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Living reef fishes are one of the most diverse vertebrate assemblages on Earth.

Despite its prominence and ecological importance, the origins and assembly of

the reef fish fauna is poorly described. A patchy fossil record suggests that the

major colonization of reef habitats must have occurred in the Late Cretaceous

and early Palaeogene, with the earliest known modern fossil coral reef fish

assemblage dated to 50 Ma. Using a phylogenetic approach, we analysed

the early evolutionary dynamics of modern reef fishes. We find that reef

lineages successively colonized reef habitats throughout the Late Cretaceous

and early Palaeogene. Two waves of invasion were accompanied by increasing

morphological convergence: one in the Late Cretaceous from 90 to 72 Ma and

the other immediately following the end-Cretaceous mass extinction. The

surge in reef invasions after the Cretaceous–Palaeogene boundary continued

for 10 Myr, after which the pace of transitions to reef habitats slowed. Com-

bined, these patterns match a classic niche-filling scenario: early transitions

to reefs were made rapidly by morphologically distinct lineages and were fol-

lowed by a decrease in the rate of invasions and eventual saturation of

morphospace. Major alterations in reef composition, distribution and abun-

dance, along with shifts in climate and oceanic currents, occurred during the

Late Cretaceous and early Palaeogene interval. A causal mechanism between

these changes and concurrent episodes of reef invasion remains obscure, but

what is clear is that the broad framework of the modern reef fish fauna was

in place within 10 Myr of the end-Cretaceous extinction.
1. Introduction
Despite the highly fragmented distribution of reefs globally, reef fish faunas are

remarkably similar; characteristic lineages are abundant on reefs around the

world, such as wrasses, damselfishes, tangs and butterflyfishes on coral reefs

[1] and porgies, rockfishes and wrasses on temperate rocky reefs [2,3]. These

reef fishes are integral to the regulation and maintenance of the reef ecosystem

through nutrient cycling [4], bio-erosion [5], herbivory and predation [6]. The

evolutionary histories of fishes and modern reefs are therefore strongly intercon-

nected but the evolutionary formation of the modern reef fish fauna remains

poorly understood.

The spectacular diversity of fishes on reefs has been attributed to the sup-

posed stability of reefs over long stretches of geological time [7], but reefs

changed rapidly and dramatically in composition, abundance and geographical
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Figure 1. Inferred history of reef-dwelling across acanthomorph families. For the
purposes of illustration, the posterior probability of each lineage living in ‘reef’
(red¼ 100% reef ) or ‘non-reef’ (blue¼ 100% non-reef ) habitats was calcu-
lated [26] from 10 000 stochastic character maps [27] on the maximum clade
credibility tree of acanthomorphs [24] pruned to a single representative of each
family. Nodes of important clades are identified and the general morphology
of the main reef fish families depicted by line drawings.
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distribution during the early evolution of modern reef fishes

[8]. Reefs are commonly defined as ‘as laterally confined struc-

tures developed by the growth or metabolic activity of sessile

benthic aquatic organisms’ [9, p. 3] and modern reefs consist

both of tropical coral reefs and temperate rocky reefs domi-

nated by algae. In the Late Cretaceous (ca 100–66 Myr ago),

reefs were primarily single-layer beds or mounds formed by

corals, skeletal sponges and rudist bivalves [10]. Coral reef

volume declined throughout much of the Cretaceous and

rudist bivalves were dominant [11], although it has been

argued that these molluscs were not true reef-builders [12].

The end-Cretaceous mass extinction (Cretaceous–Palaeogene;

K–Pg) did not result in a decline of reef volume, but it did

result in the loss of diversity [13,14]: rudists went extinct at,

or close to, the K–Pg (66 Ma) [10] along with an estimated

45% of all scleractinian coral species [13]. Although reef ecosys-

tems rebuilt slowly afterwards [15], coral diversity recovered

fairly rapidly from the K–Pg [13] and coral formations were

more geographically widespread in the earliest Palaeogene

than in the Late Cretaceous [15,16]. A substantial drop

in reef volume almost 10 Myr after the K–Pg [14] may

have been triggered by ocean acidification [17] during the

Palaeocene–Eocene thermal maximum (PETM) [14]. From

the mid-Eocene (ca 45 Ma) onwards, coral-dominated frame-

work reefs became the most common reef type [15] and

spread globally from the late Eocene into the Oligocene [8].

The historical influence of changing reef composition and

the K–Pg extinction upon the assembly of the reef fish fauna

has been a topic of considerable speculation but remains uncer-

tain. Reef systems are known drivers of diversification and net

exporters of biodiversity to other marine habitats [18]; several

lineages of reef fishes have been shown to have higher rates

of speciation than non-reef-dwelling lineages [19,20]. Spiny-

rayed fishes (Acanthomorpha) make up the vast majority

(approx. 92%) of modern reef fishes and today reefs support

approximately one-quarter of acanthomorph diversity [21],

representing nearly 4500 species in 133 families. Available evi-

dence from both fossils and living species does not clearly

indicate whether reefs acted as cradles of early acanthomorph

diversity or were later colonized by lineages that then diversi-

fied. The deepest diverging acanthomorph lineages (e.g.

Polymixiiformes, Percopsiformes, Zeiformes, Gadiformes and

Lampriformes) and immediate outgroups of acanthomorphs

(e.g. Myctophiformes) are not closely associated with reefs.

However, the most ancient fossil acanthomorphs, from the

early Late Cretaceous (ca 100 Ma), are known from a variety

of depositional settings, some of which are interpreted as

being located proximal to well-developed benthic commu-

nities, although perhaps not true reefs [22]. The earliest

uncontested reef fish assemblage from Bolca, Italy (ca 50 Ma)

contains eight of the 10 most common extant coral reef families

[23], all of which are acanthomorphs. Until very recently the

relationship between reef fish families was unclear owing to

the lack of a well-resolved phylogeny of acanthomorphs but

new trees [24,25] have confirmed that reef fishes are not mono-

phyletic (figure 1). Thus, if reef lineages originated in other

habitats, major colonization of reef habitats must have occurred

between the origination of acanthomorphs, estimated at

133–152 Myr ago based on molecular clock analyses [24],

and when they rose to ecological dominance 10 Myr after the

K–Pg [28]. Indeed, both the Late Cretaceous [1,29] and early

Palaeogene [23] have been suggested as periods of intensive

reef invasion by acanthomorphs, with subsequent radiation
of many acanthomorph lineages linked to the rise of scle-

ractinian reefs in the early Palaeogene [1,29]. Most extant

acanthomorph families originated in the Palaeogene [24] and

it is conjectured that a coevolutionary arms race between

corals and fishes lead to the major re-organization of reefs

during the Eocene [30].

Apart from these broad and often speculative outlines,

key details of the evolutionary assembly of the unique reef

fish fauna remain unknown. In the absence of a dense fossil

record of reef fishes, we used a recent time-calibrated phylo-

geny of all major lineages of living acanthomorphs [24] in

order to infer the history of reef-living and disparity through

time (DTT). We determine that reef-living evolved indepen-

dently in multiple lineages and identify two waves of reef

invasion on either side of the K–Pg boundary, which were

accompanied by increasing morphological convergence.

This pattern is consistent with a macroevolutionary niche-

filling scenario [31]: early transitions to reefs were made

rapidly by morphologically distinct lineages and were fol-

lowed by a slowing in the rate of invasions and eventual

saturation of morphospace.
2. Material and methods
(a) Data collection
We generated a morphological dataset of 12 traits that summar-

ize body shape and size and which reflect several prominent

functional properties of the feeding and locomotor systems.

Measurements were made on adults of one species from 191 of

the 228 acanthomorphs families in the phylogeny, each exemplar

species was carefully selected to represent the most common

head–body shape and size within the family. Ten linear traits

were measured in millimetres with hand-held dial callipers

from three adult specimens of each species, including standard
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length, lower jaw length, length of the dentigerous arm of the

premaxilla, length of the ascending process of the premaxilla,

diameter of the eye, maximum body depth, maximum body

width, depth of the caudal peduncle, span of the caudal fin,

length of the dorsal fin, along with body mass weighed to the

nearest 0.01 g on a scale. Finally, suction index, a metric of

the relative capacity to generate suction pressure during suction

feeding [32,33] was calculated from five additional measurements,

including diameter of the mouth aperture, length of the buccal

cavity, distance from the joint between the supracleithrum and

post temporal bones to the midpoint of the buccal cavity, height

of the epaxial musculature from the supracleithrum–post temporal

joint, and width of the epaxial musculature between the supra-

cleithrum–post temporal joints. Specimens were either part of

P.C.W.’s personal research collection or part of the ichthyological

collection at the California Academy of Sciences (morphological

data provided in the electronic supplementary material, dataset

S1). Finally, we produced a multivariate estimate of morpho-

logy using a phylogenetic principal components analysis (PCA)

of all 12 traits (PCA loadings available in the electronic supple-

mentary material, Results and methods table S1). Prior to the

PCA, we log-transformed all linear measurements and masses

were logged after cube-root transformation.

We used a binary habitat variable: ‘Reef’ (1) or ‘Non-Reef’ (0).

To avoid an arbitrary threshold for assigning a habitat to each

family, we used the percentage of extant species in each family

that are reef-associated as given by FISHBASE [21] (this includes

fishes living on or near any shallow-water, consolidated wave-

resistant structure) using functions in the R package rfishbase

[34]. These percentages were used to specify a binomial distri-

bution from which we sampled 100 times for each family,

generating 100 habitat datasets. Using this method, between 35

and 53 families were recognized as ‘reef’ (reef datasets provided

in the electronic supplementary material, dataset S2).

To incorporate phylogenetic uncertainty, all analyses were

run across a random sample of trees from the posterior distri-

bution of time-calibrated trees (BPDT) generated by Near et al.
[24]. Briefly, the trees were built using 10 protein-coding genes

comprising 8577 base pairs. Each codon position was analysed

separately using a GTR þ G model. Divergence times were esti-

mated using 37 fossil calibrations (only 10 were from Bolca;

calibrations 13, 15–18, 22, 24, 30, 32–33 in [22]) with an uncorre-

lated lognormal model of molecular evolutionary rate

heterogeneity implemented in the computer program BEAST

v. 1.6.1 [35,36]. Analyses were run four times, each run consisted

of 1.0 � 109 generations and sampled every 10 000 generations.

The resulting trees from each of the four runs were combined

and the burn-in period was identified and discarded prior to

sampling the 1000 trees.

Within these trees, taxonomic sampling is sparse at the species-

level as they contain approximately 3% of extant acanthomorph

species. However, family-level sampling is far more complete,

including 228 out of a total of 322 extant acanthomorph families

[37]. We therefore ran our analyses on family-level trees, with

each species assigned to a family using Catalog of Fishes [37]. As

some families were not always monophyletic, we randomly

sampled a single exemplar species for each family on every tree

used, then converted the tips of the trees to family-level taxa.

The root ages, branch lengths and phylogenetic relationships in

these trees will vary. Tree manipulations were completed in the

statistical computing framework ‘R’ [38] using the packages ape

[39] and geiger [40].
(b) Timing of reef colonization
To estimate the number of transitions to reef-living through time,

we used stochastic character mapping [41] in SIMMAP [27]

with a uniform prior on the symmetry of the transition rate
matrix (a ¼ 1 and k ¼ 101) and a branch length prior on the

rate parameter, to generate a total of 50 000 stochastically

mapped trees. For each of the 100 habitat datasets, we sampled

50 trees from the BPDT and generated 10 stochastic character

maps on each tree (provided in the electronic supplementary

material, dataset S3). We wrote an R script [38] to convert these

mapped trees into a distribution of absolute ages for the on

(0–1) and off (1–0) reef transitions (R function available in the elec-

tronic supplementary material, dataset S4). To ensure that the

patterns were not generated by the phylogenetic structure of

the trees, we generated a null distribution by re-shuffling the

habitat data on the tips of the phylogeny and re-running the ana-

lyses. To produce the same number of null SIMMAP trees as we

had in our empirical dataset (50 000), we randomly resampled

without replacement each of the 100 habitat datasets five times,

generating 500 null habitat datasets. Then, for each null dataset,

we sampled 10 trees from the Bayesian posterior distribution

and generated 10 stochastic character maps per tree. The null sto-

chastic maps were then analysed in the same way as the real

data. Reef transitions are shown in figure 2a and non-reef in

figure 2b. For further details, see the electronic supplementary

material, Results and methods.

(c) Phylogenetic clustering of reef habitat
Phylogenetic clustering can be inferred from our SIMMAP ana-

lyses which compare the empirical number of transitions in our

data to a null generated by shuffling the data on the tips of the

tree (sometimes referred to as a non-phylogenetic null). This is

the test for phylogenetic inertia in discrete data suggested by

Maddison & Slatkin [43] using stochastic mapping instead of

ancestral state reconstruction via parsimony. Clustering is indi-

cated by fewer transitions in the empirical data compared with

the non-phylogenetic null. To confirm the phylogenetic cluster-

ing results from the stochastic character mapping, we also

calculated the net relatedness index (NRI) [44] across the 1000

phylogenies from the BPDT and 100 habitat datasets using the

R package picante [45]. NRI reflects the phylogenetic structure

across the phylogeny and is calculated as the mean pairwise dis-

tance, as measured by the branch length, among all pairs of reef

species and compared to a null where the data are reshuffled on

the tips of the phylogeny.

(d) Disparity through time
We sampled 10 trees from the BPDT for each of the 100 habitat

datasets and pruned the trees into reef and non-reef species.

With the morphological PCA axes, we estimated DTT on the

1000 reef and non-reef trees separately using the methods of

Harmon et al. [46] implemented in the R package geiger [40].

This method estimates the average squared Euclidean distance

between species across the entire phylogeny and for every node

in that phylogeny (sub-clade). Relative disparities for each sub-

clade are calculated by dividing the sub-clade disparity by that

for the whole phylogeny. Finally, at each node the mean relative

disparity is calculated as the average of the relative disparities of

all sub-clades whose ancestral lineages are present at that time.

The null, unconstrained Brownian motion was generated by

1000 simulations with the same variances as the 12 PC axes for

each phylogeny. To combine the results across different tree topol-

ogies, we converted the average sub-clade disparity from the DTT

analysis from relative to absolute time. Then, for each 1 Myr time

bin, we calculated the percentile position of the real data within

the Brownian motion null distribution. Therefore, values close to

100 indicate evidence of increasing disparity within clades and

overlapping morphospace occupation, and close to 0 indicate

increasing disparity between clades, which occupy different

areas of morphospace. The percentile position of the real data

across the 1000 trees are visualized using density strips [42]
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Figure 2. Patterns of movement on and off reefs and the evolution of morphological DTT. The primary bioconstructor during different periods is indicated on the
x-axis with the changeover between corals and rudists occurring between 100 and 90 Ma [11]. The vertical red line indicates the timing of the K – Pg mass extinc-
tion. (a) Average number of transitions to reef habitats within acanthomorph fishes per million years, in the empirical data (blue) and the non-phylogenetic null
(red). Results are averages across 50 000 stochastic character maps generated on a random sample of tree topologies from the Bayesian posterior distribution of trees.
(b) Average number of transitions away from reef habitats within acanthomorph fishes per million years, in the empirical data (blue) and the null (red). (c) Density
strip depicting the average sub-clade disparity of reef lineages, represented as the percentile position within the Brownian motion (BM) null per million years
estimated on 1000 different reef acanthomorph phylogenies. The dashed blue horizontal lines represent the 95% confidence interval (CI). (d ) Density strip depicting
the average sub-clade disparity of non-reef lineages, represented as the percentile position within the Brownian motion (BM) null per million years estimated on
1000 different reef acanthomorph phylogenies. The dashed blue horizontal lines represent the 95% CI. Resolution in (b,c) is restricted to 100 – 40 Myr ago, which is
when the majority of branching events occur within the trees. Density strips [42] can be thought of as a two-dimensional representation of three-dimensional
histograms for each time bin, where a darker colour indicates a higher density of points and thus a higher bar in the histogram.
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implemented in the R package denstrip, with the density con-

strained to vary between 0 and 100. You can think of these

density strips as a two-dimensional representation of three-

dimensional histograms for each time bin, where a darker colour

indicates a higher density of points and thus a higher bar in the

histogram. If disparity was evolving according to the null

Brownian motion model, this graph would have a dark bar

around the 50th percentile with the colours fading to grey away

from it—representing a normal distribution. For further

details, see the electronic supplementary material, Results

and methods.
3. Results
(a) Timing of reef colonization
The stochastic character maps show that reefs were successively

invaded by multiple acanthomorph lineages and indicate

two clear periods of elevated reef transitions. The first in the

Late Cretaceous from 90 to 72 Ma and the second immediately

following the K–Pg extinction (65–56 Myr ago) (figure 2 and

electronic supplementary material, Results and methods figure

S1). Neither period of increased reef invasion can be explained
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by rapid lineage diversification because the empirical number of

transitions substantially exceeds the null that incorporates the

impact of tree shape (figure 2a). Additionally, there is no evidence

of elevated rates of taxonomic diversification in acanthomorphs

following the K–Pg [24]. Beginning in the late Eocene (39 Ma),

the average number of reef transitions drops below the non-

phylogenetic null expectation, indicating that reef lineages

become phylogenetically clustered from this period onward

[43]. For the reef to non-reef transitions, the pattern in the empiri-

cal data mirrors the non-phylogenetic null, suggesting that

the number of transitions off reefs is mainly determined by the

number of lineages in each period (figure 2b).

(b) Phylogenetic clustering of reef habitat
In total, we infer about 50 independent transitions to reef-

dwelling generated the acanthomorph reef fish fauna we see

today (figure 3), confirming that far from being a monophyletic

group from a single invasion, modern reef fishes represent a

diverse assemblage accumulated through many invasions.

Overall, we estimate fewer reef transitions from the empirical

data than the non-phylogenetic null model (figure 3a) [43],

indicating reef lineages are, on average, phylogenetically clus-

tered. This result is supported by the NRI, with negative values

of the standardized effect size and the low p-values confirming

that reef lineages are more closely related than expected by

chance (see the electronic supplementary material, Results

and methods figure S2). By contrast, transitions away from

reefs follow the null expectation suggesting that the lineages

which move away from reefs are not phylogenetically clustered

(figure 3b).

(c) Disparity through time
High average sub-clade disparity relative to the null indicates

that reef lineages independently converge on similar mor-

phologies, while low average sub-clade disparity indicates

that lineages occupy distinct regions of morphospace. We

find that reef (figure 2b) and non-reef (figure 2c) lineages

show different patterns of morphospace occupation through

time. Early in the evolutionary history of acanthomorphs,
non-reef lineages exhibit substantial phenotypic overlap, but

lineages that invaded reef habitats early occupy distinct regions

of morphospace. Beginning in the Late Cretaceous (ca 85 Ma),

there is a shift to greater morphological convergence within

sub-clades in both reef and non-reef lineages. By 80 Ma, the

Brownian motion model is rejected for non-reef lineages as

all results exceed the 97.5th percentile, indicating that all

independent non-reef lineages occupy similar regions of

morphospace. By contrast, reef lineages do not start to exhibit

such strong morphological convergence until the early

Eocene (50 Ma), well after the K–Pg mass extinction.
4. Discussion
Our results reveal that reef lineages of acanthomorphs succes-

sively colonized reef habitats throughout the Late Cretaceous

and early Palaeogene. Thus, in contrast to marine benthic

invertebrate genera [18], reefs appear not to have been cradles

of higher level fish diversity (family and above). This is consist-

ent with the little we can infer from the fossil record, as the

oldest acanthomorph fossils are found in a range of depo-

sitional settings. There is also no evidence that familial

diversity was systematically exported to other habitats, as the

transition rates away from reefs fit the null expectation

(figure 3b). However, we stress that these results are at the

family-level, most reef families contain both reef and non-reef

species, so transitions on and off reefs will have been far

more dynamic over the history of acanthomorphs than we

can infer. Reefs have clearly been important drivers of both

lineage and morphological diversification within fishes

[19,20,47] and may be acting as cradles and sources of diversity

within families.

There is remarkable congruence between the temporal

pattern of changes in the number of transitions onto reefs, mor-

phospace occupation by reef lineages and reef history. Around

90 Ma, the number of transitions to reef habitats first exceeds

the null expectation and a little later (approx. 85 Ma) mor-

phospace occupation in reef lineages shifts from sub-clades

occupying primarily distinct areas to overlapping regions.

Later, following the K–Pg mass extinction, we identify a

second rapid rise in the number of reef transitions accompanied

by a move towards even greater overlap in morphospace occu-

pation by reef sub-clades. By approximately 50 Ma, reef lineages

occupied entirely convergent areas of morphospace (figure 2c)

and the number of reef transitions begins to plateau. For the

last 30 Myr, we estimate far fewer transitions to reef habitats

than expected under the null model (figure 2a). This sequence

of events indicates that early transitions to reefs were by phylo-

genetically over-dispersed lineages but from 30 Ma onwards,

reef lineages are phylogenetically clustered. As most modern

acanthomorph families had evolved by this time [24,25] this

result suggests that reef families cluster upon the phylogeny, a

conclusion supported by the overall number of transitions

(figure 3a) and the NRI results.

Our pattern of early reef colonization by morphologically

distinct lineages, later pulses of invasion accompanied by

increasingly convergent morphospace occupation culminating

with morphospace saturation and a plateau in reef invasions, is

consistent with a macroevolutionary niche-filling scenario [31].

Niche-filling, or diversity-dependent models (e.g. [48]), are

typically associated with monophyletic radiations. When eco-

logical opportunity is high, there is a rapid increase in
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disparity and species diversity, which slows over time as

niches become saturated. The increase in species diversity

during adaptive radiation is often attributed to elevated rates

of speciation, but in our case, reef fish diversity increases

through more rapid colonization of reef habitats.

The two waves of niche filling on either side of the K–Pg

boundary coincide with, and might be linked to, changes in

reef structure and climate. The Late Cretaceous is a ‘greenhouse’

interval lacking permanent icecaps at the poles [10]. Elevated

sea surface temperatures during the Cretaceous have pre-

viously been correlated with increased richness of marine

fishes [49]. Fluctuating sea-levels and reef volume in the low

to mid-latitudes of the Northern Hemisphere during the Late

Cretaceous are also associated with a volatile shift from corals

to rudist bivalves as the principal bioconstructors of reefs

[10,11]. A collapse in rudist-bearing carbonate platforms at

the Cenomanian–Turonian boundary (ca 93 Ma) [50] was

followed by the re-establishment of rudist diversity over the

next 10 Myr [11]. It is possible that enhanced ecological oppor-

tunity through vacant niches have given acanthomorphs

opportunities to invade reefs in ways not possible in the face

of more established, mature communities. Indeed, Late Cretac-

eous fossil acanthomorphs are found on carbonate platforms

associated with rudist reefs and include early tetraodontiforms

and syngnathiforms, groups which today are associated with

coral reefs ([29] and references therein).

The second wave of colonization following the K–Pg mass

extinction is associated with the recovery and expansion of scler-

actinian coral reefs in the early Palaeocene [15,30]. Coral

diversity decreased during the K–Pg mass extinction but there

was no substantial decline in reef carbonate production [13].

Corals recovered in the earliest Palaeocene (Danian, 65.5–

61.7 Myr ago): coral formations were more widespread than in

the Late Cretaceous [15,16] and over one-fifth of Danian coral

genera were new [13]. Rudist reefs of the Late Cretaceous were

simple [11] and it has been argued they should not be

considered true reef-builders [12], whereas the mound and

framework reefs of the early Palaeogene were clearly more com-

plex structures. Therefore, Palaeocene acanthomorphs, after

gaining a foothold in unstable reefs and reef-like structures of

the Late Cretaceous, were confronted by more structurally

complex reef ecosystems that might have fuelled a second

wave of invasion and innovation. Within 10 Ma of the K–Pg,

reef invasions had slowed, this could relate to the decline of
reef volume associated with the PETM [13,49], the saturation

of available niches or some combination of the two. Overlap-

ping morphospace occupation between reef fish sub-clades in

the early Eocene (ca 50 Ma) suggests the saturation of eco-

morphological niches on reefs and the origination of most

functional groups within reef-dwelling acanthomorphs. The

onset of ecomorphological exhaustion corresponds in time to

the exceptional palaeontological window provided by the

Bolca Lagerstätte, which confirms the existence of an ecologically

diverse reef fish fauna including the earliest herbivorous

acanthomorphs [23,51].

Reef fishes are one of the most diverse vertebrate assem-

blages on Earth, and their complex evolutionary history is

rapidly being illuminated by improved phylogenetic resolution

and continued palaeontological efforts. The correspondence

between our phylogenetically inferred results and the existing

fossil record suggests that the dynamic history of reefs had a

profound impact on the origin and early assembly of the

modern reef fish fauna. The colonization of reefs by the ances-

tors of modern reef fishes may have been promoted by

ecological opportunity associated with unstable Late Cretac-

eous reefs that was amplified by the rapid rise of structurally

complex scleractinian coral reefs after the K–Pg mass extinc-

tion. The influence of reefs may continue into the present as

previous work has found high rates of speciation [20] and

morphological diversification [47] in several reef-dwelling fish

lineages when compared with non-reef species. This remark-

able synergy between reefs and acanthomorph fishes, which

has evolved over the last 100 Myr, has resulted in a complex,

interconnected evolutionary history that is currently being

eroded by overfishing and degradation of coral habitats by

pollution and rising sea temperatures.

This study meets the terms of the ethics committee at the institution
where the experiment was carried out.
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