 43.2, 

26.1.    

GC/MS: 255.1 [M+], 141.0 [base peak]  

  

 

2-methyl-2-phenyl-3-(thiophen-3-yl)propanenitrile (3.25):   

Clear liquid isolated via column chromatography 95:5 Hex:EtOAc as eluent.   

1H NMR (500 MHz, CDCl3) δ 7.37 – 7.25 (m, 1H, R3C(q)PhCH(para)), 7.25 – 7.20 (m, 1H, 

R3C(q)PhCH(para)), 7.08 (dd, J = 4.9, 3.0 Hz, 1H, 5-thiophenylCH), 6.83 (dt, J = 2.9, 0.6 Hz, 1H, 4-

thiophenylCH), 6.65 (dd, J = 4.9, 1.3 Hz, 1H, 2-thiophenyl CH), 3.11 (s, 2H, R3C(q)CH2(3-

thiophenyl), 1.65 (s, 3H, (s, R3C(q)CH3)).   

13C NMR (126 MHz, CDCl3) δ 139.7(R3CPhC(q)) 135.4 (R3CCH2(3-thiophenylC(q)), 129.1 

(R3C(PhC(meta)),  128.8 (4-thiophenylC ), 128.0 (R3C(PhC(q)), R3C(PhC(ortho)), 125.8 (5-thiophenylC), 
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125.2 (R3C(PhC(para)), 124.2 (2-thiophenylC), 123.4 (R3CN), 43.3 (R4C(q)), 43.0 (R3C(q)CH2-3-

thiophenyl)), 26.2 (R3C(q)CH3).   

GC/MS: 227.1 [M+], 202.6 [M-CN], 97.0 [base peak] 

 

2-methyl-2-phenyl-3-(thiophen-2-yl)propanenitrile (3.26) 

Viscous clear liquid isolated via column chromatography 97:3 Hex:EtOAc as eluent.   

1H NMR (500 MHz, CDCl3) δ 7.45 (d, J = 7.3 Hz, 1H, 5-thiophenylCH), 7.43 – 7.39 (m, 2H, 

R3C(q)PhCH(meta)), 7.39 – 7.33 (m, 2H, R3C(q)PhCH(ortho)), 7.15 (dd, J = 5.1, 1.1 Hz, 1H, 

R3C(q)PhCH(para)), 6.93 (dd, J = 5.1, 3.5 Hz, 1H, 4-thiophenylCH), 6.84 (d, J = 3.4 Hz, 1H, 3-

thiophenylCH), 3.42 (s, 2H, CR3CH2 thiophenyl), 1.81 (s, 3H, R3CCH3).  

13C NMR (126 MHz, CDCl3) δ 139.2 (R3C(PhC(q)), 136.5 (R3CCH2(2-thiophenylC(q)), 128.9 

(PhC(meta)), 128.1 (3-thiophenylC), 128.0 (4-thiophenylC), 126.8 (R3C(PhC(ortho)), 125.9 

(R3C(PhC(para)), 125.1 (2-thiophenyl-5-C), 123.0 (RCN), 43.8 (CR4), 42.6 (RCH2R), 26.2 (RCH3).   

GC/MS: 227.0 [M+], 202.0 [M-CN], 97.0 [base peak] 

 

3-(furan-3-yl)-2-methyl-2-phenylpropanenitrile(3.27):  

Clear liquid isolated via column chromatography 95:5 Hex:EtOAc as eluent.  
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1H NMR (500 MHz, CDCl3) δ 7.36 – 7.31 (m, 3H, ArH(meta/para)), 7.32 – 7.28 (m, 2H, ArH(ortho)), 7.27 

– 7.20 (s, 1H, 2-furanyl-H), 7.08 (dq, J = 1.6, 0.8 Hz, 1H, 5-furanyl-H), 6.00 (dd, J = 1.7, 0.7 Hz, 1H, 

4-furanyl-H), 2.94 (s, 2H, -CR3CH2-3-furanyl), 1.67 (s, 3H, R3CCH3).  

13C NMR (126 MHz, CDCl3) δ 141.6 (ArC(q)), 140.2 (5-furanyl-C), 138.6 (3-furanyl(2-C)), 127.8 (s, 

ArC(ortho)), 126.9 (ArC(para)), 124.7 (ArC(meta)), 122.3 (RCN), 117.6 (3-furanyl(5-C)), 110.6 (3-

furanyl(4-C)), 42.0 (CR4), 37.1 (RCH2R), 25.3 (RCH3).  

GC/MS: 211.0 [M+], 186.1 [M-CN], 81.0 [base peak] 

 

3-(benzofuran-2-yl)-2-methyl-2-phenylpropanenitrile (3.29): 

White solid isolated via column chromatography 95:5 Hex:EtOAc as eluent.  

1H NMR (500 MHz, CDCl3) δ 7.41 (d, J = 8.1 Hz, 2H, 2-benzofuranyl(4-,7-CH), 7.32 (t, J = 8.0 Hz, 

2H, 2-benzofuranyl(5-,6-CH), 7.29 – 7.22 (m, 4H, R3C(PhCH ), 7.19 (s, 1H, R3C(PhCH), 6.42 (s, 1H, 

2-benzofuranyl(3-CH)), 3.38 – 3.21 (m, 2H, CR3CH2-2-benzofuranyl), 1.76 (s, 3H, R3CCH3).   

13C NMR (126 MHz, CDCl3) δ 154.7(2-benzofuranyl(2-C(q)), 152.6 (2-benzofuranyl(9-C(q)), 139.4 

(R3CPhC(q)), 129.0 (2-benzofuranyl(8-C(q)), 128.3 (ArC) 128.2 (R3C(PhCH), 125.6 (R3C(PhCH), 

124.0 (2-benzofuranyl(CH)), 122.9 (ArC) 122.7 (RCN), 120.9 (2-benzofuranyl(4-CH)), 111.0 (2-

benzofuranyl(7-CH)), 106.0 (2-benzofuranyl(3-CH)), 42.5 (CR4), 41.2 (RCH2R), 26.3(RCH3).   

GC/MS: 261.1 [M+], 131.0 [base peak] 
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3-(furan-2-yl)-2-methyl-2-phenylpropanenitrile (3.30): 

Viscous clear liquid isolated via column chromatography 97:3 Hex:EtOAc as eluent.  

1H NMR (500 MHz, CDCl3) δ 7.36 (m, 2H, R3C(PhCH(meta)), 7.31 (m, 2H, R3C(PhCH(ortho)), 7.26 (m, 

1H, R3C(PhCH(para)), 7.24 (dd, J = 1.8, 0.8 Hz, 1H, 2-furanyl(5-CH)), 6.21 (dd, J = 3.2, 1.9 Hz, 1H, 2-

furanyl(4-CH)), 6.01 (d, J = 3.4 Hz, 1H, 2-furanyl(3-CH)),  3.23 – 3.06 (m, 2H, CR3CH2-2-furanyl), 

1.68 (s, 3H, R3CCH3).  

13C NMR (126 MHz, CDCl3) δ 149.7 (R3CCH2(2-furanyl(2-C(q))), 142.1 (R3C(PhC(q))), 139.6 (2-

furanyl(5-C)), 128.8 (R3C(PhC(meta)), 128.0 (R3C(PhC(ortho)), 125.6 (R3C(PhC(para)), 123.0 (RCN), 

110.5 (2-furanyl(4-C)), 109.0 (2-furanyl(3-C) ), 42.4, (CR4), 40.8 (RCH2R), 26.1 (RCH3).  

GC/MS: 211.0 [M+], 186.6 [M-CN], 57.1 [base peak]  

 

tert-butyl 3-(2-cyano-2-phenylpropyl)-1H-indole-1-carboxylate (3.31):   

Viscous clear liquid isolated via column chromatography 97:3 Hex:EtOAc as eluent.   

1H NMR (500 MHz, CDCl3) δ 8.03 (d, J = 7.1 Hz, 2H, 3-methylindole(4-, 7-CH)), 7.39 (d, J = 7.1 Hz, 

2H, 3-methylindole(6-CH)), 7.34 – 7.22 (m, 5H, R3CPhCH), 7.22 – 7.13 (m, 1H, 3-methylindole(2-

CH) ), 7.06 (dd, J = 6.1, 3.4 Hz, 1H, 3-methylindole(5-CH)), 3.22 (s, 2H, CR3CH2-3-methyl(N-

Boc)indole), 1.73 (s, 3H, R3CCH3), 1.57 (s, 9H, CO2C(CH3)3).  
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13C NMR (126 MHz, CDCl3) δ 149.5 (R3CPhC(q)), 139.9, (ArCH), 130.7 (3-methylindole(9-C(q)), 

129.2 (3-methylindole(8-C(q)), 128.9 (R3C(PhC(meta)), 128.0 (R3C(PhC(ortho)), 127.4 (ArC), 125.9 

(R3C(PhC(para)), 125.4 (3-methylindoleCH), 124.3 (RCH2-3-methylindole(2-C(q)), 122.4 (RCN), 

118.9 (3-methylindole(4-CH), 115.1 (3-methylindole(7-CH), 83.7 (CO2C(q)(CH3)3), 43.2 (CR4), 

38.0 (RCH2R), 28.2 (CO2C(CH3)3), 26.0 (RCH3).  

GC/MS: 361.2 [M+1], 335.8 [M-CN], 57.1 [base peak] 

 

2-methyl-2-phenyl-3-(pyridin-2-yl)propanenitrile (3.32): 

Viscous clear liquid isolated via column chromatography 97:3 Hex:EtOAc as eluent.   

1H NMR (500 MHz, CDCl3) δ 8.48 (d, J = 7.8 Hz, 1H, 2-methyl pyridine(6-CH)), 7.52 (td, J = 7.7, 

1.8 Hz, 1H, 2-methyl pyridine(5-CH)), 7.39 (m, 2H, R3C(PhCH(meta)), 7.30 (m, 2H, R3C(PhCH(ortho)), 

7.26 (m, 1H, R3C(PhCH(para) ), 7.10 (td, J = 7.7, 1.8 Hz, 1H, 2-methyl pyridine(4-CH)), 7.06 (d, J = 

7.8 Hz, 1H, 2-methyl pyridine(3-CH)), 3.28 (s, 2H, CR3CH2-2-methyl pyridne), 1.71 (s, 3H, 

R3CCH3).   

13C NMR (126 MHz, CDCl3) δ 155.7 (R3CH2-2-methyl pyridyl(2-C(q))), 149.2 (R3CPhC(q)), 139.9 (2-

methyl pyridyl(6-CH)), 136.3 (2-methyl pyridyl(4-CH)), 128.9 (R3C(PhC(meta)), 127.9 

(R3C(PhC(ortho)), 125.7 (R3C(PhC(para)), 124.6 (2-methyl pyridyl(3-CH)), 123.0 (2-methyl pyridyl(5-

CH)), 122.3 (RCN), 50.0 (RCH2R),  42.9 (CR4) 26.1 (RCH3).  

GC/MS: 222.1 [M+], 197.2 [M-CN], 93.0 [base peak] 
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Characterization of arylated nitriles: 

 

2-(5-methylfuran-2-yl)-2-phenylpropanenitrile 

Viscous clear liquid isolated via column chromatography 97:3 Hex:EtOAc as eluent.  

1H NMR (500 MHz, CDCl3) δ 7.31 (m, 2H, R3PhCH(meta)), 7.25 (m, 3H, R3PhCH(ortho/para)), 6.08 (d, J 

= 3.1 Hz, 1H, R3C-furanyl(3-CH)), 5.86 (dq, J = 3.1, 1.0 Hz, 1H, R3C-furanyl(4-CH)), 2.18 (s, 3H, 

furanylCH3), 1.94 (s, 3H, R3CCH3).  

13C NMR (126 MHz, CDCl3) δ 153.3 (R3C-furanyl(2-C(q)), 149.9 (R3C-furanyl(5-C(q)), 139.3 

(R3CPhC(q)), 128.9 (R3C(PhCH(ortho)), 128.1 (R3C(PhCH(para)), 126.0 (R3C(PhC(meta)), 121.2 (RCN), 

108.7 (R3C-furanyl(3-CH)), 106.4 (R3C-furanyl(4-CH)), 42.2 (CR4), 27.0 (RCH3), 13.6 (furnyl(5-

CH3)).  

GC/MS: 211.0 [M+], 186.6 [M-CN], 57.1 [base peak] 

 

2-(4-methoxyphenyl)-2-(5-methylfuran-2-yl)propanenitrile 

Viscous clear liquid isolated via column chromatography 98:2 Hex:EtOAc as eluent.  

1H NMR (500 MHz, CDCl3) δ 7.25 (m, 2H, R3PhCH(meta)), 6.83 (m, 2H, R3PhCH(ortho)), 6.05 (d, J = 

3.1 Hz, 1H, R3C-furanyl(3-CH)), 5.85 (dq, J = 3.1, 1.0 Hz, 1H, R3C-furanyl(4-CH)), 3.74 (s, 

3H,CR3ArOCH3), 2.19 (s, 3H, furanylCH3), 1.92 (s, 3H, R3CCH3).  
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13C NMR (126 MHz, CDCl3) δ 159.3 (CR3ArC(q)OCH3), 153.2 (R3C-furanyl(2-C(q)), 150.3 (R3C-

furanyl(5-C(q)), 131.3 (R3CPhC(q)), 127.2 (R3C(PhCH(ortho)), 121.46 (RCN), 114.1 (R3C(PhC(meta)), 

108.5 (R3C-furanyl(3-CH)), 106.3 (R3C-furanyl(4-CH)), 55.4 (CH2ArOCH3), 41.6 (CR4), 26.9 (RCH3), 

13.6 (furnyl(5-CH3)).  

GC/MS: 241.1 [M+], 216.2 [M-CN], 226.1 [base peak]. 

 

3-(furan-2-yl)-2-(4-methoxyphenyl)-2-methylpropanenitrile 

Viscous clear liquid isolated via column chromatography 98:2 Hex:EtOAc as eluent.  

1H NMR (500 MHz, CDCl3) δ 7.27 (dd, J = 1.8, 0.8 Hz, 1H, 2-furanyl(5-CH)), 7.24 (m, 2H, 

R3PhCH(ortho)), 6.83 (m, 2H, R3PhCH(meta)), 6.21 (dd, J = 3.2, 1.9 Hz, 1H, R3C-furanyl(4-CH)),), 6.02 

(d, J = 3.2 Hz, 1H, R3C-furanyl(3-CH)), 3.74 (s, 3H,CR3ArOCH3), 3.11 (m, 2H, CR3CH2-2-furanyl), 

1.65 (s, 3H, R3CCH3).   

13C NMR (126 MHz, CDCl3) δ 159.1 (CR3ArC(q)OCH3), 149.9 (R3C-furanyl(2-C(q)), 142.1 

(R3CCH2(2-furanyl(5-C(q)), 127.8 (R3CPhC(q)), 126.8 (R3C(PhCH(ortho)), 123.3 (RCN), 114.1 

(R3C(PhC(meta)), 110.5 (R3C-furanyl(4-CH)), 109.0 (R3C-furanyl(3-CH)), 55.3 (CR3ArOCH3), 41.9 

(CR4), 40.9 (CR3CH2-2-furanyl), 26.1 (R3CCH3).  

GC/MS: 241.1 [M+], 216.2 [M-CN], 226.1 [base peak]. 
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2-(4-chlorophenyl)-2-(5-methylfuran-2-yl)propanenitrile 

Viscous clear liquid isolated via column chromatography 98:2 Hex:EtOAc as eluent.   

1H NMR (500 MHz, CDCl3) δ 7.31 – 7.23 (m, 4H, R3PhCH), 6.10 (d, J = 3.2 Hz, 1H, R3C-furanyl(3-

CH)), 5.87 (dt, J = 2.1, 1.0 Hz, 1H, R3C-furanyl(4-CH)), 2.19 (s, 3H, furanylCH3), 1.93 (s, 3H, 

R3CCH3). 13C NMR (126 MHz, CDCl3) δ 152.5 (s, R3C-furanyl(2-C(q)), 148.3 (s, R3C-furanyl(5-C(q)), 

136.8 (s, CH2ArC(q)Cl), 133.1 (s, R3CPhC(q)), 128.0 (s, R3C(PhCH(ortho)), 126.3 (s, R3C(PhC(meta)), 

119.8 (s, RCN), 107.8 (s, R3C-furanyl(3-CH)), 105.4 (s, R3C-furanyl(4-CH)), 40.8 (s, CR4), 25.8 (s, 

RCH3), 12.6 (s, furnyl(5-CH3)).   

GC/MS: 245.1 [M+], 220.1 [M-CN], 230.1 [base peak]. 

 

2-(4-chlorophenyl)-3-(furan-2-yl)-2-methylpropanenitrile 

Viscous clear liquid isolated via column chromatography 98:2 Hex:EtOAc as eluent.   

1H NMR (500 MHz, CDCl3) δ 7.27 (s, 4H, R3PhCH), 7.23 (dd, J = 1.8, 0.8 Hz, 1H, 2-furanyl(5-CH)), 

6.21 (dd, J = 3.2, 1.9 Hz, 1H, R3C-furanyl(4-CH)), 6.02 (d, J = 3.2 Hz, 1H, R3C-furanyl(3-CH)), 3.13 

(m, 2H, CR3CH2-2-furanyl), 1.67 (s, 3H, R3CCH3).   

13C NMR (126 MHz, CDCl3) δ 149.3 (R3C-furanyl(2-C(q)), 142.3 (R3CCH2(2-furanyl(5-C(q)), 138.0 

(CH2ArC(q)Cl), 134.0 (R3CPhC(q)), 129.0 (2C, R3C(PhCH(meta)),128.3 (ArC) 127.1 (PhCH(ortho)), 122.9 
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(ArC) 122.7 (RCN), 110.5 (R3C-furanyl(4-CH)), 109.2 (R3C-furanyl(3-CH)), 42.3 (CR4), 40.7 

(CR3CH2-2-furanyl), 26.1 (R3CCH3).   

GC/MS: 245.1 [M+], 220.1 [M-CN], 230.1 [base peak]. 

 

4-(1-cyano-1-(5-methylfuran-2-yl)ethyl)benzonitrile 

Viscous clear liquid isolated via column chromatography 85:15 Hex:EtOAc as eluent.  

1H NMR (500 MHz, CDCl3) δ 7.61 (m, 2H, R3PhCH(meta)), 7.45 (m, 2H, R3PhCH(ortho)), 6.18 (d, J = 

3.2 Hz, 1H, R3C-furanyl(3-CH)), 5.91 (m, 1H, R3C-furanyl(4-CH)), 2.18 (s, furnyl(5-CH3)), 1.95 (s, 

3H, R3CCH3).   

13C NMR (126 MHz, CDCl3) δ 154.0 (R3C-furanyl(2-C(q)), 148.4 (R3C-furanyl(5-C(q)), 144.4 

(R3CPhC(q)), 132.8 (R3C(PhCH(meta)), 126.8 (R3C(ArCH(ortho)), 120.1 (RCN), 118.2 (R3ArCN), 112.4 

(R3ArC(q)-CN), 109.3 (R3C-furanyl(3-CH)), 106.6 (R3C-furanyl(4-CH)), 42.3 (CR4), 26.6 (RCH3), 13.6 

(furnyl(5-CH3)).   

GC/MS: 236.1 [M+], 211.3 [M-CN], 221.1 [base peak]. 

 

2-(5-methylfuran-2-yl)-2-(naphthalen-2-yl)propanenitrile 

Viscous clear liquid isolated via column chromatography 98:2 Hex:EtOAc as eluent.  
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1H NMR (500 MHz, CDCl3) δ 7.88 (d, J = 1.9 Hz, 2H, R3C-β-naphthyl(5-,8-CH), 7.76 (m, 2H, R3C-β-

naphthyl(1-,4-CH)), 7.44 (m, 2H, R3C-β-naphthyl(6-,7-CH)), 7.34 (dd, J = 8.7, 2.0 Hz, 1H, R3C-β-

naphthyl(3-CH)), 6.12 (d, J = 3.2 Hz, 1H, R3C-furanyl(3-CH)), 5.87 ((dq, J = 3.1, 1.0 Hz, 1H, R3C-

furanyl(4-CH))), 2.18 (s, 3H, furanylCH3), 2.03 (s, 3H, R3CCH3).   

13C NMR (126 MHz, CDCl3) δ 153.4 (R3C-furanyl(2-C(q)), 149.9 (R3C-furanyl(5-C(q)), 136.4 (R3C-β-

naphthyl(2-C(q)), 133.09 (R3C-β-naphthylC(q)), 132.8 (R3C-β-naphthylC(q)), 128.8 (R3C-β-

naphthyl(5-C)), 128.3 (R3C-β-naphthyl(3-C)), 127.6 (R3C-β-naphthyl( 8-C)), 126.7 (R3C-β-

naphthyl(1-, 4-C)), 125.0 (R3C-β-naphthyl(7-C)), 123.5 (R3C-β-naphthyl(6-C)), 121.2 (RCN), 108.8 

(R3C-furanyl(3-CH)), 106.5 (R3C-furanyl(4-CH)), 42.4 (CR4), 26.7 (RCH3), 13.6 (furnyl(5-CH3)).   

GC/MS: 262.0 [M+], 237.1 [M-CN], 73.0 [base peak]. 

 

3-(furan-2-yl)-2-methyl-2-(naphthalen-2-yl)propanenitrile 

Viscous clear liquid isolated via column chromatography 98:2 Hex:EtOAc as eluent.  

1H NMR (500 MHz, CDCl3) δ 7.84 (d, J = 2.0 Hz, 1H, R3C-β-naphthyl(5-,CH)), 7.82 – 7.74 (m, 3H, 

R3C-β-naphthylCH)), 7.47 – 7.40 (m, 3H, R3C-β-naphthylCH), 7.22 (dd, J = 1.8, 0.8 Hz, 1H, 2-

furanyl(5-CH)), 6.19 (dd, J = 3.2, 1.9 Hz, 1H, 2-furanyl(4-CH)), 6.02 (d, J = 3.4 Hz, 1H, 2-furanyl(3-

CH)), 3.24 (m, 2H, CR3CH2-2-furanyl), 1.77 (s, 3H, R3CCH3).  

13C NMR (126 MHz, CDCl3) δ 149.7 (R3CCH2(2-furanyl(2-C(q)), 142.2 (R3CCH2(2-furanyl(5-C(q)), 

136.8 (R3C-β-naphthyl2-C(q)), 133.1 (R3C-β-naphthylC(q)), 132.7 (R3C-β-naphthyl(5-C)), 128.8 
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(R3C-β-naphthyl(3-C)), 128.2 (R3C-β-naphthyl( 8-C)), 127.6 (R3C-β-naphthyl(1-, 4-C)), 126.6 (R3C-

β-naphthyl(7-C)), 124.88 (R3C-β-naphthyl(6-C)), 123.1 (RCN), 110.5 (R3C-furanyl(4-CH)), 109.1 

(R3C-furanyl(3-CH)), 42.9 (CR4), 40.6 (CR3CH2-2-furanyl), 26.2 (R3CCH3).  

GC/MS: 262.0 [M+], 237.1 [M-CN], 73.0 [base peak]. 

 

2-(5-methylfuran-2-yl)-2,3-diphenylpropanenitrile 

Viscous clear liquid isolated via column chromatography 98:2 Hex:EtOAc as eluent.  

1H NMR (500 MHz, CDCl3) δ 7.28 – 7.18 (m, 4H, PhCH(meta)), 7.14 – 7.06 (m, 6H, PhCH(ortho/para)), 

6.16 (d, J = 3.3 Hz, 1H, R3C-furanyl(3-CH)), 5.86 (dq, J = 3.0, 0.9 Hz, 1H, R3C-furanyl(4-CH)), 3.65 

(d, J = 13.3 Hz, 1H, R3CCH2furanyl), 3.31 (d, J = 13.3 Hz, 1H, R3CCH2-2-furanyl), 2.22 (s, 3H, 

furanyl(5-CH3).  

13C NMR (126 MHz, CDCl3) δ 152.1 (R3C-furanyl(2-C(q)), 147.8 (R3C-furanyl(5-C(q)), 136.2 

(R3CPhC(q)), 133.7 (R3CCH2PhC(q)), 129.3 (R3CPhC(ortho)), 127.5 (R3CPhC(para)), 127.1 

(R3CPhC(meta)), 126.9 (R3CCH2PhC(meta)), 126.3 (R3CCH2PhC(ortho)), 125.8 (R3CCH2PhC(para)), 118.6 

(RCN), 108.7 (R3C-furanyl(3-CH)), 105.5 (R3C-furanyl(4-CH)), 48.1 (CR4), 44.1 (R3CCH2Ph )12.6 

(furanyl5-CH3).  

GC/MS: 287.2 [M+], 262.8 [M-CN], 81.0 [base peak]. 
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2-benzyl-3-(furan-2-yl)-2-phenylpropanenitrile 

Viscous clear liquid isolated via column chromatography 98:2 Hex:EtOAc as eluent.  

1H NMR (500 MHz, CDCl3) δ 7.35 (m, 5H, R3CCH2PhCH), 7.24 (m, 5H, R3CPhCH), 7.05 (dd, J = 7.3, 

2.1 Hz, 1H, R3CCH2-2-furanyl(5-CH)), 6.29 (dd, J = 3.2, 1.9 Hz, 1H, R3CCH2-2-furanyl(4-CH)), 6.11 

(d, J = 3.2 Hz, 1H, R3CCH2-2-furanyl(3-CH), 3.44 (m, 2H, R3CCH2Ph), 3.31 (m, 2H, R3CCH2-2-

furanyl). 13C NMR (126 MHz, CDCl3) δ 149.6 (R3CCH2(2-furanyl(2-C(q)), 142.0 (R3CPhC(q)), 137.2 

(R3CCH2(2-furanyl(5-CH), 134.7 (R3CCH2PhC(q)), 130.4 (R3CPhC(ortho)), 128.6 (R3CPhC(para)), 128.1 

(R3CPhC(meta)), 128.0 (R3CCH2PhC(meta)), 127.3 (R3CCH2PhC(ortho)), 126.5 (R3CCH2PhC(para)), 121.4 

(RCN), 110.5 (R3C-furanyl(4-CH)), 109.1 (R3C-furanyl(3-CH)), 49.5 (CR4), 46.3 (R3CCH2Ph), 38.2 

(CR3CH2-2-furanyl).   

GC/MS: 287.2 [M+], 262.8 [M-CN], 81.0 [base peak] 

 

3-(4-methoxyphenyl)-2-(5-methylfuran-2-yl)-2-phenylpropanenitrile 

Viscous clear liquid isolated via column chromatography 95:5 Hex:EtOAc as eluent.   

1H NMR (500 MHz, CDCl3) δ 7.24 (m, 5H, CR3ArH), 6.75 (d, J = 8.7 Hz, 2H, RCH2ArH(ortho)), 6.64 (d, 

J = 8.7 Hz, 2H, RCH2ArH(meta)), 6.16 (d, J = 3.2 Hz, 1H, R3C-furnayl(4-CH)), 5.88 (m, 1H, R3C-

furnayl(3-CH)), 3.66 (s, 3H,CR3CH2ArOCH3), 3.60 (d, J = 13.4 Hz, 1H, R3CCH2-2-furanyl), 3.26 (d, J 

= 13.4 Hz, 1H, R3CCH2-2-furanyl), 2.23 (s, 3H, furanyl(5-CH3).   
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13C NMR (126 MHz, CDCl3) δ 158.9 (CH2ArC(q)OCH3), 153.1 (R3C-furanyl(2-C(q)), 149.0 (R3C-

furanyl(5-C(q)), 137.4 (RCH2ArC(q)), 131.4 (R3CPhC(q)), 128.6 (RCH2ArCH(ortho)), 128.1 (R3C-

PhC(ortho/para)), 126.4 (R3CPhC(meta)), 119.8 (RCN), 113.4 (RCH2ArCH(meta)), 109.7 (R3C-furanyl(3-

CH)), 106.5 (R3C-furanyl(4-CH)), 55.1 (CR3CH2ArOCH3), 49.8 (CR4), 44.4 (R3CCH2Ar), 13.7 

(furanyl5-CH3).   

GC/MS: 317.1 [M+], 291.3 [M-CN], 121.0 [base peak] 

 

 

3-(furan-2-yl)-2-(4-methoxybenzyl)-2-phenylpropanenitrile 

Viscous clear liquid isolated via column chromatography 95:5 Hex:EtOAc as eluent.   

1H NMR (500 MHz, CDCl3) δ 7.25 (m, 2H, CR3ArH(meta)), 7.24 (s, 3H, CR3ArH(ortho/para)), 7.21 (dd, J = 

1.8, 0.7 Hz, 2H, R3CCH2-2-furanyl(5-CH)), 6.83 (d, J = 8.7 Hz, 2H, RCH2ArH(ortho)), 6.64 (d, J = 8.7 

Hz, 2H, RCH2ArH(meta)), 6.17 (dd, J = 3.2, 1.9 Hz, 1H, R3CCH2-2-furanyl(4-CH)), 5.97 (d, J = 3.2 Hz, 

1H, R3CCH2-2-furanyl(3-CH)), 3.67 (s, 3H,CR3CH2ArOCH3 ), 3.28 (s, 2H, R3CCH2-2-furanyl), 3.15 (s, 

2H, furanyl(5-CH3)).    

13C NMR (126 MHz, CDCl3) δ 158.8 (CH2ArC(q)OCH3), 149.7 (R3C-furanyl(2-C(q)), 142.0 (R3C-

furanyl(5-C(q)), 137.3 (RCH2ArCH(ortho)), 131.5 (R3CPhC(q)), 128.6 (R3C-PhC(ortho)), 127.9 (R3C-

PhC(para)), 126.6 (R3C-PhC(meta)), 121.5 (RCN), 114.0 (ArC), 113.5 (RCH2ArCH(meta)), 110.5 (R3C-

furanyl(4-CH)), 109.1 (R3C-furanyl(3-CH)), 55.1 (CR3CH2ArOCH3), 49.7 (CR4), 45.5 (R3CCH2Ar), 

38.0 (CR3CH2-2-furanyl).   

GC/MS: 317.1 [M+], 291.3 [M-CN], 121.0 [base peak] 
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3-(6-chloropyridin-3-yl)-2-(5-methylfuran-2-yl)-2-phenylpropanenitrile 

Viscous clear liquid isolated via column chromatography 95:5 Hex:EtOAc as eluent.  1H NMR 

(500 MHz, CDCl3) δ 7.75 (s, R3CCH2-5-pyridyl(6-CH), 7.33 – 7.23 (m, 6H, RCH2Ar/PhH), 7.12 (dd, J 

= 2.4, 0.7 Hz, 1H, R3CCH2-5-pyridyl(6-CH)), 6.16 (d, J = 3.2 Hz, 1H, R3C-furnayl(4-CH)), 5.90 (dt, J = 

3.1, 1.0 Hz, 1H, R3C-furnayl(3-CH)), 3.65 (d, J = 13.6 Hz, 1H, R3CCH2-5-pyridyl), 3.32 (d, J = 13.6 

Hz, 1H, R3CCH2-5-pyridyl), 2.25 (s, 2H, R3C-2-furanyl-5-CH3).   

13C NMR (126 MHz, CDCl3) δ 153.6 (R3C-furanyl(2-C(q)), 159.0 (R3C-furanyl(5-C(q)), 150.8 

(R3CCH2-5-pyridyl(2-CCl)), 147.8 (R3CCH2-5-pyridyl(5-C(q)), 140.4 (R3CCH2-5-pyridyl(6-CH)), 136.4 

(R3CPhC(q),  129.4 (R3CCH2-5-pyridyl(4-CH)), 129.0 (R3CCH2-5-pyridyl(3-CH)), 128.7 

(R3CPhC(meta)), 126.6 (R3CPhC(ortho)), 123.7 (R3CPhC(para)), 119.1 (RCN), 110.3 (R3C-furnayl(4-CH)), 

106.8 (R3C-furnayl(3-CH)), 49.2 (CR4), 41.7 (R3CCH2Pyridyl), 13.7 (furanyl5-CH3).   

GC/MS: 322.2 [M+], 297.2 [M-CN], 196.2 [base peak]   

 

3-methyl-2-(5-methylfuran-2-yl)-2-phenylbutanenitrile 

Viscous clear liquid isolated via column chromatography 98:2 Hex:EtOAc as eluent.   

1H NMR (500 MHz, CDCl3) δ 7.47 (m, 2H, R3CPhCH(meta)), 7.28 (m, 2H, R3CPhCH(ortho)), 7.22 (m, 

1H, R3CPhCH(para)), 6.24 (d, J = 3.1 Hz, 1H, R3C-furnayl(4-CH)), 5.83 (dt, J = 3.1, 1.0 Hz, 1H, R3C-
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furnayl(3-CH)), 2.70 (hept, J = 6.7 Hz, 1H, R3CCH(CH3)2), 2.19 (s, 2H, R3C-2-furanyl-5-CH3), 1.03 

(d, J = 6.6 Hz, 3H, R3CCH(CH3)CH3), 0.80 (d, J = 6.7 Hz, 3H, R3CCH(CH3)CH3).  

13C NMR (126 MHz, CDCl3) δ 152.6 (R3C-furanyl(2-C(q)), 149.4 (R3C-furanyl(5-C(q)), 137.7 

(R3CPhC(q)), 128.7 (R3CPhC(meta)), 127.8 (R3CPhC(ortho)), 126.4 (R3CPhC(para)), 118.9 (RCN), 108.8 

(R3C-furnayl(4-CH)), 106.3 (R3C-furnayl(3-CH)), 54.8 (R3CCH(CH3)2), 36.2 (CR4), 19.3 

(R3CCH(CH3)CH3), 18.3 (R3CCH(CH3)CH3), 13.7 (furanyl5-CH3).   

GC/MS: 239.1 [M+], 214.2 [M-CN], 81.0 [base peak] 

 

2-(furan-2-ylmethyl)-3-methyl-2-phenylbutanenitrile 

Viscous clear liquid isolated via column chromatography 98:2 Hex:EtOAc as eluent.  

1H NMR (500 MHz, CDCl3) δ 7.24 (m, 5H, R3CPhCH), 7.11 (dd, J = 1.9, 0.8 Hz, 1H, R3CCH2-2-

furanyl(5-CH)), 6.07 (dd, J = 3.2, 1.9 Hz, 1H, R3CCH2-2-furanyl(4-CH)), 5.74 (d, J = 3.2 Hz, 1H, 

R3CCH2-2-furanyl(3-CH)), 3.40 (d, J = 15.0 Hz, 1H, R3CCH2-2-furanyl), 3.15 (d, J = 15.0 Hz, 1H, 

R3CCH2-2-furanyl), 1.22 (hept, J = 6.7 Hz, 1H, R3CCH(CH3)2), 0.97 (d, J = 6.7 Hz, 3H, 

R3CCH(CH3)CH3), 0.77 (d, J = 6.7 Hz, 3H, R3CCH(CH3)CH3).  

13C NMR (126 MHz, CDCl3) δ 149.9 (R3CCH2(2-furanyl(2-C(q)), 141.7 (R3CCH2(2-furanyl(5-CH), 

137.3 (R3CPhC(q)), 128.4 (R3CPhCH(meta)), 127.7 (R3CPhCH(ortho)), 126.3 (R3CPhCH(para)), 120.8 

(RCN), 110.2 (R3C-furanyl(4-CH)), 108.6 (R3C-furanyl(3-CH)), 53.8 (R3CCH(CH3)CH3)), 36.8 

(CR3CH2-2-furanyl), 36.5 (CR4), 18.8 (R3CCH(CH3)CH3), 18.6 (R3CCH(CH3)CH3).   

GC/MS: 239.1 [M+], 214.2 [M-CN], 81.0 [base peak] 
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(4-290) 2-(5-methylfuran-2-yl)-2-phenylpent-4-enenitrile 

Viscous clear liquid isolated via column chromatography 98:2 Hex:EtOAc as eluent.   

1H NMR (500 MHz, CDCl3) δ 7.34 (m, 2H, R3CPhCH(meta)), 7.30 (m, 2H, R3CPhCH(ortho)), 7.25 (m, 

1H, R3CPhCH(para)), 6.13 (d, J = 3.2 Hz, 1H, R3C-furnayl(4-CH)), 5.86 (dt, J = 3.1, 1.0 Hz, 1H, R3C-

furnayl(3-CH)), 5.61 (ddt, J = 17.2, 10.2, 7.1 Hz, 1H, allyl(CH)), 5.12 (m, 2H, allyl(CH2)), 3.08 (ddt, 

J = 13.9, 7.2, 1.1 Hz, 1H, R3CCH2allyl), 2.86 (ddt, J = 14.0, 7.0, 1.1 Hz, 1H, R3CCH2allyl), 2.19 (s, 

2H, furanylCH3).   

13C NMR (126 MHz, CDCl3) δ 153.2 (R3C-furanyl(2-C(q)), 148.9 (R3C-furanyl(5-C(q)), 137.5 

(R3CPhC(q)), 131.31 (Allyl(CH)), 128.79 (R3CPhCH(meta)), 128.2 (R3CPhCH(ortho)), 126.5 

(R3CPhCH(para)), 120.6 (RCN), 119.8 (Allyl(CH2)), 109.3 (R3C-furnayl(4-CH)), 106.4 (R3C-furnayl(3-

CH)), 47.9 (CR4), 43.4 (R3CCH2-furanyl), 13.6 (furanyl5-CH3).   

GC/MS: 237.2 [M+], 212.3 [M-CN], 81.0 [base peak] 

 

 

 

 

 

 

 



[156] 
 

Characterization of benzyl cyanoacetates: 

 

 

naphthalen-1-ylmethyl 2-cyanoacetate (TR3-098) 

1H NMR (400 MHz, CDCl3) δ 8.06 – 7.99 (m, 1H), 7.97 – 7.89 (m, 2H), 7.66 – 7.53 (m, 3H), 7.49 

(m, 1H), 5.73 (s, 2H), 3.50 (s, 2H). 

 

naphthalen-1-ylmethyl 2-cyano-2-phenylacetate (TR3-183) 

1H NMR (400 MHz, CDCl3) δ 7.90 – 7.78 (m, 1H), 7.73 (d, J = 1.5 Hz, 1H), 7.57 – 7.46 (m, 5H), 

7.43 (m, 3H), 7.40 – 7.33 (m, 2H), 5.39 (s, 2H), 4.81 (s, 1H). 

 

benzyl 2-cyano-2-phenylpropanoate (TR4-189) 

1H NMR (400 MHz, CDCl3) δ 7.60 – 7.21 (m, 5H), 5.23 (q, J = 1.7 Hz, 2H), 2.01(s, 3H). 
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2-methylbenzyl 2-cyano-2-phenylpropanoate (TR5-037) 

1H NMR (400 MHz, CDCl3) δ 7.58 – 7.48 (m, 2H), 7.48 – 7.35 (m, 3H), 7.33 – 7.13 (m, 5H), 5.24 

(d, J = 1.6 Hz, 2H), 2.23 (s, 3H), 2.04 – 1.96 (m, 3H). 

 

4-methoxybenzyl 2-cyano-2-phenylpropanoate (TR4-190) 

1H NMR (400 MHz, CDCl3) δ 7.49 (dq, J = 5.4, 1.8 Hz, 2H), 7.45 – 7.33 (m, 3H), 7.21 (dt, J = 8.6, 

2.1 Hz, 2H), 6.86 (dt, J = 8.6, 2.1 Hz, 2H), 5.16 (d, J = 1.4 Hz, 2H), 3.82 (s, 3H), 1.97 (s, 3H). 

 

4-(trifluoromethyl)benzyl 2-cyano-2-phenylpropanoate (TR4-205) 

1H NMR (400 MHz, CDCl3) δ 7.58 (d, J = 8.2 Hz, 2H), 7.56 – 7.48 (m, 2H), 7.48 – 7.38 (m, 3H), 

7.33 (d, J = 8.0 Hz, 2H), 5.27 (d, J = 1.4 Hz, 2H), 2.01(s, 3H). 

 

 

4-fluorobenzyl 2-cyano-2-phenylpropanoate (TR4-200) 
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1H NMR (400 MHz, CDCl3) δ 7.53 – 7.45 (m, 2H), 7.45 – 7.35 (m, 3H), 7.27 – 7.19 (m, 2H), 7.05 – 

6.95 (m, 2H), 5.19 (s, 2H), 1.98 (s, 3H). 

 

naphthalen-1-ylmethyl 2-cyano-2-phenylpropanoate (TR5-041) 

1H NMR (400 MHz, CDCl3) δ 7.95 – 7.75 (m, 3H), 7.60 – 7.38 (m, 6H), 7.38 – 7.30 (m, 3H), 5.76 – 

5.61 (m, 2H), 2.03 – 1.96 (m, 3H). 

 

naphthalen-2-ylmethyl 2-cyano-2-phenylpropanoate (TR4-207) 

1H NMR (400 MHz, CDCl3) δ 7.90 – 7.74 (m, 3H), 7.67 (d, J = 1.6 Hz, 1H), 7.58 – 7.47 (m, 4H), 

7.44 – 7.37 (m, 3H), 7.33 (dd, J = 8.5, 1.7 Hz, 1H), 5.44 – 5.34 (m, 2H), 2.00 (d, J = 0.9 Hz, 3H). 

 

benzyl 2-(4-chlorophenyl)-2-cyanopropanoate (JH2-130-8) 

1H NMR (400 MHz, CDCl3) δ 7.48 – 7.41 (m, 1H), 7.40 – 7.36 (m, 1H), 7.36 – 7.31 (m, 2H), 7.28 – 

7.21 (m, 1H), 5.22 (s, 1H), 1.97 (s, 2H). 
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(3.22) 4-methoxybenzyl 2-cyano-4-methyl-2-phenylpent-4-enoate (JH2-134-07) 

1H NMR (400 MHz, CDCl3) δ 7.61 – 7.52 (m, 2H), 7.45 – 7.34 (m, 3H), 7.26 – 7.17 (m, 2H), 6.90 – 

6.81 (m, 2H), 5.23 – 5.08 (m, 2H), 4.94 (p, J = 1.6 Hz, 1H), 4.85 (p, J = 1.0 Hz, 1H), 3.82 (s, 3H), 

3.19 (dd, J = 14.1, 1.0 Hz, 1H), 2.82 (dd, J = 14.4, 1.0 Hz, 1H), 1.65 (t, J = 1.2 Hz, 3H). 

 

(3.23) 4-methoxybenzyl 2-cyano-2-phenylhept-6-enoate (JH2-135-27) 

1H NMR (400 MHz, CDCl3) δ 7.51 (dt, J = 5.8, 2.0 Hz, 2H), 7.44 – 7.33 (m, 3H), 7.25 – 7.15 (m, 

2H), 6.90 – 6.80 (m, 2H), 5.73 (ddt, J = 16.9, 10.1, 6.6 Hz, 1H), 5.22 – 5.10 (m, 2H), 5.06 – 4.94 

(m, 2H), 3.82 (s, 3H), 2.37 (ddd, J = 13.6, 10.7, 5.9 Hz, 1H), 2.19 – 2.03 (m, 3H), 1.52 (tdd, J = 

11.3, 7.1, 4.7 Hz, 2H). 

 

(3.24) 4-methoxybenzyl 2-cyano-2-methyl-3-phenylpropanoate (TR5-012) 

1H NMR (400 MHz, CDCl3) δ 7.35 – 7.15 (m, 7H), 6.89 (dd, J = 9.2, 2.3 Hz, 2H), 5.18 – 5.07 (m, 

2H), 3.84 (s, 3H), 3.27 – 3.19 (m, 1H), 3.09 – 3.00 (m, 1H), 1.60 (s, 3H). 
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thiophen-3-ylmethyl 2-cyano-2-phenylpropanoate (TR3-245) 

1H NMR (400 MHz, CDCl3) δ 7.54 – 7.46 (m, 2H), 7.45 – 7.37 (m, 3H), 7.32 – 7.27 (m, 1H), 7.25 – 

7.20 (m, 1H), 6.98 (dd, J = 5.0, 1.2 Hz, 1H), 5.24 (s, 2H), 1.98 (s, 3H). 

 

(3.36) thiophen-2-ylmethyl 2-cyano-2-phenylpropanoate (TR3-273-25) 

1H NMR (500 MHz, CDCl3) δ 7.52 – 7.47 (m, 2H), 7.44 – 7.37 (m, 3H), 6.41 (dd, J = 3.2, 0.8 Hz, 

1H), 6.35 (dd, J = 3.3, 1.9 Hz, 1H), 5.18 (s, 2H), 1.98 (s, 3H). 

13C NMR (126 MHz, CDCl3) δ 167.7, 148.0, 143.6, 135.5, 129.1, 128.9, 125.7, 119.2, 111.5, 

110.6, 60.4, 48.3, 24.83. 

 

furan-3-ylmethyl 2-cyano-2-phenylpropanoate (TR3-278) 

1H NMR (400 MHz, Tol) δ 7.69 – 7.60 (m, 2H), 7.32 – 7.20 (m, 3H), 7.00 (dd, J = 3.8, 2.1 Hz, 2H), 

6.95 – 6.89 (m, 1H), 5.06 – 4.94 (m, 2H), 1.87 (s, 3H). 
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benzofuran-2-ylmethyl 2-cyano-2-phenylpropanoate (TR3-202) 

1H NMR (500 MHz, CDCl3) δ 7.61 – 7.49 (m, 4H), 7.49 – 7.42 (m, 1H), 7.42 – 7.30 (m, 4H), 7.30 – 

7.21 (m, 2H), 6.75 – 6.67 (m, 1H), 5.43 – 5.25 (m, 2H), 2.05 – 1.96 (m, 3H). 

 

(3.34) furan-3-ylmethyl 2-cyano-2-phenylpropanoate (TR3-208) 

1H NMR (400 MHz, CDCl3) δ 7.64 – 7.55 (m, 1H), 7.47 – 7.33 (m, 5H), 6.41 (d, J = 3.2 Hz, 1H), 

6.35 (dd, J = 3.3, 1.9 Hz, 1H), 5.18 (s, 2H), 1.98 (t, J = 8.6 Hz, 3H). 

 

tert-butyl 3-(((2-cyano-2-phenylpropanoyl)oxy)methyl)-1H-indole-1-carboxylate (TR4-240) 

1H NMR (400 MHz, CDCl3) δ 8.15 (d, J = 8.2 Hz, 1H), 7.63 (s, 1H), 7.55 – 7.30 (m, 2H), 7.44 – 7.30 

(m, 5H), 7.26 – 7.15 (m, 1H), 5.46 – 5.31 (m, 2H), 1.98 (s, 3H), 1.74 (s, 9H). 

 

(3.33) pyridin-2-ylmethyl 2-cyano-2-phenylpropanoate (TR2-207) 

1H NMR (500 MHz, CDCl3) δ 8.61 – 8.52 (m, 1H), 7.66 (td, J = 7.7, 1.8 Hz, 1H), 7.62 – 7.55 (m, 

2H), 7.49 – 7.38 (m, 3H), 7.27 – 7.20 (m, 1H), 7.18 (dt, J = 7.9, 0.9 Hz, 1H), 5.44 – 5.27 (m, 2H), 

2.02 (s, 3H). 
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furan-2-ylmethyl 2-cyano-2-(4-methoxyphenyl)propanoate (JH2-154-26) 

1H NMR (400 MHz, CDCl3) δ 7.49 – 7.35 (m, 3H), 6.99 – 6.83 (m, 2H), 6.44 – 6.34 (m, 2H), 5.17 

(s, 2H), 3.83 (s, 3H), 1.95 (s, 3H). 

 

furan-2-ylmethyl 2-(4-chlorophenyl)-2-cyanopropanoate (TR4-063) 

1H NMR (500 MHz, CDCl3) δ 7.43 – 7.39 (m, 3H), 7.35 – 7.29 (m, 2H), 6.49 – 6.32 (m, 2H), 5.26 – 

5.09 (m, 2H), 1.96 (s, 3H). 

 

furan-2-ylmethyl 2-cyano-2-(4-cyanophenyl)propanoate (TR4-062) 

1H NMR (400 MHz, CDCl3) δ 7.80 – 7.58 (m, 5H), 6.48 – 6.34 (m, 2H), 5.29 – 5.12 (m, 2H), 1.99 

(s, 3H). 
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furan-2-ylmethyl 2-cyano-2-(naphthalen-2-yl)propanoate (TR4-077) 

1H NMR (500 MHz, CDCl3) δ 8.03 – 7.78 (m, 1H), 7.61 – 7.47 (m, 4H), 7.40 – 7.22 (m, 3H), 6.44 – 

6.29 (m, 2H), 5.24 – 5.17 (m, 2H), 2.11 – 2.03 (m, 3H). 

 

 

 

furan-2-ylmethyl 2-cyano-2,3-diphenylpropanoate (TR4-036) 

1H NMR (500 MHz, CDCl3) δ 7.46 – 7.37 (m, 1H), 7.34 – 7.26 (m, 2H), 7.18 – 7.11 (m, 5H), 7.07 – 

7.00 (m, 3H), 6.29 (dd, J = 3.3, 0.8 Hz, 1H), 6.25 (dd, J = 3.3, 1.9 Hz, 1H), 5.14 – 5.00 (m, 2H), 3.63 

(d, J = 13.6 Hz, 1H), 3.25 (d, J = 13.6 Hz, 1H). 

13C NMR (126 MHz, CDCl3) δ 167.0, 147.9, 143.5, 134.0, 133.8, 130.3, 129.1, 128.9, 128.3, 

127.7, 126.4, 117.7, 111.6, 110.6, 60.3, 55.9, 44.0. 
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furan-2-ylmethyl 2-cyano-3-(4-methoxyphenyl)-2-phenylpropanoate (TR5-080) 

1H NMR (400 MHz, CDCl3) δ 7.56 – 7.47 (m, 2H), 7.42 – 7.35 (m, 4H), 7.09 – 7.02 (m, 2H), 6.81 – 

6.74 (m, 2H), 6.41 – 6.32 (m, 2H), 5.22 – 5.10 (m, 2H), 3.79 (s, 3H), 3.67 (d, J = 13.7 Hz, 1H), 3.29 

(d, J = 13.8 Hz, 1H). 

 

furan-2-ylmethyl 3-(6-chloropyridin-3-yl)-2-cyano-2-phenylpropanoate (TR5-075) 

1H NMR (400 MHz, CDCl3) δ 8.07 (d, J = 2.6 Hz, 1H), 7.53 – 7.34 (m, 7H), 7.21 (s, 1H), 6.44 – 6.32 

(m, 2H), 5.19 (s, 2H), 3.66 (d, J = 14.0 Hz, 1H), 3.34 (d, J = 13.9 Hz, 1H). 

 

furan-2-ylmethyl 2-cyano-3-methyl-2-phenylbutanoate (TR4-071) 

1H NMR (400 MHz, CDCl3) δ 7.67 – 7.57 (m, 2H), 7.46 – 7.34 (m, 3H), 7.28 (s, 1H), 6.44 – 6.30 

(m, 2H), 5.24 – 5.12 (m, 2H), 2.82 (dt, J = 13.3, 6.7 Hz, 1H), 1.19 (d, J = 6.5 Hz, 3H), 0.82 (d, J = 

6.8 Hz, 3H). 
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furan-2-ylmethyl 2-cyano-2-phenylpent-4-enoate (TR4-053-20) 

1H NMR (500 MHz, CDCl3) δ 7.48 – 7.39 (m, 2H), 7.37 – 7.25 (m, 4H), 6.36 – 6.21 (m, 2H), 5.65 

(ddt, J = 17.2, 10.1, 7.2 Hz, 1H), 5.22 – 5.03 (m, 4H), 3.04 (ddt, J = 13.9, 7.4, 1.1 Hz, 1H), 2.78 

(ddt, J = 13.9, 6.9, 1.1 Hz, 1H). 

13C NMR (126 MHz, CDCl3) δ 166.9, 148.0, 143. 6, 133.7, 130.5, 129.1, 128.9, 126.2, 121.4, 

117.7, 111.6, 110.6, 60.3, 54.2, 42.2. 
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Chapter IV.  

Asymmetric Baeyer–Villiger Oxidation of 1,3-Diketones 
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CIV.1:  Introduction to the Asymmetric Baeyer–Villiger oxidation of Ketones 

 The Baeyer–Villiger1 (B–V) rearrangement represents one of the most fundamental 

transformations for the oxidation of ketones and aldehydes in organic chemistry.2-7  The 

reaction entails nucleophilic insertion of an oxygen atom adjacent to a carbonyl functionality 

producing lactones and esters.  Extension of the Baeyer–Villiger methodology to include the 

catalytic, enantioselective oxidation of prochiral and racemic ketones was independently 

reported by Bolm8 and Strukul9 in 1994.  This pioneering work has since been complemented 

with numerous metal complexes and organic compounds competent for inducing the catalytic, 

asymmetric B–V oxidation of ketones.6,7,10-17  Despite the elegance of the above reports, the 

substrate scope is rarely extended beyond highly strained ketones (eq. 1, Scheme 4.1)4,13 and 

the degree of enantioenrichment struggles to compete with values reported involving 

enzymatic systems.18-24  α-,α-Disubstituted non-enolizable β-ketoesters25-30 have also been 

reported to be reactive substrates under B–V conditions, although not nearly  as investigated as 

the Baeyer–Villiger oxidation of ketones.  In addition, hydrolysis of the acyl moiety leads to the 

formation of α-hydroxy esters.31  Cristau confirms the stereospecificity32 of the alkyl migration  

 

Scheme 4.1 
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involved with the Baeyer–Villiger oxidation of enantiopure α-methyl,α-benzyl ethyl acetoester 

4.1, which provided the α-acetoxy ester product 4.2 (eq. 2, Scheme 4.1).31  Measured optical 

rotation for 4.2 revealed the migration indeed proceeded with retention of configuration.  Now 

it should be noted that literature precedent suggests that the Baeyer–Villiger oxidation of 1,3-

dicarbonyl compounds is a well-established method for the α-oxidation of esters25-31 and 

ketones.33-36  However, only a single report from Gotor described an asymmetric process that 

involved the Baeyer–Villiger monooxygenase-catalyzed kinetic resolution of α-substituted β-

ketoesters.  This process resulted in the formation of an enantiopure secondary ester 4.3 

(Scheme 4.2).37  The desymmetrization depicted in scheme 4.2 reaction stems from the  

 

Scheme 4.2 

available enolizable α-center, and enantioenriched α-acetoxyesters are likely obtained via α-

oxidation followed by rearrangement.35,38,39  In contrast, with the Cristau system (eq. 2, Scheme 

4.1) or with α-,α-disubstituted non-enolizable 1,3-diketones this mode of reactivity is not 

available for obtaining the α-oxidized carbonyl products.  In such cases, nucleophilic addition to 

the carbonyl moiety is required in order for the Baeyer–Villiger rearrangement to take place.   
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 With respect to the enantioselective α-oxidation of ketones, current literature protocols 

typically involve the addition of organometallic compounds to α-diketones (eq. 1, Scheme 4.3) 

as well as oxidation of preformed enolate intermediates (eq. 2, Scheme 4.3).  The addition of 

organometallic compounds to α-diketones can be challenging given the requirement for 

regioselective addition of the reductant.  These methods also typically require stoichiometric  

 

Scheme 4.3 

amounts of preformed organometallic reagents.  In addition, the oxidation of enolates can be 

challenging due to the requirement for the formation of a single enolate isomer in order to 

obtain enantioenriched products.  Moreover, Rubottum-type oxidations require the 

prefunctionalization and resolution of a preformed enolate followed by oxidation in order to 

obtain enantiopure α-hydroxy ketones.  As a result of these synthetic challenges, it would be 

feasible to obtain enantioenriched α-acetoxy ketones from a Baeyer–Villiger oxidation of non-

enolizable 1,3-diketones  (Scheme 4.4).  Acetoacetone substrates are easily accessible and have  

 

Scheme 4.4 
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been employed as starting materials in many synthetic protocols.  Furthermore, the α-hydroxy 

ketone products obtained via asymmetric B–V oxidation of 1,3-diketones would also be useful 

starting materials for synthetic chemists.40-45  It should be noted that with traditional α-

oxidation of ketones, two requirements must be met in order to obtain enantiomeric excess: 

(1) only a single enolate isomer must be reactive, (2) only a single face of the reactive enolate 

isomer can be oxidized.  However, with respect to the 1,3-diketones, what determines the 

enantioenrichment upon desymmetrization of the acetoacetone moiety is the regioselectivity 

of the carbonyl addition (Scheme 4.5).  This will be important in the following section as the 

recent advancements toward the development of the asymmetric Baeyer–Villiger oxidation of 

α-quaternary 1,3-diketones will be disclosed. 

 

Scheme 4.5  

CIV.2:  Recent developments toward the asymmetric Baeyer–Villiger oxidation of 1,3-diketones 

 Having described the benefits for developing the desymmetrization of α-quaternary 1,3-

diketones via B–V rearrangement, and given that the only report for asymmetric Baeyer–Villiger 

oxidation of 1,3-dicarbonyl compound is catalyzed by a Baeyer–Villiger monooxygenase;37 the 

recent developments toward the chiral binaphthol phosphoric acid catalyzed Baeyer–Villiger 

oxidation of α-quaternary 1,3-diketones is described.  Based on a report from Cossy suggesting 

that treatment of 1,3-diketones with m-CPBA lead to overoxidation,46 intial studies began with 
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determining conditions for the B–V oxidation reaction (Table 4.1).  Preliminary results 

employing conditions analogous to those reported by Cristau resulted in exclusive formation of 

the overoxidized compound 4.6.31  The observed product was in line with studies reported by 

Cossy, in which overoxidation of α-quaternary 1,3-diketones was observed when 

superstoichiometric amounts of m-CPBA were used (entry 1, Table 4.1).46 A reduction in the 

temperature, equivalents of oxidant used, and Brönsted acid loading resulted in exclusive 

formation of the mono-oxidized α-acetoxy ketone 4.5 (entry 2, Table 4.1).  Moreover, reducing 

the amount of oxidant used to 1 equivalent also provided the mono-oxidized product, albeit at 

a lower conversion (entry 3, Table 4.1).  Changing the solvent to benzene under the same 

reaction conditions resulted in the mono-oxidized product 4.6, and the overoxidation product 

was not observed (entry 4, Table 4.1).  As shown in Table 4.1, the m-CPBA indeed facilitates the 

Baeyer–Villiger oxidation in the absence of the Brönsted acid, however at a much slower rate.   

Table 4.1:  Brönsted acid and solvent screen for the Baeyer–Villiger oxidation of 1,3-diketones 
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At this point, it has been established that the α-phenyl, α-methyl substrate is competent for 

Baeyer–Villiger oxidation and rearrangement in presence of trifluoroacetic acid and m-CPBA.  

However, establishing a method for desymmetrization of 1,3-diketones would be difficult if not 

impossible under the current reaction conditions.  Inspired by work published from the Ding lab 

in which chiral binaphthol phosphoric acids were employed to catalyze an asymmetric Baeyer–

Villiger oxidation, a racemic binaphthol phosphoric acid was examined for reactivity (entry 5 

and 6, Table 4.1).15,17  The Binaphthol phosphoric acid proved to be competent for catalyzing 

the Baeyer–Villiger oxidation.  Control studies also revealed that the Baeyer–Villiger oxidation 

takes place in the absence of added Brönsted acid, this reaction is likely catalyzed by some 

meta-chlorobenzoic acid contaminate.  However, despite finding a Brönsted acid that would 

allow for the introduction of a chiral environment in addition to catalyzing the Baeyer–Villiger 

oxidation, the background oxidation was discouraging and alternative conditions for oxidation 

were sought.   

 There are a number of literature reports for the carbonate and phosphate mediated 

Baeyer–Villiger oxidation of 1,3-dicarbonyl moieties.25-30 In addition basic amine reagents have 

also been employed for attenuation of the reactivity of m-CPBA.47  Based on this precedent, a 

number of base mediated Baeyer–Villiger oxidations were attempted (Table 4.2).  The use of 

DABCO was based on a report from Jorgensen in which a cinchona alkaloid was used as a 

proton shuttle in a catalytic oxidation reaction utilizing m-CPBA (entry 1, Table 4.2).47  Even 

though superstoichiometric amounts of DABCO were utilized, the oxidized product 4.5 was 

never observed (entries 1 and 2, Table 4.2).  In addition, attempted oxidations employing 

sodium carbonate as reported by Molander,27 resulted in minimal conversion of 4.4 to 4.6, even  
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Table 4.2: Base-mediated Baeyer–Villiger oxidation of 1,3-Diketones 

 

after an extended reaction period (entry 3, Table 4.2).  These results suggest that the 

nucleophilicity of the m-CPBA is not as important as the activation of the carbonyl.  In keeping 

with the goal to develop a catalytic asymmetric Baeyer–Villiger oxidation of 1,3 diketones a 

series of Lewis acid and transition metal complexes were examined for reactivity.   

 The realm of metal–catalyzed asymmetric Baeyer–Villiger reactions has been pioneered 

by both Bolm3,8,10-12,14,48-54 and Strukul,4,6,9,55-60 however contributions from others have 

advanced the field as well.16, 61-64  A report from Katsuki detailed the use of cationic cobalt-salen 

complexes65 along with urea hydroperoxide (UHP) for the enantioselective Baeyer–Villiger 

oxidation of cyclobutanones.64  Based on this report, a series of reactions utilizing the cationic 

cobalt-salen catalyst along with various oxidants and in different solvents is detailed in Table 

4.3.  It should be noted that Katsuki reported that m-CPBA was not a reactive oxidant with the 

Co-salen system; in addition the Baeyer–Villiger reaction involving m-CPBA in DCM proceeds in 

the absence of catalyst. Preliminary experiments included the use of urea hydroperoxide (UHP), 

tert-butyl hydroperoxide (TBHP), and hydrogen peroxide (HOOH) in both deuterated-DCM and  
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Table 4.3: Cation Co(III)Salen SbF6 for the Baeyer–Villiger oxidation of 1,3-Diketones 

 

MeCN as well as isopropyl alchohol (IPA).  Despite performing all of these reactions at elevated 

temperatues and for extended periods of time, conversion from 4.4 to 4.5 was never observed 

(entries 1-8, Table 4.3). In addition to the cationic Co-Salen complexes, dimethyl aluminum 

chloride,53,54 methyl magnesim bromide,52 and zirconium (IV) isopropoxide51 derived binaphthol 

catalyst as reported by Bolm were screened for reactivity (Table 4.4).  As listed in Table 4.4, 

various combinations of oxidants and Lewis acid binaphthyl complexes did not show any 

activation of the 1,3-diketone 4.4 toward the Baeyer-Villiger rearrangement.  In addition, use of 

4 equivalents of m-CPBA in toluene with the zirconium binaphthol complex failed to result in 

any consumption of the starting material.  This observation suggested that the isopropoxide is 

neutralizing the residual meta-chlorobenzoic acid contaminate in the m-CPBA reagent.  As will 

be shown later in this section, the m-CPBA converts 4.4 to 4.5 in toluene in the absence of any 

catalyst.  In addition to the above conditions, earlier reports from Bolm and Lopp detailed the 
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Table 4.4:  Screen for potential Binol Lewis acid meditated Baeyer–Villiger oxidation  

 

use of copper (II) acetate48 and titanium (IV) isopropoxide66 for the Baeyer–Villiger oxidation of 

ketones (Table 4.5).  However despite the large number of reports for the metal-catalyzed 

Baeyer–Villiger reaction, none of the conditions above proved to be competent for the 

oxidation of α-quaternary 1,3-diketones.  Based on these results, and on previous experiments 

showing that racemic binaphthol phosphoric acid catalyzed the Baeyer–Villiger oxidation, the 

focus then became optimizing the binaphthol phosphoric acid catalyzed method. 

 Table 4.5:  Screen for potential Lewis acid mediated Baeyer–Villiger oxidation  
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 As shown in Table 4.1, it is now known that racemic binaphthol phosphoric acid 

catalyzes the Baeyer–Villiger oxidation of α-quaternary 1,3-diketones.  In addition, control 

studies also revealed that 1,3 diketones undergo the Baeyer–Villiger reaction when treated 

with m-CPBA in DCM solvent without any use of Brönsted acid.  For this reason, preliminary 

studies were focused on determining the rate of the uncatalyzed reaction in order to ascertain 

if the reaction was even being catalyzed (Table 4.6).  Analysis of the experimental results 

obtained from Table 4.6 suggested first and foremost that the m-CPBA reagent was most 

reactive in DCM.  Studies comparing the rate of Baeyer–Villiger oxidation in DCM vs dueterated 

DCM revealed that much more of diketone 4.4 was converted to 4.5 in DCM (entry 1 and 2).  

Similarly, in the absence of Brönsted more conversion to the B–V product was observed in DCM 

(entry 3 and 4, Table 4.6).  When comparing entry 2 to entry 4, it is clear that the reaction 

containing the binaphthol phosphoric acid converted 4.4 to 4.5 at a much faster rate suggesting 

the reaction is being catalyzed.  This result was confirmed by entries 5-8, specifically comparing 

entry 5 and entry 8 suggested that the catalyzed reaction (entry 5) after 3 hours provided the 

same amount of conversion as the non-catalyzed (entry 8) reaction did after 44 hours.  Entries 

9-12 revealed that the Baeyer–Villiger reaction at 85 °C in dichloroethane (DCE) provided the 

same amount of conversion to 4.5 as the reaction performed at 35 °C in DCM (entries 5-8, Table 

4.6).  Last, entries 13-16 show that the similar rates of oxidation are observed when using 

toluene as solvent.  This result will be important later in this section as the highest 

enantioenrichment for the asymmetric Baeyer–Villiger oxidation will be observed employing 

toluene as solvent.  At this point, before the asymmetric variant was attempted a brief screen 

of other potential solvents was performed (Table 4.7).  Literature precedent suggests that acti-  



[177] 
 

Table 4.6: Measuring the background reaction with m-CPBA as oxidant 

 

vation of ketones with binaphthol phosphoric acids proceeded well in the solvents screened in 

Table 4.7.15,17,67  There was no real reactivity trend observed for the solvents screened, in 

addition toluene, benzene, and ethyl acetate seem to promote the Baeyer–Villiger oxidation 

more efficiently than tetrahydrofuran and 1,4-dioxane.  In addition to other solvents, a screen 

of alternative oxidants for the binaphthol phosphic acid catalyzed B–V reaction was performed 

(Table 4.8).  As detailed above, 2 equivalents of m-CPBA in DCM in the presence of 20 mol % of 

the phosphoric acid resulted in 85% conversion of 4.4 to 4.5 and 4.5 was isolated in 60% yield 

(entry 2, Table 4.8).  It should be noted, that none of the other oxidants screened provided the  
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Table 4.7: Screen of solvents for the Baeyer–Villiger oxidation of 1,3-diketones 

 

α-acetoxy ketone 4.5, however, the urea hydroperoxide in various solvents at elevated 

temperatures consistently consumed the diketone 4.4 but the product was never elucidated  

Table 4.8: Screen of oxidants for the Baeyer–Villiger oxidation of 1,3-diketones 
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 (entries 4,8, 11, and 12, Table 4.8).  With defined reaction conditions competent for promoting 

the B–V oxida-tion of α-quaternary 1,3-diketones, various chiral phosphoric acids were 

screened in order to obtain enantioenriched α-acetoxy ketone 4.5 (Table 4.9).  Literature 

precedent suggested that the (R)-3,3’-(9-anthracenyl) binaphthol phosphoric acid was an 

effective catalyst for asymmetric additions of peroxides to carbonyl compounds.15,17,67,68  

However, the same phosphoric acid derivative was not reactive for the Baeyer–Villiger 

oxidation of 1,3-diketones toluene or DCM.  It should be noted that initial experiments 

involving (R)-3,3’-(2,4,6-isopropyl Ph) binaphthol phosphoric acid were performed in DCM and 

resulted in minimal enantiomeric excess (7% ee, entry 2, Table 4.9).  A change in solvent from 

DCM to toluene resulted in a rise in enantiomeric excess to 27% (entry 3, Table 4.9).  Switching 

to the (S)- 3,3’-(2,4,6-isopropyl Ph) binaphthol phosphoric acid provides 4.5 with 32% ee and 

Table 4.9: Catalyst screen for asymmetric Baeyer–Villiger oxidation 
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was corroborated by a distinct change in the major enantiomer observed on the HPLC 

chromatogram (entry 5, Table 4.9).  Moreover, cooling the reaction to - 15 °C resulted in a 

minor increase in enantiomeric excess to 32% (entry 4, Table 4.9).  A recent report from Ding 

explained that switching from the binaphthol phosphoric acid to the hydrogenated binol 

phosphoric acid analog resulted in an increase in enantiomeric excess.15  However an 

experiment employing the H8-binol-derived (H8-binol=5,5’,6,6’,7,7’,8,8’-octahydro-1,1’-bi-2-

naphthol) phosphoric acid did not result in improved % ee (entry 9, Table 4.9).  The remainder 

of the chiral binol and VAPOL derived phosphoric acids screened provided minimal to no 

enantioenrichment for the Baeyer–Villiger oxidation (entries 6-8, Table 4.9).  Based on the 

analysis provided in Scheme 4.5, in order to try and improve the regioselectivity of the attack of 

the peroxide on the ketone moiety, an α-naphthyl, α-methyl 1,3-diketone69 substrate was 

synthesized and subjected to the reaction conditions in Table 4.10.  Initial experiments involved 

treatment of diketone 4.7 with the racemic binol phosphoric acid resulted in 30% consumption 

of the starting material.  It should be noted that product 4.8 was never confirmed and the 

Table 4.10: Increasing the steric bulk in the α-position  
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conversion is based only on consumption of the starting material 4.7.  Switching to the chiral 

(R)-3,3’-(2,4,6-isoproyl Ph) binaphthol phosphoric acid did not result in any consumption of the 

starting material diketone 4.7 (entry 2, Table 4.10).  Currently, it is not clearly understood why 

the α-naphthyl diketone was not as reactive as the phenyl substituted surrogate.  

 To this end, it has now been determined that treatment of α-methyl, α-phenyl 1,3-

diketones with a binaphthol phosphoric acid as well as m-CPBA in DCM provided the Baeyer–

Villiger rearrangement product α-acetoxy ketone 4.5.  In addition, exposure of the α-quaternary 

1,3-diketone to a chiral binaphthol phosphoric acid along with m-CPBA resulted in minimal 

enantioenrichment.  A change in solvent from DCM to toluene served to improve the observed 

enantiomeric excess.  Now where the above reaction serves to provide a method for the α-

oxidation of ketones via the Baeyer–Villiger mono-oxidation protocol, overoxidation to the 

geminal acetoxy alkane 4.6 (Table 4.1) suggests that 1,3-diketones could be utilized as acyl 

anion equivalents.  The following section details the preliminary studies involved with 

investigating 1,3-diketones as acyl anion equivalents.                      

CIV.3:  Baeyer–Villiger oxidation of 1,3-diketones:  A dithiane Surrogate 

The Corey-Seebach reaction showcases the utility of 1,3-dithianes as acyl anion 

equivalents.70,71  General synthetic accessibility and broad reactivity have made 1,3-dithianes 

ubiquitous in organic synthesis.72-74  Despite the widespread applicability of the 1,3-dithiane, 

lithiated bases are required for generation of the of the acyl anion equivalent. In addition a 

stoichiometric amount of mercuric chloride is required for the removal of the dithiane moiety 

to afford the carbonyl product.  As observed in Table 4.1, overoxidation of the 1,3-diketone 4.4 
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leads to the formation of geminal acetoxy alkanes 4.9 (eq. 1, Scheme 4.6).75  The acetoxy 

diester 4.9 was then deprotected to reveal the acetophenone product 4.10 (eq. 1, Scheme 4.6). 

  

Scheme 4.6: 

This series of reactions suggest that it would be feasible to employ 1,3-diketones as an acyl 

anion equivalents.  In addition, it has also been observed that the nitrile ketones 4.11 can 

undergo the Baeyer–Villiger oxidation under similar conditions complementing current 

literature precedent employing cyanohydrins as acyl anion equivalents (eq. 2, Scheme 4.6).  

Subsequent hydrolysis of the acyl protecting group would also deliver the acetophenone 

product.  The advantage of using the 1,3-diketones as acyl anion equivalents is manifested in 

the acidity of the reactant (eq. 3, Scheme 4.6).76,77  1,3-diketone moieties can be activated 

toward alkylation under mildly basic conditions.  In addition, acetoacetone substrates can 
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undergo α-arylation78 a reaction that has not been reported for 1,3-dithianes.  As shown in 

equation 1 (Scheme 4.6), treatment of α-phenyl, α-methyl 1,3-diketones with excess 

trifluoroacetic acid (TFA) and superstoichiometric amounts of m-CPBA resulted in formation of 

the geminal acetoxy alkane 4.9.  As shown in Figure 4.1, crude 1H NMR reveals that some of the 

acetophenone product is already forming.  Subjecting the crude reaction mixture to aqueous 

TFA for 1 h shows a conversion of 4.9 to the acetophenone product (middle spectra, Figure 4.1).  

A comparison of the product peaks with the authentic acetophenone product (lower spectra, 

figure 4.1) confirms the transformation of the 1,3-diketone 4.4 into acetophenone 4.10.  This 

result suggests that the Baeyer–Villiger oxidation of the 1,3-dicarbonyl moieties is a 

complementary method to known procedures72-74,79-83 for the functionalization of acyl anion 

equivalents (eq. 3, Scheme 4.6).     
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Figure 4.1        
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 To conclude, it has been determined that Baeyer–Villiger oxidation of α-quaternary 1,3-

diketones in the presence of excess m-CPBA leads to the formation of geminal acetoxy alkanes.  

These acetoxy alkanes can then be deprotected via treatment with aqueous TFA and converted 

to their respective ketones.  Upon determination of the scope of the reaction, this protocol 

could be a viable complement to know methods for generating and functionalizing acyl anion 

equivalents.        
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Appendix C:  

General information: 

All reactions not performed at reflux were run in 1 dram glass scintillation vials.  All 

reactions performed under refluxing conditions were run in 5 mL Biotage microwave vials with 

sealable septa-caps.  THF was dried over sodium in the presence of benzophenone indicator.  

Toluene (Tol) was dried over activated alumina and distilled over sodium. Other commercially 

available reagents, solvents, and catalysts were used without additional purification unless 

otherwise stated.  α-Phenyl, α-methyl acetoacetone was prepared according to a literature 

procedure.78  α-1-Naphthyl, α-methyl acetoacetone was prepared according to a literature 

procedure.69  All commercially available 3,3’-substituted binaphthol phosphoric acids were 

purchased from Aldrich and used without additional purification.  All non-commercial 3,3’-

substituted binaphthol phosphoric acids were prepared from 3,3’-substituted binaphthol 

according to a literature protocol.84  All non-commercial 3,3’-substituted binaphthol ligands 

were prepared from commercially available chiral binaphthol compounds according to a 

literature procedure.85   1H and 13C NMR spectra were obtained on  Bruker Avance 500 DRX 

spectrometer and were referenced to residual protio solvent signals. Compound purification 

was effected by flash chromatography using 230 x 400 mesh, 60 Å porosity, silica obtained from 

Sorbent Technologies. Structural assignments were based on 1H, 13C, DEPT-135, COSY, HSQC 

spectroscopies. Mass spectrometry was run using ESI techniques. 
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Characterization of 1,3-diketones: 

 

 

(4.4) 3-methyl-3-phenylpentane-2,4-dione78 

1H NMR (500 MHz, CDCl3) δ 7.38 – 7.30 (m, 1H, ArCHpara), 7.28 (dd, J = 7.3, 1.3 Hz, 2H, ArCHmeta), 

7.22 – 7.13 (dd, J = 7.3, 1.3 Hz, 2H, ArCHortho), 2.05 (s, 6H,RC(O)CH3), 1.71 (s, 3H, Cquat.CH3). 

13C NMR (126 MHz, CDCl3) δ 207.4, 138.0, 129.0, 128.0, 127.5, 70.1, 27.5, 19.6. 

 

 

(4.5) 3-oxo-2-phenylbutan-2-yl acetate 

1H NMR (500 MHz, CDCl3) δ 7.44 (m, 1H, ArCHpara), 7.36 (dd, J = 7.3, 1.3 Hz, 2H, ArCHmeta), 7.26 

(dd, J = 7.3, 1.3 Hz, 2H, ArCHortho), 2.28 (m, 3H, Cquat.C(O)CH3), 1.96 (s, 3H, Cquat.O2CCH3), 1.87 (s, 

3H, Cquat.CH3). 

13C NMR (126 MHz, CDCl3) δ 203.7, 170.1, 138.5, 128.7, 128.2, 124.7, 87.5, 23.7, 22.9, 21.4. 
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(4.7) 3-methyl-3-(naphthalen-1-yl)pentane-2,4-dione 

1H NMR (500 MHz, CDCl3) δ 7.92(m, 2H, ArCH), 7.64 (ddd, J = 8.5, 1.7, 0.8 Hz, 1H, ArCH), 7.50 

(m, 4H, ArCH), 2.22 (s, 6H, RC(O)CH3), 2.01 (s, 3H, Cquat.CH3). 

13C NMR (126 MHz, CDCl3) δ 208.1, 136.0, 134.5, 131.5, 129.4, 129.3, 126.6, 125.8, 125.5, 

125.3, 124.7, 70.1 (Cquat.), 28.4 (C(O)CH3), 22.0 (Cquat.CH3). 

 

 

(4.9) 1-phenylethane-1,1-diyl diacetate75 

1H NMR (400 MHz, CDCl3) δ 8.04 – 7.95 (m, 2H, ArCH), 7.44– 7.21 (m, 3H, ArCH), 2.64 (s, 3H, 

Cquat.CH3), 2.33 (s, 6H, Cquat.O2CCH3). 

13C NMR (126 MHz, CDCl3) δ 202.4 (C(AcO)2), 159.2 (O2CCH3), 134.2 (ArCH), 129.8 (ArCH), 

128.7(ArCH), 120.1 (ArCH), 26.4 (O2CCH3), 21.2 (CH3). 
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